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Aortic stenosis (AS) is the most common valvular heart disease in developed

countries. High-fidelity preclinical models can improve AS management by

enabling therapeutic innovation, early diagnosis, and tailored treatment plan-

ning. However, their use is currently limited by complex workflows neces-

sitating lengthy expert-driven manual operations. Here, we propose an AI-

powered computational framework for accelerated and democratized patient-

specific modeling of AS hemodynamics from computed tomography. First, we

demonstrate that our automated meshing algorithms can generate task-ready

geometries for both computational and benchtop simulations with higher ac-

curacy and 100 times faster than existing approaches. Then, we show that our

approach can be integrated with fluid-structure interaction and soft robotics

models to accurately recapitulate a broad spectrum of clinical hemodynamic

measurements of diverse AS patients. The efficiency and reliability of these

algorithms make them an ideal complementary tool for personalized high-

fidelity modeling of AS biomechanics, hemodynamics, and treatment planning.

Introduction

Aortic stenosis (AS) is a progressive pathological condition characterized by the narrowing of

the aortic valve (AV) orifice. In AS, calcium often accumulates on the valve leaflets, affecting

the opening and closing of the AV (1, 2). AS is the prevailing valvular heart condition in devel-

oped countries, affecting 2-5% of adults over 65 years old (3–6). Due to the aging population,

these figures are projected to triple over the next few decades (7). As a result of increasing the

left ventricular (LV) afterload, AS not only manifests as symptoms including dyspnea, syncope,

and angina, but may also initiate a cascade of heart abnormalities (8–10). Recent guidelines

have recommended early management of AS to reduce major adverse cardiovascular and cere-

brovascular events (6). The growing prevalence of AS and the heterogeneity in the anatomy
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and hemodynamics associated with AS underscore the need for high-fidelity models that can

enhance the management of each individual patient (11, 12).

High-fidelity patient-specific models have the potential to improve the standard-of-care for

AS diagnosis and treatment, as current diagnostic methods − largely based on ultrasound imag-

ing − may underestimate cardiovascular risks in patients with only mildly abnormal hemo-

dynamics (13–16). Diagnostically, computational models can complement these methods by

analyzing alternative sources of patient data and providing additional diagnostic information

(17–19). Therapeutically, physical and digital twins can help predict risks (e.g., stroke, par-

avalvular leak, and coronary obstruction) associated with current interventional and surgical

approaches, such as transcatheter aortic valve replacement (TAVR). Therefore, these models

have the potential to improve patient outcome via device optimization and personalized treat-

ment planning (20–23).

Computational geometric reconstruction from patient images is essential for high-fidelity

patient-specific modeling of AS. Due to the complex structure of calcified AV, existing meth-

ods have been mostly limited to static single-frame reconstruction using sequential refinements

from voxelgrid segmentation and parametric surfaces (23–26). With this sequential approach,

extensive manual post-processing is often required for each downstream analysis, leading to

significant challenges in reproducibility as well as in the widespread adoption of AS models.

This limitation is further exacerbated for dynamic multi-frame modeling, which traditionally

involves subsequent feature-based registration or computational simulations with active mate-

rial models (27–29). Some methods have circumvented the reconstruction steps by utilizing

simplified parameterization (30, 31), ad-hoc input flow (32, 33), or highly tunable soft robotic

systems (34, 35). However, the full 3D geometry of the relevant heart structures is still re-

quired to recapitulate the detailed blood flow characteristics of AS, such as flow vorticity and

TAVR-induced blood stasis (36–38).

Here, we present a computational framework for personalized modeling of AS hemody-
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namics with detailed 3D patient geometry (Fig. 1). The proposed fully automated meshing al-

gorithms empowered by artificial intelligence (AI) significantly enhance the speed and accuracy

of AS geometry reconstruction, effectively addressing the scalability and practical limitations of

conventional engineering approaches. We demonstrate the versatility of our framework through

multimodal modeling, including static, dynamic, computational, and benchtop analyses. For

computational modeling, our fluid-structure coupled multi-physics model enables precise sim-

ulations of the valve leaflet motion and the resulting blood flow at a high temporal resolution.

Using only cardiac computed tomography (CT) angiography as the input patient data, our in

silico and in vitro models accurately reproduce the clinical continuous-wave (CW) Doppler

measurements of hemodynamics for AS patients. Our framework may help accelerate the de-

velopment and usage of highly precise models for AS hemodynamics in research and clinical

practice.

Results

AI-powered geometry reconstruction for computational AS modeling

We leveraged AI to directly generate the most complex finite element (FE) representation of AS

geometry − volumetric meshes. From this detailed mesh, we can automatically derive all other

necessary representations, ensuring high-quality inputs with accurate multi-part relationships

for various modeling modalities. Our AI-powered volumetric meshing involves two stages:

heart tissue reconstruction and calcium deposit attachments. We have previously developed

related algorithms for both stages, namely DeepCarve (39) and C-MAC (40), but their use cases

have been limited to static computational structural analyses. Here, we extend these algorithms

to provide a holistic computational framework for multimodal modeling, and provide the first

set of validations against clinical measurements of AS hemodynamics.

DeepCarve constitutes an image-processing neural network that can rapidly reconstruct

simulation-ready volumetric meshes from pre-TAVR CT (Movie S1). The original model was

4



cm/s

cm/s

Severe
Neural Network

Slice by slice 
segmentation

Image 
Registration

AI-powered approach — DeepCarve

Conventional Approach
cm/s

Mild

Ve
lo

ci
ty

cm/s Moderate
Ve

lo
ci

ty

Ve
lo

ci
ty

Clinical image data from 
patients with AS

Calcium

Leaflet

Progression of aortic stenosis

Healthy

Clinical diagnostic through 
echocardiographyB

A

Aging heart

Fig. 1. Overview of AI-powered personalized modeling approach for AS. (A) Schematic
illustrating the calcification process of the AV leaflets in the aging heart and changes in the
orifice area through disease progression. (B) The overall workflow of developing a patient-
specific model from CT images to recapitulate clinical hemodynamic measurements of AS pa-
tients, where we propose the use of our DeepCarve-FSI framework to replace conventional heart
meshing techniques.
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designed for the aortic valvular complex and partial LV with minimized solid element distor-

tions, which often led to conservative deformation and imprecise LV boundaries. This is espe-

cially problematic for the elderly AS population, who often exhibits unusual LV volume due

to concurrent cardiomyopathies or remodeling processes secondary to AS. For dynamic flow

analysis, precise delineation of the entire LV boundary is necessary to accurately define the

boundary of the fluid domain. Here, we therefore re-defined the LV mesh to entirely consist of

surface elements and introduced surface element quality metrics in the training loss. Further, we

modified the valve leaflet meshes to contain three layers of hexahedral elements in the thickness

direction, which increases the accuracy of the highly dynamic leaflet movements. (41, 42).

We performed geometric evaluations of the AI-generated meshes via quantitative measure-

ments (Table. 1) and qualitative visualizations (Fig. 2A). We focused on evaluating the spa-

tial accuracy as well as the element quality of the reconstructed meshes. Compared to con-

ventional registration, which consists of a deep learning segmentation algorithm followed by

segmentation-based template registration (Methods; Fig. S1, Fig. S2, Movie S2), our model

showed statistically significant improvements in all evaluation metrics for all structural com-

ponents. The performance differences are also visually apparent, especially along the LV en-

docardium and the outer aortic wall. In later sections, we will demonstrate how these geomet-

ric improvements lead to increased downstream task performance in hemodynamic modeling.

Additionally, the modified DeepCarve algorithm substantially outperformed the original Deep-

Carve for the average LV surface accuracy (1.62 → 0.87), demonstrating the benefit of mod-

eling the LV using surfaces instead of solids. The overall surface accuracy of the aorta and

leaflets also improved (0.84 → 0.60), albeit at a slight cost to the volumetric element quality

due to the division of the thickness layers in the valve leaflets. Nonetheless, no degenerate el-

ements were produced by DeepCarve, as indicated by | Jac | < 0 being 0. This marks the first

successful demonstration of the simultaneous surface and volumetric meshing of the AS geom-

etry and the capability of DeepCarve to accurately model extremely thin tri-layer hexahedral
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Fig. 2. Overview of our AI-powered geometry reconstruction algorithms for computa-
tional simulations. (A) Visualization of our AI-generated simulation meshes’ element quality
and spatial accuracy. (B) Schematic of our multi-frame meshing approach for computational
flow simulations.

leaflet elements. Following DeepCarve, we applied C-MAC without modification to automati-

cally incorporate calcification meshes while maintaining the existing heart mesh topology. The

qualitative visualization demonstrates accurate, high-quality meshes for all components of the

calcified AV and LV (Fig. 2A). The robustness of the final meshes were also verified by the

successful completion of downstream analyses without any mesh degeneracy errors.

We performed dynamic computational modeling of AS hemodynamics using two steps
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Table 1. Spatial accuracy and element quality of the meshes generated by the baseline
method and the modified DeepCarve. CD: normalized symmetric chamfer distance, | Jac |:
scaled jacobian determinant. Values are mean ± std across all test-set patients, except for | Jac
| < 0, which is the sum. ∗ indicates p < 0.05 between the two rows.

CD (mm) ↓
LV

CD (mm) ↓
Aorta & AV

| Jac | < 0 ↓
Aorta & AV

| Jac | ↑
Aorta & AV

Skew ↓
Aorta & AV

Conventional
registration 0.93 ± 0.13 0.84 ± 0.19 14 0.71 ± 0.04 0.52 ± 0.05

DeepCarve 0.87 ± 0.12∗ 0.60 ± 0.17∗ 0 0.85 ± 0.02∗ 0.36 ± 0.03∗

(Fig. 2B): DeepCarve for the time-resolved geometry reconstruction and fluid-structure inter-

action (FSI) simulations for the detailed valve leaflet dynamics. For each patient, we applied

the modified DeepCarve to each of the 8-10 CT phases independently to obtain the correspond-

ing time-resolved meshes. Owing to our deep learning-based template deformation strategy

and the shared imaging features between each time frame, the independently predicted meshes

exhibited excellent intra-patient mesh correspondence, similar to (43). Thus, we used the re-

sulting meshes directly for motion interpolation during simulations. The total processing time

of DeepCarve for all cardiac phases was around 2 seconds on an NVIDIA GPU RTX3080Ti

laptop workstation, a 100-fold speed increase from conventional registration approaches. C-

MAC was only applied to the first-frame mesh, as the calcification meshes for all other frames

are positioned based on the motion of the attached structural components.

Robust automated conversion to 3D printing geometry

Our framework facilitates straightforward repurposing of the auto-generated meshes for 3D

printed benchtop models. The differences in the meshing criteria necessitate conversion al-

gorithms for the 3D printing geometry, but the entire process can be simplified to a single-

button click with a total processing time of 10 seconds for each frame (Fig. 3A), due to the

strong inter-part relationships established by our AI-powered mesh reconstruction methods.

The component-agnostic meshing criteria for 3D printing include (1) using only triangular el-
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ements, (2) generating more uniform and smoother elements, and (3) ensuring overlapping

surfaces for multi-part attachments. The head-to-head comparison between the AI-generated

simulation mesh and its derivative 3D printing mesh demonstrates that our conversion algo-

rithms can easily satisfy all desired criteria while maintaining great spatial consistency to the

original mesh (Fig. 3A).

Three structural components are often considered for AS benchtop modeling: calcification,

valve leaflets, and the inner wall of the aorta and LV (23, 35, 44). We achieved calcification

conversion by extracting the isosurface from C-MAC’s post-processed segmentation and subse-

quently applying standard remeshing and smoothing operations. We performed leaflet conver-

sion with additional thickness adjustment steps, where we used finer-resolution voxelgrid signed

distance functions (SDF) to robustly extract surfaces at various level sets (Fig. 3B). These steps

enabled robust automated tuning of the leaflet thickness during 3D printing iterations, which

helped establish compatibility with the 3D printer resolution and satisfy the surface overlap

criteria for multi-part attachments.

To obtain a single-frame 3D printing mesh of the aorta and LV, we can simply apply the

same algorithm as the leaflets while using the closed inner wall surface as the SDF boundary.

However, to further tailor the model for soft robotics applications, we incorporated additional

steps to combine the heart geometries from two different cardiac phases (Fig. 3C). We utilized

the peak systolic AV geometry to model the valve’s open state, adapting to the limitations of

standard 3D printers in replicating the soft leaflet material properties for dynamic movements.

We used the end diastolic LV to model the most relaxed LV state, from which the LV motion

throughout the entire cardiac cycle can be reproduced via soft robotic contractions. To address

the apparent position mismatch from the initial merging of the two time-separated meshes,

we performed mesh node displacement optimizations to generate a smooth inner wall surface,

which then served as an input to the remaining meshing steps resembling leaflet conversion

(Movie S3).
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Fig. 3. Robust automated conversion to 3D printing geometry. (A) Qualitative demon-
stration of the quality of the 3D printing mesh and its spatial consistency to the corresponding
simulation mesh. Detailed steps of the conversion algorithms for the (B) AV leaflets and (C)
the combined LV and aorta.

The combination of geometries at two time points was designed specifically for our ex-

perimental capabilities, but different combinations of our conversion algorithms can generate
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a wide variety of 3D printable meshes for physical models. The robust automated conversion

was made possible by the strong inter-part relationships established by our AI-powered mesh

reconstruction methods.

Computational fluid model and insilico hemodynamic assessment

We developed a computational framework that includes a FE model of the heart using AI-

generated meshes of LV, aorta, AV, and calcium (Methods). Coupling the FE model of the heart

with computational fluid dynamics (CFD) utilizing FSI architecture allowed us to simulate the

global behavior of the patient-specific left side heart and hemodynamics (Fig. 4A). The Deep-

Carve algorithm was used to reconstruct time-resolved geometries, which were then utilized for

motion interpolation of the heart (Movie S4). We used the first-frame mesh from DeepCarve

and C-MAC to place the valve and calcification meshes. By prescribing nodal displacement

to the LV mesh, we were able to simulate heart motion based on dynamic CT data and assess

patient-specific hemodynamics (Fig. 4B). Using a comparison of global flow patterns and ve-

locity magnitudes, we were able to qualitatively assess the AS hemodynamics specific to each

patient. Figure 4C-G shows the cross-sectional velocity contours for five patient heart models

during the peak systole. The stenotic morphology of the valve leaflets caused the flow jets to

be more prominent at the contraction of the heart (Movie S4). Despite variations in heart size

and boundary conditions among patients, the maximum velocity consistently occurred at the

valve orifice in each patient/disease scenario, as expected. Following a remarkable elevation

of the velocity in proximity to the valve orifice, the flow demonstrated a plug-like flow profile,

remaining relatively stable within the jet orifice. The peak AV velocity was determined when

the flow velocity across the AV reached its peak at the tips of the cusps. Patient 4 reached a

peak velocity of 5.4 m/s, whereas Patient 1 had the lowest peak velocity of 4 m/s.
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Fig. 4. Overview of the computational model and patient-specific flow patterns. (A)
Schematic of FSI approach (B) Illustration of AI-powered simulation ready mesh. Schematic of
one-way coupling, nodal displacement prescribed to LV wall. (C-G) Velocity map distributions
in the anterior-posterior plane for patients 1 to 5, respectively. Velocity fields are captured
during the systolic temporal frame when the AV velocity is at its peak state in the cardiac
cycle.
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Recreating patient-specific valve anatomies and AS hemodynamics

To assess the efficacy of our computational framework in obtaining accurate hemodynamic data,

we conducted a comparative analysis with the conventional algorithm (Methods) (Fig. 5A). To

re-create clinical measurements obtained via ultrasound imaging, we calculated the velocity

profile across the AV by placing a short axis plane above the valve orifice (Fig. 5B). The cutting

plane denotes the monitoring location for velocity measurements through the valve. Patients’

clinical echocardiography data served as our ground truth when comparing hemodynamic find-

ings from the computational models. For quantitative analysis, a set of global hemodynamic

metrics, commonly used in clinical settings, was calculated from the FSI simulations with both

the DeepCarve model and the conventional model (CM) (Fig. 5D-G, and Fig. S4). From

the simulation, we determined the velocity values (Vpeak; Fig. 5D) and the effective orifice area

(EOA) of the AV by calculating the opening area of its deformed shape at near peak systole (Fig.

5C). Likewise, we calculated the peak (dPmax; Fig. 5E) and mean (dPmean; Fig. 5F) transvalvular

pressure gradient by measuring the flow upstream and downstream through planes above and

below the valve annuli. Figure 5G reports another clinical metric, left ventricular ejection frac-

tion (LVEF), based on the volumetric change of LV through the cardiac cycle. The results show

that the FSI simulations and the subject-specific echo data follow the same trends and are of

comparable magnitude. The simulations using the DeepCarve model more closely matched the

clinical echo data in all target metrics, indicating a mean absolute deviation of 3.8 ± 1.3% for all

metrics compared with the conventional approach (12.4 ± 3.4%). We calculated the deviations

in Vpeak to be 2.4 ± 1.5% compared to 9.8 ± 1.6%, dPmax as 5.3 ± 0.9% compared to 13.9 ±

3.1%, dPmean as 4.1 ± 1.3% compared to 14.0 ± 4.1%, and LVEF as 3.3 ± 2.9% compared to

12.1 ± 8.2% for DeepCarve and conventional methods.
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Fig. 5. Comparison of patient-specific hemodynamic findings with AI-powered and con-
ventional algorithms. (A) Constructed valve and calcium geometry using DeepCarve and
conventional meshing. (B) The visualization of particle pathlines based on FSI simulations.
The cutting plane denote the probe location for AV velocity measurements. (C) AV profiles
of patients 1-5 during peak systole in the cardiac cycle. Comparison of FSI simulations with
DeepCarve and conventional meshing/registration, shown by measured hemodynamics met-
rics of (D) Vpeak, (E) dPmax, (F) dPmean, (G) LVEF, demonstrating that DeepCarve-FSI allows
for more accurate hemodynamic measurements and agrees well with the ground truth (clinical
echo data). Each error bar represents means ± 1SD (n= 3 consecutive heart cycles).
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3D printing patient-specific meshes and in vitro hemodynamic assessment
using echocardiography

We adopted our mock circulatory left heart flow loop to test the functionality of our automated

mesh conversion algorithm for 3D printing and benchtop testing (35). The soft robotic sleeve

served as the actuator for the 3D-printed heart and drives fluid flow in the circuit, without

the need for an additional pump (Fig. 6A). The LV sleeve was tailored to fit the patient’s

anatomy and activated to mimic anatomical filling, emptying, and wall motion during systole.

To validate the computational findings and the accuracy of our mesh conversion framework

for 3D printing, we manufactured the anatomies of Patient 1 and 2 (Fig. 6B), and recreated

their hemodynamic profiles in our in vitro system (Fig. S5). The automated mesh conversion

process successfully met the watertightness requirement and did not pose any surface overlap

or compatibility issues with the 3D printer. We primarily used echocardiography to compute

the flow velocity through the AV and at the left ventricular outflow tract (LVOT) (Movie S5).

The representative continuous Doppler waveforms in Figure 6C showcase the aortic velocity

profiles for Patients 1 and 2. The measured metrics of Vpeak,VLVOT, dPmean, dPmax, and LVEF

closely matched with the clinical patient data in both cases. For each of these metrics, we

computed the compounded absolute deviation (%) from the corresponding clinical echo report

and presented the similarity between the FSI and the in vitro studies (Fig. 6D). The results

indicated that the FSI simulations using conventional methodologies had the highest deviation

of 11.1 ± 3.2%, while the DeepCarve approach exhibited the lowest deviation of 5.9 ± 1.1%

compared to the in vitro value of 8.8 ± 2.0%. These findings suggest DeepCarve-FSI approach

agrees more closely with the clinical echo data, demonstrating the accurate performance of our

AI-powered computational framework. Analogously, the in vitro test results exhibited similar

patterns as the clinical data but had a comparatively higher margin of error than the DeepCarve-

FSI technique, which will be discussed later. The deviation in LVEF in in vitro studies was

slightly less prominent than other metrics and was within the same ranges of clinical data and
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DeepCarve-FSI. This is likely due to our automated mesh conversion for 3D printing, which

results in accurate LV volumes at both end-systole (ESV) and end-diastole (EDV). Overall,

these data showcase our platform’s capability to replicate LV hemodynamics accurately and

quickly in a benchtop setting.

Discussion

In this paper, we propose and validate a start-to-end computational pipeline for patient-specific

hemodynamic analysis for AS using CT imaging patient data. We extend the DeepCarve method

to a multi-modal tool that generates fully coupled patient-specific FSI and physical benchtop

models of the left heart. Compared to traditional techniques, the proposed method demonstrates

improved geometry reconstruction at much faster test-time performance. The reconstruction

quality is particularly important for accurately representing the highly dynamic and thin AV

leaflets and irregularly dispersed calcium deposits, both of which are crucial for simulating

AS. Our solution entails using DeepCarve on each individual CT time frame that exploits the

deep learning template deformation strategy on shared image features across time frames. Ad-

ditionally, we showcase the direct and automatic transformation of our AI-generated meshes

into meshes suitable for 3D printing. Our robust volumetric mesh outputs exhibit well-defined

multi-part relationships between different heart components, which allows our automated trans-

formations to easily meet the necessary meshing criteria while maintaining high/elevated spatial

consistency to the simulation mesh.

We used clinical data from a cohort of AS patients to validate our approach as a platform

for prediction of hemodynamic diagnostic metrics of AS. Our model was shown to generate

the left heart kinematics as visualized by CT data and predict hemodynamic changes associated

with patients’ disease. As a result, our AI-powered FSI model not only recapitulates the diverse

range of clinical metrics of AS, but also offers accurate and efficient solution in comparison to

traditional methods.
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Fig. 6. A platform for testing AI-powered 3D printing mesh with soft robotic models. (A)
Overview of soft robotic system. (B) As an example, the geometries of Patients 1 and 2 were
3D printed using our automated conversion. (C) Representative echocardiographic velocity
waveforms across the aortic valve from CW Doppler measurements during actuation by the soft
robotic LV sleeve in three consecutive cardiac cycles. (D) The similarities between clinical met-
rics estimated from in vitro experiments and in silico simulations with FSI using conventional
meshing/registration method (FSI-CM) and DeepCarve (FSI-DeepCarve). Clinical parameters
include LVEF, mean pressure gradient (MP), peak pressure gradient (PP), dimensionless veloc-
ity index (DVI), and peak aortic velocity (PV).
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Some limitations of this study are noted. The primary shortcoming of our meshing approach

is the limited flexibility of the template deformation-based approach. For complex anatomies

or, for example, congenital heart defects, we would need a modified template for each phe-

notype. Our FSI method could predict AS hemodynamics despite the intrinsic limitation of

current imaging techniques. However, it was based on several assumptions. For example, we

assumed a healthy leaflet condition and assigned the same hyperelastic material properties to

the valve leaflets regardless of the individual patient’s disease state (Methods). Similarly, we

implemented the same linear elastic material properties for calcium geometries. Another lim-

itation is the relatively lower resolution (both spatial and temporal) of the original CT data at

which the valve leaflet dynamics are captured by the data-driven meshing approach. Although

our model can effectively create the dynamics of the valve leaflet even with low resolution of

CT data, the data-driven meshing technique necessitates a fully coupled analysis to simulate the

valve’s behavior during an ejection period, leading to longer simulation periods. It is also worth

noting that our computational FSI framework uses a commercial solver package (Methods) and

requires some manual operations to integrate the mesh outputs from DeepCarve into the simu-

lation platform. To fully automate the planning workflow from a raw CT scan to personalized

hemodynamic results, an open-source platform for FSI modeling would be necessary. The in

vitro testing framework also contains some limitations. Our 3D printing method allows for the

production of soft and flexible structures, but its material characteristics still result in an exces-

sive hypokinetic state of the valve leaflet due to limitations in the 3D printing techniques that

we adopted, which required a minimum thickness of 0.6mm of the leaflets. While it may seem

rational to use fixed leaflets to calculate the flow profile of AS during peak systole, there is a

potential mismatch in accurately determining the effective area opening during this phase. This

is due to the limited temporal resolution of the original CT data, which offers only eight time

frames per cycle.

Further work might enhance the accuracy of the valve dynamics through AI to tackle the
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constraints posed by low-resolution CT data and also eliminate the need for any specific mate-

rial definitions for leaflets and calcium. This approach would further reduce the simulation time

while replicating not only the heart but also the precise valve motion detected in the original CT

data. Some of the limitations could be also addressed in the future with higher-resolution CT

datasets. By using super-resolution CT images, we can identify the valve dynamics and unique

stenotic profile more accurately. This can potentially speed up the translation to clinical use by

reducing the overall time required for the computational pipeline from start to end. Addition-

ally, it would enable the creation of accurate 3D printed models that replicate the hemodynamics

of AS even more accurately. Alternatively, for developing efficient in vitro platforms, we could

seek advancements in multi-material 3D printing strategies that might allow us to manufacture

enhanced valve leaflets and calcium with accurate anatomical thicknesses, and biomimetic me-

chanical properties. In future work, we aim to expand the range of clinical scenarios that we can

simulate, beyond AS. We seek to focus on interventional and surgical approaches for AS by re-

capitulating the correct hemodynamics specific to each patient. For instance, our computational

pipeline may assist in planning TAVR surgery and identifying subgroups within AS populations

where TAVR might be advantageous and delivered without any risk.

This work addresses two major but often overlooked challenges in developing preclinical

cardiovascular models (in silico, in vitro) for patients with AS. First, current image segmenta-

tion protocols rely heavily on manual work and pose significant inter and intra-expert variability.

The proposed technique significantly reduces the computational time required for segmentation

and meshing, from several hours of manual work to approximately 1 minute of automated com-

puting. Additionally, it provides higher accuracy of patient-specific heart, valve, and calcium

mesh. Second, the complexity and high computational costs associated with multiphysics heart

models, along with the requirement for skilled researchers to operate them, present a major

barrier to the translation of digital (in silico) and benchtop (in vitro) twins in clinical practice.

The process of creating patient-specific 3D geometry, such as preparing a mesh suitable for
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simulation, separating the entire body into multiple, contact-free parts, determining heart mo-

tion, and assigning electromechanical tissue properties and appropriate boundary conditions to

achieve a beating motion, collectively demands substantial computational resources and effort

from trained researchers. Similarly, the accuracy of mimicking heart motion and AS flow profile

in benchtop models relies heavily on the quality of image segmentation and 3D printed geome-

try. Any discrepancy between the patients’ CT images and 3D printed anatomies compromises

this accuracy, thereby reducing the feasibility of using these hydrodynamic models in a clinical

setting. The proposed FSI pipeline with DeepCarve addresses these issues by recapitulating

the patient-specific heart motion and AS hemodynamics without requiring any sophisticated

electromechanical heart models, massive supercomputers, or days-long simulation time. In

conclusion, the computational pipeline presented in this work offers fast, high-fidelity simula-

tion capabilities and has potential to accelerate the development of intracardiac interventions

and tools for evaluating and treating AS. Our DeepCarve-FSI technique delivers an effective

solution for reproducing the left heart dynamics in both computational and benchtop models.

It could be adapted to use in clinics for device selection for TAVR, procedural planning, and

outcome prediction. We are hopeful that our model may further advance cardiac twin models

by reducing the computational complexity involved in modeling AS and other cardiovascular

conditions.

Methods

Data acquisition and pre-processing

A total of 79 3D CT scans were collected to train and geometrically evaluate the DeepCarve

algorithm. 65 pre-TAVR CT scans were obtained from 54 patients at Hartford hospital with an

IRB-approved protocol. The remaining 14 scans were from the training set of the MM-WHS

public dataset, which mostly consisted of volunteer subjects without AS (45). The testing set

was ensured to never have any overlapping patients with the training and validation sets. The
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training/validation/testing splits were 35/9/35. All scans showed the entire LV myocardium and

tri-leaflet AV with different levels of calcification. The raw image in plane pixel spacing was

in the range [0.281, 0.727] mm, with a median of 0.488 mm, and the slice thickness was in the

range [0.450, 1.000] mm, with a median of 0.625 mm. Slices were acquired in the axial view.

The associated ground-truth labels included the surface meshes of (1) the inner wall of

the ascending aorta, (2) the inflow side of the AV leaflets, and (3) the LV myocardium. The

labels were obtained using semi-automated methods as outlined in (39). The CT intensity was

normalized by linearly mapping [-158, 864] Hounsefield Units (HU) to [0, 1], and the voxel

spacings were resampled to an isotropic resolution of 1.25mm with a fixed field of view of 128

voxels in each axis.

For hemodynamics modeling, 5 additional time-resolved pre-procedural CT scans were col-

lected from 5 different TAVR patients at Hartford hospital. The imaging characteristics and pre-

processing steps were identical to above. For clinical validation, the corresponding pre-TAVR

reports from comprehensive echocardiography were used.

Modified DeepCarve training details

The modified DeepCarve in this work utilizes (1) the surface representation of the entire LV

myocardium and (2) the tri-layer hexahedral elements of the AV leaflets. These changes were

implemented by first modifying the original template using Solidworks (Dassault Systèmes,

2023) and Hypermesh (Altair, 2022), and then modifying the training loss to be compatible

with the simultaneous optimization of surface and volumetric meshes. In addition to the new

templates and training loss, a random translation augmentation was added to the original train-

ing procedure, similar to C-MAC’s implementation of the model (40). The training set-up was

otherwise identical to DeepCarve (39). Briefly, a U-net architecture was employed with extra

skip connections and a modified prediction head to predict b-spline diffeomorphic deforma-

tion fields from 3D CT. The exact architectural definitions can be found in (46, 47). We used
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the Adam optimizer (48) with a fixed learning rate of 1e-4, batch size of 1, and 8000 training

epochs.

The training loss function for our modified DeepCarve was

L =

[
1

N

N∑
n=1

[
Lch

]
n

]
+ λ1LARAP + λ2LASqrt︸ ︷︷ ︸

Lsolid

+λ3Lnormal + λ4Llap + λ5Ledge︸ ︷︷ ︸
Lsurf

(1)

where n denotes the mesh component index, and N = 5 for the LV myocardium, aorta, and 3

aortic leaflets. λi = {1, 10, 10, 10, 1} for each loss component, respectively, via hyperparameter

optimization. Due to the template element characteristics, Lsolid entirely governed the element

quality of the aorta and the valve leaflets, whereas Lsurf entirely governed the element quality

of the LV surface.

The chamfer distance was used to optimize for surface accuracy (49)

Lch =
1

| A |
∑
a∈A

min
b∈B

∥a− b∥22 +
1

| B |
∑
b∈B

min
a∈A

∥b− a∥22 (2)

where A and B are two sets of points and a and b are the set elements, each consisting of 3D

point coordinates. The chamfer distance was calculated separately for each component (denoted

as [Lch]n), and then averaged across different components to obtain the final spatial accuracy

metric.

To ensure high-quality solid elements, a combination of isotropic and anisotropic distortion

energies was used, similar to DeepCarve (39). The as-rigid-as-possible (ARAP) energy was

used for the isotropic component

LARAP =
1

K

K∑
k=1

∥Fk −Rk∥2F (3)

where k denotes the solid element index, K is the total number of solid elements, and Fk and Rk

are the deformation gradient and the rotational component of the deformation gradient for the

kth element. The definitions of F and R based on the element geometry can be found in (39,50).

This term represents the uniformly weighted average of the isotropic ARAP energy densities of

all solid elements.
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The ASqrt energy, a square root variation of the popular anisotrpic St. Venant Kirchoff

energy, was used for the anistropic energy component (50)

LASqrt =
1

K

K∑
k=1

(√
dT
kF

T
kFkdk − 1

)2

(4)

where dk denotes the anisotropy direction for calculating the energy density for the kth ele-

ment. Similar to LARAP , the anistropic energy densities were averaged uniformly across all

solid elements. Following DeepCarve, dk was set as the thickness direction of each hexhedral

element.

Similar to previous works (46,49,51), three surface element quality metrics were optimized

for high-quality surface elements: surface normal consistency, Laplacian smoothness, and edge

length correspondence. The surface normal consistency loss is commonly defined as

Lnormal =
1

| Nf |
∑

(nfi,nfj)∈Nf

1− < nfi,nfj >

∥nfi∥2 ∥nfj∥2
(5)

where nfi is the surface normal at ith element, and Nf is the set of surface normals in all

neighboring faces. This term facilitates neighboring faces to maintain similar surface normals.

The uniform Laplacian smoothing loss was defined as

Llap =
1

| V |
∑
vi∈V

∥∥∥∥∥∥ 1

| N (vi) |
∑

vj∈N (vi)

vi − vj

∥∥∥∥∥∥
2

(6)

where V is the set of all vertices in the surface mesh, vi is the ith vertex coordinates, and N

is the set of neighbors for a chosen vertex vi. This term encourages each node to be in close

proximity to the average of its neighboring node positions.

Finally, the edge length correspondence loss was

Ledge =
1

| ε |
∑

(vi,vj)∈ε

( ∥vi − vj∥2
max

(v′
i,v

′
j)∈ε

∥∥v′
i − v′

j

∥∥
2

−
∥ϕ(vi)− ϕ(vj))∥2

max
(v′

i,v
′
j)∈ε

∥∥ϕ(v′
i)− ϕ(v′

j)
∥∥
2

)2

(7)

where ϵ is the edges represented as a set of two vertex coordinates comprising each edge, and

ϕ(vi) represents an arbitrary displacement of each vertex. This term encourages similar edge

length ratios before and after the mesh deformation.
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Conventional registration

For fair comparisons with DeepCarve, the conventional registration algorithm was chosen to

perform fully automated registration, potentially with an offline model training component to

help identify the target structure. To that end, registration algorithms that require any amount of

manual annotations at test-time were excluded. For the offline model training, the models were

additionally restricted to use a similar level of structural information as DeepCarve, i.e. surface

mesh or segmentation.

Under these constraints, we followed a common approach that splits the registration into two

steps: (1) automated segmentation and (2) segmentation-based template registration (52–54).

For the former, a deep learning model was trained to perform multilabel segmentation of the

aorta, LV myocardium, and AV leaflets. The training loss was defined as the weighted sum of

the Dice similarity coefficient (DSC) (55)

LDSC =
N∑

n=1

αn

[
2
∑

i pigi∑
i pi +

∑
i gi

]
n

(8)

where αn is the component-specific weight, and the bracketed entry is the DSC of the nth struc-

tural component. pi and gi are the predicted and ground-truth segmentations, respectively, at

the ith voxel. For training the segmentation model, we chose uniform weighting of αn to ensure

equal amount of optimization for delineating all five structural components.

We maintained almost an identical training procedure to DeepCarve, such as the neural

network architecture, training augmentation, and optimizer. For training and validation, we

used the intermediate segmentation labels that we generated during the ground-truth surface

labeling workflow.

Then, using the multilabel segmentation output, component-aware registration was per-

formed using the weighted sum of the DSC as the overall spatial accuracy objective. We first

performed similarity transformation (rotation, translation, and anisotropic scaling), and sub-

sequently performed nonrigid deformation to fit each component of the template mesh to the
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predicted segmentation, similar to (53, 56). Since no regularizations were needed for the simi-

larity transformation, the similarity registration loss was defined as

Lsim = LDSC with different αn (9)

where αn = {5, 1, 1, 1, 1} to allow the largest structure, the LV, to most heavily influence

the similarity registration outcome. Separate Adam optimizers (48) were used for the scaling,

rotation, and scaling parameters, with learning rates of 1e-1, 1e-1, and 1, respectively.

For non-rigid registration, the deformation field was regularized using the popular bending

energy (57), and additionally optimized for the mesh edge length loss to improve the overall

mesh quality. The deformation field was constrained to be b-spline (57, 58) with isotropic

control point spacing of 3 voxels and diffeomorphic (58, 59), similar to the deformation from

DeepCarve. The final non-rigid registration loss was defined as

Lnon-rigid = LDSC + λ1Lbending + λ2Ledge (10)

where the LDSC was calculated with uniform αn to ensure accurate matching of every compo-

nent, and λi = {1e−2, 1} via hyperparameter optimization. Lbending is defined as the following:

Lbending =
1

V

X∫
0

Y∫
0

Z∫
0

[(
∂2ϕ

∂x2

)2

+

(
∂2ϕ

∂y2

)2

+

(
∂2ϕ

∂z2

)2

+ 2

(
∂2ϕ

∂xy

)2

+ 2

(
∂2ϕ

∂xz

)2

+ 2

(
∂2ϕ

∂yz

)2 ]
dx dy dz

(11)

where V is the number of voxels and ϕ is the voxelwise deformation field. Ledge is identical

to the definition in the DeepCarve training details section. The Adam optimizer (48) with a

learning rate of 1e-2 was used for the deformation field optimization.

The conventional registration method was implemented in-house, mostly due to the lack of

compatibility of existing libraries with our specific task. We required the methods to simulta-

neously register five different potentially overlapping segmentations and maintain reasonable

mesh qualities for all components, both of which were difficult to enforce in standard registra-

tion libraries. Our implementation was carefully optimized for performance, while following
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the standard approaches for the deformation and regularization formulations found in the liter-

ature and software libraries.

Conventional calcification modeling

For conventional modeling, the calcification was implemented as element-specific assignment

of stiffer material properties, similar to (24,60). The desired calcification elements were selected

using the post-processed segmentation of C-MAC, the same geometry that was used to perform

the final calcification meshing. The calcification segmentation value was trilinearly interpolated

at each node of the conventionally registered mesh, and any elements with at least one node with

an interpolated nodal segmentation value of >0.5 were assigned stiffer material properties.

Geometric evaluation metrics and statistical analyses

The normalized symmetric chamfer distance was used to evaluate the average surface accuracy

of the reconstructed meshes. The mathematical definition is Lch

2
, where the division normalizes

the chamfer distance that is calculated twice in both directions (i.e. prediction → label and label

→ prediction). The scaled jacobian determinant and skew were obtained using the VTK library

(61). The metrics were first calculated for each component for each patient, and then combined

across component groups via the weighted average using the number of points/elements as

weights. The mean, standard deviation, and statistical significance were calculated from the

patient-specific component-grouped metrics. This evaluation method is identical to DeepCarve.

For statistical analyses, paired t-tests with two-sided alternative hypothesis were performed

using the SciPy package (62).

3D printing mesh conversion algorithms

For all structural components, the final operations for 3D printing mesh conversion were (1)

isosurface extraction from voxelgrid representations, (2) remeshing, and (3) mesh smoothing.

The isosurface extraction and mesh smoothing were performed using VTK (61) and remeshing
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using ACVD (63). Since all of these automated operations can be robustly performed with

reasonable input geometry and algorithmic parameters, the crux of the conversion process was

obtaining an accurate voxelgrid representation for each component.

For calcification, the post-processed segmentation from C-MAC was used for the conver-

sion. Since the post-processed segmentation was already at a high enough voxelgrid resolution

of 0.33mm isotropic spacing to capture the contact surfaces, the extracted surfaces maintained

great overlapping spatial relationships with its surrounding geometry.

For the leaflets, the surface of each leaflet hexahedral mesh was first extracted, and then

converted to the corresponding segmentation using the image stencil operation. The segmenta-

tion was obtained at an isotropic 0.25mm voxel spacing to account for the thin structure of the

leaflets and to allow for precise control over the final mesh thickness. The segmentation was

converted to the SDF representation using SciPy’s distance transform package (62), and then

the final post-processed segmentation was obtained for meshing by variably thresholding the

calculated voxelgrid distances. The thresholds were chosen mostly to thicken the leaflets, as the

original thickness was often incompatible with the hardware limitations of 3D printers.

The conversion of the aorta and LV inner wall involved a similar process of mapping a

closed surface mesh into segmentation, converting it to an SDF representation, obtaining a new

thickness-adjusted segmentation, and performing the component-agnostic meshing operations.

The SDF voxelgrid resolution was set at an isotropic 0.5mm spacing.

In addition to these steps, the aorta and LV were combined at two different cardiac phases

to design the optimal geometry for our benchtop experiments. More specifically, the systolic

aorta and the diastolic LV were combined to accurately model the valve opening and the most

relaxed LV structure. From the DeepCarve outputs at both phases, the inner walls of the desired

structures at each phase were extracted utilizing the template element information. With a naı̈ve

combination of those meshes using the canonical coordinate system, the initial merge is almost

guaranteed to be inaccurate due to the global movements of those structures throughout the
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cardiac cycle (Fig. 3C, Initial merge).

Thus, a mesh displacement optimization was further performed to correct for these incon-

sistencies. The overall idea is to designate a small amount of transition elements in between

the aorta and LV and allow those elements to be non-rigidly deformed, while only rigidly trans-

forming the rest of the aorta and LV elements. The following equation was used to maintain a

reasonable quality of the transition elements

L = λ1Lnormal + λ2Llap + λ3Ledge (12)

where all loss components were defined previously, and λi = {10, 1, 10}. The deformation

field for the transition elements was identical to the deformation fields for the conventional

registration and DeepCarve. Separate Adam optimizers were used with learning rates of 1e-3

and 3e-2 for non-rigid and rigid transformations, respectively.

Note that the inner wall mesh was the input to the subsequent segmentation and SDF con-

versions, so its quality was not critical to the final 3D printing mesh. However, a reasonable

quality of the combined mesh was still required to ensure robust performance of the image

stencil operation for the intermediate voxelgrid segmentation.

Finite element model of patient-specific anatomies

Three-dimensional LV, aorta, valve, and calcium geometries were obtained as direct output from

the multi-frame meshing approach. The three-dimensional LV and aorta geometry were further

extended using solid modeling computer-aided design (CAD) software (SolidWorks 2023, Das-

sault Systèmes) to improve the flow convergence and stability. The extended inlet connected

to LV represented the flow entrance from LA and LV during the cardiac cycle. The generated

geometries were imported into Abaqus 2022 software (Simulia, Dassault Systèmes). Nonlin-

ear explicit dynamic analysis was performed to simulate the mechanical response of the FSI

analysis. For this study, the modified anisotropic hyperelastic Holzapfel–Gasser–Ogden mate-

rial model (64, 65) was adopted to characterize the mechanical behavior of native AV leaflets.
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Local coordinate systems were defined for each leaflet to include local fiber orientation. We

assumed that the mean fiber directions were symmetric with respect to the circumferential axis

of the local coordinate system (Fig. S3). Specific material constants were utilised for calcium,

as previously outlined in the literature. Isotropic linear elastic model was implemented to char-

acterize the mechanical properties of the calcium deposits. The nodal points of the calcium

elements were tied to leaflets at the intersection of the leaflet surface. In the instance of con-

ventional registration, only those leaflet surface areas in contact with calcium were identified

and assigned the mechanical properties of the calcium deposits, without being reconstructed

three-dimensionally.

Fluid-Structure Interaction Modeling

FSI modeling technique was utilized to simulate intravascular hemodynamic interactions with

the deformable valve structure. The fluid domain was spatially discreted, and governing equa-

tions for both the fluid and structure were solved separately for each discrete time step. The flow

patterns in the LV and aorta were simulated using a commercial fluid solver package (XFlow

2022x, Dassault Systèmes), utilizing a Large-Eddy Simulation (LES) turbulence model. The

fluid-structure system is represented using the immersed finite element/finite difference method

to avoid issues related to mesh motion and mesh regeneration resulting from significant defor-

mations. A method including iterative implicit 1-way and 2-way coupling was used to compute

the numerical FSI problems. The 1-way coupling approach is employed to model the cardiac

motion for individual patients, where the nodal displacement is prescribed to the LV mesh us-

ing our multi-frame image registration framework. An iterative 2-way coupling method is then

used to simulate flow interaction between the fluid domain and the valve structure. The blood

was mathematically treated as an incompressible Newtonian fluid with a density of 1050 kg/m3

and a dynamic viscosity of 0.0035 Pa s. The inlet flow boundary condition for this analysis

was based on a representative flow waveform derived from healthy adult physiology described
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in the literature (66, 67). The outlet pressure boundary condition at the aorta was set based on

blood pressure readings taken during a pre-TAVR transthoracic echo examination. The dura-

tion of the cardiac cycle for each patient was determined by the heart rate measured during the

pre-TAVR echo testing. Overall three cardiac cycles were simulated and their results were ana-

lyzed, taking into account that the difference in observed physical quantities was less than five

between the cycles. The stable time increment was established at 1×10-5s to ensure numerical

stability and temporal accuracy. Grid independence was assessed on the first patient model by

employing three distinct grid sizes (0.8mm, 0.6mm, and 0.4mm lattice resolution). The stability

measure converged with a 4.42% difference between the medium and fine grids, indicating that

the medium grid (0.6 mm resolution, 510,000 elements) was considered to be grid-independent.

Each FSI simulation was completed in 30.6 hours (3 cardiac cycles) on a desktop PC with a 3.0

GHZ i7-9700 processor with 8 cores and 32 GB RAM.

Experimental study design

In vitro validation was conducted on a subset of patients (patients 1 and 2) selected based on

differences in their severity of AS. The experimental setup used in this work was analogous to

that previously published by our group (35). We employed a custom soft robotic LV sleeve that

mimics the beating motion of the heart using 3D printed geometry. The soft robotic LV contracts

pneumatically to pump fluid, causing the valve to move during systole. We created the patient’s

artificial anatomy, specifically the LV sleeve, and conducted hemodynamic evaluation using

a hydrodynamic flow loop. The 3D-printed anatomical model of each patient was combined

with the LV sleeve in a hydrodynamic flow loop. Hemodynamic parameters related to AS were

assessed using continuous wave and color flow mapping Doppler. Results were compared with

the clinical transthoracic echocardiogram data of the patients.
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Manufacturing of patient-specific heart and sleeve

The 3D anatomy of the LV, aorta (ascending segment), AV leaflets, and calcium were exported

in shell stereolithography (STL) format for each patient using our 3D printing mesh conversion

technique. The generated STLs of aortic leaflets and the calcium geometry were integrated with

the aorta and LV using a Boolean merging operation. The combined STL file was imported into

Preform software (v3.21, Formlabs), and the support material’s structure was manually altered

to optimize the printability and the amount of internal support material. The LV, aorta, AV

leaflets, and calcium were printed simultaneously on a Form 3B STL 3D printer (Formlabs)

with a layer thickness of 0.1 mm and a wall thickness of 1.3 mm

A soft robotic LV sleeve made of inflatable Thermoplastic Polyurethane (TPU) pockets

wrapped around the LV anatomy was used to actuate the system. Patient-specific sleeves were

initially created utilizing computer-aided software (SolidWorks 2023, Dassault Systèmes). The

outside surface of the LV was offset by 10 mm to establish a patient-specific shape. The gen-

erated shape was then projected onto a flat surface to form the shapes of the molds for pro-

duction. TPU sheets were formed using the molds and then heat-sealed to make sealed and

inflatable pockets integrated into the LV sleeve based on previously described methods by our

group (35, 68).

Mock circulatory flow loop

A mock circulatory loop was created utilizing hydraulic and mechanical components to mimic

the blood flow (viscosity of medium, µ = 1.0 cP) in the anatomy. The loop for each patient

was created by connecting the specific 3D-printed anatomy to soft PVC plastic tubing (5/8-inch

inner diameter, 1-inch outer diameter; McMasterr-Carr), two variable-resistance ball valves

to simulate arterial and venous resistance, and custom-made acrylic compliance chambers to

represent peripheral compliance. The LV sleeve was connected to a control box with pressure

regulators and actuated using input-pressure square waveforms ranging from 0 psi (diastole)
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to 10 psi (systole), with a duty cycle of 30-50% and a heart rate of 40-60 bpm. The sleeve

was connected in series to adjustable resistance valves and compliance chambers, both on the

outflow and the inflow, that could be adjusted to re-create patient-specific hemodynamic states.

A unidirectional mechanical valve (Regent 19AGN-751, Abbott Laboratories) was connected

to simulate the function of the mitral valve.

A clamp-on flow probe (PS series, Transonic) in the position of the mitral valve and two

straight-tip 5F PV catheters advanced to the LV and aortic position were used to monitor pres-

sures and flows. The flow probes were connected to a two-channel flowmeter console (400-

series, Transonic), which was connected to an 8-channel Powerlab system (ADInstruments) for

data acquisition and recording. The catheters were connected to a Transonic ADV500 PV Sys-

tem and to the Powerlab (ADInstruments). All PV data were processed and analyzed on Matlab

R2020a (MathWorks).

Echocardiography

The Epiq CVx cardiovascular ultrasound system and the X5-1 transducer (Philips) were used

for echocardiographic evaluation on the physical prototypes. The transducer was positioned

directly on the printed aorta and the ultrasonic beam was aligned with the direction of flow for

continuous wave Doppler imaging. CW Doppler was used for the evaluation of vLVOT, vpeak and

estimates of dPmax and dPmean. Dimensionless velocity index (DVI) was calculated as the ratio

of the LVOT velocity and the maximum velocity obtained by CW Doppler across the aortic

valve.

DV I =
V LVOT

V peak
(13)

Images of the LV and measurements of EDD, ESD, and dLVOT were obtained in B-mode. Esti-

mates of LV volumes, both at ESV and EDV, were obtained using the Teicholz formula (69):

LV V =
7

2.4 + LV ID
× LV ID3 (14)

where LVV and LVID are the LV volume and internal diameter, respectively.
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