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1 Introduction

There has been much recent progress on using the AdS/CFT correspondence to understand
the nature of AdS bulk gravitational dynamics by imposing consistency of the boundary
conformal field theory. A particular example which admits a simple enough structure to
allow for explicit results is the archetypal example of the AdS/CFT correspondence with
boundary theory given by N = 4 super Yang-Mills theory in the large N and strong ’t Hooft
coupling limits, and the bulk theory given by IIB superstring theory on AdS5 × S5.

The natural objects to consider in the first instance are the four-point functions of half-
BPS operators. In the supergravity regime, the large N expansion corresponds to the loop
expansion in the bulk theory. The leading order is given by disconnected contributions,
1/N2 corrections correspond to tree-level bulk interactions and 1/N4 corrections to one-
loop bulk contributions etc. At each order in 1/N2 the amplitude is a function of the
’t Hooft coupling λ = g2N and we may further expand the loop amplitudes for large λ.
The leading terms may be identified with supergravity contributions and subleading terms
with string corrections.

This subject has been well studied since the very early days of the AdS/CFT corre-
spondence. For example some explicit tree-level results were obtained from considering
bulk Witten diagrams [1–3] or related methods [4–6]. The AdS/CFT correspondence also
sparked much activity in investigating the structure of the N = 4 superconformal the-
ory [7–11]. Among the more recent results on the subject is a general Mellin space formula
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for tree-level supergravity correlators of arbitrary external charges [12, 13]. This was later
confirmed by explicit computations in a large number of cases [14, 15].

From tree-level data, one can analyse the spectrum of exchanged operators, which
at leading order is a degenerate set of double-trace operators. After solving the mix-
ing problem of supergravity anomalous dimensions [16, 17], a surprisingly simple pattern
emerges, revealing a partial residual degeneracy. This residual degeneracy in the supergrav-
ity spectrum is explained by the recent discovery of a hidden ten-dimensional conformal
symmetry, which enables one to generate tree-level correlators of arbitrary charge half-BPS
single-particle operators from a single generating functional [18]. A similar structure seems
also to be present for holographic tree-level correlators in AdS3 [19].

Many new results concern further α′ ∼ λ−
1
2 corrections to the supergravity results.

Using various methods such as comparison to the flat-space limit [20, 21] or supersymmetric
localisation [22], the family of 〈O2O2OpOp〉 correlators has been addressed up to order λ− 5

2 .
Interestingly, some of the ten-dimensional structure observed in [18] seems to carry over
to string corrected tree-level correlators. In particular, the flat space limit determines
correlators with arbitrary external charges at order λ− 3

2 , and simple patterns arise in the
string corrected anomalous dimensions [23].

In addition to the recent progress and emergence of beautiful structures at tree level,
there have also been advances in understanding contributions to one-loop amplitudes in
AdS (e.g. in [24–28]). Recently a number of papers have addressed the structure of one-loop
IIB supergravity amplitudes in AdS5 × S5 [29–33]. Progress has been made on two fronts,
with e.g. [30–32] focussing on the structures in position space, while e.g. [33] has explored
at one-loop order the Mellin representation that was so fruitful at tree-level.

Further progress was made in Mellin space including string corrections for the simplest
example of half-BPS correlators, the 〈O2O2O2O2〉 correlator [34].1 However, an explicit
position space representation for the string corrected one-loop amplitude is still missing,
which is the purpose of this paper. In order to find such a representation we return to the
position space bootstrap and conjecture the form of the position space amplitude. To this
end we introduce a basis of polylogarithmic functions, many of which are familiar from
the position space representations of the one-loop supergravity amplitudes. In some sense
the string corrections to the one loop amplitudes are even simpler than the supergravity
contributions, as the transcendental weight required is actually lower. The supergravity am-
plitudes require functions up to weight four while the string corrections (essentially due to
the finite spin support of the spectrum) require only weights up to three. However, we find
that we necessarily need a new ingredient, a weight three function f (3) with a more general
set of singularities (or ‘letters’). While we derive explicit results only for the first few orders
in the 1/λ expansion, the form of our one-loop bootstrap ansatz is in fact valid to all orders.

We are also able to make direct contact with the Mellin space results of [34], writing
the spacetime expressions in a form in which they can be immediately expanded about the
limit of the light-like square where the cross-ratios u and v are both small. In this way we

1A first generalisation to the one-loop supergravity Mellin amplitude for the 〈O2O2OpOp〉 family of
correlators was made in [33], complementing the general position space approach of [32].
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confirm our position space results are consistent with the order (α′)3 results of [34]. We
then provide new results in spacetime and in Mellin space for higher orders.

1.1 The 〈O2O2O2O2〉 correlator

We are interested in the four-point correlator of the stress-tensor superprimary, which is a
superconformal half-BPS operator of conformal dimension two, given by

O2 = yiyj Tr
(
ΦiΦj

)
, (1.1)

where yi is an auxiliary so(6) vector obeying the null condition y · y = 0, such that O2
is in the traceless symmetric representation [0, 2, 0] of su(4). This operator is dual to
the graviton supermultiplet, whereas its higher charge versions Op are dual to a tower of
Kaluza-Klein modes which arise from the ten-dimensional graviton upon compactification
on the S5 factor of the AdS5×S5 background.

We consider the four-point function 〈O2O2O2O2〉, which is constrained by supercon-
formal symmetry to take the form [8, 10]

〈O2O2O2O2〉 = 〈O2O2O2O2〉free + g2
12g

2
34 I H(u, v), (1.2)

where the propagator factors gij = y2
ij/x

2
ij (with y2

ij = yi · yj) carry the conformal weight
and the scaling weights yi of the correlator. For convenience, we divide the correlator by a
factor of (N2−1)2 such that its free part is then given by the following crossing symmetric
combination of six propagator structures:

〈O2O2O2O2〉free = 4
(
g2

12g
2
34 + g2

13g
2
24 + g2

14g
2
23
)

+ 16a
(
g12g13g24g34 + g12g14g23g34 + g13g14g23g24

)
,

(1.3)

where we introduced the factor a = 1/(N2 − 1). It is helpful to define the conformal and
su(4) R-symmetry cross-ratios by

u = xx̄ = x2
12x

2
34

x2
13x

2
24
, v = (1− x)(1− x̄) = x2

14x
2
23

x2
13x

2
24
,

1
σ

= yȳ = y2
12y

2
34

y2
13y

2
24
,

τ

σ
= (1− y)(1− ȳ) = y2

14y
2
23

y2
13y

2
24
,

(1.4)

which can be readily used to rewrite the free theory correlator as

〈O2O2O2O2〉free = 4g2
12g

2
34

([
1 + u2σ2 + u2τ2

v2

]
+ 4a

[
uσ + uτ

v
+ u2στ

v

])
. (1.5)

We call the remaining contribution to equation (1.2) the interacting part. Its dependence
on the su(4) variables y and ȳ is completely fixed by the superconformal Ward identities,
taking the factorised form shown above with the factor I given by

I = (x− y)(x− ȳ)(x̄− y)(x̄− ȳ)
(yȳ)2 . (1.6)

– 3 –
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The function H is then independent of the internal variables, which is a feature of the
〈O2O2O2O2〉 correlator.2 Furthermore, it is the only piece of the correlator which depends
on the gauge coupling gYM, thus containing all the non-trivial dynamics of the theory.
In order to respect the full crossing symmetry of the correlator, H obeys the crossing
transformations

H(u, v) = 1
v2H(u/v, 1/v) = u2

v2H(v, u). (1.7)

This fact will be central to our bootstrap approach discussed later, as it places strong con-
straints on the functional form of H. We will study this correlator in the supergravity limit,
where one first takes the large N limit with the ’t Hooft coupling λ = g2

YMN fixed, and then
expands each term around large λ. In this limit, the double expansion of H takes the form3

H = a
(
H(1,0) + λ−

3
2H(1,3) + λ−

5
2H(1,5) + . . .

)
+ a2

(
H(2,0) + λ−

3
2H(2,3) + λ−

5
2H(2,5) + . . .

)
+O(a3),

(1.8)

where we use a = 1/(N2 − 1) as our large N expansion parameter. The term of order a0

in equation (1.5) is the contribution from disconnected free field theory. At first order in
a, it receives tree-level corrections from supergravity, with H(1,0) denoting the well known
supergravity result [4, 9], followed by an infinite tower of 1/λ suppressed string corrections
H(1,k). The structure of this 1/λ expansion is related to the low-energy expansion of the
tree-level type IIB string amplitude in ten dimensions, the so called Virasoro-Shapiro am-
plitude, via the flat-space limit of the Mellin amplitudes corresponding to H(1,k) [37, 38]. In
other words, the 1/λ expansion arises from contact interaction vertices in the string theory
effective action, where the order λ− 3

2 and λ− 5
2 terms descend from dimensional reduction

of the R4 and ∂4R4 supervertices, respectively. For higher corrections with k ≥ 5, λ− k
2

corresponds to the ∂2k−6R4 vertex, such that H(1,k) is non-zero for k ∈ {0, 3}∪{5, 6, 7, . . .}.
The flat space limit was used in [20] to determine the first two string corrections, i.e. for
k = 3, 5. These results were recently generalised to correlators of the form 〈O2O2OpOp〉
by using the bulk-point limit [21] and supersymmetric localisation [22], and at order λ− 3

2

to correlators with arbitrary external charges 〈OpOqOrOs〉 [23].
Here we will be interested in the order a2 terms of the expansion (1.8), which correspond

to one-loop amplitudes in AdS5. The one-loop supergravity amplitude H(2,0) was derived
in [30], while its Mellin space representation was obtained recently in [34]. Moreover, the
structure of string corrections at one-loop was addressed in that work in Mellin space, as
we will briefly review in section 3. The purpose of this paper is to construct the explicit
position space expressions H(2,k), which we discuss in detail in section 2.

2More generally, it is true for next-to-next-to-extremal correlators.
3Note that at order a2 we have kept only the genuine one-loop contributions which are induced by the

presence of the tree-level terms H(1,k). In particular, we have omitted the super-leading term λ
1
2H(2,−1),

corresponding to a quadratic divergence in the one-loop supergravity amplitude which is regulated by an R4

one-loop counterterm in string-theory. Furthermore, there are the additional terms λ 1
2H(2,1) and λ−1H(2,2),

which precede the genuine one-loop string correction λ− 3
2H(2,3). These two terms correspond to the genus-

one contributions to the modular completions of the tree-level terms λ− 5
2H(1,5) and λ−3H(1,6), respectively.

See references [35, 36] for a more detailed discussion of these contributions.
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Lastly, the unprotected (long) part of the 〈O2O2O2O2〉 correlator, which receives con-
tributions from both the free theory and the interacting part, admits a decomposition into
superconformal blocks. In this case, the block expansion reads

〈O2O2O2O2〉long = g2
12g

2
34 I

∑
t,`

At,`Gt,`(x, x̄), (1.9)

where the sum runs over all long superconformal primaries with half-twist t ≡ (∆ − `)/2
and spin ` which are present in the su(4) singlet representation in the OPE of O2 × O2.
The At,` are squared three-point functions, Gt,` is related to the four-dimensional conformal
block and is given by [39, 40]

Gt,`(x, x̄) = (−1)`(xx̄)t x
`+1Ft+`+2(x)Ft+1(x̄)− x̄`+1Ft+`+2(x̄)Ft+1(x)

x− x̄
, (1.10)

with Fρ(x) = 2F1 (ρ, ρ, 2ρ;x) being the standard hypergeometric function.
In the double expansion (1.8) around the supergravity limit, the leading contribution

to the spectrum of exchanged operators is given by unprotected double-trace operators
of classical dimension ∆(0) = 2t + ` and even spin `. Generically, there are many such
operators with the same quantum numbers, leading to a mixing problem. In the singlet
channel and for a given half-twist t, there are t− 1 such operators of the form

O2�
t−2∂`O2, O3�

t−3∂`O3, . . . , Ot�0∂`Ot, (1.11)

which we label by i = 1, . . . , t− 1. Their dimensions admit the expansion

∆t,` = ∆(0) + 2a
(
η

(1,0)
i + λ−

3
2 η

(1,3)
i + λ−

5
2 η

(1,5)
i + . . .

)
+ 2a2

(
η

(2,0)
i + λ−

3
2 η

(2,3)
i + λ−

5
2 η

(2,5)
i + . . .

)
+O(a3).

(1.12)

The above mixing problem has been addressed at leading order, resulting in explicit for-
mulae for their leading order three-point functions A(0)

t,`,i and a compact formula for their
supergravity anomalous dimensions η(1,0)

i [16, 17]. Further 1/λ corrections to the spec-
trum of double-trace operators have been addressed in [23], revealing surprisingly simple
patterns in their string corrected anomalous dimensions η(1,3)

i and η(1,5)
i .

2 Bootstrap method in position space

We begin by reviewing how to obtain the so called double discontinuity (i.e. the log2 u-piece
of the correlator) from tree-level data only. The double discontinuity, in particular in the
context of holographic correlators, has recently received a lot of attention. Namely, it is the
central object from which one-loop OPE data can be extracted without first constructing
the full one-loop correlator [41]. As we discuss in section 2.2, this then allows us to
pose a well-defined bootstrap problem, whose solution completely determines the one-loop
correlators H(2,k) from a given double discontinuity H(2,k)|log2 u, up to a finite number of
well understood ambiguities. Notably, a new ingredient enters our ansatz of transcendental
functions: it turns out that a certain function of transcendental weight three with a new
type of singularity has to be included. We describe this new ingredient in section 2.3.

– 5 –
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2.1 String corrected double discontinuities

Let us start by discussing the specific form of the double discontinuities which arise in the
1/λ expansion of the one-loop correlator at order a2. Crucially, the double discontinuity is
fully determined by tree-level data through the conformal block decomposition (1.9). More
explicitly, we can compute the log2 u part of H(2,k) from spectral data at order a:4

H(2,k)(x, x̄)
∣∣∣
log2(u)

=
∑

m+n=k
Dm|n(x, x̄), (2.1)

where we have introduced the notation

Dm|n(x, x̄) = 1
2
∑
t,`

t−1∑
i=1

A
(0)
t,`,i η

(1,m)
i η

(1,n)
i Gt+2,`(x, x̄), (2.2)

with η(1,m)
i being the tree-level anomalous dimensions at order λ−m

2 , and i labelling the set
of exchanged double-trace operators (1.11). Recalling equation (1.8) and the discussion be-
low, the general structure of the 1/λ expansion at order a demands that the integers k,m, n
in the above equation are drawn from the set {0, 3} ∪ {5, 6, 7, 8 . . .}, with the constraint
m + n = k. Note that when k is large enough to accommodate for different partitions
into (m,n), we get more than one contribution to the double discontinuity at that order
in 1/λ.5 See also table 1 for the first few one-loop terms in the 1/λ expansion.

The supergravity double discontinuity D0|0 was explicitly computed in [30], where it
was used to reconstruct the full one-loop function H(2,0).6 In contrast to the supergravity
case however, it turns out that the string corrected double discontinuities (Dm|n with
m,n 6= 0) resum into expressions of up to transcendental weight one only, compared to up
to weight two terms in supergravity. The reason for this is the spin truncation in the string
corrected spectrum. To be explicit, these double discontinuities are of the form

Dm|n(x, x̄) = u2
(
p
m|n
1 (x, x̄)

(x− x̄)q−1 + p
m|n
2 (x, x̄) (log(1− x)− log(1− x̄))

(x− x̄)q

)
, (2.3)

where the odd denominator power is given by q = 2(m+ n) + 15 and p1, p2 are symmetric
polynomials in (x, x̄) of the same degree as their denominator. This simple structure for
the double discontinuities was already obtained in [21],7 and we find complete agreement
with their results by performing the sum (2.2) for different cases.

Note that the double discontinuities have a symmetry under the 1↔ 2 crossing trans-
formation, which acts on the cross-ratios as x→ x′ ≡ x/(x− 1), and similarly for x̄. This

4Note that for m 6= n we need to include the two identical contributions Dm|n and Dn|m.
5The first instance of this happens already for k = 6 at order λ−3, for which there are the two distinct

possibilities (m,n) = (0, 6) or (3, 3). These contributions correspond to the insertions of S|∂6R4 and R4|R4

vertices, respectively.
6The supergravity double discontinuity can also be obtained by “squaring” tree-level correlators of the

form 〈O2O2OpOp〉 [29, 42], without solving the mixing-problem explicitly. Similarly, string corrected double
discontinuities at a given order in 1/λ can be obtained from the 〈O2O2OpOp〉 family of correlators up to
that order, without explicit reference to the corresponding string anomalous dimensions [21].

7In this reference the authors also propose a basis of special functions S(q)
` , into which all string double

discontinuities Dm|n can be decomposed.
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symmetry is inherited from the full crossing symmetry of the 〈O2O2O2O2〉 correlator as it
survives the s-channel OPE decomposition (1.9). As a formula, we have

Dm|n(x′, x̄′) = v2Dm|n(x, x̄). (2.4)

In the following, we provide an algorithm on how to uplift the double discontinuity
Dm|n to the corresponding fully crossing symmetric function H(2,k)(u, v).

2.2 The bootstrap problem

In order to simplify the crossing transformations (1.7) of the interacting part H(u, v), we
introduce an auxiliary function F by

F(u, v) = (x− x̄)4

u2 H(u, v), (2.5)

such that F(u, v) transforms without picking up any prefactors under crossing:

F(u, v) = F(u/v, 1/v) = F(v, u). (2.6)

Evidently, F inherits an analogous double expansion as H in (1.8). Guided by the explicit
form of the double discontinuities as given in (2.3), we propose the following structure for
the functions F (2,k) (k > 0):

F (2,k)(u, v) = A1(x, x̄)f (3)(x, x̄) +
(
A2(x, x̄) log u−A2(1− x, 1− x̄) log v

)
φ(1) (x, x̄) (2.7)

+A3(x, x̄) log2 u+A3

(
x− 1
x

,
x̄− 1
x̄

)
log2 u

v
+A3

( 1
1− x,

1
1− x̄

)
log2 v

+A4(x, x̄)φ(1) (x, x̄) + (A5(x, x̄) log u+A5(1− x, 1− x̄) log v) +A6(x, x̄).

The six coefficient functions Ai(x, x̄) are constrained by crossing symmetry and the explicit
form of the double discontinuities Dm|n, see equation (2.3), to be of the general form

Ai(x, x̄) = 1
(x− x̄)d

d∑
r=0

d−r∑
s=0

air,s u
rvs, (2.8)

with a finite number of free parameters air,s and fixed denominator powers d = 2k + 11
(d = 2k+ 10) in case Ai is antisymmetric (symmetric) under x↔ x̄, see below. Recall the
relation k = m+ n, where m and n label the double discontinuity Dm|n at order λ− k

2 .8

8Note that the difference between the denominator powers d here and q in (2.3) is due to the explicit
(x− x̄)4 factor in the definition of F , according to equation (2.5).
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In order to ensure the exchange symmetry x↔ x̄ and the full crossing symmetry (2.6)
of F (2,k)(u, v), the coefficient functions Ai obey the following relations:

A1(x, x̄) = −A1(x̄, x), A1(x, x̄) = −A1

(1
x
,

1
x̄

)
= −A1(1− x, 1− x̄),

A2(x, x̄) = −A2(x̄, x), A2(x, x̄) = −A2

(
x

x− 1 ,
x̄

x̄− 1

)
,

A3(x, x̄) = A3(x̄, x), A3(x, x̄) = A3

(1
x
,

1
x̄

)
,

A4(x, x̄) = −A4(x̄, x), A4(x, x̄) = −A4

(1
x
,

1
x̄

)
= −A4(1− x, 1− x̄),

A5(x, x̄) = A5(x̄, x), A5(x, x̄) = A5

(
x

x− 1 ,
x̄

x̄− 1

)
,

A6(x, x̄) = A6(x̄, x), A6(x, x̄) = A6

(1
x
,

1
x̄

)
= A6(1− x, 1− x̄),

(2.9)

and each of the coefficient functions A2 and A5 obey the additional constraint:

A2(x, x̄) +A2

( 1
1− x,

1
1− x̄

)
−A2(1− x, 1− x̄) = 0,

A5(x, x̄) +A5

( 1
1− x,

1
1− x̄

)
+A5(1− x, 1− x̄) = 0.

(2.10)

The main new feature of the ansatz presented in (2.7) is the presence of f (3)(x, x̄),
which is an antisymmetric single-valued function of transcendental weight three. As this
function is new in the context of AdS amplitudes, involving a new type of singularity
compared to the previously known supergravity case, we will describe it in more detail in
the next section (see also appendix A).

On the other hand, the function φ(1)(x, x̄) is the well-known one-loop massless box-
integral in four-dimensions.9 It is an antisymmetric weight-two function given by

φ(1)(x, x̄) = 2
(
Li2(x)− Li2(x̄)

)
+ log(u)

(
log(1− x)− log(1− x̄)

)
, (2.11)

and obeys the symmetries

φ(1)(x, x̄) = −φ(1)(x̄, x) = −φ(1)(1− x, 1− x̄) = −φ(1)(1/x, 1/x̄). (2.12)

Note that a very similar type of ansatz in terms of ladder functions was used before to
bootstrap one-loop supergravity contributions to various correlators, see [30–32]. Let us
highlight the two main differences of our ansatz (2.7) to the one-loop supergravity case:

• The ansatz for F (2,k)(u, v) presented above has maximal transcendental weight three,
compared to up to weight-four contributions in supergravity. This difference is ul-
timately a consequence of the spin truncation of the string corrected spectrum. A
truncation to finite spin produces resummed double discontinuities of the form de-
picted in (2.3), which has terms of maximal weight one. In contrast, the supergravity
spectrum has infinite spin support, resulting in up to weight-two contributions in the
corresponding double discontinuity.

9φ(1)(x, x̄) is the first member of the more general series of ladder functions φ(l)(x, x̄) [43].
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• As mentioned before, the presence of the function f (3)(x, x̄) is a novelty in the context
of AdS amplitudes. However, one can already see from the structure of the double
discontinuities Dm|n that a new ingredient is required: as we will discuss shortly, an
ansatz with ladder functions only would enforce a structure on the pm|n2 polynomial
of Dm|n which is not observed from direct resummations. We are therefore led to
conclude that we need a new contribution in our ansatz, which we denote by f (3)(x, x̄)
and whose full characterisation we postpone to section 2.3.

This completes the description of our ansatz for the one-loop string amplitudes F (2,k).
Next, we continue by describing the conditions we impose in order to constrain the free
parameters air,s in the ansatz (2.7) described above.

Constraining the free parameters. In analogy to the position space bootstrap method
for one-loop supergravity correlators [30–32], there are two steps in constraining the free
parameters air,s in our ansatz:

1. Matching the double discontinuity.
The contribution of our ansatz (2.7) to the log2 u term is given by

F (2,k)(u, v)|log2 u =
(
−1

2A1(x, x̄) +A2(x, x̄)
) (

log(1− x)− log(1− x̄)
)

+A3(x, x̄) +A3

(
x− 1
x

,
x̄− 1
x̄

)
.

(2.13)

Matching this against the corresponding double discontinuity Dm|n fully fixes the
coefficient functions Ai(x, x̄) for i = 1, 2, 3.
It is a fact that the polynomials pm|n2 in the resummed double discontinuities do not
obey the first line of (2.10), and hence we require a non-zero contribution from the
new weight-three function f (3)(x, x̄) with coefficient A1(x, x̄).

2. Pole cancellation.
The ansatz for the function H(2,k) = u2

(x−x̄)4F (2,k) contains explicit denominator fac-
tors, potentially giving rise to up to q poles at x = x̄. Demanding that the full function
H(2,k) is free from such unphysical poles is what we mean by pole cancellation. Con-
cretely, by imposing as many zeroes between the functions in the numerator of F (2,k)

as there are poles we find further non-trivial constraints amongst the remaining free
parameters in A4(x, x̄), A5(x, x̄) and A6(x, x̄).

Carrying out the above two steps yields a definite answer for H(2,k), and we are left with
only a small number of remaining free parameters. We call these functions which pass all
of the above constraints, and whose coefficients we therefore are not able to determine,
ambiguities.

By construction, the ambiguities do not contribute to the double discontinuity, are
fully crossing symmetric by themselves and free of unphysical poles.10 They are given by

10In the language of [32], we may call the ambiguities to be “tree-like” in the sense that they are of the
form of D-functions.
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1/λ order corresponding supervertices 1
(x−x̄)q Namb `max

1 S|S 15 1 0
λ−

3
2 S|R4 21 4 4

λ−
5
2 S|∂4R4 25 7 6

λ−3 S|∂6R4, R4|R4 27 8 6
λ−

7
2 S|∂8R4 29 10 8

λ−4 S|∂10R4, R4|∂4R4 31 12 8
λ−

9
2 S|∂12R4, R4|∂6R4 33 14 10

λ−5 S|∂14R4, R4|∂8R4, ∂4R4|∂4R4 35 16 10

Table 1. List of one-loop terms in the 1/λ expansion and their corresponding vertices in the effective
string theory action, where S stands for an insertion of the supergravity anomalous dimension. We
give the denominator powers q = 2k+15 of the spacetime functionsH(2,k), the total number of ambi-
guitiesNamb as well as their maximal spin support `max. Note that in general there can be more than
one term contributing to the same order in 1/λ, the first occurrence of this happening at order λ−3.

(linear combinations of) D-functions with their (x− x̄) denominator power bounded by the
corresponding denominator in the ansatz for A4(x, x̄) in (2.8): d = 2k + 11. We find that
the ambiguities have finite spin support, and hence they are most conveniently described in
Mellin space because their Mellin amplitudes are only polynomial. We therefore postpone
the general discussion of ambiguities to section 3.2, where we give a full classification
in terms of polynomial Mellin amplitudes. For now, we simply list the total number of
ambiguities and their maximal spin contributions `max for the first couple of orders in the
1/λ expansion in table 1.

Results. Following the bootstrap construction outlined above, we explicitly computed
the full one-loop amplitudes H(2,3) and H(2,5), as well as the contributions to H(2,6), H(2,8)

and H(2,10) which descend from the double discontinuities D3|3, D3|5 and D5|5, respectively.
In all cases the results are in agreement with the general patterns described in table 1. For
the amplitudes H(2,k) with k = 3, 5, 6, we attach the corresponding lists of polynomials
Ai(x, x̄) in an ancillary file to the arXiv submission.

From these position space results, one can then extract further subleading spectral
data. However, as a consequence of the degeneracy in the double-trace spectrum discussed
around equation (1.11), this is possible only for the lowest twist contribution, where there
is a single operator. We computed the order a2λ−

3
2 and a2λ−

5
2 one-loop anomalous dimen-

sions η(2,3) and η(2,5) at twist four, finding agreement with the results of [22].

2.3 A new ingredient: f (3)

In finding a suitable crossing symmetric function which matches the double discontinuity,
we encountered the need to include functions beyond the ladder class encountered at one
loop in the supergravity results described in [30–32]. In fact the new function is both
simpler, in that it is of transcendental weight three only, and more complicated, as it
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involves new singularities (‘letters’) of the form x − x̄ not found in the ladders. It is also
single-valued in the same sense as the ladder functions e.g. φ(1)(x, x̄) given in eq. (2.11).

We may characterise f (3) by its total derivative,

df (3)(x, x̄) =
[
−2φ(1)(x, x̄) + 1

2 log2 v − log u log v
]
d log x

+
[
−2φ(1)(x, x̄)− 1

2 log2 v + log u log v
]
d log x̄

+
[
−2φ(1)(x, x̄)− 1

2 log2 u+ log u log v
]
d log(1− x)

+
[
−2φ(1)(x, x̄) + 1

2 log2 u− log u log v
]
d log(1− x̄)

+
[
6φ(1)(x, x̄)

]
d log(x− x̄) , (2.14)

together with its symmetry property,

f (3)(x, x̄) = −f (3)(x̄, x) (2.15)

which implies f (3)(x, x) = 0. It also obeys antisymmetry under the crossing transformations

f (3)(1− x, 1− x̄) = −f (3)(x, x̄) = f (3)(1/x, 1/x̄) . (2.16)

Up to adding a linear combination of single-valued HPLs it can be identified with the
weight three function called Q3 found in [44]. Functions with the same type of singularities
are also needed in perturbation theory to describe the correlators of half-BPS operators at
three loops [45, 46].

We may make the log u discontinuities of f (3)(x, x̄) more transparent by writing

f (3)(x, x̄) = log2 uf̃ (1)(x, x̄) + log uf̃ (2)(x, x̄) + f̃ (3)(x, x̄) , (2.17)

where the f̃ (k) have no log u discontinuities. The double log u discontinuity is given by

f̃ (1)(x, x̄) = −1
2
[
log(1− x)− log(1− x̄)

]
, (2.18)

as already indicated in equation (2.13). The single log u discontinuity can also be simply
integrated to obtain

f̃ (2)(x, x̄) = +6 Li2
(
x̄− x
1− x

)
+ 2

(
Li2(x)− Li2(x̄)

)
+ 5

2 log2(1− x)− 3 log(1− x) log(1− x̄) + 1
2 log2(1− x̄) . (2.19)

The log0 u term can be integrated in terms of hyperlogarithms (or Goncharov polylogs).
We discuss this more in appendix A where we also discuss various techniques for writing
the function in a form suitable for comparison to Mellin representations of the one-loop
string amplitude, which we address in the next section.
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3 Comparison with Mellin space

The Mellin space formalism [37, 47–49] has turned out to be an efficient framework for
constructing holographic correlators, as it makes manifest the analytic structure of the
correlator. Considering the bootstrap problem for correlators at strong coupling in Mellin
space has led to a wealth of new results at tree-level and more recently also at one-loop, both
of which we briefly review in this section. In particular, we verify that our position space
results for one-loop string amplitudes are in agreement with the Mellin space structures
found in [34], and we furthermore provide a number of new explicit Mellin amplitudes at
higher orders in 1/λ.

The Mellin representation of the interacting part is defined by the integral transform

H(u, v) =
∫ i∞

−i∞

ds

2
dt

2 u
s
2 v

t
2−2 M(s, t) Γ2

(4− s
2

)
Γ2
(4− t

2

)
Γ2
(4− ũ

2

)
, (3.1)

where the Mellin variables (s, t, ũ) satisfy the constraint equation s+ t+ ũ = 4. In order to
obey the correct crossing transformations, the Mellin amplitudeM(s, t) has the symmetries

M(s, t) =M(s, ũ) =M(t, s). (3.2)

Furthermore, the Mellin amplitude inherits an analogous strong coupling expansion from
H(u, v), see equation (1.8). The only subtlety is that the long part of the free theory contri-
bution has vanishing Mellin amplitude; it is instead recovered by the correct choice of inte-
gration contour, see [13] for further details. HenceM(s, t) admits an expansion of the form

M = a
(
M(1,0) + λ−

3
2M(1,3) + λ−

5
2M(1,5) + . . .

)
+ a2

(
M(2,0) + λ−

3
2M(2,3) + λ−

5
2M(2,5) + . . .

)
+O(a3),

(3.3)

where at order a2 we again keep only the genuine one-loop terms.11

We start by first reviewing the tree-level terms M(1,k), which will then be useful in
section 3.2 for the discussion of the ambiguities our position space bootstrap method is
not able to fix. Lastly, we describe the general structure of the one-loop Mellin amplitudes
M(2,k), providing a new result forM(2,5) and new partial results at orders k = 8, 10.

3.1 Review of tree-level Mellin amplitudes

Tree-level Witten diagrams take a particularly simple form when represented in Mellin
space. In the case of tree-level supergravity, they are rational functions of the Mellin vari-
ables with a prescribed set of poles, which correspond to exchanged single-trace operators
in a particular Witten diagram. Beyond supergravity, further string corrections are even
simpler in Mellin space, as their Mellin amplitudes are only polynomial.

In our conventions, the Mellin amplitude of the well known tree-level supergravity
result H(1,0) is given by [20]

M(1,0) = 128
(s− 2)(t− 2)(ũ− 2) , (3.4)

11See footnote 3.
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which was then generalised to a compact formula for all tree-level four-point functions with
arbitrary external charges [12, 13].

String corrections to the supergravity result descend from higher derivative interaction
terms in the AdS5×S5 effective action, which are of the schematic form ∂2nR4. They give
rise to contact Witten diagrams with spin truncated conformal block decompositions, and
hence have polynomial Mellin amplitudes. A basis of polynomial Mellin amplitudes obeying
the crossing equation (3.2) is given by the monomials σp2σ

q
3, where σn ≡ sn + tn + ũn [50].

The conformal block decomposition of such a monomial has finite spin support, with only
even spins ` ≤ `max = 2(p + q) contributing. At a given order λ− k

2 in the 1/λ expansion,
the Mellin amplitudeM(1,k) is of the form

σp2σ
q
3 + subleading terms, (3.5)

with p, q such that k = 3 + 2p + 3q. The first two string corrections (for k = 3, 5) have
been addressed before using various methods [20–22],12 giving

M(1,3) = 1920ζ3, M(1,5) = (10080σ2 − 30240) ζ5, (3.6)

in our conventions.

3.2 One-loop ambiguities

Before discussing the structure of one-loop Mellin amplitudes, let us describe the ambigu-
ities which are left unfixed by our position space bootstrap method. They are exactly of
the form of tree-level string amplitudes which can be written in the basis of monomials
σp2σ

q
3 as discussed above, and hence we address them here.
At one-loop order, the structure of the 1/λ expansion follows from the low-energy

expansion of the ten-dimensional genus-one IIB superstring amplitude [35], leading to a
different counting of the powers in 1/λ: along with an additional factor of a = 1/(N2− 1),
it is simply shifted by a power of λ2 compared to the tree-level expansion.13 In other words,
at one-loop order a2λ−

k
2 , one finds contributions of monomials σp2σ

q
3 with 2p+ 3q ≤ k+ 1,

in comparison to 2p+ 3q ≤ k − 3 at tree-level.
In the supergravity case (k = 0), there is a single one-loop ambiguity with constant

Mellin amplitude, whose coefficient α was left unfixed in the result for H(2,0) in [30].
Recently, its value was determined by using supersymmetric localisation to be [36]

α = 60. (3.7)

Finally, we fully characterise the one-loop ambiguities which arise in the string cor-
rected correlators H(2,k). According to the counting mentioned above, these ambiguities are

12In [21, 22], the authors consider more general correlators of the form 〈O2O2OpOp〉 at the first two
orders λ− 3

2 and λ− 5
2 . At order λ− 3

2 , a generalisation to the correlator with arbitrary external charges was
achieved in [23].

13In fact, this results in a constant Mellin amplitude contributing to a super-leading power at order λ 1
2 ,

whose coefficient was fixed in [36].
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enumerated by pairs of integers (p, q) obeying the constraint 2p+3q ≤ k+1. By combining
the above arguments, we can parametrise the set of ambiguities at any order λ− k

2 by∑
p,q≥0

′
α(k)
p,q σ

p
2σ

q
3, (3.8)

where the primed sum is over p and q such that 2p + 3q ≤ k + 1. The total number of
ambiguities Namb(k) can be computed by expanding the generating function

1
y(1− y)(1− y2)(1− y3) −

1
y

=
∞∑
k=0

Namb(k)yk. (3.9)

For the first couple of orders in the 1/λ expansion, we give the total number of ambiguities
and their maximal spin support `max in table 1.

3.3 Mellin amplitudes at one-loop

Let us now turn our attention to the structure of one-loop Mellin amplitudes for the
〈O2O2O2O2〉 correlator, which has only recently been addressed for the first time in [34].
The Mellin space approach is complementary to the bootstrap method in position space,
as employed in [30–32] for one-loop supergravity, and as outlined in the above section 2 for
one-loop string corrections. We will give a short review of the known Mellin space results,
both for one-loop supergravity and one-loop string corrections, and show agreement with
our results in position space.

One-loop supergravity. The one-loop supergravity Mellin amplitude is given in terms
of the double infinite sum

M(2,0) =
∞∑

m,n=2

cmn
(s− 2m)(t− 2n) + cmn

(t− 2m)(ũ− 2n) + cmn
(ũ− 2m)(s− 2n) , (3.10)

with constant coefficients cmn = cnm given in equations (30) and (31) of [34]. Note that the
simultaneous double poles in s and t in the above expression are necessary to reproduce the
log2(u) log2(v) part of the position space double discontinuitiy D(0|0). Quite surprisingly,
it turns out that any additional single poles are absent from M(2,0), and therefore the
entire Mellin amplitude can be fixed by matching against the double discontinuity D(0|0).
Recently, a generalisation of this result to the 〈O2O2OpOp〉 family of correlators was given
in [33], where an analogous absence of single poles in the Mellin amplitude was observed.

One-loop string corrections. The general structure of all one-loop string Mellin am-
plitudesM(2,k) was proposed to be of the form

M(2,k)(s, t) =
∑

m+n=k
fm|n(s, t) ψ̃0

(
2− s

2

)
+ fm|n(t, s) ψ̃0

(
2− t

2

)
+ fm|n(ũ, t) ψ̃0

(
2− ũ2

)
,

(3.11)
with the constraint

fm|n(s, t) = fm|n(s, ũ), (3.12)
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to ensure crossing symmetry of the full Mellin amplitudeM(2,k)(s, t). Instead of using the
usual digamma function ψ0(w) as in [34], we define a shifted digamma function ψ̃0(w) ≡
ψ0(w)+γE , such that the unphysical Euler-Mascheroni constant γE does not appear in the
position space representation after performing the Mellin integration of M(2,k)(s, t). Note
that for integer values n ∈ N, ψ̃0(n) is then simply related to the harmonic numbers by
ψ̃0(n) = Hn−1.

In the above formula (3.11), fm|n(s, t) is a polynomial in s and t. The order in s of
this polynomial is bounded by m+n+1, while the order in t is determined by the maximal
spin contribution `max of the corresponding double discontinuity Dm|n, given by14

D0|n : `max = 2
⌊
n− 3

2

⌋
,

Dm|n : `max = 2
⌊min(m,n)− 3

2

⌋
.

(3.13)

By matching the double discontinuities D(0|3) and D(3|3) at orders λ− 3
2 and λ−3, respec-

tively, one can determine the corresponding polynomials fm|n(s, t) to take the forms [34]

f0|3(s) = −16ζ3
(
63s4 − 644s3 + 2772s2 − 5776s+ 4800

)
,

f3|3(s) = −1080ζ2
3

7
(
462s7 − 11627s6 + 134274s5 − 908180s4

+ 3841208s3 − 10071488s2 + 15053056s− 9838080
)
,

(3.14)

where we made the overall normalisations consistent with our conventions. Note that both
of the above amplitudes do not depend on t, in agreement with the spin truncation of
the R4 vertex to spin `max = 0. By explicitly performing the Mellin integration in a
series expansion around small (u, v), we verified that the above Mellin amplitudes are in
agreement with our position space results obtained by the bootstrap approach described
in section 2.2, thus confirming the appearance of the weight-three function f (3)(x, x̄).

By using the order λ− 5
2 data of the 〈O2O2OpOp〉 family of correlators from [21, 22],

we can furthermore provide some new results. For example, we can compute the double
discontinuity D0|5, resulting in

f0|5(s, t) = −2ζ5
(
10890s6 + 45s5(11t− 4669) + 9s4(55t2 − 640t+ 204358)

− 4s3(945t2 − 7173t+ 2285717) + 36s2(377t2 − 2208t+ 745066)

− 16s(1575t2 − 7488t+ 2722522) + 576(33t2 − 132t+ 52682)
)
,

(3.15)

which in fact appears before the f3|3(s) contribution in the 1/λ expansion and is the
first case with non-trivial t-dependence. At order λ−4, we can similarly compute the

14We checked that our discussion on the orders of the polynomials fm|n(s, t) is in agreement with the
“basis of polynomial Mellin amplitudes” described in [34].
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contribution

f3|5(s, t) = −90ζ3ζ5
(
28028s9 − 1075074s8 + 19321302s7 − 211238951s6

+ 1535536842s5 − 7645987076s4 + 25938244248s3

− 57543276224s2 + 75453134080s− 44400268800
)
,

(3.16)

and finally the order λ−5 contribution from D5|5 is given by

f5|5(s, t) = −45ζ2
5

22
(
57657600s11 + 30030s10(16t− 104093)

+ 12012s9(40t2 − 1445t+ 6689071)
− 572s8(26985t2 − 531356t+ 2242111079)
+ 22s7(11008816t2 − 151917584t+ 638025985123)
− 77s6(30823520t2 − 327881344t+ 1429188184721)
+ 14s5(1125229952t2 − 9688637728t+ 44851775822225)
− 28s4(2593858960t2 − 18612610496t+ 92780493961669)
+ 56s3(4118587328t2 − 25104138112t+ 135924547490919)
− 64s2(7551065200t2 − 39625690048t+ 234345782828097)
+ 256s(2355357312t2 − 10748615808t+ 69677906818663)

− 53760(6319936t2 − 25279744t+ 180000568369)
)
.

(3.17)

Note that the orders of the polynomials fm|n given above all fit into the general pattern
described earlier.

Before concluding, let us mention once more that we checked agreement between our
position space results and the Mellin space amplitudes described here. Such a comparison
can be easily performed in a series expansion around small (u, v) by using the explicit
representation (A.9) of f (3) which is suitable for this expansion.

4 Conclusions

In this paper we have addressed the problem of constructing one-loop string corrections to
the four-point correlation function of the stress-tensor multiplet in N = 4 SYM. In particu-
lar, we describe a position space bootstrap algorithm which relies only on the knowledge of
the corresponding double discontinuity at a given order in 1/λ. While we provide explicit
results for the first few orders in the 1/λ expansion, the form of our one-loop ansatz is
in fact valid to all orders. Our results for the final one-loop correlators are fixed up to a
finite number of ambiguities, which can be fully characterised in terms of their polynomial
Mellin amplitudes.

Our work complements the Mellin space approach of [34], where a basis for the poly-
nomials fm|n(s, t) was described. Therefore, at least up to one-loop, the position and
Mellin space approaches are essentially interchangeable by comparison of their small (x, x̃)
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and small (u, v) expansions as explained in more detail in appendix A. The position and
Mellin space approaches each have advantages and disadvantages. For example, com-
parably simple structures emerge when considering one-loop amplitudes in Mellin space,
whereas theirspace time equivalents turn out to be rather involved. Also, the connection
to ten-dimensional physics is given very directly in Mellin space through the flat-space
limit, which has been explored in many references, e.g. [20, 37, 38, 49, 51]. On the other
hand, the ansatz of transcendental functions for the position space amplitudes makes their
singularity-structure very explicit, while this is quite obscure from a Mellin space point of
view. In particular any analytic continuation or kinematic expansion (e.g. the OPE) that
one may wish to perform is straightforward from the spacetime point of view.

Indeed, we have found that a new weight-three function is required in our ansatz, com-
pared to the analogous bootstrap approach for one-loop supergravity correlators [30–32].
This function involves a new type of letter (or logarithmic singularity), x − x̄, which is
not present in the supergravity case. The appearance of f (3)(x, x̄) provides a first under-
standing of what type of functions will appear in loop amplitudes of string theory on AdS.
It would be interesting to explore whether the set of singularities found so far, namely
{x, x̄, 1 − x, 1 − x̄, x − x̄}, is sufficient for the description of higher loop amplitudes, or
whether new letters have to be included.

As our bootstrap approach leaves a finite number of ambiguities unfixed, we have to
rely on other methods in order to determine their values. One such possible avenue is
provided by supersymmetric localisation, which was used in [36] to fix the single ambiguity
in the supergravity result of [30]. It would be interesting to see whether this or any other
method can fix the one-loop ambiguities which arise in the 1/λ expansion.

Finally, there are further interesting open questions which can be addressed. A logi-
cal next step is to attempt the generalisation of the results presented here to correlators
with more general external charges. Following the great progress for tree-level correla-
tors [12, 13, 21–23], this has already been pursued at one-loop in the supergravity case,
both in position space [31, 32] and recently also in Mellin space [33]. Inspiration on how
to make progress in this direction might again come from tree-level supergravity, where
a hidden ten-dimensional conformal symmetry provides a generating functional for the
arbitrary-charge correlator in terms of the 〈O2O2O2O2〉 correlator [18]. In fact, it is possi-
ble to write the double discontinuities Dm|n with an eight-order differential operator ∆(8)

pulled out, which is reminiscent of the ten-dimensional symmetry. In the case of one-loop
supergravity, this statement can be uplifted to the full correlator: up to tree-level-like
terms, the one-loop correlator can be written as ∆(8) acting on a much simpler “pre-
amplitude” [32]. In the recent Mellin space result of [33], this statement manifests itself in
the fact that additional single poles in the Mellin amplitude are absent, such that the full
Mellin amplitude is essentially determined by the double discontinuity only.15 It would be
interesting to investigate whether this differential operator can be used to generalise the
construction presented here to more general correlators.

15In the language of [32], the Mellin space ansatz in terms of simultaneous poles seems to correctly
reproduce the CFT data in the “window”, without the need of additional single poles.
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A Analytic properties of f (3)(x, x̄)

Here we give some more details on the structure of the function f (3) which makes an
appearance in the one-loop string amplitudes. We recall that the total derivative is defined
in equation (2.14). By successively stripping off the leading log u discontinuity we arrive
at the form (2.17) with f̃ (1) obtained very simply and with the total derivative of f̃ (2)

obtained in the form

df̃ (2)(x, x̄) = −
[
2 log(1− x)

]
d log x

+
[
2 log(1− x̄)

]
d log x̄

−
[
log(1− x)− 3 log(1− x̄)

]
d log(1− x)

+
[
log(1− x̄)− 3 log(1− x)

]
d log(1− x̄)

+
[
6 log(1− x)− 6 log(1− x̄)

]
d log(x− x̄) . (A.1)

The form (2.19) agrees with the above and obeys f̃ (2)(x, x) = 0 as it should by antisym-
metry. Finally we obtain the total derivative of f̃ (3) in the form

df̃ (3)(x, x̄) =
[
−4(Li2(x)− Li2(x̄)) + 1

2 log2 v − f̃ (2)(x, x̄)
]
d log x

+
[
−4(Li2(x)− Li2(x̄))− 1

2 log2 v − f̃ (2)(x, x̄)
]
d log x̄

+
[
−4(Li2(x)− Li2(x̄))

]
d log(1− x)

+
[
−4(Li2(x)− Li2(x̄))

]
d log(1− x̄)

+
[
12(Li2(x)− Li2(x̄))

]
d log(x− x̄) . (A.2)

We can easily integrate this in a form suitable for expansion in small x and x̄. However for
comparison to Mellin space it is more convenient to make the change of variables x̃ = 1− x̄
so that

u = x(1− x̃) , v = x̃(1− x) . (A.3)

Then the small x and x̃ expansion can easily be compared to a small u and v expansion.
To this end we first pull (A.2) back to the line x = 0,

df̃ (3)(0, x̄) =
[
−12Li2(x̄)− log2(1− x̄)

]
d log x̄+

[
4 Li2(x̄)

]
d log(1− x̄) . (A.4)

This can be easily integrated in terms of weight three harmonic polylogarithms [52] with
the condition that f̃ (3)(0, 0) = 0,

f̃ (3)(0, x̄) = −12H3(x̄)− 4H1,2(x̄)− 2H2,1(x̄) . (A.5)
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Now performing our change of variables from x̄ to x̃ = 1 − x̄ we have in the small x̃
expansion,

f̃ (3)(0, 1− x̃) = −6ζ3 + 4ζ2 log x̃+O(x̃) . (A.6)
Now using

φ(1)(x, 1− x̃) = − log u log v − 2
[
Li1(x) log u+ Li1(x̃) log v

]
− 2

[
ζ2 + Li1(x)Li1(x̃)− Li2(x)− Li2(x̃)

]
, (A.7)

we may write

df (3)(x, 1− x̃) =
[
−2φ(1)(x, 1− x̃) + 1

2 log2 v − log u log v
]
d log x

+
[
−2φ(1)(x, 1− x̃)− 1

2 log2 v + log u log v
]
d log(1− x̃)

+
[
−2φ(1)(x, 1− x̃)− 1

2 log2 u+ log u log v
]
d log(1− x)

+
[
−2φ(1)(x, 1− x̃) + 1

2 log2 u− log u log v
]
d log x̃

+
[
6φ(1)(x, 1− x̃)

]
d log(1− x− x̃) . (A.8)

We can then make manifest all the logarithmic singularities in log u and log v as follows,

f (3)(x, 1− x̃) = 1
2 log2 u log v + 1

2 log u log2 v − log2 u log(1− x)− log2 v log(1− x̃)

+ log u log v
[
2 log(1− x) + 2 log(1− x̃)− 6 log(1− x− x̃)

]
+ log u g(2)(x, x̃) + log v g(2)(x̃, x) + 6g(3)(x, x̃) , (A.9)

where the function g(2) can be expressed as

g(2)(x, x̃) = 4ζ2 + 2 Li2(x) + 2 Li2(x̃)− 6 Li2
(

x̃

1− x

)
− 2 log(1− x) log (1− x)3(1− x̃)

(1− x− x̃)6 .

(A.10)
To write a formula for g(3) it is helpful to use hyperlogarithms, Gw(t) which depend on a
word w = a1a2 . . . an in letters ai and a variable t. The function whose word is just a string
of n zeros is a power of log t,

G0n(t) = 1
n! logn t . (A.11)

The other functions are defined recursively,

Gaw(t) =
∫ t

0

ds

s− a
Gw(s) . (A.12)

Using these hyperlogarithms we can write an expression for g(3) by integrating the total
derivative and fixing the term proportional to ζ3 from (A.6),

g(3)(x, x̃) = G1(x̃)G0,1(x)− 2G1−x(x̃)G0,1(x)− 2G1(x̃)G1,1(x) +G1(x)G1,1(x̃)
− 2G1(x)G1,1−x(x̃)− 2G1(x)G1−x,1(x̃) +G0,0,1(x) +G0,0,1(x̃)
− 2G0,1,1(x) +G0,1,1(x̃)−G0,1,1−x(x̃)− 2G0,1−x,1(x̃)− 2G1,0,1(x)
+G1,0,1(x̃)−G1,0,1−x(x̃)− 2G1−x,0,1(x̃)− 2ζ2 log(1− x− x̃)− ζ3 . (A.13)

– 19 –



J
H
E
P
0
3
(
2
0
2
1
)
0
3
8

Although it is not manifest from the above formula g(3) is symmetric, g(3)(x, x̃) = g(3)(x̃, x).
The apparent asymmetry is simply due to a choice of the contour of integration (first in
the x direction, then the x̃ direction).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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