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We make an ansatz for the Mellin representation of the four-point amplitude of half-BPS operators of
arbitrary charges at order λ−

5
2 in an expansion around the supergravity limit. Crossing symmetry and a set of

constraints on the form of the spectrum uniquely fix the amplitude and double-trace anomalous dimensions
at this order. The results exhibit a number of natural patterns which suggest that the bootstrap approach
outlined here will extend to higher orders in a simple way.
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I. INTRODUCTION

Recently, great progress has been made in understanding
the structure of amplitudes in anti–de Sitter space by
imposing consistency of the boundary conformal field
theory. A particular case has been the focus of many
investigations, namely N ¼ 4 super-Yang-Mills theory on
the boundary, which corresponds to type-IIB superstrings
interacting in the AdS5 × S5 bulk [1].
Physical quantities depend on the gauge coupling g and

the gauge group, which we take to be SUðNÞ. The holo-
graphic relation between the bulk and boundary theories
implies that the spectrum of the conformal field theory is
drastically simplified in the supergravity regime 0 ≪ λ
≪ N, where λ ¼ g2N is the ’t Hooft coupling. In this limit,
the spectrum is given by single-particle half-BPS operators
and their multitrace products, while other operators, corre-
sponding to excited string states, acquire infinite scaling
dimensions in the limit and decouple.
We study four-point functions of single-particle oper-

ators in a double expansion in 1=N and λ−
1
2 around the

supergravity limit. The leading large-N contributions to the
operator product expansion (OPE) come from a degenerate
spectrum of double-trace operators [2–12].
The supergravity contribution to the four-point functions

has a compact Mellin representation [13,14]. The mixing
between the double-trace operators can be resolved, yield-
ing a very simple formula for the leading contributions to
their anomalous dimensions [4,7]. In fact, the degeneracy is
not fully lifted in supergravity. The residual partial degen-
eracy can be understood in terms of a surprising ten-
dimensional conformal symmetry [15].

Recent papers have explored the structure of string
corrections to the tree-level supergravity amplitudes.
Constraints from the flat-space limit [8] and results derived
using localization [16] allowed a family of correlation
functions to be fixed at the first two nontrivial orders, λ−

3
2

and λ−
5
2. The order-λ−

3
2 corrections can be determined for

every half-BPS four-point function from the relevant term
in the flat-space Virasoro-Shapiro amplitude [17]. From
these results, it was found in Ref. [17] that the double-trace
spectrum reflected the ten-dimensional symmetry struc-
ture, even when taking into account the λ−

3
2 corrections. We

explore this feature further here, generalizing the results of
previous papers to determine all half-BPS four-point
functions up to order λ−

5
2.

We use an ansatz for theMellin amplitude as a function of
the external charges and minimal assumptions about the
form of the corrections to the spectrum. Combined with
crossing symmetry and OPE consistency, the above is
sufficient to determine the λ−

5
2 corrections to the correlation

functions, as well as the spectrum and three-point functions
of the double-trace operators. The results reveal many
beautiful features that are suggestive of a general pattern
which should allow the method to be simply extended to yet
higher orders in λ−

1
2. As observed in Ref. [17], we find that

the ten-dimensional effective spin determines which oper-
ators receive string corrections to their dimensions and
three-point functions. Moreover, at order λ−

5
2, we find that

the partial degeneracy is broken at finite twist in a way
consistent with other general features of the spectrum and
suggestive of a general structure.

II. HALF-BPS FOUR-POINT FUNCTIONS

We recall that N ¼ 4 super-Yang-Mills theory has a
spectrum of single-particle half-BPS operators given by

Opðx; yÞ ¼ yR1…yRp trðϕR1
…ϕRp

ÞðxÞ þ � � � : ð1Þ
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Here, y2 ¼ 0, and we omit 1=N suppressed multitrace
contributions determined by the condition that Op should
be orthogonal to all multitrace operators [7].
Here, we focus on four-point functions of such operators

which, due to superconformal symmetry, have the form

hOp1
Op2

Op3
Op4

i ¼ hOp1
Op2

Op3
Op4

ifree þ PIH: ð2Þ

The first term on the rhs is the contribution from free theory
where g ¼ 0. The second term contains the factorsP and I ,
given in Eqs. (A5) and (A7), and Hðx; x̄; y; ȳÞ, which
encodes the dynamical contribution to the correlator. It
depends on conformal and suð4Þ cross ratios:

U ¼ xx̄ ¼ x212x
2
34

x213x
2
24

; V ¼ ð1− xÞð1− x̄Þ ¼ x214x
2
23

x213x
2
24

;

1

σ
¼ yȳ ¼ y212y

2
34

y213y
2
24

;
τ

σ
¼ ð1− yÞð1− ȳÞ ¼ y214y

2
23

y213y
2
24

: ð3Þ

Here, we are concerned only with the leading large-N
contribution to H corresponding to tree-level string ampli-
tudes. This term admits an expansion in λ−

1
2,

H ¼ 1

N2
½Hð0Þ þ λ−

3
2Hð3Þ þ λ−

5
2Hð5Þ þ � � ��: ð4Þ

The leading term Hð0Þ in the above expansion was deter-
mined for all external charges hp1p2p3p4i in Refs. [13,14],
extending previous results (see, e.g., Refs. [18–20]) and
verified by more recent supergravity analyses [21–23].
As in Refs. [13,14], we will use a Mellin representation,

HðnÞ ¼
Z

ds
2

dt
2
U

sþp3−p4
2 V

t−p2−p3
2 ΓMðnÞðs; t;σ; τÞ;

Γ ¼ Γ
�
p1 þ p2 − s

2

�
Γ
�
p3 þp4 − s

2

�
Γ
�
p1 þ p4 − t

2

�

× Γ
�
p2 þp3 − t

2

�
Γ
�
p1 þ p3 − u

2

�
Γ
�
p2 þp4 − u

2

�
;

ð5Þ

where the Mandelstam-type variables s, t, u obey

sþ tþ u ¼ 2Σ− 4; Σ ¼ 1

2
ðp1 þ p2 þ p3 þp4Þ: ð6Þ

We give the Mellin amplitude of Refs. [13,14] in Eq. (A1)
in the Appendix. The most important point here is that it
reduces to the flat-space supergravity amplitude in the large
s, t, u limit,

Mð0Þ → Bðσ; τÞ=ðstuÞ; Bðσ; τÞ ¼
X
i;j

N ijkσ
iτj; ð7Þ

where the coefficients N ijk are given in Eq. (A3). In fact,

the large s, t, u limit at each order in λ−
1
2 is controlled by the

flat-space Virasoro-Shapiro amplitude V [8,16,24,25],

V ¼ exp

�X
n≥1

2ζ2nþ1

2nþ 1
ðs2nþ1 þ t2nþ1 þ u2nþ1Þ

�
: ð8Þ

The precise relation between V and M requires an integral
which gives the leading large s, t, u behavior:

Mð3Þ → 2−3ðΣ − 1Þ3Bðσ; τÞ × 2ζ3; ð9Þ

Mð5Þ → 2−5ðΣ − 1Þ5Bðσ; τÞ × ζ5ðs2 þ t2 þ u2Þ: ð10Þ

The poles in the factor Γ are due to unprotected double-trace
operators exchanged in the OPE. The remaining poles in the
supergravity Mellin amplitude Mð0Þ are due to long single-
trace contributions (or excited string state contributions),
which must cancel against corresponding contributions
present in the free-theory term in Eq. (2), since they should
be absent from the supergravity spectrum. The λ−

1
2 correc-

tions should then have no such poles and are therefore
polynomial in s, t, u [8,16,24,25]. It follows [17] that the
result of Eq. (9) for Mð3Þ is in fact complete. The limit in
Eq. (10) for Mð5Þ, however, only determines the quadratic
terms and does not specify additional linear and constant
contributions in s and t,

Mð5Þ ¼ ζ5½2−5ðΣ − 1Þ5Bðσ; τÞðs2 þ t2 þ u2Þ
þ αðσ; τÞsþ βðσ; τÞtþ γðσ; τÞ�: ð11Þ

The coefficients α, β, γ are currently only known for
external charges h22qqi [8,16] and, up to a single free
parameter, h23q − 1qi [17], in which cases there is no
dependence on σ and τ. In the case of h22qqi, we have

B ¼ 25q2

ðq − 2Þ! ; α ¼ ðqÞ52q2ðq − 2Þ
ðq − 2Þ! ; β ¼ 0;

γ ¼ −
qðqÞ4

ðq − 2Þ! 2ðq
4 þ 9q3 þ 10q2 − 20q − 25Þ: ð12Þ

To describe an ansatz for Mð5Þ, it is helpful to para-
metrize the charges as

hp1p2p3p4i ¼ hp −mpq − nqi: ð13Þ

We use the suð4Þ blocks Y ½aba�ðσ; τÞ [Eq. (A8)] instead of
working with monomials in σ and τ,

αðσ; τÞ ¼ ðΣ − 1Þ4
X
a;b

Ba;bα̃a;bY ½aba�ðσ; τÞ; ð14Þ
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and similarly for β, while for γ we replace ðΣ − 1Þ4 with ðΣ − 1Þ3. We have included an explicit factor,

Ba;b ¼
pqðp −mÞðq − nÞðΣ − 2Þ!b!ðbþ 1Þ!ðbþ 2þ aÞ

ðpþ r1Þ!ðp − r2 − 2 − aÞ!ðqþ r3Þ!ðq − r4 − 2 − aÞ!r1!r2!r3!r4!
; ð15Þ

where we use the notation

r1 ¼
b −m
2

; r2 ¼
bþm

2
; r3 ¼

b − n
2

;

r4 ¼
bþ n
2

: ð16Þ

The factor Ba;b is in part motivated by the fact that

Bðσ; τÞ ¼ 8
X
b

B0;bY ½0b0�ðσ; τÞ; ð17Þ

and also by the fact that for each suð4Þ channel ½a; b; a� we
can consistently make a polynomial ansatz for α̃, β̃, γ̃ as a
function of p and q for each required value of m and n.
Based on the observed structure of the h22qqi amplitude,
we allow α̃ and β̃ to be quadratic and γ̃ to be quartic in p
and q.
Consistency with the h22qqi results and crossing sym-

metry imposes many constraints among the free parameters
of the ansatz but cannot fix it uniquely. To discuss the
additional constraints we will impose, it is helpful to recall
some facts about the double-trace spectrum.

III. THE DOUBLE-TRACE SPECTRUM

At leading order in the large-N expansion, only double-
trace multiplets are exchanged in the OPE. The primaries
take the form

Opq ¼ Op∂
l
□

1
2
ðτ−p−qÞOq; ðp < qÞ: ð18Þ

For a given twist τ, spin l, and suð4Þ channel ½a; b; a�, all
the operators in Eq. (18) are degenerate at leading order in
large N. We parametrize the unprotected ones as in [7]

p ¼ iþ aþ 1þ r; q ¼ iþ aþ 1þ b − r;

i ¼ 1;…; ðt − 1Þ; r ¼ 0;…; ðκ − 1Þ; ð19Þ

where we use the notation

t≡ ðτ − bÞ=2 − a; κ ≡
(
bbþ2

2
c aþ l even;

bbþ1
2
c aþ l odd:

ð20Þ

For each τ⃗ ¼ ðτ; l; a; bÞ, there are d ¼ κðt − 1Þ degen-
erate operators which mix, and we denote the range of
values of ðp; qÞ by Dτ⃗. We will label the eigenstates Kpq,
with p and q parametrized by i and r as above. The mixing

problem can be addressed by considering the OPE. If we
arrange a ðd × dÞ matrix of correlators with the pairs
ðp1; p2Þ and ðp3; p4Þ ranging over the same setDτ⃗, we have

OðN0Þ∶ hOp1
Op2

Op3
Op4

ilongfree ¼
X
τ⃗

Aτ⃗Lτ⃗;

OðN−2Þ∶ PIHjlogu ¼
X
τ⃗

Mτ⃗Lτ⃗; ð21Þ

where Aτ⃗ and Mτ⃗ are matrices of coefficients and Lτ⃗ is the
superblock for long multiplets given in Eq. (A4) in the
Appendix. The coefficients Aτ⃗ are independent of λ, while
Mτ⃗ receives contributions at all orders where the corre-
sponding MðnÞ is nonzero.
The matrices Aτ⃗ and Mτ⃗ are related to three-point

functions and anomalous dimensions of the Kpq,

Cτ⃗CT
τ⃗ ¼ Aτ⃗; Cτ⃗ητ⃗CT

τ⃗ ¼ Mτ⃗: ð22Þ

Here, CðpqÞ;ðp̃q̃Þ is a ðd × dÞ matrix of three-point functions
½hOpOqKp̃q̃i�, and η is a diagonal matrix encoding the
anomalous dimensions of the eigenstates Kpq:

Δpq ¼ τ − lþ 2

N2
ηpq þO

�
1

N4

�
: ð23Þ

The η and C matrices are expanded for large λ as

ηpq ¼ ηð0Þpq þ λ−
3
2ηð3Þpq þ λ−

5
2ηð5Þpq þ � � � ;

C ¼ Cð0Þ þ λ−
3
2Cð3Þ þ λ−

5
2Cð5Þ þ � � � : ð24Þ

The tree-level contributions ηð0Þ induced by Eq. (A1)
take an astonishingly simple form [7],

ηð0Þpq ¼ −2MtMtþlþ1=ðl10 þ 1Þ6; ð25Þ

where the numerator is given by

Mt ¼ ðt− 1Þðtþ aÞðtþ aþ bþ 1Þðtþ 2aþ bþ 2Þ; ð26Þ

and the denominator is a Pochhammer of the effective
ten-dimensional spin,

l10ðpÞ ¼ lþ aþ 2ðiþ rÞ − 1 −
1þ ð−1Þaþl

2
: ð27Þ

In Ref. [15], it was recognized that the appearance of l10

signals the presence of a ten-dimensional conformal
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symmetry. Note that l10 only depends on the combination
iþ r (or p, not q), so in general there are several states
with the same anomalous dimension, and the resolution of
the operator mixing in tree-level supergravity is only
partial [7], as depicted in Fig. 1. This means that, although
the eigenvalue problem is well posed, the leading-order
three-point functions Cð0Þ are in general not fully deter-
mined by Mð0Þ.
The first string corrections, ηð3Þ, are even simpler [17].

They are only nonzero for l ¼ a ¼ 0 and i ¼ 1, r ¼ 0, (or
l10 ¼ 0), where there is no partial degeneracy in the
supergravity spectrum, corresponding to the leftmost corner
labeled by A in Fig. 1. They take the form

ηð3Þ ¼ −
1

840
MtMtþlþ1ζ3ðt − 1Þ3ðtþ bþ 1Þ3: ð28Þ

Note that ηð0Þ is a factor, and the total polynomial degree in t
is 14. The fact that ηð3Þ depends only on l10, instead of l, a,
i, and r individually, suggests that the ten-dimensional
conformal symmetry is respected also at order λ−

3
2. The

corrections to the three-point functions are uniquely deter-
mined and vanish, Cð3Þ ¼ 0.
The above result generalizes simply to states of the

highest possible spin, l ¼ ðn − 3Þ, at order λ−n
2 with n odd.

In this case, the only relevant terms inMðnÞ are the highest
powers in s, t, u, which are determined by the flat-space
limit. Again, these terms are only nonzero for a ¼ 0 and
i ¼ 1, r ¼ 0, and we find that CðnÞjl¼n−3 ¼ 0 with the
anomalous dimension given by

ηðnÞl¼n−3 ∝ −MtMtþlþ1ζnðt − 1Þnðtþ bþ 1Þn: ð29Þ

Note that the anomalous dimensions are invariant under

t ↦ −t − b − 2a − l − 2: ð30Þ

As argued in Ref. [17], the ten-dimensional conformal
symmetry, present in the supergravity anomalous

dimensions ηð0Þpq , assigns an effective ten-dimensional spin
l10 to each eigenstate Kpq by means of Eq. (27). The
above result [Eq. (29)] then suggests that this assignment
is respected by the (tree-level) string corrections, to any
order in λ−

1
2; i.e., the maximal exchanged spin l10 at a

given order λ−
n
2 in the flat-space Virasoro-Shapiro ampli-

tude [Eq. (8)] determines which eigenstates Kpq develop
an anomalous dimension, as well as which three-point
functions are nonzero. We emphasize that this does not
imply that the conformal symmetry is preserved by the
string corrections—on the contrary, it will turn out that the
λ−

5
2 corrections actually break it, albeit in a way consistent

with the assignment [Eq. (27)].
Based on the above observations, we propose the

following conditions on the double-trace data at order λ−
n
2:

1: ηðnÞpq ¼ 0 for l10ðpÞ > n − 3: ð31Þ

2:CðnÞ
ðpqÞ;ðp̃q̃Þ ¼ 0 for l10ðp̃Þ > n − 3: ð32Þ

3: ηðnÞi¼1;r¼0 is polynomial in t of degree 8þ 2n: ð33Þ

4: ηðnÞpq only depends onl10ðpÞ as t → ∞: ð34Þ

The constraint (31) says that l10 dictates the nonzero
contributions to η and generalizes the highest-spin
l ¼ n − 3, a ¼ 0 result from Eq. (29). Similarly, the con-
dition (32) says that the columns of CðnÞ corresponding to
operators with too high ten-dimensional spin vanish. In the
n ¼ 3 case, it implies Cð3Þ ¼ 0, since the first equation in
Eq. (22) implies up to rescaling that Cð0Þ is an orthogonal
matrix. Using the fact that Aτ⃗ is independent of λ, its first
correction Cð3Þ obeys

Cð3ÞCð0ÞT þ Cð0ÞCð3ÞT ¼ 0; ð35Þ

and therefore, after the change of basis, it is antisymmetric.
If all but the first column vanishes, then the whole matrix
vanishes. Importantly, for n ¼ 5, the same condition is
weaker than the condition Cð5Þ ¼ 0 examined in Ref. [17],
since now there are generically three nonzero columns.
The condition (33) is an assumption on the anomalous

dimension in the case of no partial degeneracy. The
polynomial should obey the symmetry in Eq. (30) and is
of the same order as in the maximal spin case [Eq. (29)]. The
fourth condition (34) was also observed in Ref. [17], albeit
under the (erroneously) stronger assumption Cð5Þ ¼ 0. It
relates to the restoration of ten-dimensional Lorentz sym-
metry in the flat-space limit (corresponding to t → ∞).

IV. RESULTS

Imposing the conditions (31)–(34) in the case n ¼ 5, we
find a unique consistent solution for the Mellin amplitude

FIG. 1. Spectrum of anomalous dimensions ηð0Þpq of the double-
trace eigenstates Kpq, represented by dots in the ðp; qÞ plane.
Anomalous dimensions which remain degenerate are connected
by vertical lines of constant p.
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and the spectrum. We emphasize that the existence of a
solution consistent with the ansatz for the Mellin ampli-
tude, crossing symmetry, and the spectrum constraints is
highly nontrivial. Actually, various computations in some
channels have revealed that the constraints in Eqs. (31)
and (32) are really a consequence of imposing Eq. (33) and
an ansatz of the form [Eq. (14)] for the Mellin amplitude.
Here we summarize the form of the λ−

5
2 amplitude and the

spectrum resulting from the above assumptions. First, we
find that the suð4Þ channels are constrained by a ≤ 2,
consistent with the ten-dimensional spin obeying l10 ≤ 2 at
this order. The resulting partial wave coefficients are

α̃2;b ¼ β̃2;b ¼ 0;
1

2
γ̃2;b ¼ −α̃1;b ¼ −

1

2
β̃1;b ¼ 1;

γ̃1;b ¼ 2

�
mn
4b1

ðp̃q̃þ b1Þ þ ðΣ2 − 4Þ
�
;

α̃0;b ¼ −
1

8

�
3þmn

b0

�
ðp̃q̃þ b0Þ þ

1

2
ðΣ2 − 4Þ;

β̃0;b ¼ −
nm
4b0

ðp̃q̃þ b0Þ;

γ̃0;b ¼ −
1

128

�
A

b0 − 5
þ B
b0

þ C

�
: ð36Þ

Here, we define p̃ ¼ ð2p −mÞ, q̃ ¼ ð2q − nÞ and
ba ¼ bðbþ 4þ 2aÞ, while for γ̃0;b we have (using
R ¼ p̃q̃þ b0 þ 8)

A ¼ −ðm2 − 1Þðn2 − 1Þðp̃2 − 1Þðq̃2 − 1Þ;
B ¼ mnp̃q̃½mnðp̃q̃− 8Þ − 32ðΣ2 − 4Þ�;
C ¼ 16ðΣ2 − 4Þðð2Σþ 1Þ2 − 2mnÞ− 5m2n2 þ 195

þ 4b0ðΣþ 4Þ2 þ 4Σð9Σ− 8RÞ− 13R2 − 74Rþ 177b0

þ ðm2 þ n2Þð2R− 4ðΣ− 2Þ2 − b0 þ 141Þ: ð37Þ

The anomalous dimensions are nonvanishing only for
l10 ≤ 2, constraining the possible values of ði; r; l; aÞ. To
write the anomalous dimensions ηð5Þi;rjl;a, we define the

polynomial T as follows:

Nt ¼ ðt − 1Þðtþ aÞðtþ aþ bþ 1Þ;

T t;l;a;b ¼
1

166320
ζ5MtMtþlþ1NtN−t−2a−b−l−2: ð38Þ

Note that T t;0;0;b ∝ ηð3Þðt; bÞ. For spin 2, we must have
i ¼ 1, r ¼ 0, a ¼ 0, and we find

ηð5Þ
1;0j2;0 ¼ T t;2;0;bðtþ 1Þðtþ 2Þðtþbþ 2Þðtþbþ 3Þ; ð39Þ

which is just a particular case of Eq. (29).

For spin 1, we have i ¼ 1, r ¼ 0, and a ¼ 0, 1:

ηð5Þ
1;0j1;0 ¼

1

2
T t;1;0;bðtþ 1Þðtþ bþ 2Þð2tð3þ bþ tÞ þ bÞ;

ηð5Þ
1;0j1;1 ¼ T t;1;1;btðtþ 2Þðtþ bþ 3Þðtþ bþ 5Þ: ð40Þ

The spin-zero anomalous dimensions have support on
a ¼ 0, 1, 2. For a ¼ 1, 2, we have only i ¼ 1, r ¼ 0,

ηð5Þ
1;0j0;1 ¼

1

2
T t;0;1;btðtþ bþ 4Þð2t2 þ 2ð4þ bÞtþ bþ 6Þ;

ηð5Þ
1;0j0;2 ¼ T t;0;2;btð1þ tÞð5þ bþ tÞð6þ bþ tÞ: ð41Þ

In all the above cases, we have Cð5Þ ¼ 0. A pictorial
representation of the spectrum for those cases is given in
Fig. 2(a). On the other hand, the case a ¼ 0 allows for
generically three nonzero components, depending on the
values of t and b. Using θ≡ τ þ 2 ¼ 2tþ 2þ b, the i ¼ 1
component reads

ηð5Þ
1;0j0;0 ¼

77

18
T t;0;0;bfb;t;

fb;t ¼
9

4
ðθ2 − b0Þ2 − 35ðθ2 − b0Þ − 34b0 þ 639: ð42Þ

Finally, the ði; rÞ ¼ ð1; 1Þ and (2,0) components read

ηð5Þ
2;0j0;0 ¼

1

9
T t;0;0;b

�
jb;t − 10

ffiffiffiffiffiffiffi
kb;t

p 

;

ηð5Þ
1;1j0;0 ¼

1

9
T t;0;0;b

�
jb;t þ 10

ffiffiffiffiffiffiffi
kb;t

p 

;

jb;t ¼
1

4
fb;t −

15

4
ðθ2 þ b0 þ 21Þ;

kb;t ¼ jb;t þ ðθ2 þ b0Þðθ2 þ b0 − 10Þ: ð43Þ

FIG. 2. Depiction of anomalous dimensions ηð5Þi;rjl;a: the non-
vanishing ones are denoted by filled circles, while all others are
zero. Diagram (a) describes the cases ðl; aÞ ¼ ð2; 0Þ, (1, 1), (1, 0),
(0, 2), (0, 1), where only one anomalous dimension is nonzero.
Diagram (b) shows the case ðl; aÞ ¼ ð0; 0Þ, where the arrow
indicates the lifting of the residual degeneracy for ði; rÞ ¼ ð1; 1Þ
and (2, 0).
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Note that the residual partial degeneracy is lifted by the
square root, as shown in Fig. 2(b). Moreover, in the l ¼
a ¼ 0 case, we have Cð5Þ ≠ 0.

V. DISCUSSION AND OUTLOOK

The results of the previous section provide a
Mellin formula for all correlators at order λ−

5
2, as well

as the corrections to the spectrum. The correlators are
consistent with the results for h22qqi [8,16] given above
and h23q − 1qi derived in Ref. [17]. Note that the
anomalous dimensions found here differ from those
conjectured in Ref. [17], since we have found here that
Cð5Þ ≠ 0 in general.
In the first case, where residual degeneracy is present in

the supergravity spectrum, the λ−
5
2 corrections resolve it.

Due to the residual twofold mixing problem, the appear-
ance of square roots in the anomalous dimension is to be
expected; this did not happen in supergravity due to the ten-
dimensional conformal symmetry. In some cases, the
square roots in Eq. (43) have to disappear:
(1) When t ¼ 2, there is no degeneracy, and only

two states acquire anomalous dimension. In fact,

kb;2 ¼ j2b;2=100, and ηð5Þ
1;1j0;0 becomes a rational

function.
(2) When b ¼ 0, b ¼ 1, there is no degeneracy for any t

[κ ¼ 1 in Eq. (20)]: the square roots disappear again.
(3) In the flat-space limit t → ∞, the square-root terms

are suppressed and degeneracy is restored, respect-
ing the ten-dimensional Lorentz symmetry.

The disappearance of the square roots in these cases is a
strong check of the consistency of the solution. Finally, all
the anomalous dimensions have some shared features:
(1) When expressed in terms of the twist τ (or

θ ¼ 2tþ 2aþ bþ lþ 2) instead of t, they really
depend on the suð4Þ labels only through the Casimir
combination ba ¼ bðbþ 4þ 2aÞ.

(2) They enjoy the supergravity symmetry [Eq. (30)]:
this in turn means that all the quartic polynomials f,
j, k are actually quadratic in θ2. We partly im-
posed this property in Eq. (33), but again in many
examples it was found to follow from the other
assumptions.

As mentioned earlier, the bootstrap constraints in
Eqs. (31)–(34) were motivated by the result [Eq. (29)]
for the highest-spin anomalous dimension and its agreement
with the assignment of the ten-dimensional spin according
to Eq. (27). The former statement is valid at any order λ−

n
2,

with n odd. We thus believe that the methods developed
here will continue to be effective at higher orders in λ−

1
2, the

next case being λ−3. It will be interesting to examine the first
case of triple residual degeneracy at order λ−

7
2 to see if there

is hope for an explicit formula for the spectrum. We hope

that this may allow us to apply a bootstrap approach to the
full classical string amplitude in AdS.
This in turn will provide valuable information on the λ

dependence of the loop amplitudes. In fact, considering
correlators of generic external charges at loop order and
studying their mutual consistency under crossing might
provide a way to further substantiate the validity of our
bootstrap method.
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APPENDIX: SUPERGRAVITY MELLIN
AMPLITUDE AND SUPERCONFORMAL BLOCKS

We give here the Mellin amplitude in supergravity,

Mð0Þ ¼
X
i;j

N ijkσ
iτj

ðs − s̃þ 2kÞðt − t̃þ 2jÞðu − ũþ 2iÞ ; ðA1Þ

with iþ jþ k ¼ p3 þminð0; p13þp24

2
Þ − 2 and the sum

taken such that i, j, k ≥ 0. Here, we have used

s̃ ¼ minðp1 þ p2; p3 þ p4Þ − 2;

t̃ ¼ p2 þ p3 − 2; ũ ¼ p1 þ p3 − 2: ðA2Þ

Finally, the coefficients N ijk are given by [13,17]

N ijk ¼
8p1p2p3p4ði!j!k!Þ−1h

p43þp21þ2i
2

i
!
h
p43−p21þ2j

2

i
!
h
jp13þp24jþ2k

2

i
!
: ðA3Þ

The relevant superblocks for long multiplets were given
in Refs. [26,27]. In our notation, they take the form

Lτ⃗ ¼ PIu
p34
2
−2Y ½aba�ðy; ȳÞB2þτ

2
jlðx; x̄Þ: ðA4Þ

In Eq. (A4), we have

P ¼ N
1
2

P
pig

p1þp2−p43
2

12 g
−p21þp43

2

14 g
p21þp43

2

24 gp3

34 ; ðA5Þ

where we introduce the propagators gij:

gij ¼ y2ij=x
2
ij; x2ij ¼ ðxi − xjÞ2; y2ij ¼ yi · yj: ðA6Þ

The factor I in Eq. (A4) is given by

Iðx; x̄; y; ȳÞ ¼ ðx − yÞðx − ȳÞðx̄ − yÞðx̄ − ȳÞ=ðyȳÞ2 ðA7Þ
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and is present due to superconformal symmetry [26,28]. The suð4Þ blocks for ½a; b; a� ¼ ½μ − ν; 2νþ p43; μ − ν� are given
in terms of Jacobi polynomials Jðα;βÞμ :

Y ½aba�ðy; ȳÞ¼ ðPνðyÞPμþ1ðȳÞ−Pμþ1ðyÞPνðȳÞÞ=ðy− ȳÞ;

PμðyÞ¼
μ!y

ðμþ1þp43Þμ
J
ðp43−p212

;
p21þp43

2 Þ
μ

�
2

y
−1

�
: ðA8Þ

Finally, the conformal blocks are given by

Bsjlðx; x̄Þ ¼ ð−1Þl u
sxlþ1FsþlðxÞFs−1ðx̄Þ − ðx ↔ x̄Þ

x − x̄
;

FsðxÞ ¼ 2F1

�
s −

p12

2
; sþ p34

2
; 2s; x

�
: ðA9Þ
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