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1 Introduction

Recently many connections have been made between the study of tropical geometry and
scattering amplitudes in quantum field theory and string theory. One connection is via the
study of massless scattering amplitudes via the scattering equations [1–3]. In the simplest
setting these equations describe tree-level biadjoint φ3 amplitudes. In this context there
is an auxiliary space, the moduli space of n points on a Riemann sphere, which is related
to the kinematics of the n-point massless scattering amplitude via the scattering equa-
tions. The moduli space is the configuration space of n points in P1 which is equivalent
to the Grassmannian Gr(2, n) (modulo local rescalings). The biadjoint φ3 amplitude can
be computed by evaluating certain Parke-Taylor type factors on solutions of the scatter-
ing equations. The final expression obtained after summing all solutions is equal to the
traditional Feynman diagram expression.

In [4], a connection of the above picture to the tropical Grassmannian was made. The
tropical version of a space is a simplification in which the defining non-linear equations
are treated in a piecewise linear fashion. Despite this simplification, the tropical space
retains much information from the original. In particular, each φ3 Feynman diagram can
be associated to a maximal cone of the tropical Grassmannian Gr(2, n). This picture is
closely related [5] to the kinematic associahredron picture of [6].

Moreover, in [4] a generalisation of the above picture to Grassmannians Gr(k, n) was
given. In the generalised setting of Gr(k, n) there is no known standard field theory for-
mulation for the amplitudes. However it was conjectured that the associated generalised
amplitude obtained from the scattering equations can again be written as a sum over
maximal cones of the tropical Grassmannian.
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Another setting in which the Grassmannian space arises is in the study of loop ampli-
tudes in planar N = 4 super Yang-Mills theory. In this case the kinematic space itself can
be identified with the Grassmannian Gr(4, n) via the introduction of momentum twistor
variables [7]. As described in [8], there is a close connection between the branch cut singu-
larities of the loop amplitudes and the cluster algebras of [9–11] as applied to Grassmannian
spaces [12]. The Grassmannian cluster algebra is itself closely connected to the tropical
Grassmannian, or more specifically, its positive part.

Tropical Grassmannians were initially studied in [13] and the positive part described
in [14]. In [5] we described how the technology of cluster algebras, in particular the idea of
mutations and g-vector fans can be a useful tool in the study of tropical Grassmannians and
hence the generalised φ3 amplitudes. Here we will study further the connection between
cluster algebras and the positive tropical Grassmannian, a link already partly explored
in [14]. We will identify a whole range of tropical fans which can be associated with the
positive tropical Grassmannian, one of which is the fan of [14] and another is the g-vector
fan of the cluster algebra. In the finite cases the g-vector fan (which we refer to as the
‘cluster’ fan) is the most refined fan and other fans we consider, including the fan of [14],
can be obtained as projections of it.

These considerations lead us to propose new scattering equations which are more gen-
eral than those of [4] and involve a more general set of Mandelstam invariants. We can
obtain generalised amplitudes which depend on the generalised Mandelstam invariants in
a similar fashion by considering volumes of facets of the corresponding tropical fan. This
construction can also be used to describe the dual cluster polytope by providing a direct
route to determining the face variables, which define the codimension-one boundaries of
these polytopes. In this regard the tropical fans we study and their associated generalised
φ3 amplitudes are very closely related to the notion of stringy canonical forms introduced
in [15–17]. Indeed the integrals considered there provide in principle a deformation of the
φ3 amplitude in the same way that tree-level superstring amplitudes are effectively derived
from the α′ deformation of biadjoint φ3 amplitudes. In fact a range of techniques explored
in recent papers are effectively different languages to describe the same (or closely related)
underlying mathematics, namely the tropical Grassmannians discussed in [4], the cluster
algebras, mutations and g-vector fans as studied in [5, 18, 19], the Minkowski sums of
Newton polytopes [15, 20, 21] (which are dual to tropical fans), the planar arrangements
of [22, 23] and matroid subdivisions, as studied in [24, 25].

With a selection of different tropical fans to hand we discuss how such differences may
show up in the singularities of loop amplitudes in N = 4 super Yang-Mills theory. This
leads us to a generalisation of the notion of ‘cluster adjacency’ put forward in [26]. Here we
define a natural set of polylogarithms satisfying adjacency criteria (not only pairs but also
triplets, and in general longer consecutive sequences). The cluster adjacent polylogarithms
of [26] correspond to the cluster fan, while less refined fans lead to stronger sets of adjacency
criteria. We examine the known loop amplitudes and compare them at the level of pairs
and triplets to establish a tentative correspondence between amplitudes of different MHV
degree and classes of tropical fans.
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〈1 2 3〉

〈1 2 4〉

〈1 3 4〉

〈2 3 4〉

〈1 2 5〉

〈1 4 5〉

〈3 4 5〉

〈1 2 n−1〉

〈1 n−2 n−1〉

〈n−3 n−2 n−1〉

〈1 2 n〉

〈1 n−1 n〉

〈n−2 n−1 n〉

. . .

. . .

. . .

Figure 1. The initial cluster of the Grassmannian cluster algebra Gr(3, n).

2 Grassmannian cluster algebras and tropical fans

Let us begin by recalling the construction of Speyer and Williams [14] to describe the pos-
itive part of the tropical Grassmannian Gr(k, n). We will focus on Gr(3, 6) as our motivat-
ing example and later consider also Gr(3, 7) and Gr(3, 8). Apart from the Grassmannians
Gr(2, n) these cases (and their duals) exhaust the list of finite cluster Grassmannian cluster
algebras. Of particular relevance to planar amplitudes in N = 4 super Yang-Mills theory
is the case Gr(3, 7) which is dual to Gr(4, 7). We also provide some more details on the
infinite case Gr(4, 8) studied in [18].

We recall the structure of the initial cluster of the Grassmannian cluster algebra
Gr(k, n). The example of Gr(3, n) is shown in figure 1. In general, the active nodes
form a (k − 1) × (n − k − 1) array and there are also k frozen nodes (depicted in boxes
in figure 1). From the initial cluster we obtain a (k − 1) × (n − k − 1) array of cluster
X -coordinates xrs given by the product of incoming A-coordinates over the product of
outgoing ones to the node in row r and column s.

Given the X -coordinates we can form the (k × n) web matrix

W = (11k|M) , (2.1)

where M is the k × (n− k) matrix with entries

mij = (−1)i+k
∑
λ∈Yij

k−i∏
r=1

λr∏
s=1

xrs . (2.2)

The sum in (2.2) is over the range Yij given by 0 ≤ λk−i ≤ . . . ≤ λ1 ≤ j − 1. We can then
evaluate all the A-coordinates as polynomials the X -coordinates with positive coefficients
by identifying the Plücker coordinates 〈i1 . . . ik〉 with the maximal minors formed by taking
the columns i1, . . . , ik of the web matrix W .
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〈1 2 4〉

〈1 3 4〉
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〈1 2 5〉

〈1 4 5〉

〈3 4 5〉

〈1 2 6〉

〈1 5 6〉

〈4 5 6〉

Figure 2. The initial cluster of the Grassmannian cluster algebra Gr(3, 6).

In the case of Gr(3, 6) we have the initial cluster shown in figure 2. For this cluster we
have the following cluster X -coordinates,

x11 = 〈123〉〈145〉
〈125〉〈134〉 , x12 = 〈124〉〈156〉

〈126〉〈145〉 ,

x21 = 〈124〉〈345〉
〈234〉〈145〉 , x22 = 〈134〉〈456〉〈125〉

〈124〉〈345〉〈156〉 . (2.3)

The web matrix then takes the form W = (113|M) with

M=

 1 1 + x11 + x11x21 1 + x11 + x11x21 + x11x12 + x11x12x21 + x11x12x21x22
−1 −1− x11 −1− x11 − x11x12
1 1 1


(2.4)

If we identify the Plücker coordinate 〈ijk〉 with the minor formed by taking columns i, j
and k of the web matrix then we find that all the A coordinates of the Gr(3, 6) cluster
algebra are expressed as polynomials in the X -coordinates. To emphasise this point we
also use the notation pijk = 〈ijk〉. The frozen A-coordinates are in fact monomials,

p123 = 1 , p234 = 1 , p345 = x11x21 ,

p456 = x2
11x21x12x22 , p156 = x11x12 , p126 = 1 . (2.5)

The remaining A-coordinates of the initial cluster and their cyclic images are

p124 = 1 , p235 = 1 + x11 + x11x21 , p346 = x11x21(1 + x12 + x12x22) ,
p145 = x11 , p256 = x11x12(1 + x21 + x21x22) , p136 = 1 + x11 + x11x12 , (2.6)

and

p134 = 1 , p245 = x11(1 + x21) , p356 = x11x21x12(1 + x22 + x11x22) ,
p146 = x11(1 + x12) , p125 = 1 ,
p236 = 1 + x11 + x11x12 + x11x21 + x11x21x12 + x11x21x12x22 . (2.7)

– 4 –



J
H
E
P
1
1
(
2
0
2
1
)
0
7
1

There are two remaining minors which appear as the central nodes of D4-shaped clusters

p135 = 1 + x11 ,

p246 = x11(1 + x12 + x21 + x12x21 + x12x21x22) . (2.8)

In addition we have the two quadratic A-coordinates (which also appear in the central
node of D4-shaped clusters),

q1 = 〈12[34]56〉 = x11x12x21(1 + x22) ,
q2 = 〈23[45]61〉 = x11(1 + x11 + x11x12 + x11x21 + x11x12x21) , (2.9)

where 〈ab[cd]ef〉 = 〈abd〉〈cef〉 − 〈abc〉〈def〉 obeys the symmetry properties 〈ab[cd]ef〉 =
〈cd[ef ]ab〉 = −〈cd[ab]ef〉. Under a cyclic transformation q1 → q2 and q2 → q1.

With the expressions of the A-coordinates to hand we may now define a number of
different tropical fans. The fan defined by Speyer and Williams to describe the positive
part of the tropical Grassmannian is obtained by replacing the polynomial expressions for
the Plücker coordinates pijk = 〈ijk〉 by their tropical counterparts p̃ijk. In other words
we replace addition with minimum and multiplication with addition. For example, the
tropical versions of the minors (2.8) are

p̃135 = min(0, x̃11) ,
p̃246 = min(x̃11, x̃11 + x̃12, x̃11 + x̃21, x̃11 + x̃12 + x̃21, x̃11 + x̃12 + x̃21 + x̃22) , (2.10)

where we have used the notation x̃ to remind the reader that these are tropical counterparts
to the original polynomials. Each tropically evaluated minor defines distinct regions of
piecewise linearity. For example, the regions of piecewise linearity of the tropical minor

p̃346 = min(x̃11 + x̃21, x̃11 + x̃21 + x̃12, x̃11 + x̃21 + x̃12 + x̃22) , (2.11)

are separated by the following tropical hypersurfaces,

x̃12 = 0 ≤ x̃22 ,

or x̃12 + x̃22 = 0 ≤ x̃12 ,

or x̃12 + x̃22 = x̃12 ≤ 0 . (2.12)

Note that the tropically evaluated frozen variables are simply linear (instead of piece-
wise linear) as the frozen minors are expressed as monomials in terms of the X -coordinates.
Taking all minors together defines the fan of Speyer and Williams [14]. More precisely, each
tropical minor defines a fan via the boundaries of its distinct regions of piecewise linearity.
The Speyer-Williams fan is then the common refinement of all the fans defined by the set
of tropical minors. The maximal cones of the fan are four-dimensional regions in the x̃
space in which all minors are linear. The intersection of each maximal cone with the unit
sphere is a three-dimensional facet of some polyhedral complex. As described in [14] there
are 48 facets of which 46 are tetrahedra and 2 are bipyramids. The facets have boundaries
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where some minor is between two different regions of linearity. Such boundaries are of di-
mension two and in this case there are 98 of them and they are all triangles. The triangles
themselves are bounded by edges of dimension one, with 66 edges in total. The edges are
then bounded by points (corresponding to intersections of rays of the fan with the unit
sphere). The Gr(3, 6) Speyer-Williams fan has the following 16 rays (with the coordinates
ordered as (x̃11, x̃21, x̃12, x̃22)),

(1, 0, 0, 0), (−1, 0, 0, 0), (1,−1, 0, 0), (0, 0, 1,−1),
(0, 1, 0, 0), (0,−1, 0, 0), (1, 0,−1, 0), (−1, 0, 0, 1),
(0, 0, 1, 0), (0, 0,−1, 0), (1, 0, 0,−1), (0, 1, 1,−1),
(0, 0, 0, 1), (0, 0, 0,−1), (0, 1, 0,−1), (1,−1,−1, 0) . (2.13)

The most important point we wish to make here is that we can consider other tropical
fans closely related to the Speyer-Williams fan. Firstly we may refine the fan by tropically
evaluating also the quadratic A-coordinates (2.9),

q̃1 = min(x̃11 + x̃12 + x̃21, x̃11 + x̃12 + x̃21 + x̃22) ,
q̃2 = min(x̃11, 2x̃11, 2x̃11 + x̃12, 2x̃11 + x̃21, 2x̃11 + x̃12 + x̃21) . (2.14)

Alternatively we can make a less refined fan by not considering the minors 〈135〉 and 〈246〉.
One motivation for considering these different fans is that the fan of Speyer and Williams
breaks a discrete symmetry of the Gr(3, 6) (or D4) cluster algebra while both the more
refined one and the less refined one manifest it.

More generally we use the notation F (S) to denote the fan obtained by considering
the tropical evaluation of a set of A-coordinates S. As we have seen only unfrozen A-
coordinates are relevant in defining the fan since the frozen coordinates are all monomials
in the X -coordinates and therefore they do not produce tropical hypersurfaces. The three
fans we consider in the context of Gr(3, 6), from least refined to most refined are recorded in
table 1 along with their f -vectors. As we will describe in more detail below, the most refined
fan (the third in the table 1) is the dual of the D4 cluster polytope and it is simplicial.
For this reason we sometimes refer to it as the ‘cluster fan’. The Speyer-Williams fan is
not simplicial in that two pairs of tetrahedra from the cluster fan have been combined
into bipyramids. The least refined fan then has two more pairs of tetrahedra combined
into bipyramids. When two tetrahedra are combined into a bipyramid, the triangle at the
interface is removed. We should stress that the difference between the Speyer-Williams fan
and the cluster fan disappears in the case of Gr(2, n) since there the minors 〈ij〉 are the
only A-coordinates.

Another way of encoding all the data listed in table 1 is to split up the f -vectors for
the three fans as follows,

{161, 662, 963, 424 + 45},
{161, 662, 983, 464 + 25},
{161, 662, 1003, 504}.

– 6 –
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S f -vector tetrahedra bipyramids
{〈i i+ 1 j〉} (16, 66, 96, 46) 42 4
{〈ijk〉} (16, 66, 98, 48) 46 2

{〈ijk〉} ∪ {q1, q2} (16, 66, 100, 50) 50 0

Table 1. Different possible fans for Gr(3, 6) with their f -vectors as well as a characterisation of
the dimension two faces.

Here the subscript notation refers to the number of vertices of each component, i.e. the 25
in the final entry of the middle vector refers to the two five-vertex bipyramids, while the
464 refers to the 46 tetrahedra.

All three fans described above share the same set of 16 rays (and also the same set
of 66 edges between rays). As we described in [5] the rays may be obtained as g-vectors
from the associated cluster algebra. Each g-vector is associated to a cluster A-coordinate,
which in turn is associated to a codimension one subalgebra and hence a codimension one
boundary of the cluster polytope (see e.g. discussions in [8, 26, 27]). This implies that the
above fans should all be interpreted as duals of polytopes related to the cluster polytope.
In the final case (the cluster fan) the corresponding polytope is exactly the D4 cluster
polytope whose codimension one (i.e dimension three) boundary components correspond
to the vertices arising from the rays of the fan. The codimension one boundary components
are either 14-vertex Stasheff polytopes (A3) or 8-vertex cubes ((A1)3). The edges of the fan
correspond to intersections of the polytope boundary components and are either 5-vertex
pentagons (A2) or 4-vertex squares ((A1)2). The triangles of the fan correspond to edges
in the polytope and the facets correspond to vertices of the polytope which correspond to
individual clusters of the D4 cluster algebra. The fact that the facets of the cluster fan are
all tetrahedra corresponds to the fact that the clusters of the D4 cluster algebra all have
four active nodes.

In figure 3 we illustrate relevant parts of the cluster fan and its dual D4 cluster polytope.
The left figure shows all sixteen rays but only eight of the tetrahedal facets. The facets
shown come in pairs in which the two tetrahedra intersect on a common triangle. The right
figure shows the connectivity of the subset of clusters in the D4 cluster polytope which have
the topology of the D4 Dynkin diagram. Only the four codimension one boundaries with
the topology of cubes are therefore shown fully. The cubes are dual to the rays at the four
marked corners of the left figure. Each cube is connected to its two neighbours by a single
edge, dual to the corresponding shaded triangle in the left figure.

The polytope dual to the Speyer-Williams fan can be obtained from the D4 cluster
polytope by shrinking the two vertical grey edges connecting the cubes in the right half of
figure 3 so that two pairs of vertices become six-valent. These then correspond to the two
bipyramidal facets of the Speyer-Williams fan. To obtain the polytope dual to the first fan
listed in table 1 one should also shrink the two horizontal grey edges connecting corners of
distinct cubes. The edges which are shrunk in this procedure therefore do not belong to the
cubes but only to the Stasheff polytopes, and moreover only belong to pentagonal faces,
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(0, 1, 1, −1)

(1, −1, −1, 0)

(1, 0, 0, −1)

(−1, 0, 0, 1)

q1 〈246〉

q2〈135〉

Figure 3. Left: a subset of the cluster fan (or more precisely its intersection with the unit sphere)
showing eight tetrahedral facets and four highlighted triangles. The highlighted vertices correspond
to the four rays given. Right: the subgraph of the D4 cluster polytope formed by keeping only
the clusters whose active nodes are connected in the shape of a D4 Dynkin diagram. The cubes
correspond to the A-coordinates shown and are dual to the four highlighted vertices of the left
figure. The grey edges connecting the four cubes are dual to the highlighted triangles of the left
figure. The highlighted vertices (clusters) are dual to the eight tetrahedra of the left figure.

not to square faces. When an edge is shrunk the corresponding dual triangle is deleted
from the fan and the associated pair of tetrahedra combine into a bipyramid. The triangles
that can be removed in this way have a special property: the vertices are all disconnected
neighbours in the sense of [26]. That is the A-coordinates associated to any pair do appear
in clusters together, but never connected by an arrow of the quiver diagram.

Finally let us point out that there is yet another fan, topologically equivalent to the
Speyer-Williams fan, which can be obtained by taking S to be the set of all A-coordinates,
except 〈135〉 and 〈246〉. The dual polytope to this fan would the simply be obtained from
the cluster polytope by shrinking only the horizontal grey edges of figure 3 and not the
vertical ones.

The above statements can also be encoded in the splitting of the f -vectors of the dual
polytopes as follows,

{461, 962, 424 + 245, 48 + 1213},
{481, 982, 364 + 305, 48 + 613 + 614},
{501, 1002, 304 + 365, 48 + 1214}.

Here the final line again corresponds to the cluster polytope with the 1214 in the final line
referring to the twelve Stasheff polytope codimension-one boundaries and the 48 the four
cubes. After shrinking the first pair of edges we obtain the middle line (dual to the Speyer-
Williams fan) where the 50 vertices have become 48, the two shrunk edges are missing
leaving only 98 of the original 100, 6 of the 36 pentagons have become squares and 6 of
the Stasheff polytopes have been shrunk to 13-vertex objects.

It is clear that the relation between Grassmannian cluster algebras and tropical Grass-
mannians is really related to a whole family of possible fans and their dual polytopes with
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S f -vector triangles squares
{a1i, a2i, a3i} (42, 385, 1393, 2373, 1918, 595) 1379 14
{a1i, a2i, a3i, a4i} (42, 392, 1463, 2583, 2163, 693) 1456 7
{a1i, a2i, a3i, a4i, a5i} (42, 399, 1540, 2821, 2443, 805) 1540 0
{a1i, a2i, a3i, a4i, a5i, a6i} (42, 399, 1547, 2856, 2499, 833) 1547 0

Table 2. Different possible fans for Gr(3, 7) with their f -vectors as well as a characterisation of
the dimension two faces.

the cluster fan being the most refined and the dual of the cluster polytope. The other fans,
including that of Speyer and Williams describing the positive part of the tropical Grass-
mannian are obtained by shrinking edges in the cluster polytope or equivalently removing
data from the corresponding tropical fan. As we will see in the next section, this will lead
to a generalised set of scattering equations associated to each fan.

We may similarly describe different fans in the case of Gr(3, 7). The fans and their
dual polytopes are harder to picture but we can describe the relevant features by means
of the notation introduced above. Let us first introduce a notation for the 42 unfrozen
A-coordinates of the Gr(3, 7) cluster algebra which come in six cyclic classes,

a11 = 〈347〉, a21 = 〈134〉, a31 = 〈156〉,
a41 = 〈257〉, a51 = 〈12[34]56〉, a61 = 〈61[23]45〉 . (2.15)

The remaining aij are obtained by cyclic rotations of the above.1

The fans we wish to consider in this case are given by choosing four possibilities for
the set S of A-coordinates as described in table 2. The second fan in table 2 corresponds
to the Speyer-Williams fan since the set {a1i, a2i, a3i, a4i} corresponds to taking all minors
to define the fan. There is one less refined fan where we omit the a4i from S. There are
two more refined fans, one where we include also the a5i and a final one where we take all
A-coordinates, which we will again refer to as the cluster fan.

Once again the cluster fan ({a1i, . . . , a6i}) is simplicial. To obtain the {a1i, . . . , a5i} fan,
seven triangles are removed, indicating the presence of seven bipyramids in dimension three.
To then obtain the Speyer-Williams fan ({a1i, . . . , a4i}) seven edges are removed indicating
that seven pairs of triangles combine into squares. The remaining triangles (49 of them)
including these missing edges are then removed as well as 21 further triangles which do
not involve the removed edges, leaving 1456 triangles and 7 squares in dimension two. To
obtain the least refined fan ({a1i, . . . , a3i}) one then removes a further 7 edges meaning
another seven pairs of triangles combine into squares and another 42 triangles involving
the removed edges are lost. In addition a further 21 triangles are removed leaving 1379
triangles and 14 squares in dimension two.

1The notation has been chosen to match existing notation on A-coordinates for Gr(4, 7) which we will
study further in section 5.
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Using the same notation introduced in Gr(3, 6) we can compactly include the above
information and more into refined f -vectors which split up respectively as,

{421, 3852, 13793 + 144, 22404 + 1335, 16595 + 1966 + 637, 4556 + 847 + 288 + 289},
{421, 3922, 14563 + 74, 25064 + 775, 19955 + 1406 + 287, 5956 + 637 + 288 + 79},
{421, 3992, 15403, 28144 + 75, 24155 + 286, 7776 + 287},
{421, 3992, 15473, 28564, 24995, 8336}.

(2.16)

Here we remind the reader that the notation nm means n faces, each one consisting of m
vertices (rays), with the dimension of the face increasing from zero to five as we proceed
from left to right along the f -vector.

Also as in the Gr(3, 6) case we can think of all of the fans as being dual to polytopes.
The cluster fan is dual to the Gr(3, 7) (or E6) cluster polytope. The other polytopes are
then successively obtained by shrinking edges in this polytope. We can capture a lot of
information about the shrinking by splitting the f -vectors of the dual polytopes which are
respectively,

{5951, 19182, 18484 + 5255, 6518 + 44810 + 1412 + 25213 + 2814,

9116 + 7020 + 725 + 9826 + 1433 + 4234 + 2837 + 2138 + 1446,

732 + 1468 + 798 + 14138},

{6931, 21632, 18414 + 7425, 5258 + 57410 + 712 + 16113 + 19614,

4216 + 11220 + 725 + 4926 + 4928 + 733 + 734 + 5637 + 1440 + 2842 + 1448 + 749,

740 + 1474 + 7112 + 7144 + 7170},

{8051, 24432, 18344 + 9875, 4068 + 65810 + 2812 + 8413 + 36414,

716 + 11220 + 1424 + 2125 + 2826 + 7028 + 5640 + 5642 + 748 + 1449 + 1450,

750 + 1480 + 7128 + 14178},

{8331, 24992, 17854 + 10715, 3578 + 71410 + 47614,

11920 + 2125 + 11228 + 11242 + 3550, 750 + 1484 + 7132 + 14182}.

As an example of the information captured in the above splittings, we see in the final entry
of the final line the codimension one subalgebras of the E6 polytope: with 750 corresponding
to the 7 A2 × A2 × A1 subalgebras, 1484 to the 14 A4 × A1, 7132 to the 7 A5 and 14182 to
the 14 D5.

Finally, we can give some information on the structure of various fans in the infinite
case Gr(4, 8) studied in recent papers [5, 18–20]. In the infinite case there is no cluster
fan as there are infinitely many A-coordinates. Moreover, as discussed in [18–20] there are
additional rays which are not obtained from any g-vector of the cluster algebra but rather
arise as limits of infinite sequences of rays. Nevertheless we can systematically solve the
tropical conditions for the 3 different fans in Gr(4, 8) considered in [18]. These fans were
the Speyer-Williams fan, generated by taking S as the set of all minors, a reduced fan,
obtained by taking the maximal parity-invariant subset of minors, and an augmented fan,
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obtained by taking the parity completion of all minors. We find for their f -vectors,

f48,red = (274, 5782, 46312, 189564, 447284, 635176, 536960, 249306, 49000),

f48,SW = (360, 7984, 66740, 285948, 706042, 1047200, 922314, 444930, 90608),

f48,aug = (548, 12748, 111104, 492548, 1251188, 1900152, 1706592, 836570, 172588).

The maximal cones of the three fans split as

49000 = 226369 + 787210 + 472811 + 452812 + 204813 + 254414 + 96015 + 67216

+ 148817 + 66418 + 23219 + 12820 + 12821 + 12822 + 3223 + 6424 + 4825

+ 6428 + 3234 + 445,

90608 = 503569 + 1232010 + 911611 + 606412 + 444813 + 233214 + 217615 + 87216

+ 97617 + 67618 + 38419 + 33620 + 20021 + 4822 + 823 + 8024 + 7225 + 2426

+ 4827 + 1629 + 2033 + 1634 + 1636 + 449,

172588 = 1127089 + 2100810 + 1308811 + 1001612 + 448013 + 344014 + 227215

+ 118416 + 188817 + 116818 + 33619 + 16020 + 25621 + 19222 + 4823 + 12824

+ 8025 + 6428 + 3232 + 3234 + 845.

In the above computations, the computer package polymake [28] was used.

3 Generalised scattering equations

In [4] Cachazo, Early, Guevara and Mizera proposed a relation between the tropical Grass-
mannians Gr(k, n) and a set of scattering equations which generalise the scattering equa-
tions introduced in [1–3] for Gr(2, n). Here we would like to emphasise the point that there
is a set of generalised scattering equations for each choice of tropical fan F (S) described in
the previous section, with the equations of [4] corresponding to the Speyer-Williams fans.
In the finite cases, the most refined fan (the cluster fan) is associated to the most general
set of scattering equations.

Let us first review the scattering equations of [4] before introducing their generalisa-
tions. One starts with the potential function

F =
∑

i1<i2<...<ik

si1i2...ik log〈i1i2 . . . ik〉 . (3.1)

Here 〈i1i2 . . . ik〉 are minors of the Grassmannian (k, n) matrix which depend on (k−1)(n−
k − 1) variables,2 and si1i2...ik are generalised Mandelstam variables, totally symmetric
in their k indices. The generalised Mandelstam variables satisfy generalised momentum
conservation relations ∑

i2<...<ik

si1i2...ik = 0, ∀ i1. (3.2)

2For example by choosing coordinates via the web matrix W defined in (2.4).
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The generalised momentum conservation relations guarantee the homogeneity of the poten-
tial F under the rescalings of the n columns of the k×n matrix. The scattering equations
are then defined to be

dF = 0 . (3.3)

These equations are to be interpreted as equations for the coordinates parametrising the
matrix (e.g. the cluster X coordinates) in terms of the generalised Mandelstam variables
si1...ik . The φ3 amplitude is then evaluated as a localised integral of Parke-Taylor factors
(see [4]).

The φ3 amplitude thus obtained can also be identified with the volume of the fan
(or its intersection with the unit sphere), which itself can be computed by triangulating
and adding the volume of all simplicial facets [5]. This picture generalises the kinematic
associahedron picture of [6] which computes the volume of the Gr(2, n) fan, in which the
volume of each facet is simply a tree-level φ3 Feynman diagram. As we stressed in [5],
in the cases where the Grassmannian cluster algebra is finite, the cluster algebra provides
a useful way to immediately obtain a triangulation of the Speyer-Williams fan and thus
obtain the amplitude as a function of the generalised Mandelstam invariants si1i2...ik via
its volume.

Also discussed in [5] was the fact that we can recover the rays in the positive part
of the tropical Grassmannian of Speyer and Sturmfels [13] by simply evaluating all the
tropical minors on the rays of the Speyer-Williams fan. Such rays can be expressed in
terms of the generalised Mandelstam invariants if we form the scalar product of the vector
of generalised Mandelstam invariants with the vector of tropical minors. For example, in
the case of Gr(3, 6) we have

(x̃11, x̃21, x̃12, x̃22) 7→
∑

si1i2i3 p̃i1i2i3(x̃11, x̃21, x̃12, x̃22) , (3.4)

where the p̃i1,i2,i3 are tropical polynomials as described in equation (2.10).
More explicitly, if we take the rays describing the vertices of the bipyramid on the left

side of the left figure in figure 3 and evaluate the quantity (3.4) we find

(0, 0, 1, 0) 7→ t1234 ,

(−1, 0, 0, 0) 7→ t1256 ,

(0, 1, 0, 0) 7→ t3456 ,

(0, 1, 1,−1) 7→ r123456 ,

(−1, 0, 0, 1) 7→ r341256 . (3.5)

Here we use the notation

tijkl = sijk + sijl + sikl + sjkl ,

rijklmn = tijkl + sklm + skln . (3.6)

The full set of sixteen rays becomes the set of s123 (and its five cyclic cousins), t1234 (and
its five cyclic cousins), r123456 (and one cyclic cousin), r341256 (and one cyclic cousin). The
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fact that these five rays form a bipyramid is reflected in the fact that the Mandelstam form
of the rays obeys

t1234 + t1256 + t3456 = r123456 + r341256 . (3.7)

The reverse map from the kinematic expression to the Speyer-Williams ray consists of
tropically evaluating the X -coordinates in terms of minors [5, 14].

The above description corresponds to the choice of the Speyer-Williams fan. To obtain
the less refined Gr(3, 6) fan described in section 2 we simply set s135 = s246 = 0 in the
above discussion. This suggests that there should also be a further generalisation of the
scattering equations which corresponds the more refined cluster fan. Indeed we propose a
further generalisation of the potential function,

F =
∑

i1<i2<i3

si1i2i3 log〈i1i2i3〉+ sq1 log q1 + sq2 log q2 . (3.8)

Here we have added two more terms corresponding to the two quadratic A-coordinates (2.9)
and introduced new generalised Mandelstam variables sq1 and sq2 . The momentum con-
servation relation now reads ∑

i2<i3

si1i2i3 + sq1 + sq2 = 0, ∀ i1. (3.9)

The relation (3.9) again guarantees the homogeneity of the potential function (3.8). The
scattering equations are the same as in (3.3). To return to the system corresponding to
the Speyer-Williams fan we simply set sq1 = sq2 = 0 in the new system. If we do not set
sq1 and sq2 to zero then the expressions for the sixteen rays become modified as follows,

s123 7→ s123 ,

t1234 7→ t1234 + sq1 ,

r123456 7→ r123456 + sq1 ,

r341256 7→ r341256 + sq1 . (3.10)

As before the rays above generated cyclic classes of size six, six, two and two respectively
(where sq1 → sq2 and sq2 → sq1 under a cyclic transformation).

If we perform the above replacements we see that the relation (3.7) will no longer hold
since the l.h.s. acquires an additional 3sq1 while the r.h.s. only acquires 2sq1 . This is in
accordance with the fact that these five rays no longer form a bipyramid in the cluster fan
but rather two tetrahedra separated by a triangle.

We can then form a generalised φ3 amplitude computed from the volume of each facet,
just as in the Speyer-Williams case. We obtain a sum over 50 terms (one for each facet -
now all tetrahedra) which now depend also on sq1 and sq2 . For example, the two tetrahedra
described above contribute two of the 50 terms:

1
(t1234 + sq1)(t1256 + sq1)(t3456 + sq1)(r123456 + sq1)

+ 1
(t1234 + sq1)(t1256 + sq1)(t3456 + sq1)(r341256 + sq1) . (3.11)
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By construction the amplitude obtained this way reduces to the amplitude of [4] upon
setting sq1 = sq2 = 0. The amplitude described above should be equivalent to the lowest
order contribution to the integrals over the stringy canonical forms discussed in [15].

In order to justify the equivalence of the generalised scattering equations and tropical
fans beyond the Speyer-Williams case considered in [4], we consider an example. We focus
on the cluster fan of Gr(3, 6) and choose the special kinematics where sijk = sij +sik +sjk,
si,i+1 = 1, si,i+2 = −1. Analogous kinematics was also considered for the (2, n) case in [3],
where it was shown that each term of the amplitude (each Feynman diagram) contributes
1, thus the scattering amplitude equals the number of all possible diagrams which is the
Catalan number. In Gr(3, 6) our special kinematics does not have the effect that each of
the 50 terms of the amplitude contributes 1, but it does simplify the scattering equations
obtained from the potential (3.8).

Let us choose coordinates for the (3× 6) matrix as follows

m36 =

 1 0 0 1 1 1
0 1 0 1 x5 x6
0 0 1 1 y5 y6

 , (3.12)

with 〈ijk〉 now being the minors of m36. The scattering equations to be solved are

∂F

∂x5
= ∂F

∂x6
= ∂F

∂y5
= ∂F

∂y6
= 0 , (3.13)

with F given in (3.8). For our chosen kinematics, the generalised momentum conservation
relations imply sq1 = −sq2 ≡ t. The expected amplitude evaluated from adding up the
volume of the 50 facets is

A36 = −2(3t4 − 68t2 + 288)
(t2 − 4)3 . (3.14)

Choosing numerical values for t we are able to solve the scattering equations. Generically,
we find 8 solutions. Then we consider the sum over the solutions of the scattering equations

A36 =
∑
slns

1
det′Φ

1∏6
i=1〈i i+ 1 i+ 2〉

, (3.15)

where

Φ =
(
φ1 φ3
φT

3 φ2

)
, φ1 = ∂2F

∂xa∂xb
, φ2 = ∂2F

∂ya∂yb
, φ3 = ∂2F

∂xa∂yb
, (3.16)

where the indices a, b refer to columns and rows 5 and 6 in (3.12). We also use the
shorthand

det′Φ = det Φ
(〈123〉〈234〉〈341〉〈412〉)2 . (3.17)

We have solved the scattering equations for various values of t and found agreement with
the expected answer.

The extension of the generalised φ3 amplitude to more refined fans clearly also gener-
alises to higher Gr(k, n). For Gr(3, 7) one can introduce a new set of Mandelstam variables
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sq5i corresponding to the a5-type quadratic A-coordinates and also sq6i for the a6 type.
The potential F now reads

F =
∑
i<j<k

sijk log〈ijk〉+
[
(sq51〈23[45]67〉+ sq61〈56[72]34〉) + cyc.

]
. (3.18)

The generalised momentum conservation relation reads,∑
j<k

sijk +
∑
j 6=i

(sq5j + sq6j ) = 0 . (3.19)

The above system corresponds to the {a1i, . . . , a6i} fan described in section 2. To obtain
the {a1i, . . . , a5i} fan one simply imposes sq6i = 0. To obtain the Speyer-Williams fan
one imposes also sq5i = 0. To then obtain the {a1i, . . . , a3i} fan one imposes further that
s135 = 0 and the cyclically related relations.

One can similarly make a generalisation of the scattering equations corresponding to
the Gr(3, 8) cluster fan (or E8 cluster fan). To do so one needs new Mandelstam variables
corresponding to the quadratic and cubic A-coordinates. We will return to this case later
in section 4.3. For k = 3 and n > 8 there does not exist an analogue of the cluster fan
but there are certainly fans which are more refined than the Speyer-Williams fans which
therefore introduce new Mandelstam variables beyond the si1...ik .

4 Cluster polytopes and face variables

The cluster polytopes can be defined in terms of face variables. Such variables have been
discussed in many recent papers [15, 17, 27] and generalise the dihedral coordinates of
Gr(2, n) (see e.g. [29]) to more general cluster polytopes. Face variables have the property
that they are valued between 0 and 1 in the positive region (which is also the region where
all cluster X -coordinates are positive. Each codimension one boundary a of the cluster
polytope has an associated face variable ua and ua = 0 defines the boundary. Furthermore
on every other codimension one boundary b that does not intersect the defining boundary
a the variables ua takes the value 1.

In [27] a method to systematically construct the face variables from a cluster quiver
diagram was described and given explicitly in the E6 (or Gr(3, 7)) case. First, one has to
find a Dynkin diagram shaped quiver. There are many quivers of this shape. In figure (4a)
we show an example from the Gr(3, 7) case. If we denote by xi the X -coordinates in node
i of the quiver, then the corresponding u-coordinates take the form

ui = xifi
1 + xifi

, (4.1)

where
f1 = 1, f2 = 1 + x1, f3 = f4 = 1 + x2(1 + x1),
f5 = 1 + x3(1 + x2(1 + x1)), f6 = 1 + x4(1 + x2(1 + x1)).

In fact, we can generalise the method of [27] to include any tree shaped cluster. Then,
the u-coordinate of node i can be found by following the path of the arrow that starts from
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x3x5 x2 x4 x6

x1

(a) Dynkin diagram shaped quiver in Gr(3, 7).

x3x5 x2 x4 x6

x1

(b) Tree shaped quiver.

x3x5 x2 x4 x6

x1

(c) Quiver with bifurcations.

Figure 4. Examples of cluster quivers.

node i and follow the recursive formula fi = 1 + xjfj , where j is the first node we land by
following the path of the arrow. As an example, we have for figure (4b)

f1 = f3 = f4 = 1 + x2, f2 = 1, f5 = 1 + x3(1 + x2), f6 = 1 + x4(1 + x2).

When there is a bifurcation we consider the product of paths. For example, for figure (4c)
we have

f1 = f6 = 1, f2 = (1 + x1)(1 + x4(1 + x6)), f4 = 1 + x6,

f3 = 1 + x2(1 + x1)(1 + x4(1 + x6)), f5 = 1 + x3(1 + x2(1 + x1)(1 + x4(1 + x6))).

The method is valid when the quiver contains loops, if the chosen node does not contain
any path that forms a loop.

We would now like to outline a different method for finding the face variables which is
more directly related to the tropical fans and their associated scattering equations discussed
in the preceding sections. Let us recall that the general form for the potential function is

F =
∑
a

sa log a , (4.2)

where we have used a very compact notation, with the sum being over all the A-coordinates
a of the cluster algebra (including the frozen ones) and sa the corresponding generalised
Mandelstam variable. For the minors 〈i1 . . . ik〉 the associated Mandelstams are the si1...ik
but the sa also include the Mandelstams associated to e.g. the quadratic A-coordinates (2.9).

We claim that the potential can also be written

F =
∑
a

va log ua , (4.3)

where the sum is over only the unfrozen A-coordinates a, va is the ray (evaluated in
terms of Mandelstam variables) and ua is the corresponding face variable. One may verify
that for Gr(2, n) cases, corresponding to the usual scattering equations of [1–3], the above
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relations hold and the face variables coincide with the dihedral coordinates of [29]. This
property is naturally related to the factorisation properties of tree amplitudes on particular
propagators. Note that, due to the generalised momentum conservation relations, (4.2) is
homogeneous, even if each term individually is not. The expression (4.3) is manifestly
homogeneous since the ua are homogeneous combinations of A-coordinates. Once one has
solved the tropical problem and found the rays, equating (4.2) and (4.3) gives a simple
linear system to solve for the log ua in terms of the log a. The solution is exactly the
face variables. Thus the tropical geometry provides a simple map from A-coordinates to
face variables. The method described above is closely related to the discussion of face
variables in [15] based on Minkowski sums of Newton polytopes arising from considering
generalisations of string worldsheet integrals to Gr(k, n). Note that the above discussion,
as is the case for all the Grassmannians considered in this paper, only applies to finite
cluster algebras.

4.1 Gr(3,6)

As described above, the Gr(3, 6) cluster fan consists of 16 rays which are divided into four
cyclic classes of size 6,6,2 and 2. Written in terms of generalised Mandelstam invariants,
the generators of these four classes are

{va} = {s123, t1234 + sq1 , r341256 + sq1 , r123456 + sq1}. (4.4)

For each of the 16 rays va we can associate the A-coordinate a, which can be found
from mutations as described in [5]. For the rays in (4.4) we associate

{〈124〉 , 〈125〉 , 〈135〉 , 〈12[34]56〉}, (4.5)

where we recall 〈12[34]56〉 ≡ 〈124〉 〈356〉 − 〈123〉 〈456〉.
In addition, to each ray va we can associate the face variable ua. As described above

we may derive them from the equality of the two ways of writing the potential F in (3.8),

∑
i<j<k

sijk log〈ijk〉+
2∑
i=1

sqi log qi =
∑
a

va log ua . (4.6)

All 22 A-coordinates appear in (4.6), including the frozen ones, however the generalised
momentum conservation relations (3.9) imply the l.h.s. can be written as a combination
of 16 homogeneous combinations of A-coordinates. Equation (4.6) therefore reduces to a
linear system for the 16 unknowns log ua with a unique solution. For the rays in (4.4) we
find the corresponding u-coordinates,{〈123〉 〈246〉

〈124〉 〈236〉 ,
〈12[34]56〉
〈125〉 〈346〉 ,

〈125〉 〈134〉 〈356〉
〈135〉 〈12[34]56〉 ,

〈124〉 〈256〉 〈346〉
〈246〉 〈12[34]56〉

}
, (4.7)

in agreement with the restriction of the E6 u-coordinates found in [27] to D4 and also in
agreement with the u-coordinates given in [15]. We observe that the A-coordinates appear
in the denominators of the corresponding u-coordinates.
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Labelling the 16 u-coordinates generated by the cyclic classes of (4.7) as {u1, . . . , u6},
{u7, . . . , u12}, {u13, u14} and {u15, u16}, we find that they satisfy the identities

1 = u1 + u2u6u8u11u13u16

= u7 + u3u6u8u12u14u16

= u13 + u1u3u5u8u10u12u
2
14u15u16

= u15 + u2u4u6u8u10u12u13u14u
2
16 , (4.8)

which respect the boundary structure of the cluster polytope.

4.2 Gr(3,7)

The Gr(3, 7) cluster fan posesses 42 rays, divided into 6 cyclic classes, each of size 7.
Written in terms of Mandelstam variables introduced in (3.18) the classes are generated by

s123,

t1234 + sq55 + sq66 + sq57 ,

t1234567 + sq53 + sq64 + sq55 + sq66 + sq57 ,

t1234567 + s134 + s234 + sq53 + sq64 + sq55 + sq66 + sq57 ,

t1234567 + s167 + s267 + sq53 + sq64 + sq55 + sq66 + sq57 ,

t1234 + t1267 + s125 + sq53 + sq64 + 2sq55 + sq66 + sq57 , (4.9)

where t1234567 = s123 + s124 + s125 + s126 + s127. Setting the sq5i and sq6i to zero in the
above we recover the form of the rays given in [4, 5]. The corresponding A-coordinates are

{〈124〉 , 〈125〉 , 〈134〉 , 〈135〉 , 〈12[34]67〉 , 〈12[35]67〉}. (4.10)

The equality of the two forms of the potential (4.2) and (4.3) becomes∑
i<j<k

sijk log〈ijk〉+
[
(sq51 log〈23[45]67〉+ sq61 log〈56[72]34〉) + cyc.

]
=
∑
a

va log ua . (4.11)

Due to the generalised momentum conservation relation (3.19) both sides are homogeneous
and we obtain a linear system for the log ua. They are found to be{〈123〉 〈247〉

〈124〉 〈237〉 ,
〈12[34]57〉
〈125〉 〈347〉 ,

〈12[34]67〉
〈134〉 〈267〉 ,

〈134〉 〈12[35]67〉
〈135〉 〈12[34]67〉 ,

〈267〉 〈12[34]57〉
〈257〉 〈12[34]67〉 ,

〈125〉 〈357〉 〈12[34]67〉
〈12[35]67〉 〈12[34]57〉

}
, (4.12)

in agreement with the u-coordinates found in [27]. As in the Gr(3,6) case, theA-coordinates
appear in the denominators of the corresponding u-coordinates.
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The 42 u-coordinates of (4.12) obey the cluster connectivity and satisfy the identities

1 = u1 + u2u7u9u13u17u21u22u24u27u30u32u35u36u37u39u41

= u8 + u3u7u9u10u13u14u18u21u23u25u27u28u30u32u33u35u
2
37u39u40u41u42

= u15 + u2u6u9u12u16u21u23u26u28u30u32u35u37u39u40u42

= u22 + u1u3u6u9u10u12u14u16u18u21u
2
23u25u26u

2
28u29u30u31u32u33u35u

2
37u38u39u

2
40u

2
42

= u29 + u2u5u7u9u11u12u14u16u19u21u22u23u25u26u27u28u
2
30u32u33u

2
35u

2
37u

2
39u40u41u

2
42

= u36 + u1u3u5u7u9u10u11u12u
2
14u16u18u19u21u

2
23u

2
25u26u27u

2
28u

2
30u31u32u

2
33u

2
35u

3
37u38

× u2
39u

2
40u41u

3
42.

(4.13)
Powers of 3 appear for the first time.

4.3 Gr(3,8)

The Gr(3, 8) cluster fan consists of 128 rays divided into 16 cyclic classes of size 8. Explic-
itly, in terms of the x̃ variables, the 128 rays (or g-vectors) are

g1 = (1, 0, 0, 0, 0, 0, 0, 0), g9 = (0, 0, 1, 0, 0, 0, 0, 0),
g17 = (0, 0, 0, 0, 1, 0, 0, 0), g25 = (0, 1, 0, 0, 0, 0, 0, 0),
g33 = (−1, 0, 0, 1, 0, 0, 0, 0), g41 = (0, 0,−1, 0, 0, 1, 0, 0),
g49 = (0, 1, 1,−1, 0, 0, 0, 0), g57 = (0, 1, 1, 0, 0,−1, 0, 0),
g65 = (0, 1, 1, 0, 0, 0, 0,−1), g73 = (0, 1, 0, 0, 1,−1, 0, 0),
g81 = (0, 1, 0, 0, 1, 0, 0,−1), g89 = (−1, 0, 0, 1, 1,−1, 0, 0),
g97 = (−1, 0, 0, 1, 1, 0, 0,−1), g105 = (0, 1, 0, 1, 1,−1, 0,−1),
g113 = (−1, 0, 0, 2, 1,−1, 0,−1), g121 = (−1, 1, 0, 1, 1,−1, 0,−1)

(4.14)

and their cyclic rotations in the Mandelstam space. We recall that it is straightforward
to map any g-vector to the Mandelstam space by evaluating all the A-coordinates as
tropical polynomials. The list of all 128 vertices in the Mandelstam space corresponding to
the Speyer-Williams fan was given in [5]. In fact, if we only include the sijk Mandelstam
variables, eight of the vectors are redundant in that they are not true vertices of the fan. By
extending the kinematics to include also 80 generalised Mandelstam variables corresponding
to the 56 quadratic and 24 cubic A-coordinates, we obtain the 128 rays of the cluster fan
with no redundancies. The expressions are cumbersome so we omit them here.

The A-coordinates are generated by cyclic rotations of the following,

{ 〈124〉 , 〈125〉 , 〈126〉 , 〈134〉 , 〈135〉 , 〈136〉 ,
〈12[34]56〉 , 〈12[34]57〉 , 〈12[34]58〉 , 〈12[34]67〉 , 〈12[34]68〉 , 〈12[35]67〉 , 〈12[35]68〉 ,
〈12[34]8[67]45〉 , 〈12[35]8[67]45〉 , 〈12[34]8[67]35〉}, (4.15)

where in the final line we have defined the cubic coordinates via

〈12[34]5[67]89〉 ≡ 〈124〉 〈35[67]89〉 − 〈123〉 〈45[67]89〉
= 〈12[34]57〉 〈689〉 − 〈12[34]56〉 〈789〉 = −〈67[89]5[12]34〉 .

(4.16)
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In each of the 24 cubic A-coordinates 7 indices appear once and 1 index appears
twice. Denoting the quadratic A-coordinates by q and the cubic ones by c, the generalised
momentum conservation reads schematically

∑
j<k

sijk +
∑
q|i∈q

sq +
∑
c|i∈c

sc + 2
∑
c|i2∈c

sc = 0 , i = 1, . . . , 8 , (4.17)

where the factor of two in the final term accounts for the double appearance of i in the
associated cubic coordinate.

As above we determine the u-coordinates from the equality of the two forms of the
potential, ∑

i<j<k

sijk log〈ijk〉+
∑
q

sq log q +
∑
c

sc log c =
∑
a

va log ua . (4.18)

The u-coordinates are found to be
{〈123〉〈248〉
〈124〉〈238〉 ,

〈12[34]58〉
〈125〉〈348〉 ,

〈12[45]68〉
〈126〉〈458〉 ,

〈12[34]78〉
〈134〉〈278〉 ,

〈134〉〈12[35]78〉
〈135〉〈12[34]78〉 ,

〈13[45]6[78]12〉
〈136〉〈12[45]78〉 ,

〈124〉〈34[56]28〉
〈248〉〈12[56]34〉 ,

〈12[56]34〉〈34[57]28〉
〈12[57]34〉〈34[56]28〉 ,

〈348〉〈12[34]5[67]82〉
〈12[58]34〉〈34[67]28〉 ,

〈12[34]5[67]82〉
〈258〉〈12[34]67〉 ,

〈268〉〈12[34]8[67]45〉
〈12[68]34〉〈45[67]28〉 ,

〈125〉〈12[34]8[35]67〉
〈12[34]58〉〈12[67]35〉 ,

〈12[68]34〉〈12[35]8[67]45〉
〈12[68]35〉〈12[34]8[67]45〉 ,

〈45[67]28〉〈12[34]8[67]35〉
〈35[67]28〉〈12[34]8[67]45〉 ,

〈358〉〈12[35]67〉〈12[34]8[67]45〉
〈12[34]8[67]35〉〈12[35]8[67]45〉 ,

〈12[34]67〉〈35[67]82〉〈12[34]58〉
〈12[34]5[67]82〉〈12[34]8[67]35〉

}
(4.19)

and satisfy identities reflecting the cluster connectivity. The highest power appearing in
the identities is 6.

In the generalised φ3 amplitude corresponding to the Speyer-Williams fan, the last 8 g-
vectors in (4.14) correspond to spurious poles. The facets containing them always combine
together into bigger facets without them. When we introduce the generalised Mandelstam
variables for each A-coordinate (not just the minors) then this is no longer the case. The
fan is simplicial and every vertex contributes on an equal footing. In the interpretation
where the volume of each facet is thought of as a generalised Feynman diagram, each
diagram now has the same number of poles.

It is possible to define u-coordinates for the polytope dual to the Speyer-Williams
fan formed from only the first 120 g-vectors. Only 16 of the u-coordinates are affected.
These are u(120)

57 = u
(128)
57 u

(128)
121 and u(120)

65 = u
(128)
65 u

(128)
125 and their cyclic rotations. Then the

corresponding u-identities obey the connectivity of the resulting polytope after the removal
of the last 8 g-vectors.
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5 Tropically adjacent polylogarithms

The cases of the Grassmannians Gr(4, n) are particularly interesting because they describe
the kinematic space associated to scattering amplitudes in planar N = 4 super Yang-Mills
theory. This is due to the cyclically ordered kinematics being neatly parametrised in terms
of momentum twistors, and dual conformal symmetry meaning that amplitudes depend
on (homogeneous combinations of) the Plücker coordinates 〈ijkl〉. In [8] a connection was
observed between the logarithmic branch cuts of loop amplitudes and the A-coordinates
of the Gr(4, n) cluster algebras. Specifically the symbol alphabet of the two-loop MHV
amplitudes found in [30] is comprised of A-coordinates.

The connection between cluster algebras and scattering amplitudes has been useful in
constructing amplitudes via the analytic bootstrap of e.g. [31–33]. In particular, it was
important for identifying the heptagon symbol alphabet used to construct the three-loop
and four-loop results for seven-point amplitudes [34–36]. In [26] a further connection to the
cluster structure was made. The adjacent pairs of letters in the symbols of hexagon and
heptagon amplitudes are constrained to be ones which appear together in the same cluster.
Geometrically this means that they are the A-coordinates corresponding to codimension
one boundaries of the cluster polytope which intersect (or frozen coordinates which appear
in every cluster). These cluster adjacency constraints are consistent with the Steinmann
relations on overlapping discontinuities [37, 38].

The notion of cluster adjacency gives rise to an interesting class of polylogarithmic
functions, associated to a given cluster algebra. Here we would like to generalise this
notion to different possible choices of fan F (S). The cluster adjacent polylogs in the sense
of [26] will correspond to the cluster fans. Those corresponding to less refined fans will obey
additional constraints beyond the fact that adjacent pairs of letters must appear together
in a cluster.

In section 2 we discussed different tropical fans related to Gr(3, 7) ∼= Gr(4, 7), gen-
erated by different sets of tropical A-coordinates. Here we will discuss this further and
the implications these different fans have for cluster adjacency and scattering amplitudes
in SYM.

Edges. If two rays are connected by an edge in the cluster fan this means their corre-
sponding A-coordinates appear together in a cluster in the cluster algebra and hence are
cluster adjacent. The {a1, . . . , a6} fan in table 2 is the most refined fan one could construct
and is dual to the Gr(4, 7) cluster polytope. This fan consists of 399 edges which corre-
spond to all of the cluster adjacent pairs of different A-coordinates. The {a1, . . . , a5} fan
also contains all 399 edges and so offers no alteration to cluster adjacency at the level of
edges. However, we will see that the {a1, . . . , a5} fan does differ from the cluster fan at the
level of triangles. The {a1, . . . , a4} fan, also called the Speyer-Williams (SW) fan, was the
original tropical fan for Gr(3, 7) discussed in [14]. It has 392 edges and is the first instance
where we have a differing number of edges from that of the cluster fan. The {a1, . . . , a3}
fan has 385 edges, 14 fewer than the cluster fan. These 14 edges correspond to the pairs

{a21, a64} + dihedral (5.1)
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a1i a2i a3i a4i a5i a6i

a11

a21

a31

a41

a51

a61

Table 3. The neighbourhood and connectivity relations of the coordinates ai1 with the 42-letter
alphabet. Other relations can be inferred by cyclic symmetry.
: there are clusters where the coordinates appear together connected by an arrow.
: there are clusters where the coordinates appear together but they are never connected.
: the coordinates never both appear in a cluster but there is a mutation that links them.
: the coordinates never both appear in a cluster nor is there a mutation that links them.

which are the pairs observed to be missing from certain integrals and MHV amplitudes
in [26]. We note that the missing pairs are neighbours of ‘disconnected’ type in the language
of [26]. This can be seen in table 3 (which is the adjacency table of [26] reproduced here) in
the row labelled by a21 and the fourth column in the a6i block where the symbol appears.
That is, they appear together in the same cluster, but never connected by an arrow. As
noted in [26], this has the consequence that, if the pair were to appear consecutively in
a symbol, the integrability conditions would impose that they do so in a symmetric way.
In other words, the corresponding weight-two function is simply a product of logarithms,
log a21 log a64. Therefore there is no distinction between the ordering shown in (5.1) and
the reverse.

Triangles. Much like with edges mentioned above, if three rays are all connected to each
other to form a triangle in the cluster fan then all three corresponding A-coordinates can
be found in a cluster together and hence are cluster adjacent. When considering the less
refined fans, if we find that an edge is missing it follows that any triangles containing that
edge are also missing. However, it is also possible for further triangles to be absent, even
if all three edges of the triangle are still present. We have seen this phenomenon in the
Gr(3, 6) example discussed in section 2. When any pair of connected tetrahedra in figure 3
becomes a bipyramid, the triangle at the interface is removed. The same phenomenon can
happen in the Gr(3, 7) ∼= Gr(4, 7) case.

The cluster fan contains 1547 triangles but the {a1, . . . , a5} fan only has 1540 triangles,
7 fewer than the cluster fan. These missing triangles are

{a11, a41, a51} + cyclic. (5.2)

As mentioned above the {a1, . . . , a3} fan has 14 fewer edges than the cluster fan. These
edges appear in (8×14)+7 = 119 triangles, corresponding to 8 triangles and their dihedral
copies along with 7 triangles which contain 2 of the 14 missing edges. The other missing
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triangles are

{a22, a24, a16} + dihedral , (5.3)
{a21, a13, a53} + dihedral + parity . (5.4)

The triangles (5.2), (5.3) and (5.4) are fully disconnected in the sense that all three
edges correspond to disconnected neighbours. For example, we see in table 3 the symbol
corresponding to the pairs {a11, a41}, {a11, a51} and {a41, a51}. There are a total of 70

disconnected triangles in the cluster fan, 56 of which are missing from the {a1, . . . , a3}
fan (the 49 in (5.2), (5.3) and (5.4) and the 7 which contain two missing edges of the
form (5.1)). The remaining 14 disconnected triangles are of the form

{a11, a24, a33} + dihedral (5.5)

and these ones are present in the {a1, . . . , a3} fan.

Comparison to amplitudes. The variation in the number of edges and triangles in the
above fans is interesting in the context of N = 4 SYM loop amplitudes. At the level of
edges all currently known MHV heptagon amplitudes are consistent with the edges from
the {a1, . . . , a3} fan.3 The NMHV heptagon amplitude at four loops [36] requires all 399
pairs (edges) [19] and so is consistent with either the {a1, . . . , a5} fan or the {a1, . . . , a6}
fan.

We have also observed that the triangles missing from the {a1, . . . , a3} fan are also
missing from all available MHV and NMHV amplitudes. Thus at the level of triangles
there is no distinction between the currently known MHV and NMHV amplitudes, though,
as we have stated above, there is at the level of edges. The disconnected triangles (5.5)
which are present in the {a1, . . . , a3} fan do appear as consecutive triples of letters in known
MHV and NMHV amplitudes.

The cluster adjacency conditions in heptagon functions seem to follow from the ex-
tended Steinmann conditions [39] and the physical initial entry condition (and integrability
of the symbol), at least up to weight seven. It is interesting to note therefore that the con-
ditions obtained by imposing the absence of the triples (5.2), (5.3) and (5.4) do not follow
only from physical initial entry conditions and cluster adjacency, there being examples of
functions in weight seven which do have the missing triangles in their symbols. Therefore,
forbidding the triangles above is an extra condition that goes beyond cluster adjacency.

In summary, the known seven-point MHV amplitudes in planar N = 4 SYM are
consistent with the structure of the {a1, . . . , a3} tropical fan although there is limited data
to verify this. One potential test would be to bootstrap the five-loop, MHV heptagon using
the restrictions following from the {a1, . . . , a3} and investigate whether a solution could be
found. For NMHV seven-point amplitudes, the edge structure suggests that the minimal
fan compatible with their singularities would be the {a1, . . . , a5} fan. This fan has all
possible edges but seven missing triangles. It would be interesting to investigate whether

3In fact, results currently known up to 4-loops for 7-particle MHV amplitudes only exhibit 371 of the
385 edges of this fan [19, 26].
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such triangles indeed continue to be absent at higher orders. It should also be noted that
the MHV data up to four loops actually exhibit additional missing pairs [19, 26] thus there
is even the potential for additional constraints above those coming from the restrictions to
the fans considered here.

Beyond seven points the Gr(4, n) cluster algebras become infinite. For n = 8 this
infinity is of affine type and tropical fans have been considered in this case in several recent
papers [5, 18–20]. The affine nature of the cluster algebra leads to natural infinite sequences
of cluster coordinates and g-vectors which lead to the appearance of quantities involving
square roots. In [18] we found a way to associate precisely the same set of square roots as
those appearing in a recent calculation of the two-loop eight-point NMHV amplitude [40].
It would be interesting also in that case to understand how the structure of edges and
triangles (and beyond) is related to the analytic behaviour of the amplitudes, and whether
amplitudes of different MHV degree are related to different fans.
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