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We revisit the four-point function of super gluons in AdS5 × S3 and show how the integrand of a
generalized Mellin transform satisfies the Uð1Þ decoupling identity, Bern-Carrasco-Johansson relations
and color-kinematic duality, in a way that directly mirrors the analogous flat space relations. We unmix the
spectrum of double-trace operators at large N and find all anomalous dimensions at leading order which
follow a very simple pattern, as in other theories with hidden conformal symmetries.
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I. INTRODUCTION

Properties of (quantum) gravity theories and their relation
to gauge theories is a primary focus of modern physics. Most
of these relations are obscured in a Lagrangian formulation
andmanifest their fullmajesty only throughobservables such
as scattering amplitudes. The study of amplitudes has led to a
series of impressive and deep results, for example, Bern-
Carrasco-Johansson (BCJ) dualities [1] and double-copy
constructions [2] in various theories (for a recent review,
see [3]). Such properties hint at an underlying common
structure between gravity and gauge theories, yet to be fully
understood. Most such efforts have related to flat space,
mainly because of the difficulties in performing computa-
tions in curved backgrounds. However, recent work has
begun the exploration of these properties in AdS back-
grounds, in Mellin space [4–7], position space [8,9] and
momentum space [10,11]. Many of these studies use boot-
strap methods that have been successful in exploring super-
gravity in AdS [12–26], or its string corrections [27–39]. For
example, in [5],AdSversions of color-kinematic and double-
copy relations were found.
Here we explore these relations, focusing on four-point

functions of half-BPS operators dual to the scattering of
four super gluons in AdS5 × S3, as computed in [4]. As
in [5], we focus on the “reduced” Mellin amplitude. Using
ideas developed in [35] for N ¼ 4 super Yang-Mills, we
find the amplitude manifests color-kinematics and BCJ
relations in a way strikingly similar to flat space. We
ascribe this to the existence of an 8d conformal symmetry.

We then unmix the spectrum of double-trace operators
exchanged in the operator product expansion (OPE) and
compute their anomalous dimensions at leading order.
The anomalous dimensions we find are given by a very

simple formula, similar to previous results in other back-
grounds [19,40,41], and suggest that the hidden conformal
symmetry, unavoidably, plays a primary role in con-
straining the data of these superconformal field theories.

II. AdS5 × S3 MELLIN TRANSFORM AND THE
LARGE p FORMALISM

The AdS5 × S3 background arises in two basic stringy
setups. One can either consider a stack of N D3-branes
probing F-theory 7-brane singularities or a stack of NF D7-
branes wrapping an AdS5 × S3 subspace in the AdS5 × S5

geometry of a stack of N D3-branes. In both cases, the
system preserves eight supercharges; therefore, the dual
CFT is a 4dN ¼ 2 theory with flavor group GF, which we
will keep generic because it is mostly irrelevant for the
details considered in this paper. The low-energy degrees of
freedom are those of an N ¼ 1 vector multiplet which
transforms in the adjoint of GF. Upon reducing on the
sphere, it provides an infinite tower of Kaluza-Klein modes
organized in different multiplets. In the dual CFT, the super
primaries of these multiplets are half-BPS scalar operators

of the form O
Ia1a2…ap;ā1ā2…āp−2
p . Here I is the color index, p

is the scaling dimension of the operator, a1;…; ap are
symmetrized SUð2ÞR R-symmetry indices and similarly āi
are indices of an additional SUð2ÞL flavor group; these last
two groups realize the isometry group of the sphere S3. As
usual in these contexts, it is convenient to contract the
indices with auxiliary bosonic two-component vectors η
and η̄ to keep track of the SUð2ÞR × SUð2ÞL indices:

OI
p ≡O

I;a1a2…ap;ā1ā2…āp−2
p ηa1…ηap η̄ā1…η̄āp−2 : ð1Þ
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In this paper we consider the amplitude of four super
gluons, which we denote by

GI1I2I3I4
p⃗ ðxi; ηi; η̄iÞ≡ hOI1

p1
OI2

p2
OI3

p3
OI4

p4
i: ð2Þ

A crucial point here is that the strength of the self-gluon
coupling is larger than the coupling of gluons to grav-
itons [4]. Thus one can perform an expansion in 1=N in
which gravity is 1=N suppressed. Schematically, we have

GI1I2I3I4
p⃗ ¼ GI1I2I3I4

disc;p⃗ þ 1

N
GI1I2I3I4

tree-gluon;p⃗ þ � � � : ð3Þ

The first “disconnected” term is a sum over products of
two-point functions and takes the form of (generalized) free
theory. In terms of OPE data, it contains the leading-order
contributions to the three-point functions of the external
operators with exchanged two-particle operators. We refer
to the second term as the “tree-level” amplitude.
The superconformal Ward identities [42] allow us to split

the correlator into two parts, each separately respecting
crossing symmetry:

GI1I2I3I4
tree-gluon;p⃗ ¼ GI1I2I3I4

0;p⃗ þ PIAI1I2I3I4
p⃗ : ð4Þ

The term G0;p⃗ contains all contributions due to protected
multiplets at this order in 1=N. The second term contains all
the logarithmic terms which arise due to two-particle
operators receiving anomalous dimensions. It contains
kinematic factors P and I , due to bosonic and fermionic
symmetries, respectively. We define the propagator

gij ¼
y2ij
x2ij

; y2ij ¼ hηiηjihη̄iη̄ji; ð5Þ

where hηiηji ¼ ηiaηjbϵ
ab and hη̄iη̄ji ¼ η̄iāη̄jb̄ϵ

ā b̄. We intro-
duce cross-ratios via

x212x
2
34

x213x
2
24

¼ U ¼ xx̄;
x214x

2
23

x213x
2
24

¼ V ¼ ð1 − xÞð1 − x̄Þ;

y212y
2
34

y213y
2
24

¼ Ũ ¼ yȳ;
y214y

2
23

y213y
2
24

¼ Ṽ ¼ ð1 − yÞð1 − ȳÞ:

Note that y ¼ hη1η2ihη3η4i
hη1η3ihη2η4i and ȳ ¼ hη̄1η̄2ihη̄3η̄4i

hη̄1η̄3ihη̄2η̄4i. The kinematic

factors are then given by

P ≡ gks12g
kt
14g

ku
24ðg13g24Þp3

hη̄1η̄3i2hη̄2η̄4i2
; I ¼ ðx − yÞðx̄ − yÞ; ð6Þ

where

ks ¼
p1 þ p2 − p3 − p4

2
; kt ¼

p1 þ p4 − p2 − p3

2
;

ku ¼
p2 þ p4 − p3 − p1

2
:

Note that, due to the presence of the factor I, the remaining
factorAp⃗ has equal degrees in y and ȳ. Moreover, sinceAp⃗

is symmetric under y; ȳ exchange, we can write it as a
function of Ũ; Ṽ (as well as U, V and p⃗).
The function Ap⃗ admits a very compact and natural

representation that extends the well-known Mellin trans-
form [43,44] to the compact space. The transform makes
manifest the so-called large p limit [35]—where p refers to
the charges—whichwas found to beveryuseful in the context
of AdS5 × S5 [35,37] and AdS3 × S3 backgrounds [40]. The
generalized Mellin transform is defined via

AI1I2I3I4
p⃗ ¼ −

I
dsdt

I
ds̃dt̃UsVtŨs̃Ṽ t̃ΓMI1I2I3I4

p⃗ ; ð7Þ

where MI1I2I3I4
p⃗ ≡MI1I2I3I4

p⃗ ðs; t; s̃; t̃Þ. The kernel Γ factor-

izes into AdS5 and S3 contributions and takes the form
Γ ¼ SΓsΓtΓu with

S¼ π2
ð−Þt̃ð−Þũ

sinðπt̃ÞsinðπũÞ ; Γs¼
Γ½−s�Γ½−sþks�

Γ½1þ s̃�Γ½1þ s̃þks�
ð8Þ

and Γt and Γu defined similarly. Note that the Mellin
variables obey

sþ tþ u ¼ −p3 − 1; s̃þ t̃þ ũ ¼ p3 − 2; ð9Þ
which may be used to eliminate u and ũ. Note also that the
amplitudeAp⃗ is polynomial in Ũ and Ṽ. In fact, the integral
over s̃, t̃ becomes a discrete sum over a certain domain that
in our case is given by

T ¼ fs̃ ≥ maxð0;−ksÞ; t̃; ũ ≥ 0g: ð10Þ
The contour integral in s and t requires a little care and we
will return to this point in the next section. The double
integral (7), when combined with the amplitude Mp⃗ given
in the next section, precisely coincides with the result
given in [4].

III. BCJ AND COLOR KINEMATICS
IN AdS5 × S3

Let us consider the field theory amplitude computed
in [4] within this formalism. As in [5], we consider the
reduced Mellin amplitude Mp⃗. In the color-factor basis,
Mp⃗ takes the following simple form when written in the
large p formalism (s ¼ sþ s̃; t ¼ tþ t̃;u ¼ uþ ũ):

MI1I2I3I4
p⃗ ¼ nscs

sþ 1
þ ntct
tþ 1

þ nucu
uþ 1

: ð11Þ

Here we have

ns ¼
1

3

�
1

tþ 1
−

1

uþ 1

�
; cs ¼ fI1I2JfI3I4J; ð12Þ

and similarly for ct; nt; cu; nu, where the bold-face variables
satisfy

sþ tþ u ¼ −3: ð13Þ
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Note that the large p limit [35] ensures that the correlator
reduces to the flat S matrix (see e.g. [45] for the flat space
expression) with the Mandelstam replaced by boldface
variables. The large p limit can be seen as a generalization
of the usual flat space limit [44] in which only the AdS
(Mellin) variables s, t are taken to be large.
In principle, away from large p, nothing would prevent

the amplitude from depending on s; s̃;… separately.
However, from (11) we see that in fact the full amplitude
M is just a function of bold-facevariables, as a conse-
quence of a hidden 8d conformal symmetry of the
amplitude. This is completely analogous to AdS3 × S3

[40,46–48] and AdS5 × S5 [20,35] backgrounds where
the dynamics is also controlled by hidden conformal
symmetries.
In fact, due to (13), the Mellin amplitude M is literally

the same function as the flat space amplitude with the
Mandelstam variables s, t, and u replaced by ðsþ 1Þ,
ðtþ 1Þ, and ðuþ 1Þ, respectively. It follows immediately
that all relations obeyed by the flat space amplitudes also
apply to M. Note that it is not trivial that this holds;
for example, the analogous relation for AdS5 × S5 is
sþ tþ u ¼ −4 [35]. As an example of the properties
obeyed by M we have that

ns þ nt þ nu ¼ 0; cs þ ct þ cu ¼ 0; ð17Þ
which gives an AdS version of the color-kinematic duality,
which was already observed in [5]. Note that (17) captures
this duality for all Kaluza-Klein modes. This duality is
intimately connected to the so-called BCJ relations between
color-ordered amplitudes. Recall that the full color-dressed
amplitude is

MI1I2I3I4
p⃗ ¼

X
Pð2;3;4Þ

TrðTI1TI2TI3TI4ÞMp⃗ð1; 2; 3; 4Þ;

where Mp⃗ð1; 2; 3; 4Þ are the color-ordered amplitudes and
Pð2; 3; 4Þ are the permutations of (2, 3, 4). The translation
from one basis to the other is

cs ¼ TrðTI1TI2TI3TI4Þ þ TrðTI1TI4TI3TI2Þ
− TrðTI1TI2TI4TI3Þ − TrðTI1TI3TI4TI2Þ ð18Þ

and similarly for ct, cu. The color-ordered amplitudes then
read as follows:

Mp⃗ð1; 2; 3; 4Þ ¼ Mp⃗ð1; 4; 3; 2Þ ¼
ns

sþ 1
−

nt
tþ 1

; ð19Þ

and analogously for the others. All the relations obeyed by
the flat space color-ordered amplitudes obviously also hold
here. For example, from (19), we can see that an analogous
Uð1Þ decoupling identity holds:

Mp⃗ð1;2;3;4ÞþMp⃗ð1;2;4;3ÞþMp⃗ð1;3;2;4Þ¼ 0: ð20Þ

Moreover, it is immediate to see that (a generalization of)
BCJ relations also holds:

ðtþ 1ÞMp⃗ð1; 2; 3; 4Þ ¼ ðuþ 1ÞMp⃗ð1; 3; 4; 2Þ; ð21Þ
where we used the on-shell relation (13). We stress again
that the relations (21) capture the appearance of BCJ
relations in AdS for allKaluza-Klein modes. Such relations
are manifest at level of the reduced Mellin amplitude while
they do not hold, at least directly, for the full Mellin
amplitude [7]. It is an interesting open question how such
relations might extend to higher point amplitudes in AdS
and what the role of a reducedMellin amplitude might be in
this regard.
We now return to the issue of the contour in the Mellin

integral (7). The presence of poles at s ¼ −1, t ¼ −1 and
u ¼ −1 is potentially a problem for the contour of
integration. Indeed (13) implies the simultaneous presence
of these poles leaves no region in the real s, t plane for the
contour to pass through, while separating left-moving and
right-moving sequences of poles in the Mellin integrand.
Thus the same property which leads to the direct analogy
with the flat space amplitudes also leads to a subtlety in
returning to position space from Mellin space. For the
color-ordered amplitudes, one does not have all three poles
present simultaneously. Thus we propose that the correct
definition for the contour is tied to the color ordering and
we define analogously a color-ordered correlator:

Að1;2;3;4Þ ¼ −
I

dsdt
I

ds̃dt̃UsVtŨs̃Ṽ t̃ΓMð1;2;3;4Þ:

The contour can now be taken to lie slightly below s ¼ −1
and t ¼ −1. Note then that this introduces a subtlety in
interpreting the BCJ relations (21) back in position space,
since the left- and right-hand sides of these equations are to
be integrated over slightly different contours.
Finally, let us observe that there is also an AdS version of

the double-copy prescription [5]. Replacing color with
kinematic factors we get

MI1I2I3I4
p⃗ ⟶

ci→ni

n2s
sþ 1

þ n2t
tþ 1

þ n2u
uþ 1

¼ 1

ðsþ 1Þðtþ 1Þðuþ 1Þ ∝ MSUGRA
p⃗ : ð22Þ

This is nothing but the supergravity (SUGRA) amplitude in
AdS5 × S5 [12] rewritten in the large p formalism [35],
upon reinterpreting s, t, u as the N ¼ 4 variables, i.e.
subject to the constraint u ¼ −s − t − 4.

IV. LONG DISCONNECTED FREE THEORY

We now examine the anomalous dimensions of the
double-trace operators exchanged in the OPE at large N.
To do so, we need the superconformal block decomposi-
tions of disconnected free theory and of the logU
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discontinuity of the tree-level correlator. We also have to
deal with the flavor structure of the amplitude. Since this
just amounts to considering certain symmetric or antisym-
metric combinations built out of the correlator, we postpone
the discussion on flavor structures to the end of the next
section. More details can be found in [6].
We begin with disconnected free theory. Only represen-

tations with a definite parity under t ↔ u exchange enter
the s-channel OPE. Thus we need to decompose the
following combinations of disconnected diagrams:

G�
disc;pqpq ¼ δpq

gp14g
p
23

hη̄1η̄4i2hη̄2η̄3i2
� gp13g

q
24

hη̄1η̄3i2hη̄2η̄4i2
: ð23Þ

Following [42], we extract the unprotected contribution and
decompose it into long superblocks Lτ⃗ [50], whose form we
give in the Appendix:

G�
disc;pqpqjlong ¼

X
τ⃗

L�
τ⃗ Lτ⃗: ð24Þ

We find that the coefficients are particularly simple:

L�
τ⃗ ¼ −

�1þ ð−1Þaþlδpq
ðp − 1Þðq − 1Þ AhAh̄BjBj̄δ: ð25Þ

Here the A and B factors are given, respectively, by

Ah ¼
Γðhþ p−q

2
ÞΓðh − p−q

2
ÞΓðhþ pþq

2
− 1Þ

Γð2h − 1ÞΓðh − pþq
2

þ 1Þ ; ð26Þ

Bj ¼
Γð2 − 2jÞ½Γðpþq

2
þ j − 1ÞΓðpþq

2
− jÞ�−1

Γð1 − jþ p−q
2
ÞΓð1 − j − p−q

2
Þ ð27Þ

while δ is given by

δ ¼
δð2Þh;j − δð2Þ

h̄;j

δð2Þh;jδ
ð2Þ
h̄;j

; δð2Þh;j ¼ ðh − jÞðhþ j − 1Þ: ð28Þ

Here, h; h̄ and j; j̄ label the conformal and internal
representations, respectively. We can also express them
in terms of the more common quantum labels
τ⃗ ¼ ðτ; b; l; aÞ:

h¼ τ

2
þ1þ l; h̄¼ τ

2
; j¼−

b
2
−a; j̄¼−

b
2
; ð29Þ

where τ and l are twist and spin, respectively, and b and a
can be seen as the analogs of twist and spin on the sphere.
Note the different ways the two internal SUð2Þ factors
enter the coefficients. On the one hand, SUð2ÞL only
comes in through the function Bj̄. On the other hand,
the decomposition under the R-symmetry group SUð2ÞR
produces also the function δ and, in particular, the

combination δð2Þh;jδ
ð2Þ
h̄;j
. It is not difficult to see that this

object is the eigenvalue of a Casimir operator acting on the
blocks. We refer to [20,41] for more details, where the logic
is exactly the same, although the background is different.

V. ANOMALOUS DIMENSIONS
AND RESIDUAL DEGENERACY

The details of the computation are similar to the
AdS5 × S5 case [16,19] and the AdS3 × S3 case [40].
The main difference with the N ¼ 4 case is that here
double-trace operators have flavor structure. There will
then be two types of anomalous dimensions, those of
operators exchanged in symmetric or antisymmetric
channels.
At large N, the operators acquiring anomalous dimen-

sions are of the schematic form:

O�
pq ¼ P�

I1I2
OI1

p ∂
l□

1
2
ðτ−p−qÞOI2

q ; ð30Þ
where Pij is an appropriate projector that projects onto
symmetric or antisymmetric representations of the gauge
group exchanged in the OPE. For any given quantum
numbers τ⃗ ¼ ðτ; b; l; aÞ, the number of operators
exchanged in the OPE can be represented with the number
of pairs ðpqÞ filling a rectangle [19]:

Rτ⃗ ¼
�
ðp; qÞ∶p ¼ iþ jaj þ 1þ r

q ¼ iþ aþ 1þ b − r

���� i ¼ 1;…; t − 1

r ¼ 0;…; μ − 1

�
:

ð31Þ
Thus Rτ⃗ consists of d ¼ μðt − 1Þ lattice points where

t≡ ðτ − bÞ
2

−
ðaþ jajÞ

2
; μ≡

(
bbþa−jajþ2

2
c aþ l even;

bbþa−jajþ1

2
c aþ lodd:

The picture below shows an example with μ ¼ 4, t ¼ 9:

Let us now consider the OPE at genus zero. This is best
cast in a matrix form [16]. First, arrange a d × d matrix of
correlators:

δp1p3
δp2p4

G�
disc;p⃗jlong þ

1

N
Pðx − yÞðx̄ − yÞA�

p⃗ ð32Þ

with the pairs ðp1; p2Þ and ðp3; p4Þ running over the same
Rτ⃗. Here, we denote by A�

p⃗ the inverse Mellin transform of
the following Mellin amplitudes:

M�
p⃗ ¼ 1

2
ðMp⃗ð1; 2; 3; 4Þ �Mp⃗ð1; 3; 4; 2ÞÞ

¼ 1

2

1

sþ 1

�
1

tþ 1
� 1

uþ 1

�
: ð33Þ
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The OPE equations then read

C�
τ⃗ C

�
τ⃗
T ¼ L�

τ⃗ ; C�
τ⃗ η

�
τ⃗ C

�
τ⃗
T ¼ M�

τ⃗ : ð34Þ
Here L�

τ⃗ is a (diagonal) matrix of conformal partial waves
(CPW) coefficients of disconnected free theory (24), while
M�

τ⃗ is a matrix of CPW coefficients of the logU dis-
continuity of A�

p⃗ :

Pðx − yÞðx̄ − yÞA�
p⃗ jlogU ¼

X
τ⃗

M�
τ⃗ Lτ⃗: ð35Þ

Finally, η�τ⃗ is a diagonal matrix of anomalous dimensions
and C�

τ⃗ ¼ hOpOqK�
rsi is a matrix of three-point functions

with two half-BPS and one double-trace operator. Here, we
denote withK�

rs the true two-particle operator in interacting
theory, that differs from O�

pq, precisely because there is
mixing. Note that, since A�

p⃗ can be written as a function of

Ũ and Ṽ, the SUð2ÞL × SUð2ÞR representations contribut-
ing to M�

τ⃗ can be reorganized into SOð4Þ representations,
while this is not so for the disconnected contribution L�

τ⃗ .
It is simple to show, with some linear algebra, that the

anomalous dimensions are the eigenvalues of the matrix
Mτ⃗ðL�

τ⃗ Þ−1. By computing them for various quantum
numbers, we find a very simple formula:

η�τ⃗ ¼ −
2

N

δð2Þh;jδ
ð2Þ
h̄;j

ðl�8d þ 1Þ4
: ð36Þ

Here l�8d ¼ lþ 2ðp − 2Þ þ 1∓ð−1Þaþl

2
− jaj can be interpreted

as an effective 8d spin, defined in analogy to the partial
wave decomposition of the flat amplitude in 8d [20]. Note
that (36) only depends on p, not q, or, in other words,
operators on the same vertical line in the rectangle will
acquire the same anomalous dimensions.
We conclude by commenting on the flavor structure of

the correlator. One way to deal with it is to decompose t, u
channel flavor structures (of both disconnected and tree-
level correlators) in a basis of representations appearing in
the tensor product of two adjoint representations in the s
channel. We then read off the coefficients associated to
each flavor structure which are of the form

GI1I2I3I4
a ∝ GI1I2I3I4

t �GI1I2I3I4
u ;

where a runs over all symmetric (antisymmetric) repre-
sentations in adj ⊗ adj with the proportionality coefficient
depending on the specific group and exchanged represen-
tation. Examples of such coefficients are given in [6]. The
unmixing procedure can then be consistently carried for
each a separately. For the symmetric (antisymmetric)
representations the relevant double-trace operators
exchanged are of the type Oþ

pq (O−
pq) with the respective

anomalous dimensions proportional to ηþτ⃗ (η−τ⃗ ). The only
antisymmetric representation exchanged is the adjoint.

VI. OUTLOOK AND CONCLUSIONS

In this paper we discussed color-kinematics and BCJ
relations between color-ordered amplitudes of super gluons
in AdS5 × S3, making use of the large p formalism [35].
We believe this formalism makes clearer the direct parallel
with the flat space versions of these relations and that they
hold for all Kaluza-Klein modes. In turn, this shows, as in
flat space, that there is a precise relation between color-
kinematic duality and BCJ relations.
We then computed the anomalous dimensions in the

large N limit. Due to the 8d hidden conformal symmetry,
and as for the analogous problems in AdS5 × S5 and
AdS3 × S3, the anomalous dimensions exhibit a residual
degeneracy, nicely captured by the vertical columns of the
rectangular lattice Rτ⃗ described in (31) and below.
These results open many exciting possibilities. Firstly, as

mentioned in the introduction, the knowledge of the
anomalous dimensions can be of use in bootstrapping loop
corrections, beyond the lowest charge correlator studied
in [6], and help in further exploring whether some features
of the double-copy relations persist beyond tree level.
Moreover, following the procedure described in [49],
one can imagine treating the theory of gluons as an effective
model and introduce higher-order DnF4 interactions,
analogous to the higher curvature corrections present for
gravitons in e.g. AdS5 × S5. Much like the curvature
corrections responsible for completing the Virasoro-
Shapiro amplitude in AdS5 × S5 [34,37], such terms will
induce a splitting of the residual degeneracy in the
anomalous dimensions. Finally, the computation of open
and closed string amplitudes in AdS might give a clue on
how Kawa-Lewellen-Tye and world-sheet monodromy
relations work in a curved spacetime.
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APPENDIX: SUPERCONFORMAL BLOCKS

We quickly review here the superconformal blocks used
in this paper. The long blocks [50], which capture the
unprotected multiplets exchanged in the OPE, are the
simplest. They are the product of ordinary conformal
and internal blocks for both SUð2Þ factors:

Lτ⃗ ¼ Pðx − yÞðx̄ − yÞ
�
Ũ
U

�
p3

Gτ;lðx; x̄ÞHb;aðy; ȳÞ: ðA1Þ

Here we have
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Gτ;l ¼
ð−1Þl

ðx − x̄ÞUp43
2

ðFþ
τ
2
þ1þlðxÞFþ

τ
2
ðx̄Þ − ðx ↔ x̄ÞÞ;

Hb;a ¼
1

Ũ2−p43
2

F−
−b
2
−aðyÞF−

−b
2

ðȳÞ; ðA2Þ

with

F�
h ðxÞ ¼ xh2F1

h
h ∓ p12

2
; h ∓ p43

2
; 2h

i
ðxÞ: ðA3Þ

Note, Gτ;lðx; x̄Þ are the standard 4d conformal blocks (up to
a shift by 2 in the twist τ) andHb;aðy; ȳÞ are internal blocks
given by the product of two SUð2Þ spherical harmonics,
one for the R-symmetry group SUð2ÞR and the other for the
flavor group SUð2ÞL. Finally, τ and l are, respectively, twist
and spin, and b and a label the different representations of
SOð4Þ and can be viewed as the analogs of twist and spin
on the sphere.
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