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Abstract

Purpose This study leverages pre-procedural data and

machine learning (ML) techniques to predict outcomes at

one year following prostate artery embolization (PAE).

Materials and Methods This retrospective analysis com-

bines data from the UK-ROPE registry and patients that

underwent PAE at our institution between 2012 and 2023.

Traditional ML approaches, including linear regression,

lasso regression, ridge regression, decision trees and ran-

dom forests, were used with leave-one-out cross-validation

to predict international prostate symptom score (IPSS) at

baseline and change at 1 year. Predictors included age,

prostate volume, Qmax (maximum urinary flow rate), post-

void residual volume, Abrams-Griffiths number (urody-

namics score) and baseline IPSS (for change at 1 year). We

also independently confirmed our findings using a separate

dataset. An interactive digital user interface was developed

to facilitate real-time outcome prediction.

Results Complete data were available in 128 patients

(66.7 ± 6.9 years). All models predicting IPSS demon-

strated reasonable performance, with mean absolute error

ranging between 4.9–7.3 for baseline IPSS and 5.2–8.2 for

change in IPSS. These numbers represent the differences

between the patient-reported and model-predicted IPSS

scores. Interestingly, the model error in predicting baseline

IPSS (based on objective measures alone) significantly

correlated with the change in IPSS at 1-year post-PAE

(R2 = 0.2, p\ 0.001), forming the basis for our digital user

interface.

Conclusion This study uses ML methods to predict IPSS

improvement at 1 year, integrated into a user-friendly

interface for real-time prediction. This tool could be used

to counsel patients prior to treatment.

Keywords Artificial intelligence � Prostate �
Embolization

Introduction

Recent advancements in embolization techniques, com-

bined with an increasing body of supporting data, have led

to prostate artery embolization (PAE) emerging as a safe

and effective alternative to transurethral resection of the

prostate (TURP) for the treatment of benign prostatic

hyperplasia (BPH) [1]. Although PAE appears to be

effective in most patients, there are a subset of patients that

have suboptimal outcomes. This can include patients that

have an International Prostate Symptom Score (IPSS)

reduction of\ 25% or no improvement in quality of life

(QoL) score, clinical recurrence of symptoms (5–28% of

cases) [2] or technical failure (reported as 2–5%) [3]. Given

that no procedure is without risk of complications, this has

spurred a growing body of research aimed at assessing the
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underlying predictors of PAE outcomes [4]. Recognising

BPH’s heterogeneous nature, a tailored approach to treat-

ment, emphasising the pivotal role of patient selection in

both medical and surgical management, will ensure opti-

mal care [4].

Most studies on PAE outcome predictors focus on sin-

gular patient factors such as prostate volume, vascular

anatomy or IPSS, rather than using a combination of fac-

tors [5–9]. Furthermore, predictions are usually based on

binary outcomes (responder, non-responder) rather than

predictions of actual IPSS scores for that individual patient.

Such detailed prediction could be beneficial for clinical

decision-making. For instance, even a modest improve-

ment in IPSS might be considered sufficient reason to opt

for PAE over more invasive procedures (e.g. TURP), par-

ticularly if the latter poses significant risks to the patient.

In the realm of health care, artificial intelligence (AI)

signifies a change in thinking, utilising computer systems

with data-driven, decision-making processes. Machine

learning (ML), a subset of AI, harnesses structured data

and algorithms to decipher patterns and predict clinical

outcomes. It benefits from the ease of exploring combi-

nations of variables in large datasets to find patterns that

might otherwise be missed with traditional statistical

approaches. Its success is evident in various medical

domains, such as predicting cancer progression (e.g. breast,

prostate and lung cancer) and treatment efficacy [10].

Merging prostate volume and clinicopathological data with

AI tools holds promise in forecasting PAE outcomes,

refining patient outcomes and facilitating tailored patient

consultations.

This pilot study seeks to evaluate the feasibility of

leveraging ML to predict PAE outcomes, solely relying on

pre-procedural routinely collected data (prostate volume,

clinical and urodynamic variables).

Methods

This study was a retrospective complete-case analysis

under the ethical approval of IRAS 326704.

Study Cohort

A retrospective analysis of the UK-ROPE study (a

prospectively collected database of patients from the UK)

was conducted [11]. Briefly, this was a national observa-

tional database of patients treated with PAE or surgical

alternatives collated from 17 centres across the UK from

January 2014 to July 2016. The inclusion criteria for this

subanalysis were patients that underwent PAE and had

complete set of records including age, prostate volume,

Qmax (maximum urinary flow rate), post-void residual

volume, Abrams-Griffiths number (urodynamics score),

baseline IPSS and 1-year post-PAE IPSS. In this study,

predictor variables were selected based on the number of

full datasets available to maximise data points for use in

predictions.

This multicentre dataset was combined with a separately

collected dataset encompassing patients that underwent

PAE at our single institution between 2012 and 2023.

These patients also had the same complete sets of predictor

variables.

Some of the data from our institution was randomly

selected (utilising the ‘random’ function within python)

and kept separate from any training data (Dataset 2). This

was used for confirmation of findings and to assess gen-

eralisability of our model.

All remaining data were used for model development

and validation (Dataset 1).

Model Development

All data analyses were conducted using Python program-

ming environment. Established machine learning algo-

rithms were implemented within the ‘scikit-learn’ library.

These included linear regression, ridge regression, lasso

regression, decision tree and random forests.

For the small sample size we have in this dataset, more

complex methods such as neural networks were not

appropriate as they will overtrain and performance will not

generalise to other datasets.

The target variables to be predicted were:

(1) Change in IPSS at 1 year (baseline IPSS–1-year

IPSS)

(2) Baseline IPSS—although all patients completed a

baseline IPSS questionnaire, we also aimed to eval-

uate the model’s performance at predicting their

baseline IPSS based only on objective clinical

measures (termed ‘model-generated baseline IPSS’).

The accuracy of this prediction was assessed by

calculating the difference between the model-gener-

ated baseline IPSS and the actual observed baseline

IPSS. This ‘model-generated error’ was then

regressed against the change in IPSS (baseline

IPSS–1-year IPSS).

Validation and Model Performance

Model development and validation were performed only on

Dataset 1 (see Table 1). For this analysis, models were

trained using a leave-out-one cross-validated approach

(LOOCV). In this method, one data point from the Dataset
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1 was singled out as a validation data point, whilst the

remaining data served as the training set. This was carried

out so that every data point in turn was the validation set.

This method was used to maximise training data and

improve performance given the small sample size. Metrics

such as mean squared error (MSE), root mean squared error

(RMSE), mean absolute error (MAE) and where appro-

priate R2 were used to account for continuous outcome

variables (namely IPSS).

In addition to LOOCV, a further assessment of perfor-

mance was made on an independent separate dataset

(Dataset 2, n = 16). This was not used in any model

training.

User Interface Design

‘RShiny’ Dashboard is an ‘R’ based package (available at

https://www.rstudio.com/products/shiny/) that has previ-

ously been utilised to allow clinician friendly use of

computer-based healthcare tools [12, 13]. This package

was used to create a custom user interface that incorporated

the final model for research purposes and would be subject

to regulatory approval prior to routine clinical use.

Results

Cohort Demographics

A total of 128 patients were identified. Data from the UK-

ROPE study (n = 58) were combined with a separate

dataset of patients that underwent PAE at our institution

(n = 70). All predictor variables (age, prostate volume,

Qmax, post-void residual volume, Abrams-Griffiths

number, baseline IPSS and 1-year post-PAE IPSS) were

available.

Data were split into Dataset 1 (model development and

validation, n = 112) and Dataset 2 (independent test set,

n = 16) as per methods.

Characteristics of each variable are shown in Table 1.

Algorithm Performance

Change in IPSS Using Dataset 1, established machine

learning algorithms were used to predict the change in

IPSS (baseline IPSS–1-year post-PAE IPSS) using a leave-

out-one cross-validation approach. Performance metrics

are shown in Table 2. These numbers represent the dif-

ferences between the patient-reported and model-predicted

IPSS scores. All models demonstrated modest but similar

performance with the mean absolute error ranging between

5.2 for lasso regression model vs 8.2 for the decision tree-

based model. Please note that the smaller the error the

better the performance.

Model-Generated Baseline IPSS Table 3 shows the per-

formance of all models using a leave-out-one cross-vali-

dation approach using Dataset 1. Our models performed

better across all performance metrics compared with pre-

dicting the change in IPSS directly. Again, the best per-

forming model was lasso regression with MAE of

4.94 ± 3.62. Note that the errors of predicting baseline

IPSS were smaller than the errors in predicting the change

in IPSS (Table 2). This formed the basis for the subsequent

analysis below.

Regression of ‘Model-Generated Baseline IPSS Error’

Against ‘Change in IPSS’ To further investigate errors in

prediction, the ‘model-generated baseline IPSS error’ was

Table 1 Variables used in analysis for Dataset 1 (model development and validation), Dataset 2 (independent test set) and combined dataset

Factors Dataset 1-model development and validation

(n = 112) mean (std)

Dataset 2-independent test set

(n = 16) mean (std)

Combined dataset

(n = 128) mean (std)

Age (years) 66.8 (6.7) 65.6 (8.4) 66.7 (6.9)

Prostate volume on US/

TRUS/CT/MRI (cc)

109.8 (60.7) 91.9 (47.6) 107.5 (59.4)

Qmax (ml/s) 8.5 (3.9) 7.9 (2.6) 8.4 (3.7)

Residual volume (mls) 179.0 (147.9) 172.4 (158.6) 178.2 (148.7)

Abrams-Griffiths number 75.0 (37.7) 76.4 (35.6) 75.1 (37.4)

Baseline IPSS 21.9 (5.9) 23.2 (3.9) 22.1 (5.7)

IPSS at 1-year post-PAE 10.6 (6.9) 11.2 (6.7) 10.7 (6.8)

Change in IPSS 11.3 (7.3) 12.0 (6.6) 11.4 (7.2)

US, Ultrasound; TRUS, Transrectal ultrasound; CT, Computed tomography; MRI, Magnetic resonance imaging; Qmax, maximum urinary flow

rate; IPSS, International Prostate Symptom Score; PAE, Prostate artery embolization;
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regressed against the change in IPSS at 1 year (baseline

IPSS–1-year IPSS). Figure 1 demonstrates that there was a

significant relationship between these two variables

(R2 = 0.2, p\ 0.001), i.e. patients on whom the model

underpredicts IPSS at baseline are those that report the

largest improvements in IPSS at 1-year post-procedure. In

contrast, patients who reported lower IPSS than predicted

had the least benefit. This is further explained below using

examples.

Table 2 Model performance

for prediction of change in IPSS

(International Prostate

Symptom Score) at 1 year using

Dataset 1

Model Mean squared error Root mean squared error Mean absolute error

Linear regression 43.96 ± 60.60 5.26 ± 4.04 5.26 ± 4.04

Ridge regression 43.96 ± 60.60 5.26 ± 4.04 5.26 ± 4.04

Lasso regression 43.39 ± 59.86 5.21 ± 4.03 5.21 ± 4.03

Decision tree 95.12 ± 116.09 8.17 ± 5.33 8.17 ± 5.33

Random forests 48.14 ± 61.21 5.69 ± 3.97 5.69 ± 3.97

These numbers represent the differences between the patient-reported and model-predicted Change in IPSS

scores

Table 3 Model performance

for prediction of IPSS

(International Prostate

Symptom Score) at baseline

using Dataset 1

Model Mean squared error Root mean squared error Mean absolute error

Linear regression 38.61 ± 52.86 5.00 ± 3.69 5.00 ± 3.69

Ridge regression 38.61 ± 52.85 5.00 ± 3.69 5.00 ± 3.69

Lasso regression 37.53 ± 50.61 4.94 ± 3.62 4.94 ± 3.62

Decision tree 74.83 ± 90.47 7.28 ± 4.68 7.28 ± 4.68

Random forests 39.16 ± 54.81 4.99 ± 3.78 4.99 ± 3.78

These numbers represent the differences between the patient-reported and model-predicted baseline IPSS

scores

Fig. 1 The change in IPSS

(baseline – 1-year post-PAE)

has a good correlation with the

‘model-generated baseline IPSS

error’. Dataset 1 is shown in

blue (model development and

validation set, n = 112) with

Dataset 2 superimposed in red

(independent test set, n = 16).

The regression line is plotted in

green, and 95% confidence

intervals are shaded in orange
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Examples

(1) Mr X had an IPSS of 20 at baseline. Our model

estimated from objective measurements including

prostate volume, urodynamic and clinical measure-

ments that his ‘model-generated baseline IPSS’ was

10. The error was therefore ? 10, and means that he

is predicted have a large improvement at 1 year

following PAE (X on Fig. 1).

(2) Mr Y had an IPSS of 15 at baseline. Our ML model

estimated that his ‘model-generated baseline IPSS’ is

25. The error was - 10, and this patient was

predicted to have little or no benefit of PAE (Y in

Fig. 1).

Validation on an Independent Dataset

An independent set of patients who underwent PAE treat-

ment at our institution was used to confirm the generalis-

ability of our findings (Dataset 2). This dataset was held

away from the model development process (see methods),

and only used in this final stage, Fig. 1 shows that the

distribution of these patients (red dots) was similar to

Dataset 1 (Blue dots). Indeed, 14/16 (88%) patients were

within the 95% confidence intervals of the regression line.

Towards Implementation

The final model was incorporated into an interactive digital

user interface for illustrative and research purposes (see

Fig. 2). This provides an idea of how such a prediction tool

might be implemented in a clinical setting for decision

support following mandatory regulatory approval. The user

can change input predictors with sliders along the left side

of the tool and see real-time updates in prediction shown on

the graph and right side of the interface.

Discussion

Our findings suggest that despite using a limited dataset,

ML models can be used with routinely collected pre-pro-

cedure data to predict the change in IPSS at 1 year fol-

lowing PAE. Interestingly, the most effective way to

predict patient outcome was by using purely objective

clinical measures to create a ‘model-generated baseline

IPSS’. The degree of error between this and the patients’

actual observed IPSS (termed the ‘model-generated base-

line IPSS error’) significantly correlated with the ‘change

in IPSS’ at 1-year post-procedure and can be used to pre-

dict individual patient outcomes with reasonable accuracy.

This finding might reflect a difference between objective

and subjective measures of symptoms and points towards a

potential psychological element of symptom evaluation

through IPSS scoring. Certainly, patient expectations prior

to procedures have been shown to significantly influence

outcomes. Patients’ beliefs and perceptions about the

forthcoming procedure can shape their psychological

response, which in turn can influence physiological out-

comes, and overall satisfaction with the procedure. For

instance, a study by Ellingsen et al. [14] demonstrated that

negative expectations could intensify the experience of

pain and discomfort. Moreover, when patients hold positive

expectations, they are often more compliant with pre- and

post-procedure instructions, leading to improved outcomes

and decreased complication rates. Indeed, the opposite also

applies, in that patients who were adequately informed and

thus had clear expectations had shorter recovery times

report higher satisfaction rates [15]. This emphasises the

importance of effective patient education and setting

appropriate expectations to optimise both subjective and

objective outcomes in interventional radiology. However,

the objective nature of urodynamics is also controversial,

e.g. there is some evidence that Qmax is effort dependent

and influenced by intervention [16, 17]. Therefore, this is a

complex area and needs to be interpreted carefully within

this context.

Given the therapeutic intent of PAE is to provide

symptomatic relief, it is likely that a combination of psy-

chological and biological factors would lead to symptom

improvement. Thus, it remains of pertinent clinical utility

to continue using both objective and subjective variables as

inputs for any future developed model.

We also found that including a combination of routinely

collected variables, notably, prostate volume and urody-

namic variables can be used for prediction and is in line

with previous studies that have identified prostate volume

as a significant predictor of clinical success. Patients with

larger prostatic volumes, often above 80 cc, have shown

better symptomatic relief post-PAE as compared to those

with smaller prostates [18]. This also applied to our model,

in which, increasing prostate volume predicts greater IPSS

improvement. (We explored this by increasing prostate

volume with our tool and observing the predicted change in

IPSS rising.) However, critically, it was not this single

variable alone that contributed to model performance.

Instead our study utilised a combination of factors to pre-

dict IPSS outcomes, thereby benefiting from potential

performance gains from variable combinations [19].

Machine learning also provides a way in which clinical

decision support tools can be improved on subsequent

iterations, once additional data are trained, as well as being

able to be deployed through interfaces such as ‘Rshiny’

[12].

Notably, our model demonstrated applicability to a

separate, blinded dataset (Dataset 2), enhancing the
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generalisability of our findings. This underscores the

potential benefits of establishing a more comprehensive

registry of PAE patients. Such an expanded registry could

significantly improve model performance, offering deeper

insights into patient outcomes and optimising treatment

strategies.

Whilst these initial results are promising, it is important

to acknowledge the limitations of our study. Firstly, the

sample size might mean our models are not representative

of the general populations. However, some generalisability

was assessed by testing our models on a blinded indepen-

dent dataset and in part by being trained on multicentre

level data. We were also restricted in selecting variables

that had full data, as most ML algorithms require complete

data. Whilst a single radiological parameter (namely

prostate volume) has been used in our models, other

radiomic markers might be relevant and imaging data has

not been fully utilised. Any future work would also include

this readily available and now routinely collected data type,

especially given the advantages of performing pre-

procedure CT for planning [20]. In addition, clinical

measures from formal urodynamic studies were an

important component to the ML model. As many centres

do not routinely perform urodynamics prior to PAE, this

reduces the wider utility of the model and findings.

Furthermore, we emphasise the use of these models as a

tool to support clinicians in their decision-making and not

to be used as a triaging software independent of clinical

oversight.

Conclusion

This study shows promise in the development of machine

learning models that are able to predict individual thera-

peutic success following PAE from routinely collected

clinical data and incorporated into a user-friendly interface.

This tool could offer a time critical opportunity for clinical

decision-making and patient counselling in Urology and

Interventional Radiology Clinics.

Fig. 2 ‘RShiny’ dashboard tool screenshot, users are able to adjust individual parameters with sliders on the left side, the prediction of change in

IPSS would be displayed as an ‘X’
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