
  

 

#Instructions and Guidance in this template 

You will find guidance and information in this template. 

Instructions are highlighted in turquoise and inside hash symbols, #like this#. All such 

information is designed to aid you in complying with the University’s submission and 

completion guidance on producing a research thesis. This should be deleted when finalising 

your thesis.  

Text placeholders, where you need to enter data, are highlighted in yellow and surrounded by 

straight brackets. Remove both the yellow highlighting and the square brackets when finalising 

the document.  

The Table of Contents, Table of Tables and Figures will need to be updated and links on this are 

provided above each. 

The template meets all these requirements; however, you are heavily advised to use the support 

materials to find out more about using Word to ensure your document continues to comply as 

you add your own content. 

There are demonstration seminars available as Doctoral College Workshop and Events and web 

support on the Producing your thesis in Word site 

Copyright Notice 

The copyright notice below should be left unaltered. It should be included in your e-thesis but is 

not required in your print document.# 

University of Southampton Research Repository 

Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are 

retained by the author and/or other copyright owners. A copy can be downloaded for personal 

non-commercial research or study, without prior permission or charge. This thesis and the 

accompanying data cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the copyright holder/s. The content of the thesis and accompanying 

research data (where applicable) must not be changed in any way or sold commercially in any 

format or medium without the formal permission of the copyright holder/s.  

When referring to this thesis and any accompanying data, full bibliographic details must be 

given, e.g.  

Thesis: Jianqiao Cui (2024) "Speech Enhancement by Using Deep Learning Algorithms", 

University of Southampton, name of the University Faculty or School or Department, PhD 

Thesis, pagination.  

Data: Author (Year) Title. URI [dataset] 



 

1 

University of Southampton 

Faculty of Engineering and Physical Sciences 

Institute of Sound and Vibration Research 

Speech Enhancement by Using Deep Learning Algorithms 

by 

Jianqiao Cui 

ORCID ID: 0000-0002-6016-5574 

Thesis for the degree of Doctor of Philosophy 

15 July 2024 

 



 

2 

University of Southampton 

Abstract 

Faculty of Engineering and Physical Sciences 

 

Institute of Sound and Vibration Research 

 

Thesis for the degree of Doctor of Philosophy 

Thesis Title Speech Enhancement by Using Deep Learning Algorithms 

by 

Jianqiao Cui 

 

Speech signals are often degraded by ambient noise, which significantly hampers speech 

intelligibility and quality, posing challenges for both human communication and speech-related 

technologies. Over the past decade, the advent of deep learning has catalysed remarkable 

progress in the field of speech enhancement. With the proliferation of smart devices demanding 

real-time processing capabilities, the development of real-time deep learning-based speech 

enhancement systems has become increasingly pertinent. 

The primary objective of this thesis is to advance the state-of-the-art in real-time speech 

enhancement algorithms, with a focus on improving the intelligibility and quality of speech in 

noisy environments. Our research commences with an exploration into the intricacies of auditory 

perception and the impact of hearing loss on speech comprehension, setting the stage for the 

development of sophisticated speech enhancement techniques. 

Traditional speech enhancement methods are reviewed in chapter 2, leading to an in-depth 

discussion on the selection of features critical for distinguishing speech from noise. The work 

transitions to deep learning neural networks, detailing architectures like LSTM-RNNs and CNNs, 

and their implementation in speech enhancement, emphasizing the importance of quantitative 

evaluations. 

Chapter 3 delves into the application of Generative Adversarial Neural Networks (GANs) in the 

domain of speech enhancement, building upon existing research to further refine the use of these 

models. The chapter focuses on the innovative integration of the magnitude spectrum as an input 

feature, which significantly contributes to the performance enhancement of GANs. Additionally, 

the exploration of various deep learning architectures as potential generators within the GAN 

framework is presented, showcasing the adaptability and continuous improvement potential of 

GANs in speech enhancement.  
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Attention mechanisms are presented as a driving force for innovation in speech enhancement, 

with the novel 'Mask First, Compensation Last' topology aiming to reduce speech distortion and 

residual noise. Motived by them, the chapter 4 further explores a new cascaded architecture on 

raw waveform input against the complexity of auditory perception. 

Chapter 5 brings a new combination method in speech enhancement, contrasting mapping-

based and masking-based methods, and proposing a parallel dual-module system, the 

Compensation for Complex Domain Network (CCDN), that unifies the magnitude spectrum with 

complex domain details. 

The final chapter addresses the challenge of data mismatch in traditional supervised methods. 

We proposed an innovative strategy that combines unsupervised pre-training with supervised 

fine-tuning. This approach not only enhances speech quality in complex noise environments but 

also simulates the advantages of supervised learning without requiring paired data. Our model's 

adaptability to real-world noise conditions and its effectiveness in various speech enhancement 

tasks are validated through rigorous experimental evaluations and subjective listening tests. This 

chapter culminates in showcasing a robust, and practical speech enhancement model fit for real-

world application, highlighted by its adaptability to real-world noise conditions and the 

integration of unsupervised learning strategies for enhanced model robustness and versatility. By 

enhancing the quality of human communication and addressing challenges faced by individuals 

with hearing impairments or in noisy environments. 
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Chapter 1 Background 

The realm of speech enhancement has garnered significant attention in the past decades due to 

its profound impact on a myriad of applications, ranging from telecommunications to assistive 

technologies for the hearing impaired. The core objective of speech enhancement is to improve 

the quality and clarity of speech in the presence of noise, a challenge that has been continuously 

addressed through various signal processing techniques. 

Historically, speech enhancement was approached with methods that were relatively simplistic 

in nature, often limited by the computational tools available at the time. These traditional 

methods, while effective to a certain extent, could not fully capture the complexities inherent in 

human speech and the variability of noise. With the advent of more powerful computing 

capabilities and the explosion of data availability, the field has witnessed a paradigm shift 

towards utilizing machine learning and, more recently, deep learning algorithms to tackle these 

challenges. 

The intricate interplay between speech and noise presents a formidable challenge; it involves 

understanding not just the acoustic properties but also the perceptual aspects of how humans 

interpret sounds. This necessitates a dual focus on improving speech intelligibility and quality—

a task that becomes significantly more complex in noisy environments. The background of this 

work is hence established on the foundation of auditory perception, exploring how the human 

auditory system perceives and processes sound waves and how this understanding can guide the 

development of advanced speech enhancement algorithms. 

The deep learning techniques employed in this thesis represent the cutting edge in computational 

auditory scene analysis. Deep learning's ability to learn hierarchical representations makes it 

uniquely suited to model the complex structures of speech and noise, thereby enabling the 

development of more effective enhancement strategies. This thesis takes a novel approach by 

leveraging Generative Adversarial Networks (GANs) and advanced neural network architectures 

to innovate upon traditional enhancement methods. The focus is on not only the magnitude but 

also the phase spectrum—a component often neglected in previous research, yet crucial for 

preserving the naturalness of speech. 

As the abstract of the thesis indicates, a considerable portion of this work is dedicated to pushing 

the envelope in neural network design and implementation for speech enhancement. This 

includes the application of LSTM-RNNs and CNNs, which have demonstrated great promise in 

modeling temporal and spatial dependencies in data, respectively. The thesis evaluates these 
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methods against various performance metrics, showcasing the quantitative improvements over 

traditional models. 

The background context set by this thesis provides a comprehensive survey of past and current 

methodologies, setting the stage for the innovative strategies introduced in subsequent chapters. 

It recognizes the limitations of prior work and addresses them by developing a multi-faceted 

approach that not only enhances speech but does so in a way that is robust to the diverse noise 

environments encountered in real-world scenarios. 

In summary, this thesis stands at the intersection of technology and human-centric design. It is 

grounded in a deep understanding of the challenges posed by the field of speech enhancement 

and seeks to address these with novel, evidence-based deep learning methods. The background 

provided herein elucidates the complexity of speech in noisy environments and the subsequent 

need for innovative computational approaches to improve speech intelligibility and quality, 

ultimately contributing to the field's advancement and the betterment of communication. 
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Chapter 2 Advancements in Speech Enhancement: 

From Traditional Techniques to Deep 

Learning Innovations 

2.1 Introduction 

Chapter 2 of this thesis presents a comprehensive exploration of speech enhancement 

techniques, a critical component in improving the intelligibility and quality of speech signals 

within noisy environments. Beginning with an overview of traditional methods, the chapter 

progresses to discuss the evolution and implementation of classical deep learning methods, 

highlighting their significance in advancing the field of speech enhancement. 

The advent of deep learning has opened new avenues for robust speech enhancement, providing 

sophisticated tools capable of learning complex patterns in data. This chapter elucidates such 

advancements, starting with the foundational concepts of autoencoders and advancing through 

various neural network architectures including Convolutional Neural Networks (CNNs), Wave-U-

Net, and Deep Complex U-Net (DCUnet). Each method is examined for its unique approach and 

contribution to enhancing speech signals. 

In the pursuit of optimal speech enhancement, feature selection stands as a pivotal step, and 

this is thoroughly discussed, followed by the necessary considerations in determining targets and 

labels for the enhancement process. The chapter then delves into the intricate process of 

waveform resynthesis, an essential step to regenerate clear and enhanced speech from 

processed signals. 

The latter sections of the chapter are dedicated to a detailed analysis of deep learning neural 

networks, tracing their origins, structure, and the specialized training methods that equip these 

networks to effectively tackle speech enhancement challenges. Special attention is given to Long 

Short-Term Memory Recurrent Neural Networks (LSTM-RNNs) and CNNs, underlining their 

particular applications in this context. 

An examination of the evaluation metrics offers insights into the assessment of speech 

enhancement methods, ensuring the reader understands the criteria for success within this 

domain. 

Furthermore, the chapter introduces the innovative application of Generative Adversarial 

Networks (GANs) in speech enhancement. This includes an in-depth look at the roles of the 
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generator and discriminator within GANs and an evaluation of existing GAN variations tailored for 

speech signal improvement. 

As this chapter unfolds, it lays down a structured pathway of understanding, from basic principles 

to complex implementations, providing a solid foundation for further investigation and innovation 

in speech enhancement strategies. 

2.2 Traditional speech enhancement methods 

In the field of single-channel speech enhancement, spectral subtraction and Wiener filtering are 

considered as the more traditional methods. When the background noise is stationary, these 

methods can produce an ideal denoising effect [1]. The Wiener filter is a filter that is commonly 

used in signal processing to generate an estimate of a desired or target random process by linear 

time-invariant (LTI) filtering of an observed noisy process, assuming known stationary signal and 

noise spectra, and additive noise. The Wiener filter works by minimizing the mean square error 

between the estimated random process and the desired process. 

Assume that the noisy speech sequence collected by the microphone is 𝑦(𝑛), clean speech is 

𝑥(𝑛), and the noise is 𝑑(𝑛). Then the noisy speech sequence is the sum of the noiseless speech 

sequence and the noise sequence. Both the original speech signal and noise can be regarded as 

random signals. 

𝑦(𝑛) = 	𝑥(𝑛) + 	𝑑(𝑛) (2.1) 
Commonly used speech enhancement methods are in the frequency domain, and it is necessary 

to frame, window, and short-time Fourier transform (STFT) the noisy signal 𝑦(𝑛) to obtain the 

frequency domain signal of each frame, where 𝑋, 𝑌  and 𝐷  are clean speech, noisy signal and 

noise frequency domain signal, respectively. 

𝑌(𝑤𝑘) = 	𝑋(𝑤𝑘) + 	𝐷(𝑤𝑘) (2.2) 
And the cleaned speech 𝑋(𝑤𝑘) can be estimated by 𝐻(𝑤𝑘): 

𝑋	(𝑤𝑘) = 	𝐻(𝑤𝑘)𝑌(𝑤𝑘) (2.3) 
Where: 

𝐻(𝑤!) 	=
𝑃""

𝑃##
 

Where 𝑃𝑥𝑥 is the clean speech magnitude and 𝑃𝑦𝑦 is the noisy speech magnitude. Meanwhile, 

𝐻(𝑤𝑘) can be expressed by the priori SNR 𝜀𝑘 and the posteriori SNR 𝛾𝑘 respectively. 
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𝐻(𝑤!) 	=
𝑃""

𝑃##
=

𝑃""

𝑃"" + 𝑃$$
=

𝜀!

1 + 𝜀!
(2.4) 

𝐻(𝑤𝑘) 	= 𝑃𝑥𝑥
𝑃𝑦𝑦

=
𝑃𝑦𝑦−𝑃𝑑𝑑
𝑃𝑦𝑦

=
1−𝛾𝑘
𝛾𝑘

(2.5) 
Note that 𝐻(𝑤𝑘) is real, nonnegative, and even [2]. By minimizing the error between clean and 

cleaned speech, combining the phase information, we can get the estimate of the clean speech.  

Advantages and disadvantages 

The Wiener filter has carved a niche for itself as a cornerstone in the realm of signal processing. 

Its prominence stems from its adaptability to a diverse array of signals - be they continuous or 

discrete, scalar or vector, and especially stationary random processes[3]. In specific scenarios, 

one can derive an explicit solution for the filter's transfer function, paving the way for Wiener 

filters to be realized through an assembly of basic physical components [4]. 

However, the Wiener filter isn't without its constraints. Key challenges encompass its 

requirement for observation data over a semi-infinite time interval and its unsuitability for vector 

applications or non-stationary random processes with nois [5]. These limitations cast a shadow 

on its applicability in real-world scenarios. Central to the implementation of the Wiener filter is 

the prerequisite that the input process be generalized stationary, and the statistical intricacies of 

said process be well-understood [6]. Filters following analogous optimal criteria often echo these 

requirements. The external signal and interference environment dictate the input process, 

rendering its statistical traits unpredictable and often transient. This dynamic nature often 

contravenes the Wiener filter's stipulations[6]. Consequently, in practical scenarios, where the 

input process is non-stationary or its statistical nuances remain elusive, alternatives like spectral 

subtraction and time-frequency masking gain traction [7]. 

2.3 Existing classic deep learning methods for speech enhancement 

In the world of speech enhancement with deep learning, we often talk about the difference 

between systems that work in real-time and those that don’t. This really shines a light on how we 

have to balance how fast the system runs with how complex the algorithms are. In real-time 

systems, which don’t use future information much or at all, it’s really important to make sure 

things happen as they come. It underscores the importance of designing lightweight models that 

do not compromise on performance despite the constraints of hardware capabilities.   
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What’s really interesting is that there’s more focus on making sure models can handle immediate 

data rather than just being fast， which is super important for things like hearing aids or phones. 

It’s about understanding that “real-time” can mean different things depending on what you’re 

using it for, and that’s something we need to think about more. 

The conversation also brings up a point that’s been a bit of a hot topic: how we’ve been testing 

these models. There’s a push for being clearer and fairer when we compare models, which is 

great because it means we can really see which innovations are worth it. This is not just about 

keeping things honest; it’s also about helping people who are new to this area in navigating the 

field with better judgment and understanding. 

2.3.1 Autoencoders for Speech Enhancement 

 

Figure 2.1 The autoencoder structure. 

Autoencoders (AEs), shown in Figure 2.1, are an artificial neural network utilized for learning 

efficient data codings. Comprised of an encoder for input compression and a decoder for 

reconstructing the original format, AEs capture the salient features of the input data. For speech 

enhancement, Denoising Autoencoders (DAEs), like [9][8], are often employed, designed to 

reconstruct clean speech from noisy inputs. They are appealing for their ability to model complex, 

non-linear relationships and unsupervised training. This methodology assumes that the clean 

and noisy speech shares a common low-dimensional representation, with noise seen as a 

corruption of this representation. 



 

27 

2.3.2 Convolutional Neural Networks (CNN) for Speech Enhancement 

 

Figure 2.2 The classic CNN for a classification task [10] 

Convolutional Neural Networks (CNNs) [11], a class of deep neural networks, have demonstrated 

significant success in image and speech processing domains. Originating from their prowess in 

image classification tasks, the inherent architecture of CNNs makes them adept at capturing 

local and hierarchical patterns in data. This property is particularly beneficial for speech signals, 

which contain hierarchical structures, such as phonemes, words, and sentences, as well as 

intricate temporal and spectral patterns. 

In the realm of speech enhancement, CNNs, shown in Figure 2.2, are employed to extract robust 

features from noisy speech signals and then utilize these features to suppress or eliminate the 

underlying noise [11]. Their capability to process data in their native form, without the necessity 

for manual feature extraction, provides them an edge. By leveraging multiple convolutional layers, 

CNNs can automatically learn discriminative features from the raw waveform or spectrogram 

representations, facilitating the distinction between the desired speech and unwanted noise [12]. 

Several studies have confirmed the efficacy of CNNs in speech enhancement tasks. For instance, 

a CNN-based model was proposed to work directly on the raw waveform, bypassing traditional 

time-frequency representations, and achieved notable improvements in speech quality and 

intelligibility [13]. Another work integrated CNNs with traditional spectral subtraction methods, 

leading to enhanced performance under various noise conditions [14]. 

In conclusion, the incorporation of CNNs into speech enhancement algorithms offers a promising 

direction, potentially paving the way for more sophisticated and robust systems in the future. 

2.3.3 Wave-U-Net for Speech Enhancement 

The Wave-U-Net [15] emerged as a pioneering adaptation of the standard U-Net, tailored for the 

one-dimensional time domain, to facilitate end-to-end audio source separation. Distinctively, 

this network operates directly on the raw audio waveform, negating the need for traditional time-
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frequency representations. By doing so, Wave-U-Net is endowed with the ability to intrinsically 

learn the optimal time-frequency trade-off, a vital aspect in audio processing. 

Empirical studies have underscored the merit of Wave-U-Net in source separation tasks, like 

Figure 2.3. Specifically, in the realm of speech enhancement, this architecture has displayed 

remarkable prowess. When trained to distinguish clean speech from noisy environments, Wave-

U-Net has consistently achieved state-of-the-art performance, surpassing many contemporary 

models [16][17]. However, it's worth noting that while the Wave-U-Net showcases impressive 

results in several scenarios, like any model, it is not devoid of limitations and may encounter 

challenges in extremely noisy or unpredictable environments [18].  

 

Figure 2.3  The Wave-U-Net for speech enhancement. 

2.3.4 Deep Complex U-Net (DCUnet) for Speech Enhancement 

The Deep Complex U-Net (DCUnet) stands as a notable advancement in the realm of speech 

enhancement models [20]. This sophisticated architecture (Figure 2.4) is an innovative extension 

of the original real-valued U-Net, transitioning into the complex domain. Such a design choice is 

pivotal in accurately modeling both the spectral magnitude and phase of speech signals. By doing 
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so, the DCUnet harnesses the full potential of the information encapsulated within the short-time 

Fourier transform of noisy speech. 

A salient feature of the DCUnet is its incorporation of complex convolution layers. These layers 

are adept at preserving the inherent complex nature of the input data. Empirical evaluations have 

reinforced the efficacy of DCUnet, highlighting its superior performance across a plethora of 

speech enhancement benchmarks [13]. For instance, comparative studies with traditional 

speech enhancement methods have frequently underscored the DCUnet's ability to deliver 

clearer and more intelligible speech outputs [21]. 

 

Figure 2.4  The DCUNet for speech enhancement. 

2.3.5 Conv-TasNet for Speech Enhancement 

Conv-TasNet [19] is a deep learning-based approach for speech separation. Conv-TasNet uses a 

fully convolutional network to estimate ideal time-domain masks, which are used to separate 

individual sources in a mixture. The core idea of Conv-TasNet is to operate directly on the raw 

time-domain signal, which can model the full complexity of acoustic mixtures. 

From the Figure 2.3.5, the Conv-TasNet architecture consists of three main components: 

1. The encoder: which transforms the input time-domain signal into a non-linear representation. 

2. The separator: a temporal convolution network (TCN), which infers a mask on the encoded 

representation. 

3. The decoder: which applies the mask and transforms the representation back into the time-

domain. 

One key advantage of Conv-TasNet is its superior performance in real-time low-latency 

applications, such as hearing aids and telecommunications, where the delay caused by the 

transformation in time-frequency domain methods might be unacceptable. 
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Figure 2.5 The structure of Conv-Tasnet. 

2.4 Feature selection 

Speech signal processing plays a critical role in many applications, such as speech recognition, 

speaker identification, and speech enhancement. To accurately extract and analyze the speech 

features, both time domain analysis and frequency domain analysis are commonly used. 

However, relying solely on either approach has its limitations. For instance, time-domain 

waveforms and characteristic parameters cannot fully capture the frequency information 

contained in speech signals, while frequency domain analysis can only provide a static 

representation of the speech signal, failing to capture its dynamic temporal characteristics. To 

address these issues, a dynamic frequency spectrum called a spectrogram can be used to 

represent speech features. Spectrograms are three-dimensional plots of time, frequency, and 

amplitude, where the amplitude of the speech signal is indicated by the color intensity or gray 

value of each point on the plot. This representation allows for a comprehensive analysis of the 

time-frequency characteristics of the speech signal, making it a valuable tool for speech 

processing and analysis. 

Spectrograms serve as a vital tool in speech signal analysis, offering a comprehensive 

visualization of how the spectral density of signals evolves over time. Essentially, they portray the 

intensity of various frequencies in a speech signal throughout its duration, effectively capturing 

both its spectral and temporal characteristics. This dual representation is crucial for many 

speech processing tasks, as it helps in distinguishing different phonemes, understanding speech 

rhythms, and identifying various speech artifacts. 
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A crucial component of the spectrogram is the power spectrum, which represents the magnitude 

of the signal's frequencies at a particular time. The power spectrum is derived by computing the 

magnitude of the Short-Time Fourier Transform (STFT) of the signal for that specific time window. 

Mathematically, the power spectrum 𝑆(𝑓, 𝑡) of signal 𝑥(𝑡) can be represented as: 

𝑆(𝑓, 𝑡) = =>𝑥(𝜏)𝑤(𝑡 − 𝜏)𝑒!"#$%&𝑑𝜏=# (2.6) 
Where 𝑤(𝑡) is the window function. 

Power spectra are pivotal in numerous speech processing applications: 

Speech Recognition: The spectral details captured by the power spectrum are often used as 

features in automatic speech recognition systems, aiding in the differentiation of phonemes and 

other linguistic units [22]. 

Speaker Identification: The unique spectral patterns of individuals can be extracted from the 

power spectrum, providing distinctive features for speaker recognition [23]. 

Noise Reduction: By analyzing the power spectrum, unwanted noise components in a speech 

signal can be identified and suppressed, leading to enhanced speech clarity [24]. 

Given the significance of spectrograms and power spectra in speech processing, they serve as 

foundational elements in the development of effective speech enhancement algorithms, 

especially those grounded in deep learning. 

The choice of input features plays a crucial role in determining the effectiveness and precision of 

the supervised speech enhancement system. In speech enhancement, frequency domain 

features are commonly obtained by applying time-frequency decomposition techniques to mixed 

signals. Two of the most popular time-frequency decomposition techniques are the short-time 

Fourier transform (STFT) [25] and the Gammatone auditory filtering model [26]. The 

corresponding spectral features obtained from these techniques are known as the Fourier 

domain features [27][28][29] and the Gammatone domain features [30][31], respectively. These 

features can capture the spectral characteristics of the speech signal and are therefore 

commonly used as input features for speech enhancement algorithms. However, it is important 

to note that the selection of the appropriate time-frequency decomposition technique and 

spectral feature extraction method can significantly impact the performance of the speech 

enhancement system. 

The choice of input features undoubtedly shapes the efficacy of speech enhancement systems. 

While both the short-time Fourier transform (STFT) and the Gammatone auditory filtering model 



 

32 

are prevalent time-frequency decomposition techniques, their suitability varies depending on the 

specific requirements and challenges posed by different speech enhancement tasks. 

STFT (Short-Time Fourier Transform) 

Advantages: The STFT offers a linear frequency resolution, making it suitable for capturing 

harmonic structures in speech, especially in lower frequency regions [32]. It's computationally 

more straightforward and is widely adopted in many speech processing tasks due to its ease of 

implementation and interpretability. 

Drawbacks: However, the fixed resolution of STFT across all frequencies can be a limitation, 

especially when capturing details in higher frequency regions where human hearing is more 

logarithmically spaced [33]. 

Gammatone Auditory Filtering Model 

Advantages: The Gammatone filter simulates the human auditory system's frequency selectivity, 

providing a non-linear frequency resolution that is more in line with human auditory perception 

[34]. This makes it particularly adept at capturing speech nuances that are more perceptually 

relevant. In scenarios where perceptual quality is paramount, such as in hearing aids, the 

Gammatone filter often outperforms linear frequency representations [35]. 

Drawbacks: However, its non-linear representation might not be optimal for all applications, and 

its computational complexity is higher than STFT [36]. 

Comparative Insights: Several studies have shown that while STFT-based features offer a robust 

and general representation, Gammatone-based features tend to provide a more perceptually-

aligned representation, which can be advantageous in specific contexts. For instance, in noise-

robust automatic speech recognition, the Gammatone filter has been shown to outperform STFT, 

especially in highly non-stationary noise environments [37]. However, for tasks like speech 

synthesis or compression, the linear frequency resolution of STFT might be preferred due to its 

computational efficiency and simplicity [38]. 

In conclusion, the decision between STFT and the Gammatone auditory filtering model depends 

heavily on the specific goals of the speech enhancement task. While STFT offers a universal 

representation suitable for a wide range of tasks, the Gammatone model provides a more 

perceptually-relevant representation, especially beneficial in scenarios where the perceptual 

quality of the enhanced speech is of utmost importance. 

The selection of appropriate spectral features plays a crucial role in the performance and 

accuracy of a supervised speech enhancement system. Spectral features can be distinguished 
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based on the size of the modelling unit, which can be either time-frequency (T-F) unit-level or 

frame-level. Due to the computational constraints, most of the existing studies on speech 

enhancement have focused on modelling based on T-F units, where the spectral features of each 

unit are extracted using time-frequency decomposition techniques [39][40][41]. However, recent 

research has shown that frame-level features can better capture the correlation information 

between adjacent time-frequency units and improve the performance of speech enhancement 

systems [42][43]. 

In traditional speech enhancement techniques, processing is often conducted on individual 

time-frequency units. This isolated approach can sometimes overlook the intricate 

interdependencies between these units. Recent advances in the field of deep learning have 

provided insights into the benefits of considering frame-level features, which represent entire 

frames or windows of time-frequency units, as opposed to isolated points. 

Frame-level features offer a more holistic view of the speech signal. By capturing the correlation 

information between adjacent time-frequency units, these features allow a model to account for 

the contextual dependencies that exist in natural speech signals. For instance, in speech signals, 

the energy and frequency characteristics of a given unit are often influenced by its neighboring 

units. By processing on a frame level, systems can leverage this inherent structure of speech to 

make more informed enhancement decisions. 

Several studies have demonstrated the superiority of frame-level features over traditional 

approaches. In a study by Zhang et al. [44], a deep neural network utilizing frame-level features 

achieved significant improvements in both objective and subjective speech quality measures 

compared to systems that only considered individual time-frequency points. Another research by 

Li and Wang [45] revealed that frame-level features could help in capturing long-term temporal 

structures in speech, leading to enhanced clarity and intelligibility. 

These findings suggest that incorporating frame-level features in speech enhancement systems, 

especially those based on deep learning architectures, can lead to more accurate and natural-

sounding enhanced speech. Such an approach not only captures the nuances of the speech 

signal but also aligns better with the way human auditory perception works, wherein context plays 

a pivotal role in deciphering sound. 

In feature extraction, the input features of each time-frequency unit are processed based on ideal 

target masking, which determines whether the unit is dominated by speech or noise based on the 

estimated binary mask output. In frame-level feature extraction, a feature window is set, which 

includes the center frame and several adjacent frames, and all the time-frequency unit targets of 

the corresponding center frame are used as the output of the model. The system then learns a 
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nonlinear regression model to estimate the ideal binary mask. By using the context information 

between speech frequency bands, frame-level features can better exploit the spatiotemporal 

structure information in the spectrogram. Therefore, frame-level features are becoming 

increasingly popular in the research community. 

Amplitude Modulation Spectrogram (AMS) 

One of the key advantages of the amplitude modulation spectrogram (AMS) is that it enables the 

analysis of the time trajectories of each frequency band of the non-logarithmic energy 

spectrogram [46]. This helps to capture important temporal information about the speech signal 

that is not easily captured by other feature extraction methods. To extract AMS features, the input 

signal is first subjected to full-wave rectification. Then, a quarter of the signal is selected for 

windowing and frame pre-processing, typically using a Hanning window for convolution. The 

Fourier transform is then applied to obtain a two-dimensional time-frequency signal, and the 

amplitude spectrum is calculated. Finally, a 15-dimensional AMS feature vector is obtained by 

convolution with 15 triangular windows of varying center frequencies between 15.6 Hz and 400 

Hz. This approach has been shown to be effective in improving the performance of speech 

enhancement systems, particularly in noisy environments where it is important to capture the 

temporal structure of the speech signal in order to accurately separate speech from noise. 

Advantages: 

l Captures both spectral and temporal dynamics of the speech signal. 

l Useful in distinguishing between speech and noise components [49]. 

Disadvantages: 

l Requires additional preprocessing steps. 

l May introduce computational overhead in real-time scenarios. 

FFT-Magnitude [47] 

The Fourier log amplitude spectrum (FFT-Log-Magnitude) is a feature that emphasizes the high-

frequency components of the speech signal, and it is obtained by performing the logarithm 

operation on the Fourier amplitude spectrum. The process of obtaining FFT-Log-Magnitude 

features usually involves framing and windowing of the speech signal, followed by the application 

of the short-time Fourier transform (STFT) to each frame signal. The resulting STFT coefficient is 

then subjected to modulo calculation to obtain the energy, which is then converted to the Fourier 

amplitude spectrum. To emphasize the high-frequency components of the signal, the logarithm 

operation is performed on the Fourier amplitude spectrum, and the resulting feature is called the 

FFT-Log-Magnitude feature. 
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The FFT-Log-Magnitude feature is a commonly used feature in speech signal processing, as it 

captures important frequency information in the speech signal. It is particularly useful for tasks 

such as speech recognition and speaker identification, where the high-frequency components of 

the speech signal can contain important cues for identifying speakers or recognizing speech 

sounds. However, it should be noted that the FFT-Log-Magnitude feature may not be suitable for 

all applications, as it may not capture certain aspects of the speech signal that are important for 

other tasks, such as speech enhancement or speech synthesis. 

Advantages: 

l Offers a detailed frequency perspective of the signal. 

l Computationally efficient and straightforward to implement. 

l Has shown consistent results in preliminary tests and various deep learning architectures 

[48]. 

Disadvantages: 

l Phase information is disregarded, which can be crucial in certain enhancement scenarios. 

l Potential issues with spectral leakage. 

Magnitude and Phase in Speech Enhancement 

In speech enhancement, the selection of appropriate features is pivotal. Two primary features 

commonly used in deep learning-based speech enhancement are magnitude and phase. 

Magnitude, often referred to as amplitude, represents the intensity or size of the speech signal in 

its time-frequency representation. In speech processing, the magnitude is typically derived 

through the Short-Time Fourier Transform (STFT) [50], providing us with the spectral 

characteristics of the signal. For deep learning models, magnitude offers a clear, continuous 

representation, allowing the model to easily learn from it and carry out the enhancement task [51]. 

Phase conveys the position or relative delay of the signal in its time-frequency representation [52]. 

In speech enhancement, while the magnitude contains most of the information related to the 

content of speech, phase remains vital as it provides structural information of the signal. In deep 

learning-driven speech enhancement, the phase of the noisy speech is typically used alongside 

the enhanced magnitude for waveform reconstruction [53]. 

Why Choose Magnitude as a Feature? The magnitude offers models a relatively stable and 

continuous representation, enabling the capturing of more characteristics of speech without 

interference from unnecessary variations [54]. Additionally, compared to phase, magnitude is 

easier for models to handle and learn since it isn't affected by periodic variations [55]. 
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In conclusion, in deep learning-driven speech enhancement, employing magnitude as the input 

feature and using the phase of noisy speech for waveform reconstruction has proven to be 

effective [56]. This strategy merges the continuity of magnitude with the structural information of 

phase, providing a robust framework for improving speech quality and intelligibility. 

Gammatone Frequency Cepstral Coefficient (GFCC) 

In the realm of academic research, the gammatone frequency cepstral coefficients (GFCC) are a 

popular feature extraction method used for speech signal processing. The GFCC features are 

obtained through a series of processing steps. Firstly, a 64-channel gammatone filter is applied 

to the input speech signal to filter out the noise and enhance the useful speech information. Then, 

the filtered signal is resampled at a lower sampling rate of 100 Hz, and the amplitude is 

compressed by taking the cube root to improve the robustness of the features. Finally, the 

discrete cosine transform (DCT) method is utilized to extract the GFCC features, which are 

characterized by a set of coefficients representing the spectral envelope of the speech signal in 

the cepstral domain. Typically, a 31-dimensional GFCC feature vector is used for speech analysis 

applications [13]. This method has been widely studied and has demonstrated good performance 

in various speech enhancement tasks, such as speech recognition, speaker recognition, and 

speech quality evaluation. 

Advantages: 

l Aligns well with the human auditory system's frequency perception. 

l Proven to be effective in noisy conditions, especially when traditional features fail [58]. 

Disadvantages: 

l Computationally more intensive compared to traditional features. 

l Extraction process can be intricate, requiring precise tuning. 

Mel-Frequency Cepstral Coefficient (MFCC) 

Mel frequency cepstral coefficients (MFCCs) are widely used in speech processing as they 

provide a compact representation of the spectral envelope of a sound. The calculation of MFCC 

features begins by framing and windowing the input signal, typically using a 20ms frame length 

with a 10ms frame shift. Different window functions, such as Hamming, triangular, or cosine 

overlapping windows, can be used [57]. Subsequently, the short-time Fourier transform (STFT) is 

used to obtain the energy spectrum of each frame. The resulting energy spectrum is then 

transformed into the Mel domain through a logarithmic operation and a Discrete Cosine 

Transform (DCT) to obtain the MFCC feature. 



 

37 

The Mel-Frequency Cepstral Coefficients (MFCCs) have been a cornerstone in the world of 

speech and audio processing for decades. The significance of MFCCs lies in their ability to 

represent the short-term power spectrum of sound, capturing the phonetically relevant 

characteristics of speech [60]. 

Sensitivity to Additive Noise MFCCs, however, have an inherent sensitivity to additive noise, 

which can degrade their effectiveness, especially in noisy environments. The presence of noise, 

especially non-stationary noise, can introduce significant perturbations in the MFCC feature 

space. This can result in a mismatch between the clean training data and noisy test data in 

speech recognition systems [61]. 

Normalization Techniques: To mitigate the influence of noise on MFCCs, various normalization 

techniques are employed. One widely used technique is Cepstral Mean and Variance 

Normalization (CMVN) [62]. CMVN compensates for channel and noise distortions by normalizing 

the mean and variance of the MFCCs over a given utterance or time window. Another method is 

RASTA (Relative Spectra) filtering, which emphasizes the modulation frequencies relevant to 

speech and de-emphasizes the slower modulation frequencies associated with channel and 

noise variations [63]. 

Relevance in Deep Learning Speech Enhancement 

In the realm of deep learning for speech enhancement, the vulnerability of MFCCs to noise 

becomes especially pertinent. While deep learning models are robust in many ways, the quality 

of input features remains paramount. Some researchers argue that utilizing raw spectrogram or 

alternative features might offer better resilience against noise, especially when using deep neural 

networks [64]. However, the compact and phonetically relevant nature of MFCCs still makes 

them a valuable asset, provided they are processed correctly to counteract noise. 

While MFCCs hold a pivotal position in speech processing, their sensitivity to additive noise 

remains a concern. Through normalization and other preprocessing techniques, their robustness 

can be enhanced, making them suitable for various applications, including deep learning-driven 

speech enhancement. 

Researchers have proposed various modifications to the basic MFCC algorithm to enhance its 

robustness, such as raising the log-mel-amplitudes to a suitable power (e.g., around 2 or 3) 

before applying the DCT, which reduces the impact of low-energy components [59]. Examples of 

the speech waveform, corresponding MFCC spectrogram, and scaled MFCC spectrogram are 

shown in Figure 2.6, 2.7, and 2.8, respectively. 
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 the speech waveform, corresponding MFCC spectrogram, and scaled MFCC spectrogram are 

shown in Figure 2.6, 2.7, and 2.8, respectively. 

 

Figure 2.6 Speech waveform example. The horizontal axis represents time, and the vertical axis 

represents amplitude normalized from -1 to 1. 

 

Figure 2.7 MFCC spectrogram. The horizontal axis represents time, and the vertical axis represents 

Mel frequency. 

 

Figure 2.8 Scaled speech MFCC spectrogram. 

Pitch Based Feature 

Pitch features have been shown to be effective for speech recognition and analysis, particularly 

in noisy signals with or without reverberation. The pitch is a fundamental characteristic of speech 

that is determined by the periodic vibration of the vocal cords [65]. In this project, the magnitude 

is chosen as the input features for the deep learning model. This involves using the Fourier 
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transform to break down the sound wave into its component tones of different frequencies, each 

represented by a sine wave of a different amplitude and phase. The magnitude of each 

component is used as an input feature, while the phase information is discarded. 

However, it has been recognized that the phase information is important for accurately 

reconstructing the waveform, and early studies only focused on magnitude-related training 

targets. This approach limited the upper bound of performance, as the phase of the estimated 

speech deviated significantly from the original signal in the presence of interferences [66][67][68]. 

Recent approaches have been proposed for phase reconstruction, but the neural network 

models remained real-valued. 

After evaluating the various features, for the purposes of this research, Magnitude & Phase was 

chosen as the primary input feature for the deep learning model. Its computational efficiency, 

combined with its detailed frequency representation, offered an optimal balance between 

complexity and performance. Preliminary tests also validated its compatibility and effectiveness 

with the proposed deep learning architectures. In future plans, the phase information will be 

taken into consideration, like [69][70]. One possible approach is to use raw waveform and 

complex-valued features as input features. This will allow the neural network to capture both 

magnitude and phase information, leading to more accurate speech reconstruction. The 

consideration of phase information will help to further improve the performance of the deep 

learning model in speech enhancement. 

Frame-level processing 

As we know that, there are various speech features we can use. Of course, some models like GRN 

[8] mainly adopt the magnitude as the input, and then reconstruct wave by combining with noisy 

phase. But the information of phase is also required to be taken into the consideration while 

training the model. In this case, the complex-valued feature [9] and time-domain frame-level 

feature will be introduced into the proposed models. Furthermore, speech is a non-stationary 

signal, consequently its statistical properties are not constant over time. Therefore, its spectral 

features and other characteristic properties (for example: short-time energy, MFCC etc.) should 

be extracted from small blocks of the signal. This is based on the assumption that is the signal is 

stationary (i.e., its statistical properties are constant within this region) in this small frame. On 

top of it all, frame blocking is often used in real-time systems as it maximizes the efficiency of the 

system by distributing the fixed process overhead across many samples.  

Framing is a fundamental signal processing technique that consists of dividing the original signal 

into blocks often called frames with length 𝑁%  an overlap 𝑀 and a framing hop 𝐻(𝐻 = 𝑁% −𝑀). 
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Overlapping the frames help avoiding information loss between adjacent frames. The framing 

procedure is shown in Figure 2.9. 

 

Figure 2.9 Framming. 

Assuming a signal 𝑆 = 	∑ 𝑥[𝑛]'!!(
)*+ , this can be mathematically formulated as follows: 

𝑆 = 	H𝑋[𝑛]
'!

)*+

= H 𝐹[𝑖]#-!(

.*+

(2.7) 

Where 𝑆: discrete signal, 𝑥[𝑛]: signal samples in time domain, 𝑁/: signal length in samples, 𝑓[𝑖]: 
signal frame, #𝐹 : number of frames. Figure 2.10 intuitively shows the details of frame-level 

processing procedure: the original waveform contains 5 frames (showed by green blocks) and the 

overlap (hop length, showed by yellow blocks) is 1/2 frame length, finally get the framing features 

that will act as input features into models. 

 

Figure 2.10  The details of frame-level processing procedure. 

 

½ frame length

hop  length

Raw waveform =5 frames

Frame-level processing
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2.5 Target and labels 

In some speech enhancement systems, the choice of target plays a critical role in determining 

the model's learning ability and system performance. Typically, the target is computed using pure 

speech and background noise signals. There are two commonly used types of speech 

enhancement targets: time-frequency masked targets and targets estimated based on the 

amplitude spectrum of clean speech. The former type reflects the energy relationship between 

the speech signal and the interference noise in the mixed signal, while the latter type represents 

the amplitude spectrum characteristics of clean speech. Over the years, researchers have made 

significant progress in improving speech enhancement targets and have proposed several new 

enhancement goals that have led to substantial improvements in performance.  

It is worth noting that the choice of target should be made based on the specific application 

requirements and the characteristics of the target environment. For example, if the goal is to 

enhance speech in noisy environments, a target that emphasizes the reduction of interference 

noise may be more suitable. On the other hand, if the goal is to improve speech quality in 

teleconferencing or broadcasting applications, targets that are more closely related to 

perceptual quality may be preferred. Here is a brief summary and introduction of the main speech 

enhancement goals: 

Ideal Binary Mask 

The Ideal Binary Mask (IBM) has been widely used as a primary target in speech enhancement 

systems due to its effectiveness in improving the intelligibility of separated speech 

[71][72][73][75]. The IBM target is essentially a binary function that classifies each time-frequency 

unit of a signal as either speech or noise. To achieve this, the signal is first decomposed into a 

two-dimensional time-frequency domain representation. Then, for each unit in this 

representation, the IBM target is determined based on the ratio of speech energy to noise energy 

in that unit. If this ratio exceeds a certain threshold, the unit is classified as speech-dominant and 

assigned a masking value of 1. Otherwise, it is classified as noise-dominant and assigned a 

masking value of 0. The IBM target function can be expressed as follows: 

𝐼𝐵𝑀(𝑡, 𝑓) = O1,			𝑖𝑓	𝑆𝑁𝑅(𝑡, 𝑓) > 𝐿𝐶0,			𝑒𝑙𝑠𝑒																											 (2.8) 
Where 𝑆𝑁𝑅(𝑡, 𝑓)  represents the local signal-to-noise ratio of the time-frequency unit 

corresponding to the time frame t and frequency 𝑓; IBM(𝑡, 𝑓)	represents the ideal target of the 

time-frequency unit corresponding to 𝑆𝑁𝑅(𝑡, 𝑓)	Masking value; LC stands for the set local 

threshold (in this paper, LC = 0). The set value of this parameter is generally smaller than the 
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signal-to-noise ratio of the mixed signal. The purpose is to obtain a more adequate target speech 

energy spectrum.  

 

Figure 2.11  IBM used in speech enhancement. 

While IBM has shown remarkable performance in speech enhancement, it has certain limitations. 

For instance, it assumes that speech and noise are independent in the time-frequency domain, 

which is not always the case in real-world scenarios. As a result, various modifications have been 

proposed to improve the effectiveness of IBM, including variations that use soft rather than hard 

decision boundaries to determine the masking values. In addition, other targets, such as the 

Minima Controlled Recursive Averaging (MCRA) and Weighted Prediction Error (WPE) targets, 

have been proposed to address some of the limitations of IBM and achieve better speech 

enhancement performance in different contexts. Figure 2.11 shows the IBM used in speech 

enhancement.[76] 

Applications of IBM: 

Speech Separation: IBM has been employed as a foundational technique in computational 

auditory scene analysis to segregate speech from complex auditory scenes [77]. 
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Noise Suppression: In speech enhancement tasks, IBM can provide a binary guide to suppress 

time-frequency regions dominated by noise [80]. 

Limitations of IBM: 

Oracle Information: The construction of an accurate IBM requires a priori knowledge of both the 

clean speech and the noise, which is usually unavailable in real-world applications [81]. 

Binary Nature: The binary approach of IBM can sometimes lead to the removal of speech 

components, especially in regions where speech and noise overlap [82]. 

Temporal Smearing: Due to the time-frequency analysis, IBM can introduce artifacts and 

temporal smearing, affecting the quality of the enhanced speech [83]. 

Performance with Non-stationary Noise: While IBM shows good performance with stationary 

noise, its efficiency reduces with non-stationary noises like babble or traffic noise [84]. 

Given these limitations, while IBM serves as a fundamental benchmark, newer methodologies 

and techniques have been proposed to overcome its constraints. In the context of deep learning, 

for instance, soft masks or ratio masks, which provide a continuous value instead of a binary 

decision, have been explored to offer more refined and nuanced speech enhancement [85]. 

Target Binary Mask (TBM) 

In speech enhancement problems, various targets have been proposed to improve the quality of 

the output speech. Time-frequency masking targets, such as IBM and TBM, have been proved to 

be effective in improving the intelligibility of separated speech. The TBM target is similar to IBM in 

that it is a binary matrix obtained by calculation. However, unlike IBM, TBM uses a fixed reference 

noise (speech-shaped noise) instead of the actual noise to calculate the binary matrix. This 

allows for independent calculation of TBM for interference noise. Retaining spatio-temporal 

structure information in the time-frequency domain of speech signals, TBM is conducive to 

improving speech intelligibility [79]. 

Ideal Ratio Mask 

Wang et al. proposed the ideal ratio mask (IRM) as a soft function in the frequency domain signal 

for the first time, which is sometimes referred to as the ideal proportional mask [78]. Unlike the 

binary masking targets, IRM represents the desired ratio of the clean speech amplitude spectrum 

to the noisy speech amplitude spectrum. The IRM target value is calculated by dividing the clean 

speech spectrum by the sum of the clean speech and noise spectrum. The resulting IRM values 

range between 0 and 1, where 0 indicates that the frequency bin should be entirely masked (i.e., 

noise-dominated), and 1 indicates that the frequency bin should be preserved (i.e., speech-



 

44 

dominated). The IRM is commonly used in speech enhancement problems, and it has been 

shown to be effective in improving the quality and intelligibility of the enhanced speech 

[39][40][41]. Additionally, the IRM can be extended to a multichannel version, such as the ideal 

binary mask (IBM) and ideal amplitude ratio mask (IARM), which have been proven to be effective 

in enhancing speech signals corrupted by multiple interfering sources [42][43][25]. 

𝐼𝑅𝑀(𝑡, 𝑓) = [ 𝑆#(𝑡, 𝑓)𝑆#(𝑡, 𝑓) + 𝑁#(𝑡, 𝑓)\
0 =	[ 𝑆𝑁𝑅(𝑡, 𝑓)𝑆𝑁𝑅(𝑡, 𝑓) + 1\

0 (2.9) 
Where IRM(t, f)  represents the mask value of the time-frequency unit corresponding to time 

frame t and frequency f; 𝑆#(𝑡, 𝑓)	and 𝑁#(𝑡, 𝑓)	respectively represent the speech energy value and 

noise energy of the corresponding time-frequency unit value. 𝛽 is an adjustable parameter used 

to control the range of target values. Wang et al. [74] have found that setting the threshold to 0.5 

results in the best prediction performance for the IRM model, which is similar to the RMS Wiener 

filter. Compared with IBM, the two have their own strengths. The main difference is that the IRM 

target value is continuous, with a value range generally within the interval [0, 1], thus minimizing 

the loss of target speech energy. Figure 2.12 shows the IRM used in speech enhancement.[76] 

 

Figure 2.12  IRM used in speech enhancement. The x-axis typically represents time, while the 

y-axis represents frequency. Each point (or pixel) in the image reflects a ratio value 

ranging from 0 to 1. 
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Complex Ideal Ratio Mask (cIRM) 

The cIRM target [86] is an improvement of the IRM target that takes into account the phase 

information in addition to the energy in the amplitude domain. By considering the phase 

relationship between speech and noise, cIRM can effectively suppress noise and preserve more 

useful speech information, which is particularly important for speech enhancement in complex 

environments with high noise levels. The cIRM target is calculated as the ratio of the clean speech 

spectrogram to the noisy spectrogram in the complex domain. Unlike the IRM target, cIRM is a 

complex function with both magnitude and phase information, which can provide more accurate 

separation of speech and noise. Therefore, using the cIRM target as a training goal can 

significantly improve the performance of speech enhancement systems in terms of speech 

quality and intelligibility, especially in noisy and reverberant environments. 

𝑆	 = 	𝑐𝐼𝑅𝑀	 ∗ 	𝑀	 (2.10) 
Among them, S and M represent the STFT coefficients of pure speech and noisy speech, 

respectively, "*" represents the multiplication operation in the complex domain. According to the 

above formula we can get: 

cIRM =	𝑀1𝑆1 +𝑀.𝑆.𝑌1# + 𝑌.# + 𝑗𝑀1𝑆. +𝑀.𝑆1𝑌1# + 𝑌.# (2.11) 
Among them, 𝑀𝑟 and 𝑀𝑖 represent the real and imaginary parts of the noisy speech M respectively, 

𝑆𝑟 and 𝑆𝑖 represent the real and imaginary parts of the target speech S respectively, and 𝑗 
represents the imaginary unit. Therefore, the obtained cIRM is also a complex number with real 

part cIRM𝑟 and imaginary part cIRM𝑖, namely: 

𝑐𝐼𝑅𝑀1 =	𝑀1𝑆1 +𝑀.𝑆.𝑌1# + 𝑌.# (2.12) 

𝑐𝐼𝑅𝑀. =	𝑀1𝑆. +𝑀.𝑆1𝑌1# + 𝑌.# (2.13) 
In the complex domain, the cIRM𝑟 and cIRM𝑖 estimated by calculation usually exceed the range 

[0, 1], which makes the calculation more difficult. Therefore, it is usually necessary to use the 

sigmoid function or the hyperbolic tangent function for amplitude suppression. Figure 2.13 shows 

the cIRM used in speech enhancement [86]. 
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Figure 2.13  cIRM used in speech enhancement. 

Spectral Magnitude Mask (SMM) 

The SMM target, also known as FFT-MASK, is another widely used target in speech enhancement 

systems, which is calculated based on the short-time Fourier transform (STFT) coefficients of the 

noisy speech and target speech [78]. It is a soft target that reflects the amplitude spectrum ratio 

between the target speech and the noisy speech. The calculation of the SMM target is relatively 

simple, and its formula is as follows: 

𝑆𝑀𝑀(𝑡, 𝑓) = 	𝑚𝑎𝑥 i0, 1 − |𝑆(𝑡, 𝑓)||𝑀(𝑡, 𝑓)|k (2.14) 
where 𝑆(𝑡, 𝑓) and 𝑀(𝑡, 𝑓) represent the amplitude of the target speech and noisy speech amplitude 

spectrum, respectively. Compared with the IBM target, SMM considers both the speech and noise 

energy, and is a continuous function. However, it does not consider the phase information, which 

may affect the performance of the speech enhancement system. Therefore, researchers have 

proposed more advanced targets, such as cIRM, to further improve the system performance. 

Short-Time Fourier Transform Spectral Magnitude, FFT-Magnitude 

FFT-Magnitude, also known as Target Magnitude Spectrum (TMS), is an amplitude spectrum 

estimation-based target that directly uses the amplitude spectrum of pure speech as the ideal 

target for speech separation. Unlike cIRM, it does not consider the phase information. In 

supervised speech separation, the time-domain signal is first windowed and then converted into 

a two-dimensional time-frequency signal using the Short-Time Fourier Transform (STFT) method. 

The amplitude spectrum of the noisy speech is then used to estimate the amplitude spectrum of 

the target speech through the model output. Finally, the phase information is combined using 

inverse transform technology to obtain the time-domain waveform [87]. 
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Since FFT-Magnitude only considers the amplitude spectrum, it cannot guarantee perfect 

separation in complex noise environments, where the phase information plays a crucial role. 

However, it has been shown to be effective in simple noise environments, such as white noise or 

babble noise.  

The Fast Fourier Transform (FFT) is a foundational algorithm in signal processing, and its 

magnitude representation offers a compact and computationally efficient method for describing 

a signal's spectral characteristics. In the realm of speech enhancement, various target 

representations have been proposed, including the Ideal Ratio Mask (IRM), complex Ideal Ratio 

Mask (cIRM), and FFT-Magnitude. 

FFT-Magnitude's appeal lies in its simplicity and computational efficiency. While IRM and cIRM 

provide a more detailed mask for separating speech from noise, they necessitate additional 

computational steps and resources for mask estimation and application [89]. FFT-Magnitude, on 

the other hand, directly represents the spectral amplitude of the speech signal, sidestepping the 

need for intricate mask computations. This directness translates to faster processing times, 

which is especially valuable in real-time applications where computational speed is paramount 

[90]. 

Furthermore, FFT-Magnitude has been employed in various deep learning architectures for 

speech enhancement and has demonstrated promising results in terms of both objective metrics 

and perceptual evaluations [78]. Its widespread adoption in real-time systems can be attributed 

to its balance between computational efficiency and enhancement quality. 

2.6 Waveform resynthesis 

After obtaining the estimated target speech amplitude spectrum, it needs to be combined with 

the phase information of the noisy speech to generate the one-dimensional time-domain 

waveform signal of the separated speech. This is usually achieved through the inverse STFT (ISTFT) 

technique. The ISTFT takes the estimated target speech amplitude spectrum and the phase 

information of the noisy speech to generate the separated speech in the time domain. 

The waveform synthesis process may also involve additional post-processing techniques, such 

as waveform gain adjustment and smoothing, to improve the overall quality of the separated 

speech. Taking IRM as an example, the calculation formula is as follows: 

𝑆(𝑡, 𝑓) = 	𝑀(𝑡, 𝑓) × 	𝐼𝑅𝑀(𝑡, 𝑓) (2.15) 
Where 𝑀(𝑡, 𝑓)	 represents the target speech amplitude spectrum and IRM(t, f) represents the 

characteristics of the mixed signal mask. If the estimated target is IBM, then the result of the 
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above calculation is to retain the corresponding feature unit with a mask value of 1 for the time-

frequency unit. 

Then combined with the phase information in the mixed signal, the spectrum estimate of the 

target speech is calculated according to the following formula: 

𝑆m(𝑡, 𝑓) = 	𝑆(𝑡, 𝑓) × 	𝑒𝑗∠𝑀(𝑡, 𝑓) (2.16) 
Where 𝑆m(t, f) is the reconstructed target speech spectrum and 𝑗∠𝑀(𝑡, 𝑓) is the phase information 

of the mixed signal. 

Finally, after obtaining the estimated target speech amplitude spectrum using the time-frequency 

mask or speech amplitude spectrum, the last step is to use a waveform synthesis technique to 

obtain the one-dimensional time-domain waveform signal of the target speech. The inverse 

transform method is commonly used for this purpose. 

The inverse transform technique used depends on the specific target and processing method. 

The most commonly used inverse transform techniques include inverse Fourier transform and 

inverse gammatone filtering. The inverse Fourier transform is used for targets such as IBM, IRM, 

and NFFT-Magnitude, while inverse gammatone filtering is used for targets such as GF-POW. 

In the inverse Fourier transform method, the estimated target speech amplitude spectrum is 

multiplied with the phase information from the mixed signal's STFT to obtain the complex-valued 

STFT of the target speech, which is then transformed back to the time domain using the inverse 

Fourier transform. In the inverse gammatone filtering method, the estimated gammatone domain 

amplitude spectrum of the target speech is converted back to the time domain using inverse 

gammatone filtering, which involves filtering the estimated spectrum with the inverse 

gammatone filterbank to obtain the time-domain waveform. 

Overall, the choice of inverse transform technique is crucial in determining the quality of the 

separated speech, and it is important to select an appropriate technique based on the target and 

processing method used. 

2.7 Deep learning neural network 

Deep Neural Networks (DNNs) have undeniably revolutionized many domains of artificial 

intelligence, particularly in the realm of auditory signal processing. Their ability to model intricate 

patterns and relationships in data has made them particularly appealing for speech 

enhancement tasks, where the goal often involves isolating clear speech signals from noisy 

backgrounds. 
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Table 2.1 Overview of Research in Neural Networks for Speech Enhancement 

Neural Network Type Key Findings Comments 

Autoencoder [88] Demonstrated efficacy in 

noise reduction 

One of the early 

adaptations of deep 

learning for speech 

enhancement 

RNN [114] Successful handling of 

temporal speech  

Highlighted the importance 

of sequential data modeling 

CNN [151] Effective in identifying noise 

patterns 

Extended the application of 

CNNs beyond image 

processing 

GAN [13] Generated high-quality 

clean speech signals 

Introduced a novel 

approach for speech 

enhancement using 

adversarial networks 

 

2.7.1 The origin and introduction of the deep learning algorithm 

Traditional DNNs consist of multiple layers of interconnected nodes and have demonstrated 

efficacy in various speech tasks. They are particularly adept at handling straightforward mappings 

from noisy to clean speech signals. However, their major limitation lies in their inability to handle 

sequential data, which is essential for capturing temporal dependencies in speech [1]. 

The high fault tolerance and non-linear capabilities of neural networks have made them 

increasingly popular among researchers and widely used in various domains, particularly in 

classification problems. However, it is important to note that all classification tasks rely heavily 

on the quality of the input features. Hence, the ability to extract highly informative and 

representative features from the data plays a critical role in determining the performance of 

artificial neural networks in achieving the desired results. In order to obtain accurate and reliable 

classification results, researchers need to devote significant efforts towards feature extraction 

and selection techniques that can effectively capture the relevant patterns and structures in the 

data. Only by carefully considering the feature extraction process can the full potential of artificial 

neural networks be realized in solving complex classification problems. 
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From an academic perspective, it is important to note that artificial neural networks are highly 

popular among researchers due to their high fault tolerance and nonlinear descriptive ability, 

particularly in classification problems. However, the success of artificial neural networks in 

achieving desired results is highly dependent on the extraction of highly representative data 

features, as classification problems are fundamentally based on features. 

In our daily lives, we are presented with vast amounts of data, and extracting the main features 

from this data is crucial in achieving our goals. This ability to extract features from data is also a 

capability of the brain. Neurological scientists have found that the human brain is layered in its 

approach to receiving external information [78]. For example, in the visual system, the brain can 

recognize external object information not directly dependent on the retina, but rather through the 

information received and processed by the brain. This hierarchical processing of sensory signals 

in the brain greatly reduces the amount of information the nervous system has to handle while 

retaining the most useful information of the original signal, ensuring the brain's ability to quickly 

respond to the external world [91]. 

Inspired by the hierarchical processing of sensory signals in the human brain, it is feasible to 

design neural networks that process raw data hierarchically to extract useful information. In 2006 

[92], Geoffrey Hinton and colleagues proposed a deep learning algorithm that simulates the 

learning process of the human brain through a multi-level neural network, mapping the original 

data and integrating the extracted features into a specific learning framework for classification or 

fitting purposes. The deep neural network originated from a simple perceptron algorithm, which 

is the basic neural unit of the artificial neural network, as shown in Figure 2.14. 

The basic perceptron contains multiple inputs, an adder, an activation function and a output, and 

its operation express is: 

ak	 = 	Hwi ∗ 	xi	 + 	w0	 = 	Hwi ∗ 	xi (2.17) 

yk	 = 	∅(ak) = 	∅(wTx) (2.18) 
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Figure 2.14  The perceptron model. 

Where x denotes input feature vector, w denotes the weight vector, 𝑤0 denotes bias. 

Activation functions play a crucial role in the neural network as they introduce non-linearity to the 

network, which helps in modeling complex relationships between the input and output data. 

There are several commonly used activation functions, such as the threshold function, sigmoid 

function, tanh function, softmax function, rectified linear units function (ReLU), and more. The 

choice of activation function depends on the specific requirements of the application and the 

task. 

For example, in multi-class classification tasks, the softmax function is preferable as it outputs 

the probability distribution of the classes, while in regression tasks, such as speech 

enhancement, the sigmoid function is commonly used as it can map the input to a continuous 

output range between 0 and 1. The selection of an appropriate activation function is crucial to 

ensure the neural network can achieve satisfactory results for specific tasks. 

2.7.2 Deep learning network structure and training method 

The structure of the deep learning algorithm system is a crucial aspect of deep learning and is 

shown in Figure 2.15. This system comprises an input layer, multiple hidden layers, and an output 

layer. The hidden layers are denoted by 𝑆.  (𝑖 = 1,2, …, 𝑁), and their number 𝑁 can be set according 

to the complexity of the problem. The deep learning system can be represented as I ≥ 𝑆( ≥ 𝑆# ≥ ⋯ 

≥ 𝑆) ≥ 𝑂, where I is the input data, and 𝑂 is the output data. This means that after deep network 

learning, the final output data is consistent with the original input data I. 

During the deep learning process, each layer performs a feature mapping of the upper layer, and 

there is no loss of primary information. The output of any layer of the network is the input feature 

map in a multi-level learning process. This hierarchical learning process provides another 

representation of the original data, allowing for a series of hierarchical features to be extracted. 

The deep learning algorithm's core idea is based on the extreme learning machine algorithm, 

which uses the hierarchical features of the input data to learn the mapping relationship between 

the input and output data. This way, we can obtain a series of hierarchical features of the original 

input data, which are then used to learn the complex mappings between input and output. The 

deep learning-based extreme learning machine algorithm is widely used in various fields due to 

its ability to learn complex non-linear mappings from high-dimensional data. 

The deep learning network is known for its strong feature expression mapping ability [93], however, 

its initial development was slow mainly because deep learning training is extremely difficult. The 
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traditional shallow network training methods such as gradient descent algorithms are no longer 

suitable for deep learning networks due to various reasons. Firstly, the gradient descent algorithm 

relies on labelled datasets, which are difficult to obtain in real-life scenarios. Without a sufficient 

sample size, the powerful feature expression ability that deep learning networks aim to achieve 

cannot be realized. Secondly, supervised learning methods such as the gradient descent 

algorithm are easy to train and obtain reasonable parameters for shallow networks with only one 

or two layers, but for deep networks, it is prone to falling into local extremum, leading to a poor 

network effect. Thirdly, when the network's depth is very high, using the back-propagation 

algorithm will make the network weights of the previous layers change slowly, resulting in 

ineffective learning and dispersion of the gradient. Therefore, traditional shallow network training 

methods are not applicable to deep learning networks, and instead, deep learning networks 

employ a new network training method called layer-by-layer greedy training method. 

 

 

Figure 2.15  Deep learning system diagram. 

The idea behind this training method is to train only one layer of the network at a time instead of 

training the entire network simultaneously. This means that the first layer of the hidden layer of 

the network is trained first, followed by the second layer, and so on. After training each layer, the 

previously trained network remains fixed. Each layer of training can use supervised or 

unsupervised training, but in most cases, unsupervised training is preferred. The weight 

parameters obtained by these individual training networks are then used as the initial values of 

the weights of the final network, which is fine-tuned to obtain the final weights. This layer-by-layer 

greedy training method has been proven effective in training deep learning networks and has 

greatly promoted the development of deep learning technology. 
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2.7.3 Deep learning algorithms applied in speech enhancement. 

Long short-term memory recurrent neural networks (LSTM-RNNs) for SE 

Recent studies, such as those by Hefei and Atlanta [94], have underscored the effectiveness of 

Long Short-Term Memory Recurrent Neural Networks (LSTM-RNNs) in speech enhancement. 

Their findings suggest that LSTM-RNNs can yield significant improvements in objective measures 

related to both speech quality and intelligibility [96]. This is particularly notable considering the 

inherent limitations of deep neural networks (DNNs) in some contexts of speech enhancement. 

Specifically, while DNNs offer robust capabilities, they often fall short in capturing the 

interdependencies among adjacent frames in the long-term acoustic context [97]. 

Recurrent Neural etworks (RNNs) address this limitation by leveraging connections between prior 

and current units, effectively capturing long-term contextual information. Consequently, RNNs 

often outperform traditional DNNs in tasks that require the modeling of temporal sequences [98]. 

Figure 2.16 illustrates the fundamental structure of RNNs [99]. 

LSTM-RNNs, a variant of RNNs, have garnered attention in speech enhancement due to their 

adeptness at modeling temporal dependencies within sequential data [99]. Such capabilities 

render them highly effective for tasks like speech recognition, wherein input data comprises a 

time-series of acoustic features. The inherent architecture of RNNs, especially LSTM-RNNs, 

facilitates the processing and retention of temporal information, making them exceptionally 

suited for speech signal processing [100]. Moreover, recent innovations, including bidirectional 

RNNs and attention mechanisms, have further amplified their efficacy in speech enhancement 

endeavors[95]. 

 

Figure 2.16  The basic structure of RNN. 

However, despite its ability to capture long-term context, RNNs are not without their limitations. 

One major challenge arises when updating their hyperparameters with the backpropagation 

algorithm, which can lead to vanishing or exploding gradients [101]. To address this issue, the 
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Long Short-Term Memory (LSTM) RNN architecture was proposed, which incorporates a memory 

cell and various gates (shown in Figure 2.17 [103]) to control information flow. These additions 

allow the LSTM-RNN to effectively mitigate the vanishing and exploding gradient problems 

associated with traditional RNNs. In fact, studies such as Pascans and Mikolov [94] have 

demonstrated that the LSTM-RNN consistently and significantly improves both speech quality 

and intelligibility, particularly in noise reduction at low signal-to-noise ratios (SNRs), 

outperforming traditional DNNs. 

Figure 2.17  The diagram of LSTM. 

Convolutional neural networks (CNNs) for speech enhancement 

In recent years, deep neural networks have been widely used for identifying and removing noise 

from noisy speech. There are two main approaches for achieving this: (1) estimating masks, such 

as ideal binary mask (IBM) and ideal ratio mask (IRM), which can be used to obtain the speech 

spectrum, and (2) directly estimating the clean speech. CNNs have primarily been championed 

for image processing but have found applications in speech enhancement, especially when 

treating spectrogram images. They can capture local patterns and hierarchies in data, making 

them adept at identifying noise patterns in audio signals. Their limitation, however, is their 

insensitivity to global patterns or long-range dependencies. Convolutional models have been 

found to be effective in noise reduction due to their ability to capture the strong temporal 

correlations in speech and their invariance to translational variance caused by different speaking 

styles [102]. 

(1) Convolutional layer: Existing DNN-based enhancement methods typically add a convolution 

layer and a pooling layer between the input layer and the hidden layer to automatically learn 

the deep features hidden in the data. The convolutional layer is responsible for feature 

extraction, and the "incomplete connection, parameter sharing" feature greatly reduces the 

number of network parameters, ensures the sparsity of the network, and prevents overfitting. 

The reason why "parameter sharing" is possible is that the samples have locally related 

characteristics. Suppose that each feature map in the input layer 𝐹𝑖(𝑖 = 1,2, … , 𝐼) is connected 

to multiple feature maps in the convolutional layer 𝐶𝑖(𝑖 = 1,2, … , 𝐽). I and J are the number of 
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feature maps in the input layer and the convolutional layer, respectively. Therefore, the size 

of local weight matrices 𝑤𝑖𝑗(𝑖 = 1,2, … , 𝐼, 𝑗 = 1,2, … , 𝐽) should be I × J. This mapping relationship 

is what we often say about convolution operations, and it has been widely used in the field of 

signal processing. The calculation formula of each node in the convolutional layer is: 

																																											𝑐",3 = 𝜎(𝑏",3 +HH|𝑓.,34)!(𝑤.,",)}
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Where j = 1,2, …, J, m = 1,2, …, M. In the above equation, 𝜎 represents the activation function. 

𝑐𝑗,𝑚 is the m-th unit of the J-th feature map in the convolution layer 𝐶" . 𝑏",3  is the 

corresponding bias of the feature map; M is the number of nodes in the convolution layer 𝐶"  

and 𝑓.,7  is the k-th node in the i-th input feature map; 𝑤.,",) represents the n-th element of the 

weight matrix 𝑤.,"  which is the weight matrix connecting the i-th input feature map and the j-

th input feature map. Whist K is the size of the convolutional kernel and represents the 

number of connections between each feature node in the convolutional layer and the nodes 

in the input feature graph. 

(2) Pooling layer: The pooling layer is an essential component of deep neural networks used in 

speech enhancement. It comprises functions such as MaxPooling and AveragePooling, but 

MaxPooling is more commonly used due to its ability to reduce the size of the convolution 

kernel while retaining corresponding features. It achieves dimensionality reduction by 

operating on several nodes in a local area of the convolutional layer feature map to extract 

main features. Consequently, the pooling layer has the same number of feature maps as the 

convolutional layer but with smaller feature dimensions. Its role in reducing feature 

resolution allows it to generalize the upper layer feature map. This operation is invariant to 

displacement in the time-frequency domain, thereby mitigating the effects of positional 

movement and change. This property is critical in handling different speakers and unstable 

noise environments in speech enhancement. 

The CNN model has demonstrated its capability in applying one-dimensional convolution pre-

processing operation on frame-level features and utilizing the interdependencies among 

adjacent frequency bands in each time frame. The full-time sharing of convolutional layers within 

the CNN network also provides advantages in reducing the number of parameters when 

compared to a DNN network with the same depth. Consequently, it can effectively improve the 

training efficiency of the model. This feature makes the CNN model an ideal candidate for speech 

enhancement tasks where computational efficiency is a key factor. 
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In [102], the CNNs consists of 5 layers, 2 convolutional with a max-pooling layer in-between and 

2 fully connected layers on the top. The corresponding convolutional layer’s size is 5*1 and the 

size of pooling layer is 3*1. The Figure 2.7.5 shows the basic structure of the CNNs  [10]. 

 

 

Figure 2.18  The basic diagram of the CNN. 

2.7.4 Evaluation metrics 

Speech enhancement systems are widely used to improve speech intelligibility and quality in 

various applications, such as teleconferencing, hearing aids, and voice-controlled devices. 

Evaluating the performance of such systems is essential to ensure their effectiveness in real-

world scenarios. In general, two types of evaluation methods are used: subjective and objective. 

Subjective evaluation methods, centered around human perception, remain an indispensable 

tool in assessing the quality of enhanced speech. Often, these evaluations involve a carefully 

selected group of listeners, sometimes including those with hearing impairments, who are asked 

to subjectively rate or judge the quality, clarity, and naturalness of the enhanced speech [104]. 

While it's true that such methods can be time-consuming and may be influenced by varying 

subjective factors, their significance in the speech enhancement domain is undeniable. In fact, 

subjective evaluations are frequently considered the gold standard in speech quality assessment. 

The International Conference on Acoustics, Speech, and Signal Processing (ICASSP) has even 

incorporated them into their challenges, underscoring their importance [105]. 

The strength of subjective evaluations lies in their ability to capture the intricacies of human 

auditory perception. Objective metrics, while valuable, cannot always fully represent the 

nuances of how humans perceive and interpret sound. By integrating feedback directly from 

listeners, researchers and engineers can obtain a richer understanding of the real-world 

applicability and effectiveness of their enhancement techniques. 
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Standards for conducting subjective evaluations, such as the Mean Opinion Score (MOS), have 

been established to ensure consistency and reliability [106]. MOS, in particular, offers a 

numerical indication of the perceived quality of speech, usually on a scale from 1 (bad) to 5 

(excellent). Such standards help in mitigating the potential biases and variations that can arise in 

subjective evaluations, making them a crucial component of comprehensive speech 

enhancement assessment. 

Objective evaluation methods use computer-based algorithms to measure the performance of 

the voice enhancement system. This method compares the original pure signal with the 

separated estimated signal to determine the system's performance using metrics such as 

spectral distance and signal-to-noise ratio. This method is flexible, cost-effective, and widely 

used in practice. 

Objective evaluation methods provide a quantitative measure of the system's performance 

based on mathematical criteria. Common metrics include Signal-to-Noise Ratio (SNR), 

Segmental SNR, Short-Time Objective Intelligibility (STOI) [109] and Perceptual Evaluation of 

Speech Quality (PESQ) [87]. These metrics offer a consistent and reproducible means of 

evaluation, devoid of the variability and biases inherent in human perception. Moreover, objective 

methods can be rapidly deployed, enabling quick comparisons among various enhancement 

techniques. 

The PESQ index is a widely used objective evaluation method that simulates the subjective 

perceived quality of speech. It is designed to model subjective tests commonly used in 

telecommunications and employs true voice samples as test signals. The value range of the PESQ 

indicator is generally between -0.5 and 4.5, with higher values indicating better voice quality [107]. 

To ensure proper application of voice test samples, guidelines are defined in the PESQ 

application guide contained in Recommendation ITU-T P.862.3 [110]. 

Short-Time Objective Intelligibility (STOI) is another commonly used objective evaluation method 

for evaluating speech intelligibility. This popular state-of-the-art speech intelligibility estimator 

relies on the linear correlation of speech temporal envelopes. The algorithm is based on pure 

speech and noise-reduced speech to construct a function for both. The literature [108] has shown 

that the STOI index is highly correlated with the actual human intelligibility of speech. The output 

of the algorithm is a scalar value with a value range of [0,1]. A higher value indicates better 

enhancement and higher intelligibility of the resulting speech. Compared with the subjective 

evaluation method of the human ear, using objective intelligibility to evaluate the quality of noise-

reduced speech can significantly reduce computation time and calculation cost. 
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The selection of multiple objective evaluation indices provides a comprehensive and reliable 

assessment of the performance of the speech enhancement system, which is essential for 

further improvement and optimization of the system. However, while objective measures are 

valuable, they don't always correlate perfectly with human auditory perception. That is, a method 

that scores highly on an objective scale may not necessarily sound better to a human listener. 

This is where subjective evaluation methods, like Mean Opinion Scores (MOS), come into play 

[104]. They incorporate human listeners' judgments, capturing the nuances and intricacies of 

human perception. 

In summary, while objective evaluation methods provide a consistent and bias-free measure of a 

speech enhancement system's performance, they should be used in tandem with subjective 

evaluations to ensure the enhanced speech not only meets mathematical criteria but also aligns 

with human auditory perception. 

2.8 Deep learning theories in speech enhancement 

Speech enhancement is a crucial process that involves removing background noise, isolating 

target speech, and minimizing signal distortion. There are two primary application scenarios for 

speech enhancement: the first is to enhance the voice of multiple speakers, while the second is 

to reduce background noise while preserving the clarity of speech [112][113]. This paper focuses 

on the latter scenario, which is to separate clean target speech from mixed signals with 

interference noise. 

Speech enhancement can be viewed as a classification problem, which has led to the widespread 

use of data-driven methods in this field. In recent years, with the advancement of computing 

power, the performance of voice enhancement systems has been significantly improved by 

increasing the volume of training data. Based on the dependence of the model on prior 

information of the sound source signal, speech enhancement can be divided into two types: 

supervised learning and unsupervised learning. In the unsupervised learning model, the target 

speech signal is unknown, as is the case with blind source enhancement. Enhancement of signal 

sources is mainly based on acoustic characteristics or linear transformation. On the other hand, 

supervised speech enhancement is achieved by learning the nonlinear mapping relationship from 

mixed signals to clean speech, with known target signal sources. Figure 2.19 describes the 

general flow chart of a supervised speech enhancement system. 
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Figure 2.19  Supervised speech enhancement system. 

Figure 2.20 depicts the structural block diagram of a supervised speech enhancement system, 

which consists of several main functions such as speech data synthesis, speech feature 

extraction, model construction, training, and waveform reconstruction. In the data pre-

processing stage, a sufficient amount of pure speech and various types of noise need to be 

collected, and then mixed speech signals are synthesized with a predetermined signal-to-noise 

ratio (SNR). Next, the mixed speech signals are converted into their corresponding time-

frequency representations. Various feature extraction methods are then used to extract the 

necessary feature information from the mixed time-frequency signals, which are used to 

construct the training and testing datasets for the machine learning model. 

The primary output of the machine learning model is the ideal binary masking matrix (IBM) or other 

types of masking matrices. These matrices are mainly calculated from the energy of pure speech 

and noise. Finally, the model is continuously optimized by training and updating the model using 

the predicted masking matrix and the corresponding mixed signal. Mathematical operations are 

then performed to obtain the final processed speech, and the time-domain waveform signal is 

reconstructed using waveform reconstruction methods. 

The proposed supervised speech enhancement system [114] leverages machine learning 

algorithms to learn the nonlinear mapping relationship between mixed signals and clean speech. 

By using a large volume of training data and optimizing the model continuously, the performance 

of the speech enhancement system can be significantly improved. Such systems find 

applications in various scenarios where clean target speech needs to be separated from mixed 

signals with interference noise, including telecommunication, speech recognition, and hearing 

aid devices. 

In their study [111], Mao and Wang proposed a speech enhancement model that directly maps 

from noisy to clean speech in the log-power spectral (LPS) domain. To address the problem of 

vanishing and exploding gradient, the model employs Long Short-Term Memory Recurrent Neural 

Networks (LSTM-RNNs) with input gate, forget gate, output gate, and peepholes. These 

components enable the network to dynamically control the information flow, allowing for 

effective learning and utilization of temporal information in the acoustic context. In their 

Noisy 

speech 

Feature 

extraction 

Enhance 

model 

Enhanced 

speech   

Waveform 

reconstruction 

Cleaned 

speech 



 

60 

approach, the Ideal Ratio Mask (IRM) was selected as the target and Mean Square Error (MMSE) 

was used as the objective function.  

 

Figure 2.20  The structural block diagram of the supervised speech enhancement system. 

2.9 Apply Generative Adversarial Network (GAN) to Speech 

enhancement. 

Generative Adversarial Network (GAN) is a type of generative model that was introduced by 

Goodfellow et al. in 2014 [115]. GAN consists of two main components: the generator G and the 

discriminator D. The generator G aims to generate synthetic samples that are similar to the real 

data samples, while the discriminator D tries to distinguish between real samples and generated 

samples. In other words, the generator and discriminator are trained simultaneously, with the 

discriminator providing feedback to the generator in terms of how realistic the generated samples 

are. 

The GAN framework has been widely used in various fields, such as image processing, natural 

language processing, and speech enhancement, due to its ability to generate high-quality 

synthetic data. One of the main advantages of GAN is its flexibility, as it allows for the generation 

of complex and diverse data. However, one of the challenges of GAN is to find the Nash 

equilibrium between the generator and discriminator, as the optimization process can become 

unstable. Despite this, GAN remains a popular choice for many generative modeling tasks due to 

its powerful and flexible nature. 
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Unlike the aforementioned methods for enhancing speech from noisy to clean/perturbed 

speech/mapping functions to signal-to-noise ratio, generative models for speech enhancement 

focus on learning the prior distribution of clean speech in order to capture temporal or spectral 

features of the speech. The successful application of these algorithms in the field of speech 

synthesis has prompted researchers to explore the potential of generative models in speech 

enhancement tasks. After all, speech enhancement can also be seen as a generative problem, in 

addition to being viewed as a filtering (separation) problem. 

The Generative Adversarial Network (GAN) undoubtedly stands out as one of the most 

remarkable generative models in recent years, drawing attention from the entire deep learning 

community for its remarkable ability to produce highly realistic outputs in the field of computer 

vision. The introduction of GANs into the domain of speech enhancement was pioneered by 

Pascual et al. with their SEGAN [13] model. The motivation behind using GANs can be attributed 

to the limitations of non-GAN models in speech enhancement, as the choice of loss functions 

fails to effectively measure perceptual similarity, which remains a challenge even today. This 

inevitably constrains speech enhancement models within certain boundaries. However, utilizing 

a discriminator to quantitatively discern the similarity between enhanced speech and clean 

speech based on data-driven methods offers compensation for the shortcomings introduced by 

current loss functions. This compensatory approach avoids the dilemma encountered when 

optimizing networks solely based on speech enhancement evaluation metrics, which often only 

result in noticeable improvements in those specific metrics. 

What is the Nash equilibrium? 

Within the framework of game theory, the Nash equilibrium stands as a pivotal concept, offering 

a lens through which the strategic interactions between multiple players in a non-cooperative 

game can be scrutinized. This equilibrium is christened after John Forbes Nash Jr., whose seminal 

contributions to game theory have been universally acknowledged [116]. At the point of Nash 

equilibrium, every player, considering the anticipated strategies of their counterparts, solidifies 

their own strategy. Notably, once this equilibrium is achieved, no player stands to gain by 

unilaterally deviating from their chosen strategy, holding the strategies of others constant [7]. 

In the context of GAN, the generator and discriminator play a non-cooperative game in which the 

generator seeks to generate synthetic data that closely resemble the real data while the 

discriminator tries to distinguish between the real and synthetic data. The two processes are 

optimized iteratively in a way that the generator learns to generate more realistic samples, while 

the discriminator improves its ability to distinguish between the real and synthetic samples. 

Through this iterative optimization process, the GAN seeks to find a Nash equilibrium between 
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the generator and the discriminator, where neither process can improve its performance by 

unilaterally changing its strategy. 

In this minimum- maximum optimization, the optimization objective function of the generator and 

discriminator is: 

min𝑚𝑎𝑥𝐸89'(𝐺, 𝐷) = 	𝐸:~<" [log𝐷(𝑥)] + 𝐸=~<#(%)�log|1 − 𝐺(𝑧)}� (2.20) 
Where, x is the real data sample obeying 𝑃𝑑𝑎𝑡𝑎(𝑥), and G(z) represents the data sample of the 

distribution 𝑃𝐺(𝑧). In this project, it is specifically expressed as a real voice signal and a voice 

signal generated by a generator. Assuming that there is an additional constraint vector y as 

auxiliary information, the generator G(z, y) generates the speech signal under the constraint of y; 

In the same way, the discriminator D(x, y) can also discriminate the voice signal under the 

constraint of y [117], the objective function is converted into: 

									𝑚𝑖𝑛8𝑚𝑎𝑥>𝐸89'(𝐺, 𝐷) = 𝐸:,?~<'()((",+)[𝑙𝑜𝑔𝐷(𝑥, 𝑦)] + 𝐸=,?~<#(",+)[1 − 𝐷(𝐺(𝑧), 𝑦))]								(2.21) 
Actually, the goal of the generator is to ‘deceive’ the discriminator and enable the discriminator 

cannot distinguish between real data and generated data. Therefore, when training the generator, 

we want to minimize this error, and at the same time we try to maximize it for the discriminator. 

The Figure 2.21 shows the general structure of GANs, like [13], applied for the speech 

enhancement. 

 

Figure 2.21  The diagram of the GANs applied for the speech enhancement. 
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2.9.1 The generator 

The left part of Figure 2.21 shows the architecture of the generator used in GAN, which mainly 

comprises an encoder, a decoder, and a sparse layer. As discussed in Chapter 2, convolutional 

neural networks (CNNs) are better suited for learning abstract features in speech compared to 

deep neural networks (DNNs). Hence, CNNs are used as the building blocks for the encoder and 

decoder in the proposed generator. Although increasing the number of CNN layers, such as 

convolutional and pooling layers, can improve performance, it can lead to overfitting and an 

increase in the number of model parameters, resulting in higher training costs. To address this 

issue, a residual network can be introduced, which adds the input and output of a specific layer 

as the input to the next layer of the network (as shown in Figure 2.22). This technique helps to 

speed up the training process [118]. Additionally, the Inception network (shown in Figure 2.23, 

sourced from Inception v2 [120]) can be used to control the total number of parameters in the 

network. This architecture has been shown to improve the utilization of computing resources 

inside the network and has achieved good performance in the ImageNet Large-Scale Visual 

Recognition Challenge 2014 (ILSVRC 2014) [119]. Furthermore, in many cases, it is challenging to 

determine which type of CNN kernel to use. However, the Inception network can combine all 

kernels and concatenate their corresponding results to obtain the final output, leading to better 

performance. 

In our speech enhancement project, the input of the generator is processed/extracted speech 

signal, and the generator will output enhanced speech signal, fed into the followed discriminator, 

which will be introduced next, to make a discrimination. In the past, training deep neural networks 

has been challenging due to high training costs, overfitting, and accuracy issues. However, the 

proposed method addresses these problems by utilizing an inception network and stacking 

various convolutional layers to better capture information across frame levels, leading to 

improved speech intelligibility.  

 

Figure 2.22  The residual network basic structure. 
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Figure 2.23  The basic unit of the Inception network. 

2.9.2 The discriminator 

In this GAN applied in speech enhancement, the generator produces time-frequency features, 

which represent the enhanced speech signal. However, these features are corrupted by the noise 

signal. The discriminator plays a crucial role in distinguishing between true and false speech 

signals, allowing the generator to learn and enhance the target speech signal by reducing noise. 

To achieve optimal performance, the discriminator outputs a value within the range [0,1]. The true 

and false speech signals are determined by a threshold set beforehand. Two types of inputs are 

used: one is the combination of the generator's speech and noisy speech, while the other is the 

combination of the clean speech and the noisy speech. 

To obtain the optimal time-frequency features, the generator and discriminator are iteratively 

optimized, resulting in an estimate of the magnitude spectrum of the target speech signal. By 

combining the phase spectrum of the mixed signal and applying the Inverse Short-Time Fourier 

Transform (ISTFT), the time-domain signal can be reconstructed. 

This method [13] can effectively reduce the negative impact of noise on speech signals, improving 

speech intelligibility in various applications such as speech recognition and hearing aids. 

However, it is important to note that the choice of hyperparameters, such as the threshold for the 

discriminator, can have a significant impact on the performance of the method and should be 

carefully selected and tuned. 
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2.9.3 Existing Generative Adversarial Networks (GANs) Variations for Speech 

Enhancement  

Generative Adversarial Networks (GANs) and their variants have marked a significant 

breakthrough in the domain of speech enhancement (as shown in Figure 2.9.4  [122]). Among 

these, CycleGAN [121] and SEGAN [13] are particularly noteworthy for their innovative 

applications to this field. 

 

Figure 2.24  The GAN for speech enhancement. 

CycleGAN has been heralded for its utility in unsupervised speech enhancement. Unlike 

traditional models that rely on paired examples of clean and noisy speech, CycleGAN ingeniously 

learns a bijective mapping between the clean and noisy speech distributions. This alleviates the 

need for paired examples, making it an attractive option when such paired datasets are scarce or 

unavailable [123]. 

StarGAN, in contrast, offers a multi-domain speech enhancement solution. It possesses the 

unique capability to disentangle domain-specific attributes from domain-independent ones. By 

subsequently recombining these factors, SEGAN can seamlessly transition a speech signal 

across various domains. This versatility is especially crucial when dealing with diverse noise 

environments or when aiming for multifaceted enhancement objectives [124]. 
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The empirical success of both CycleGAN and SEGAN in the realm of speech enhancement is well-

documented. Comparative analyses have underscored their ability to outperform traditional 

methods, particularly in terms of speech clarity and reduction of background noise [125]. 

Apart from SEGAN and CycleGAN, another notable model in the realm of speech enhancement 

utilizing Generative Adversarial Networks (GANs) is the Wave-U-Net architecture proposed by 

Stoller et al. (2018) [126]. Wave-U-Net is a GAN-based neural network designed for speech 

enhancement tasks, specifically focusing on source separation and denoising of audio signals. It 

combines the U-Net architecture with GAN components to enhance the quality of speech signals 

efficiently. 

Additionally, the Parallel WaveGAN model introduced by Yamamoto et al. (2020) [127] is another 

significant advancement in speech enhancement using GANs. Parallel WaveGAN leverages 

GANs for high-quality speech waveform generation while addressing issues such as mode 

collapse and instability often encountered in GAN training. This model has shown exceptional 

performance in generating high-fidelity and natural-sounding speech. 

These models, including Wave-U-Net and Parallel WaveGAN, represent further advancements in 

utilizing GANs for speech enhancement tasks, showcasing their efficacy in improving speech 

quality and addressing noise issues in audio signals. 
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Chapter 3 Generative Adversarial Network in Speech 

Enhancement 

3.1 Background 

In the dynamic field of speech enhancement, the integration of Generative Adversarial Networks 

(GANs) has been a significant milestone, with the SEGAN model by Pascual et al. [47] leading the 

charge. The appeal of GANs arises from the limitations of non-GAN architectures, particularly 

their reliance on loss functions that inadequately capture perceptual fidelity. Traditional loss 

metrics fail to holistically gauge the qualitative aspects of speech, a gap that GANs aim to fill. 

Traditional speech enhancement models are limited by their dependency on loss functions that 

do not effectively measure perceptual similarity— a persistent challenge in the field. This creates 

a measurable discrepancy in performance, as these models are often optimized for specific 

evaluation metrics that do not necessarily translate to perceptibly improved speech quality. 

Against this backdrop, GANs have emerged as a revolutionary approach. By employing a 

discriminator to gauge the likeness between enhanced and clean speech, GANs offer a data-

driven strategy to circumvent the limitations posed by conventional loss metrics. This 

discriminator serves as a judge, ensuring that the enhanced speech not only scores high on 

traditional metrics but also possesses the qualitative attributes of clean, natural speech. 

This chapter examines the application of GANs to speech enhancement tasks, adopting 

alternative deep learning models as generators in place of those used in the SEGAN framework. 

At the same time, we also explored how much performance improvement different deep learning 

models can bring as generators and compared each corresponding model as a baseline model. 

This exploration focuses on using magnitude as opposed to waveform for input and output 

features, which confers the benefits of reduced model complexity and computational demand. 

Such a shift paves the way for more efficient speech enhancement without compromising on 

performance. 

Utilizing magnitudes over waveforms implies a strategic move towards simplicity and efficiency. 

By refining the input and output feature space to magnitudes, researchers have effectively cut 

down on the parameter overhead and computational costs typically involved in handling raw 

waveform data. 

This chapter underscores the novel trajectory that speech enhancement has embarked upon with 

the introduction of GAN-based models. The upcoming experimental chapters will delve into the 
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practical applications of these theoretical advancements and investigate the specific research 

questions pivotal to this exploration. The efficacy, efficiency, and perceptual quality 

improvements offered by magnitude-based GAN models over their waveform-based 

predecessors will be thoroughly analyzed, aiming to set new benchmarks for speech 

enhancement technology. The experiment was carried out using Librispeech (clean speech) in 

conjunction with NoiseX-92 (background noise) datasets, covering a Signal-to-Noise Ratio (SNR) 

range from -2 dB to 6 dB. 

3.2 Methods and structure 

In the realm of audio signal processing, the challenge of enhancing speech, especially amidst 

noisy environments, continues to be an area of profound interest and active research. This 

chapter delves deeply into the potential of Generative Adversarial Networks (GANs) as a solution 

to this challenge. Starting with an introduction to the foundational mechanics of GANs, we 

explore the dynamic interplay between the generator and the discriminator components. 

Through the evolution of GANs, several refined architectures have surfaced, such as DCGAN, 

WGAN, and LSGAN. Each of these variants offers specific advantages tailored to address unique 

challenges in speech enhancement. But our exploration isn't confined to traditional GAN 

architectures. We introduce the Gated Control Neural Network (GCN) into our discourse—a 

model that introduces an added layer of complexity and control to the enhancement process. 

The heart of this chapter is our rigorous experimental process. Here, we evaluate the 

performance of a variety of GAN models, both standalone and in combination with the GCN. 

Through these evaluations, we aim to discern the most effective strategies and configurations for 

speech enhancement. Our results, both in terms of numbers and qualitative observations, 

accentuate the promise and efficacy of our chosen methodologies in the broader context of audio 

signal enhancement. 

3.2.1 Generator 

In Chapter 2, we introduced the use of Generative Adversarial Networks (GANs) in speech 

enhancement, and SEGAN [13] has made significant progress with the advancement of 

Convolutional Neural Networks (CNNs) [129]. GANs have become a new paradigm in speech 

enhancement, with the generator aiming to produce convincing speech by sanitizing the content 

of the original noisy speech, and the discriminator minimizing the difference between clean and 

enhanced speech signals [130][13][65]. 
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However, some GAN-based approaches, such as SEGAN [13], used architectures originally 

designed for computer vision tasks without any modifications for speech features [131]. These 

approaches may not fully capture the global context information of each sample, which is crucial 

for effective noise elimination. In this chapter, we address this issue by incorporating more global 

context information into the generator using a Gated Control Neural Network (GCN). The GCN 

was selected because of its ability to capture long-range dependencies and model interactions 

among features. Our goal is to improve speech enhancement by exploiting the global utterance-

level context, which provides a more comprehensive description of overall speech interpretation, 

while also leveraging local patch-level features, which are more sensitive to noise interference. 

Introduction for Gated Control neural network (GCN) 

In this chapter, motivated by GRN [8], we adopt the Convolutional Encoder-Decoder (CED) 

network as the baseline network, which is illustrated in Figure 3.1. The input feature of the 

network is the magnitude spectrum of the noisy speech, which is characterized by two 

dimensions of time (frame) and frequency. The network outputs the enhanced speech magnitude 

spectrum, and by combining it with the phase of the noisy speech, we can reconstruct the 

enhanced speech waveform. In general, the network can be roughly divided into three layers, 

namely the encoding layer, the middle layer and the decoding layer. The structure and function of 

each layer are as follows: 

Encoder: As for the encoder layer, it comprises of 5 two-dimensional convolutional layers, as 

depicted in Figure 3.1. Each layer is made up of a 2D-Convolution operation, batch normalization 

(BN) layer, and exponential linear unit (ELU) activation function. Specifically, the feature map 

undergoes 2D convolution, followed by batch normalization, and finally activation via the ELU 

function. The BN layer performs operations such as data normalization to satisfy the assumption 

of independent and identical distribution, which facilitates faster convergence and prevents 

gradient explosion, as confirmed by research [132]. Moreover, ELUs are applied to all 

convolutional and deconvolutional layers, except for the output layer, as they have been 

demonstrated to lead to faster convergence and better generalization than ReLUs [128]. By 

employing 5 layers of 2D-Convolution, the encoder layer extracts the magnitude spectrum 

features of speech in a hierarchical manner. After each convolution operation, the feature map 

remains unchanged in the time dimension, halved in the frequency dimension, and doubled in 

the number of channels. Importantly, the feature map outputted by the encoder layer is 

consistent with the input feature in the time dimension, enabling the model to handle speech of 

arbitrary length (frame length) with better real-time processing capabilities. 

Middle layer: In this section, we will discuss the middle layer of the network architecture used in 

the study. The middle layer contains two one-dimensional convolutional layers, each consisting 
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of a one-dimensional convolution operation, a BN layer, and an activation function called 

LeakyRelu (LRelu). The convolution kernel used in the one-dimensional convolution has a stride 

of 1 for all dimensions. Before the convolution operation, the two-dimensional output generated 

by the encoder is reshaped to reduce the dimensionality so that it meets the input requirements 

for the one-dimensional convolution. Similarly, the output of the middle layer needs to be 

adjusted to restore its dimension. 

 

 

Figure 3.1 Speech enhancement flow chart based on CED network. 

The main role of the middle layer is featuring transfer. In previous studies, such as[114], the 

middle layer was implemented using LSTM (long short-term memory) units. LSTM [103] is a 

specific type of recurrent neural network (RNN) that incorporates a memory cell and has been 

shown to be successful in modeling temporal dependencies in various applications such as 

acoustic modeling and video classification. However, in this study, the one-dimensional 

convolutional layers with BN and Relu activation functions were found to be effective in 

transferring features between the encoder and decoder layers. 

Decoder layer: The decoder layer comprises of five two-dimensional deconvolution layers. Each 

layer includes two-dimensional deconvolution (2D-Deconv), a batch normalization (BN) layer, 

and an exponential linear units (ELU) activation function. The 2D-Deconv layer can be viewed as 

the inverse process of 2D-Conv, and it restores the position information of the feature map by 

adjusting the convolution step size. Moreover, we feed the feature map of the encoding layer to 
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the decoding layer of the same dimension and double the number of channels of the feature map 

of the corresponding decoding layer through channel splicing. This operation helps to restore 

fine-grained feature information during the decoding process. 

Gate control unit 

The primary role of the one-dimensional convolutional layer in the middle is to transfer features. 

This means that the encoder layers' output is passed as input to the decoder layers, resulting in 

limited processing capability of sequence information. Therefore, we employ a gating mechanism 

to handle the one-dimensional information flow. Previous studies used RNN-based gating 

mechanisms to process sequence information, such as LSTM and Gate Recurrent Unit. However, 

these models faced the challenges of poor parallelism and a significant amount of computation. 

To address the issues mentioned above, we utilize a fully convolutional gate control unit (GCU) 

[133]. As shown in Figure 3.2.2, the GCU gating unit significantly reduces network training 

parameters, possesses excellent parallelism, and effectively transmits information. It is crucial 

to note that the GCU's middle layer has two activation functions, namely linear activation and 

Sigmoid. The linear activation function provides a linear path for gradient backpropagation to 

mitigate the problem of gradient vanishing. Sigmoid is utilized to maintain the nonlinear 

characteristics of the network, with a value range of 0 to 1. Through this activation function, we 

can focus on the necessary speech features and ignore irrelevant ones. For instance, if the input 

feature is 𝑖𝑛𝑝, the activation value multiplies with 𝑖𝑛𝑝, resulting in the output. Since the activation 

function value ranges from 0 to 1, the input selectively remains as the output (expressed by 

equation 3.1). 

𝑜𝑢𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑖𝑛𝑝) (3.1) 
In summary, the one-dimensional convolutional layer in the middle of the model is mainly 

responsible for feature transfer, leading to limited processing capability of sequence information. 

To overcome this limitation, we adopt a gating mechanism, the GCU. Compared to previous RNN-

based gating mechanisms (shown in Figure 3.2), the GCU significantly reduces network training 

parameters, possesses excellent parallelism, and effectively transmits information. The GCU's 

middle layer contains two activation functions, linear activation, and Sigmoid, which work 

together to maintain the nonlinear characteristics of the network and address the problem of 

gradient vanishing. Overall, the GCU can selectively retain the essential speech features and 

ignore irrelevant ones.  

𝑆@4( = 𝜎(𝑊@ ∗ 𝑆@ + 𝐵@) ⊙ (𝑉@ ∗ 𝑆@ +𝐻@) (3.2) 
𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝜎) = 11 + 𝑒: (3.3) 
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Figure 3.2 Gate linear unit. 

Where 𝑆@4( and 𝑆@  represent the output feature of 𝐿 + 1AB  and 𝐿AB  layer, respectively. 𝑊@, 𝑉@, 𝐵@, 

𝐻@  represent weights and bias of each layer. σ, * are sigmoid activation function and convolution 

function. And then get 𝑆@4( by element-wise dot product. 

In the middle layer of the model, a one-dimensional dilated convolution is applied to process the 

speech input. One-dimensional dilated convolution offers advantages over the one-dimensional 

ordinary convolution due to its ability to capture a larger receptive field [134], as illustrated in 

Figure 3.3. The receptive field typically grows exponentially, which allows for the convolution 

process to extract more contextual information from the speech input. As a result, the model can 

better capture the dependencies between different elements in the input sequence, enabling it 

to mine more informative speech features. This feature extraction mechanism is crucial for the 

model's ability to accurately capture speech patterns and make predictions. 
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Figure 3.3 (a) traditional 1-D convolution; (b)1-D dilated convolution. 

Gate control residual block 

The use of deep neural networks has brought significant improvements to various applications, 

including speech enhancement. However, deep neural networks often suffer from overfitting and 

gradient vanishing or explosion, leading to poor performance. To address these issues, 

researchers have proposed using residual networks, which can improve the accuracy of the 

model and prevent overfitting, as well as gated control units (GCUs), which can better capture 

dependencies between features. 

To further enhance the performance of speech enhancement models, we combine these 

techniques and introduce a dimensionally dilated convolution to create a gated residual unit 

(GRU). The structure of the GRU is shown in Figure 3.4. Different from the gated unit in GRN [8], 

shown in Figure 3.5, our proposed gated residual module contains a parallel path: Residual 

output as well as skip connection, which can extract more speech granularity. The gated residual 

module contains four convolutional layers, with the upper half replacing the two one-dimensional 

convolutions in the GCU with one-dimensional dilated convolutions. The convolution kernel size, 

stride, and number of output channels are set to 5, 1, and 128, respectively. The lower part of the 

module consists of two parallel one-dimensional ordinary convolutional layers with a convolution 

kernel size, stride, and number of output channels of 1, 1, and 128, respectively. The GRU 

produces both a residual output and a skip connection output, allowing for the integration of the 

extracted features from corresponding layers into the final prediction. 
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Figure 3.4  The proposed gate control residual block. 
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Figure 3.5 The middle gate unit in GRN. 

Since the number of channels of the input and output of the module is the same. Suppose 𝑠 is the 

input of the network, and the output 𝐹(𝑠) is the output through multiple hidden layers, then the 

residual output is 𝑠 + 𝐹(𝑠). After the two one-dimensional ordinary convolution layers, the BN 

layer and the activation function LeakyRelu (LRelu) are also added to ensure that the output 

features of the module still satisfy the independent and identical distribution assumption and 

maintain the nonlinear characteristics of the network. It is worth noting that the two parallel 

dilated convolutional layers in the module use the same dilation rate. By stacking gated residual 

modules and gradually increasing the dilation rate, the purpose of expanding the receptive field 

can be achieved. 

Based on the baseline convolutional encoder and decoder network, we introduce the gated 

residual module constructed above into the middle layer of the network and obtain a gated 

residual convolutional encoder and decoder network, whose network structure is shown in Figure 

3.6. In the middle layer of the network, a gated residual network is formed by stacking a set of 

gated residual modules with an expansion rate r up to a certain maximum coefficient of 2). This 

structure can significantly improve the receptive field with a small number of parameters, and at 

the same time improve the processing ability of the model to sequence information and pay more 

attention to the temporal features. In addition, skip connections are used in the gated residual 

network, which allows the network to incorporate (Add) features extracted from the 

corresponding layers into the final prediction. It is worth noting that, inspired by [135], we 

implement ISTFT through convolutional layers, so that time-domain enhanced speech can 

participate in network training. Moreover, the phase of the original time-domain speech can 
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compensate for the noisy speech phase and reconstruct a more accurate time-domain enhanced 

speech. 

In Table 3.1, we give the specific parameter settings of the network model. On the whole, the 

network input and output feature dimensions are 𝑇 ∗ 256, where T represents the time frame, 256 

represents the frequency dimension, and the third dimension represents the number of feature 

map channels. Among the hyperparameters, 𝑘  is the size of the convolution kernel, 𝑠  is the 

convolution stride, 𝑐 is the number of output channels, and 𝑅 is the dilation rate. Since the input 

and output dimensions of the gated residual module remain unchanged, it has good portability, 

and the number of modules can be added according to the model requirements. In this 

experiment, the gated residual network in this paper is composed of 20 gated residual modules, 

which are obtained by superimposing 4 groups of gated residual modules with expansion rates 𝑅 

of 1, 2, 4, 8, and 16, respectively. 

To obtain the optimal network model, an appropriate loss function is selected for training. The 

enhanced speech magnitude spectrum is then obtained through network mapping. By taking 

advantage of the human ear's insensitivity to phase information, the time-domain enhanced 

speech is obtained through phase reconstruction of the noisy speech. 

 

Figure 3.6  Speech enhancement flow chart based on gated control network. 
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Table 3.1 Network parameters. 

Layer name Input size Output size Hyperparameters 

Reshape1 T*256 T*256*1  

Encoder layer1 T*256*1 T*128*4 k = 1*3; s = 1*2; c = 4 

Encoder layer2 T*128*4 T*64*8 k = 1*3; s = 1*2; c = 8 

Encoder layer3 T*64*8 T*32*16 k = 1*3; s = 1*2; c = 16 

Encoder layer4 T*32*16 T*16*32 k = 1*3; s = 1*2; c =32 

Encoder layer5 T*16*32 T*8*64 k = 1*3; s = 1*2; c = 64 

Reshape2 T*8*64 T*512  

1D_conv1 T*512 T*256 k = 1; s = 1; c = 256 

Gate control 

residual block 

(Add) 

T*256 T*256 R = 1, 2, 4, 8, 16; 

k_residual = 5; k_skip = 1; s = 1; 

c = 256 

1D_conv2 T*256 T*512 k = 1; s = 1; c = 512 

Reshape3 T*512 T*8*64  

Decoder layer5 

(concat×2) 

T*8*128 T*16*32 k = 1*3; s = 1*2; c = 32 

Decoder layer4 

(concat×2) 

T*16*64 T*32*16 k = 1*3; s = 1*2; c = 16 

Decoder layer3 

(concat×2) 

T*32*32 T*64*8 k = 1*3; s = 1*2; c = 8 

Decoder layer2 

(concat×2) 

T*64*16 T*128*4 k = 1*3; s = 1*2; c = 4 

Decoder layer1 

(concat×2) 

T*128*8 T*256*1 k = 1*3; s = 1*2; c = 1 

Reshape4 T*256*1 T*256  

 

 



 

78 

Long-term memory unit applied into the GCN 

This paper also proposes a novel topology called Gated Control U-Network (GCU-N) to model 

compressed complex features, which is inspired by the U-Net architecture [136]. GCU-N, as 

shown in Figure 3.7, consists of two four-layer U-net units, serving as an encoder and a decoder, 

respectively. This design allows the network to capture dynamic long-term context information, 

enabling it to extract both global and local information more effectively. The middle layer of GCU-

N employs the same GCN structure mentioned earlier. 

GCU-N's multi-scale feature representation from each layer makes it possible to have a deep 

structure while still being computationally efficient and memory-cost-effective. Each layer in the 

U-net units includes 2D-convolution, batch-normalization, the activation function (ELU), and 2D-

deconvolution. The first layer of Conv2D and the last layer of DeConv2D have a kernel size of (2, 

5), while the rest of the layers use a kernel size of (2, 3). The number of channels is set to 64, and 

the stride is (1, 2) in all layers. 

To train the GCU-N model, an appropriate loss function is selected to obtain the optimal model. 

Once the model is trained, the enhanced speech amplitude spectrum is obtained through 

network mapping. As human ears are insensitive to phase information, the time-domain 

enhanced speech is obtained by using phase reconstruction on the noisy speech. 

 

Figure 3.7 Structure diagram of the proposed GCU-N. The main architecture of this model like 

Encoder-Decoder, where each layer consists of residual units. 
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3.2.2 Discriminator 

The discriminator is a crucial component of the proposed model, and its structure is composed 

of two discriminator blocks, as illustrated in Figure 3.8. Each discriminator block comprises of 

five layers that utilize 1-dimensional convolution (Conv1D), batch normalization to prevent 

gradient vanishing or exploding, and the activation function LeakRelu (LRelu), as shown in Figure 

3.9. The kernel size, number of channels, and the strides of each layer are specified in Table 3.2. 

The discriminator's primary purpose is to distinguish between real and fake speech signals, 

thereby providing feedback to the generator network. Specifically, the discriminator generates an 

output by computing the final layer output of each discriminator block and the feed-forward layer 

output. By comparing the output with the ground truth, the generator network is updated to 

produce more realistic speech signals. 

Table 3.2 The hyperparameter setup of each discriminator block 

Layer name hyperparameters 

Layer1 kernel_size = 8, strides = 1, channels = 16 

Layer2 kernel_size = 8, strides = 2, channels = 64 

Layer3 kernel_size = 8, strides = 2, channels = 256 

Layer4 kernel_size = 4, strides = 2, channels = 64 

Layer5 kernel_size = 2, strides = 2, channels = 1 
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Figure 3.8 The diagram of the discriminator block.          Figure 3.9  The discriminator. 

3.2.3 Loss function 

To optimize the network model, the mini-batch gradient descent method is utilized in this study. 

The choice of loss function is a critical aspect of training the network to obtain the optimal results. 

In this work, the time domain loss function is employed as it can better emphasize the time-

frequency related features of speech. The time domain loss is calculated at the output of the 

decoding layer, and the mean absolute error function (MAE) is used as it has been shown to 

improve performance in previous studies [112]. The MAE-based expression for the time domain 

loss function is presented below: 

𝐿C9D = 1𝑀H�𝑆)�− 𝑆)�
C

)*(

(3.7) 

Where ‖. ‖ denotes the absolute value of vector, 𝑆)  and 𝑆)�  represent the amplitude spectrum 

vectors of the original speech and the enhanced speech of the 𝑛AB  frame, respectively. M is the 

batch size in the training period. Since the calculation formula of the speech objective evaluation 

index is different from the network training loss function, there may be a problem of mismatch 

between the loss function and the evaluation index, that is, when the loss function drops to a 
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certain level, some evaluation indexes may not continue to change [113]. To address the issues 

mentioned above, this study proposes the use of a speech evaluation index as the network loss 

function, which can further enhance the performance of speech enhancement. Specifically, 

based on the findings in literature [137], the Scale-Invariant Signal-to-Distortion Ratio (SI-SDR) is 

chosen as the training function of the network. This objective index has been shown to 

significantly improve the quality of enhanced speech. The SI-SDR is a measure of the ratio 

between the energy of the target speech signal and the energy of the distortion, which includes 

noise and artifacts. It is scale-invariant, which means that it is insensitive to changes in the 

amplitude of the signals. By optimizing the network to maximize the SI-SDR, the model can 

effectively reduce the distortion in the output speech signal, leading to improved speech quality 

and intelligibility., and the formula for calculating SDR is: 

𝑆𝐼 − 𝑆𝐷𝑅 = 10 log(+ � ‖𝑎𝑆)‖#
�α𝑆) − 𝑆)��#� (3.8) 

𝑆) and 𝑆)� represent the original speech and the enhanced speech of the 𝑛AB  frame, respectively. 

α is the weighting factor of pure speech, the calculation formula is: 

α = arg𝑚𝑖𝑛E �α𝑆) − 𝑆)��# = 𝑆)�F𝑆)	‖𝑆)	‖## (3.9) 
So, the optimized SI-SDR function is: 

𝐿G6!G>H =	−𝑆𝐼 − 𝑆𝐷𝑅 = − 1𝑀H10 log(+ [ 𝑆)F𝑆)�
𝑆)F𝑆)�𝑆)�F𝑆) − 𝑆)F𝑆)�\

C

)*(

(3.10) 

𝐿G6!G>H  is calculated using frequency domain signals. At the same time, we jointly optimize MAE 

and SI-SDR, and the final network optimization function is (Joint): 

𝐿"I.)A =	𝐿C9D + 𝐿G6!G>H (3.11) 
3.3 The network gradient is updated by minimizing the optimization 

function and the error is passed to each layer of the Data 

processing 

In real-world scenarios, sound signals are often contaminated by various types of noises during 

the transmission process. As a result, the signals captured by recording equipment often contain 

mixed signals from multiple sources, including ambient noise, other speakers' sounds, echoes, 

and reverberations. To simulate such scenarios, speech and noise samples are first selected 

from a corpus and a noise database, respectively, and are mixed at different signal-to-noise ratios 
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(SNRs) to create a pre-mixed signal dataset. Before mixing, a fixed sampling rate is used to 

resample the signals, ensuring that the sampling frequency of speech and noise remains 

consistent. Typically, the sample rate is chosen as 8 kHz or 16 kHz. The 8 kHz sample rate is 

suitable for telephone and encrypted walkie-talkie, wireless intercom, and wireless microphone 

transmission, providing adequate quality for human speech without sibilance. The 16 kHz sample 

rate, on the other hand, provides wideband frequency extension over standard telephone 

narrowband 8,000 Hz and is commonly used in modern VoIP and VVoIP communication products 

错误!未找到引用源。. Figure 3.10 displays time-domain waveform diagrams of pure speech, 

noise, and mixed signals obtained when noise and speech are superimposed at a signal-to-noise 

ratio of 0 dB. 

Speech signals are usually collected as digitized time series, which exhibit time-varying 

fluctuations. Speech features and related parameters also vary over time due to this time-varying 

characteristic. However, the generation mechanism of speech involves human oral movements 

that cause changes in the shape of the channel. The frequency of these movements is much lower 

compared to the vibration frequency of speech, resulting in the speech signal being almost 

stationary and unchanged over short periods. Therefore, analysis and processing of speech 

signals can be carried out by treating them as a combination of multiple short-term stationary 

signals. 

The pre-processing of speech signals involves three main steps, namely pre-emphasis, framing, 

and windowing. Pre-emphasis aims to increase the high-frequency spectrum in the speech signal, 

which corresponds to smaller components, so that it becomes relatively flat. This facilitates the 

use of the same bandwidth from low to high frequency for spectrum analysis and acoustic feature 

extraction. After pre-emphasis, the voice signal is windowed and framed with a frame length of 

20-40ms [139]. In this study, a frame length of 32ms is chosen. 

Besides that, we also need to compress input speech signals, like complex-value domain or 

magnitude. 

𝑌 = |𝑌I|J𝑒"K, = 𝑌3𝑒K, = 𝑌1 + 𝑗𝑌. (3.12) 
Where 𝑌3, 𝑌L, 𝑌1 	𝑎𝑛𝑑	𝑌.  denote the magnitude, phase, real and imaginary components of the 

compressed spectrogram, respectively. 𝐶 is the compression exponent ranging from 0 to q, here 

we follow [142] to set 𝑐 = 0.3 . The power-law compression of the magnitude equalizes the 

importance of quieter sounds relative to loud ones, which is closer to human perception of sound 

[143][144]. 
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Figure 3.10  Waveforms of original signal, pink noise signal and the mix signal. 

The overlap between two adjacent frames is called frame shift. In general, the ratio between 

frame shift and frame length is set about 0.5 [140][141][9]. Framing is implemented by a method 

of moving weighting with a window function of limited length (shows in Figure 3.11), which can be 

expressed as a convolution symbol as follows: 

𝑆𝑤(𝑛) = 	𝑆(𝑛) ∗ 	𝑤(𝑛) (3.13) 
In the above formula, 𝑆(𝑛) represents the original speech signal, 𝑤(𝑛) is the window function, and 

𝑆𝑤(𝑛) is the windowed speech signal. Common window functions of speech signal processing 

are mainly rectangular windows and Hanning windows, where the expression of the rectangular 

window is as follows (where N is the frame length): 

𝑤(𝑛) = O1	, 0	 ≤ 	n	 ≤ 	 (N	 − 	1)0, 𝑒𝑙𝑠𝑒 (3.14) 
The expression of the Hanning window is as follows: 

𝑤(𝑛) = �0.54	 − 	0.46	cos	( 2𝜋𝑛𝑁 − 1)	, 0	 ≤ 	n	 ≤ 	 (N	 − 	1)
0, 𝑒𝑙𝑠𝑒 (3.15) 
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Figure 3.11  The diagram of window function on signal. 

3.4 Experiment implement 

The LibriSpeech dataset [147], which is a corpus of more than 100 hours of read speech, based 

on LibriVox's public domain audio books, is used to evaluate all models. For training, three types 

of noise from NoiseX-92 [145], i.e., 'pink,' 'volvo,' and 'babble,' are utilized to generate 100,000 

noisy utterances at different SNRs uniformly sampled from {-2dB, 0 dB, 2 dB, 4 dB, 6 dB}. For 

testing, 1000 utterances for 'pink,' 'babble,' and 'volvo' are generated at SNRs of -2dB, 0 dB, 2 dB, 

4 dB, 6 dB for both types of noise. For training dataset, we use train-clean-100 as pure speech. 

While the dev-clean was used for testing dataset. 

In order to ensure consistency and comparability, all utterances in this experiment were 

resampled at 16 kHz. To segment the utterances, a sliding window of 32 milliseconds (512 

samples) with a 16 milliseconds (256 samples) overlapping was used. The input feature in this 

experiment is magnitude formatted as (Batch × Time_steps × Feature_maps) to facilitate analysis. 

The initial learning rate was set to 0.001, and was adjusted as the epoch increased, for instance, 

it was set to 0.0001 after the 5th epoch. 

To train the models, the Adam optimizer [146] was utilized with a batch size of 8, and the network 

was trained over 5 epochs on 2-second-long segments. Tensorflow2 was employed to develop all 

models, and its default settings for initialization were adopted. To carry out the training process, 

one NVIDIA RTX 2060 super 6GB GPU was used, and the training process took approximately 6 

hours. 

In this experiment, three different models were trained, namely GAN, GCN and GCU-N. 

Afterwards, comparisons were made among the three models, and relevant analyses were 

conducted. 

3.4.1 Results 

In this study, two widely used metrics, short-time objective intelligibility (STOI) [109] and 

perceptual evaluation of speech quality (PESQ) [87], are employed to evaluate the performance 

of the proposed speech enhancement models. STOI measures the similarity between the 

enhanced speech and the clean speech in terms of their short-time segments, with a typical 
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range between 0 and 1, where a higher score indicates better speech quality. PESQ, on the other 

hand, is designed to evaluate the overall perceptual quality of the enhanced speech, which varies 

between -0.5 and 4.5, with a higher score indicating better quality. 

To assess the performance of the proposed models, we present the PESQ and STOI evaluation 

results of the GAN, GCN and GCU-N models under matched noise conditions. As shown in the 

figures below, we evaluate the models at each signal-to-noise ratio (SNR). The results 

demonstrate that the proposed models can effectively enhance the speech quality, as indicated 

by the increased STOI and PESQ scores. 

 

Figure 3.12   The experimental results of proposed GAN under ‘pink’ noise conditions for STOI 

and PESQ. 

The performance of GAN, GCN, and GCU-N models were evaluated under the ‘pink’ noise at 

SNRs of -2dB, 0 dB, 2 dB, 4 dB, and 6 dB. The median STOI values for GAN at these SNRs were 

0.95, 0.96, 0.97, 0.98, and 0.98, respectively (as indicated by the yellow line in each box of the box 

plots). 

Similarly, the median PESQ values for GAN under the ‘pink’ noise at the same SNRs were 2.46, 

2.61, 2.75, 2.87, and 2.97, respectively (as indicated by the yellow line in each box of the box plots). 

 

Figure 3.13  The experimental results of proposed GAN under ‘volvo’ noise conditions for 

STOI and PESQ. 



 

86 

The GAN model was evaluated under the ‘volvo’ noise at various SNRs (-2dB, 0 dB, 2 dB, 4 dB, 6 

dB) using the short-time objective intelligibility (STOI) and perceptual evaluation of speech quality 

(PESQ) as the final evaluation metrics. The median STOI values (represented by the yellow line in 

each box) for GAN were found to be 0.98, 0.99, 0.99, 0.99, and 0.99 respectively for SNRs of -2dB, 

0 dB, 2 dB, 4 dB, and 6 dB. 

Similarly, the median PESQ values (represented by the yellow line in each box) of GAN were found 

to be 2.61, 2.76, 2.88, 2.99, and 3.09 respectively for SNRs of -2dB, 0 dB, 2 dB, 4 dB, and 6 dB 

under the ‘volvo’ noise. These results demonstrate the effectiveness of the GAN model in 

improving the quality of speech under different levels of noise. 

 

Figure 3.14  The experimental results of proposed GCN under ‘pink’ noise conditions for STOI 

and PESQ. 

The median STOI values (the yellow line in each box) of GCN under the ‘pink’ noise at SNRs of -

2dB, 0 dB, 2 dB, 4 dB, 6 dB are 0.96, 0.97, 0.97, 0.98, 0.98 respectively. The median PESQ values 

(the yellow line in each box) of GCN under the ‘pink’ noise at SNRs of -2dB, 0 dB, 2 dB, 4 dB, 6 dB 

are 2.61, 2.75, 2.88, 3.00, 3.13 respectively. 

 

Figure 3.15  The experimental results of proposed GCN under ‘volvo’ noise conditions for 

STOI and PESQ. 

The median STOI values (the yellow line in each box) of GCN under the ‘volvo’ noise at SNRs of -2dB, 

0 dB, 2 dB, 4 dB, 6 dB are 0.98, 0.98, 0.99, 0.99, 0.99 respectively. The median PESQ values (the yellow 
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line in each box) of GCN under the ‘volvo’ noise at SNRs of -2dB, 0 dB, 2 dB, 4 dB, 6 dB are 2.76, 

2.94, 3.09, 3.22, 3.33 respectively.  

 

Figure 3.16  The experimental results of proposed GCN under ‘babble’ noise conditions for 

PESQ and STOI. 

The median PESQ values (the yellow line in each box) of GCN under the ‘babble’ noise at SNRs of 

-2dB, 0 dB, 2 dB, 4 dB, 6 dB are 2.49, 2.61, 2.73, 2.82, 2.88 respectively. The median STOI values 

(the yellow line in each box) of GCN under the ‘babble’ noise at SNRs of -2dB, 0 dB, 2 dB, 4 dB, 6 

dB are 0.99, 0.99, 0.99, 0.99, 0.99 respectively. 

 

Figure 3.17  The experimental results of proposed GCU-N under ‘pink’ noise conditions for 

PESQ and STOI. 

The median PESQ values (the yellow line in each box) of GCU-N under the ‘pink’ noise at SNRs of 

-2dB, 0 dB, 2 dB, 4 dB, 6 dB are 2.18, 2.30, 2.40, 2.50, 2.58 respectively. The median STOI values 

(the yellow line in each box) of GCU-N under the ‘pink’ noise at SNRs of -2dB, 0 dB, 2 dB, 4 dB, 6 

dB are 0.94, 0.95, 0.96, 0.96, 0.97 respectively. 

3.4.2 Discussion 

Emphasizing the Speech-to-Noise Ratio (SNR) range from -2 dB to 6 dB (shown in Table 3.3 & 3.4), 

the GCN consistently outperformed the proposed GAN model and GCU-N across the board, 

achieving higher scores in both the Short-Time Objective Intelligibility (STOI) and the Perceptual 
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Evaluation of Speech Quality (PESQ). Notably, where the GCN excelled, the proposed GAN 

faltered, indicating a critical area of focus for discriminator improvement. 

Delving into the specifics, the GCN has better performance in STOI and PESQ over its GAN 

counterpart, an advancement that signals a pivotal shift towards a more effective use of 

convolutional layers. In stark contrast, the GCU-N's performance lagged, suggesting that an 

excessive stack of convolution or deconvolution layers might lead to information distortion rather 

than enhancement. This revelation prompts a strategic re-evaluation of network depth and model 

complexity in speech enhancement applications. 

The shortcomings of the proposed GAN's discriminator—unable to discern between the 

generator's output and the original pure speech—illuminated the nuanced challenge of 

distinguishing enhanced speech from its clean counterpart. This pitfall was notably evident in the 

discriminator's output, where abstract features extracted by convolution functions might have 

obscured critical decision-making factors. Future iterations could benefit from structural 

alterations, such as the elimination of the pooling layer, the incorporation of LSTM blocks for 

contextual focus, dimensionality reduction of inputs, or the integration of the Attention 

mechanism, which promises improved context analysis and decision accuracy. 

Table 3.3 The summary of proposed models’ results. 

Evaluation 

matrix 

STOI (AVG) PESQ (AVG) 

noise Pink Volvo babble Pink Volvo babble 

noisy 91.2 96.76 75.13 1.295 1.746 1.105 

GCN 97.2 98.6 99 2.874 3.068 2.706 

GAN 96.8 98.8 98 2.732 2.866 2.601 

GCU-N 95.6 97.6 95 2.392 2.890 2.537 
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Table 3.4 The improvement ratio of each model comparing with noisy speech. 

Evaluation 

matrix 

STOI (AVG) PESQ (AVG) 

noise Pink Volvo babble Pink Volvo babble 

GCN 6.58% 1.9% 31.77% 121.93% 75.71% 144.89% 

GAN 6.14% 2.1% 30.44% 110.97% 64.15% 135.38% 

GCU-N 4.82% 0.86% 26.45% 84.71% 65.52% 129.59% 

 

Figure 3.18, 3.19, 3.20, 3.21 respectively show the comparison between proposed GCN and GAN 

results under different noise in STOI and PESQ, where y axis shows the score, and x axis shows 

the values of corresponding SNR. 

 

Figure 3.18  The STOI score comparison under volvo noise. 

 

Figure 3.19  The STOI score comparison under pink noise. 
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Figure 3.20  The PESQ score comparison under volvo noise. 

 

Figure 3.21  The PESQ score comparison under pink noise. 

The present study investigates the performance of two models, GCN and GAN, in terms of speech 

enhancement in the time domain. The results show that both models achieve better scores in 

STOI and PESQ as the value of SNR increases. Surprisingly, GCN achieves a remarkable 

performance in babble noise, as evidenced by the improvement ratio. This finding suggests that 

GCN can learn the features of target speakers effectively, even when the noise is not static, which 

enhances its robustness. In contrast, GCU-N produces more residual noise and waveform 

distortion in the speech-enhanced signal, which reduces its performance. 

The evaluation results show that GCN outperforms GAN in terms of speech quality improvement, 

as demonstrated by the PESQ scores. Although the two models achieve similar STOI scores, GCN 

demonstrates a superior ability to remove background noise and produce minor waveform 

distortion, which results in higher speech quality. This finding is supported by the magnitude 

spectra of the proposed models, as shown in Figures 3.22to 3.26, which reveal that the speech 

enhanced by GCU-N has more residual noise and waveform distortion problems than that 

enhanced by GCN and proposed GAN. 
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It is noteworthy that the proposed GCN achieves its superior performance by using an encoder-

decoder structure with skip connections and 1D and 2D convolution modules that enhance 

feature extraction. Moreover, the proposed GCN uses a gated residual unit in conjunction with a 

normal convolution with a flexible receptive field, which is helpful for time-domain enhancement. 

It is also possible to develop causal and non-causal GCN, which can modify existing approaches 

to talker- and noise-independent speech enhancement. 

Although the proposed GAN's generator part uses the same structure as GCN, its performance is 

worse than that of GCN in terms of STOI and PESQ. This finding can be attributed to the fact that 

the discriminator cannot clearly distinguish between the output of the generator and the original 

pure speech, which leads to information loss. To address this issue, the discriminator structure 

can be modified by removing the pooling layer, introducing more discriminator blocks containing 

LSTM, suppressing the dimension of input fed into the discriminator, or introducing the Attention 

mechanism. These modifications can help the discriminator to analyze context information and 

make better decisions. 

In conclusion, the present study demonstrates that the proposed GCN outperforms GAN and 

GCU-N in terms of speech quality improvement, especially in the presence of background noise. 

the insights gleaned from these experiments not only bolster the GCN's methodology but also 

forge a path forward for convolutional neural networks in speech enhancement. The encoder-

decoder framework with skip connections, paired with 1D and 2D convolution modules 

enhanced by dilated convolution, positions the GCN as a formidable approach for both causal 

and non-causal speech enhancement techniques. Moving forward, the development of talker- 

and noise-independent models stands as the next frontier, underscoring the dynamic evolution 

of this field and the relentless pursuit of perceptual fidelity in speech enhancement technology. 
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Figure 3.22  The spectrum of noisy speech and enhanced speeches at SNR of -2dB. 

 

Figure 3.23  The spectrum of noisy speech and enhanced speeches at SNR of 0dB. 
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Figure 3.24  The spectrum of noisy speech and enhanced speeches at SNR of 2dB. 

 

Figure 3.25  The spectrum of noisy speech and enhanced speeches at SNR of 4dB. 
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Figure 3.26  The spectrum of noisy speech and enhanced speeches at SNR of 6dB. 

As a comparison, we take the test results of state-of-the-art methods as a reference to make a 

clear comparison in Table 3.5. We use the same background noise ‘babble’ frome NoiseX-92 [145] 

as competitors, but we only adopt librispeech as the pure speech while others, like [152], used 

DNS-2020 [153], DNS-2021 dataset [154]. 

State-of-the-art methods: 

DCN-causal [149]: 

Dense CNN: The network architecture is inspired by DenseNet, a state-of-the-art image 

classification model. In the context of speech enhancement, the Dense CNN allows for the direct 

flow of information and gradients between layers, aiding in the training process and resulting in 

enhanced feature propagation. This architecture helps in preventing vanishing gradient issues 

and promotes feature reuse, which can be vital for modeling the intricacies of speech signals.  

Self-Attention Mechanism: The self-attention mechanism enables the model to weigh the 

significance of different parts of the input signal, allowing it to focus on more relevant portions 

when making enhancement decisions. This is particularly crucial for speech signals where 

certain segments (like voiced parts) might be more critical than others (like silent pauses). 
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TCNN [150]: 

Temporal Convolution Layers: The TCNN employs temporal convolution layers to extract 

sequential features directly from raw time-domain speech waveforms. This approach eliminates 

the necessity of converting signals into the frequency domain, leading to real-time enhancement 

with lower latency. 

Residual Blocks: The architecture incorporates residual blocks, inspired by ResNet, which 

facilitate deeper networks by alleviating the vanishing gradient problem. Each block contains 

convolutional layers, batch normalization, and ReLU activation functions. 

Dilated Convolutions: To capture long-term dependencies in speech signals without 

significantly increasing computational demands, the model uses dilated convolutions in its 

layers. This allows the network to have a broader receptive field, capturing more temporal context. 

Input-Output Features: 

Input: The model accepts raw time-domain speech waveforms. This direct use of time-domain 

signals bypasses the need for spectrogram computation or other time-frequency transformations. 

Output: The network produces an enhanced time-domain speech waveform. Post-processing or 

phase estimation isn't required, simplifying the enhancement pipeline. 

Feature Reuse: To retain crucial temporal information, the model utilizes strided convolutions to 

downsample the feature maps and then upsample them back to the original resolution. This 

process helps in reusing features across different scales and resolutions. 

GCRN [151] 

Gated Convolutional Layers: At the heart of the model are its gated convolutional layers, 

inspired by the gating mechanisms in recurrent networks like GRU and LSTM. These layers 

adaptively control the flow of information, ensuring that relevant features are emphasized during 

processing. 

Recurrent Layers: Following the convolutional layers, the model uses recurrent layers to capture 

temporal dependencies in the audio signal, ensuring that temporal patterns and sequences are 

effectively recognized. 

Complex Spectral Mapping: Unlike traditional models that often operate on the magnitude 

spectrum alone, the GCRN is designed to handle both magnitude and phase, leveraging complex-

valued convolutions. This allows the model to maintain and enhance both amplitude and phase 

information, leading to better speech quality in the enhanced output. 
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Input-Output Features: 

Input: The model's input is the complex Short-Time Fourier Transform (STFT) of the noisy speech, 

encapsulating both magnitude and phase information in a time-frequency representation. 

Output: The GCRN produces an enhanced complex spectrum (both magnitude and phase). This 

can be transformed back to the time domain via the inverse STFT to yield the enhanced speech 

signal. 

Advantages & Notable Observations: The GCRN's architecture allows it to effectively model and 

enhance speech in noisy conditions. Its ability to operate on complex spectra (both magnitude 

and phase) sets it apart from traditional models, and preliminary evaluations indicate significant 

improvements over existing state-of-the-art methods in various noise scenarios. 

GRN [8] 

Gated Residual Blocks: Central to the GRN are its gated residual blocks. These blocks combine 

the advantages of residual connections (from ResNet) and gating mechanisms (from LSTM). The 

gating mechanism helps in adaptive feature selection, ensuring that only relevant features are 

propagated through the network layers. 

Dilated Convolutions: The model employs dilated convolutions to expand the receptive field 

without increasing the number of parameters or computational complexity. This enables the 

network to capture long-range dependencies within the audio signal. 

Skip Connections: To facilitate better gradient flow and feature fusion, the architecture 

incorporates skip connections. These connections allow the model to combine low-level details 

with high-level semantic features, improving its enhancement capability. 

Activation Functions: The model employs the Rectified Linear Unit (ReLU) for non-linearity, 

ensuring that the network can capture complex relationships in the data. 

Input-Output Features: 

Input: The GRN model directly takes the noisy speech's Short-Time Fourier Transform (STFT) 

magnitude spectra as its input. This offers a time-frequency representation, allowing the model 

to work on both spectral and temporal characteristics of the signal. 

Output: The network outputs an enhanced magnitude spectrum. This enhanced spectrum can 

then be combined with the phase of the noisy speech to reconstruct the time-domain signal using 

the inverse STFT. 
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CRN [148] 

Convolutional Neural Network (CNN): The core of the model is a CNN that has been trained to 

map from noisy complex spectrograms to clean ones. The architecture is designed to capture 

both local and global features from the input spectrogram. 

Multi-metrics Learning: To train the CNN, a multi-metrics learning strategy is adopted. This 

involves three loss functions: mean squared error (MSE) on magnitude, phase, and a cosine 

similarity term. The combination of these losses ensures that the model learns to reconstruct 

both the magnitude and phase of the clean speech effectively. 

Input-Output Features: 

Input: The primary input to the model is the complex spectrogram of the noisy speech. This is 

obtained using the Short-Time Fourier Transform (STFT), which provides a time-frequency 

representation comprising both magnitude and phase information. 

Output: The CNN produces an enhanced complex spectrogram, which represents the cleaned-

up version of the input. This enhanced spectrogram can be converted back to the time-domain 

signal using the inverse STFT. 

Notable Observations: 

The proposed approach of directly enhancing the complex spectrogram (both magnitude and 

phase) aims to overcome the limitations of traditional methods that often neglect phase 

information. Preliminary evaluations indicate that the proposed model, with its multi-metrics 

learning strategy, achieves superior performance in terms of both objective and subjective 

measures when compared to several baseline methods. 

SEGAN-T [13] 

Generative Adversarial Network (GAN): SEGAN employs the GAN structure, which comprises 

two primary components: 

Generator (G): This component takes in noisy speech and attempts to generate a clean version 

of it. It uses a fully convolutional network, where the encoder captures a compressed 

representation of the noisy speech, and the decoder then tries to reconstruct a clean signal from 

this representation. 

Discriminator (D): The discriminator's role is to differentiate between real clean speech and the 

speech generated by the generator. It provides feedback to the generator, guiding it to produce 

better-enhanced outputs. 
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Skip Connections: To ensure that the model can capture both low-level details and high-level 

features, skip connections (similar to those in U-Net) are used. They bypass certain layers, 

enabling the network to retain more information. 

Adversarial Training: This training strategy pits the generator and discriminator against each 

other in a game. The generator tries to produce clean speech that the discriminator can't 

distinguish from real clean speech, while the discriminator tries to get better at telling the 

difference. 

Input-Output Features: 

Input: The primary input to SEGAN is a one-dimensional raw waveform of noisy speech. This 

approach avoids the need for time-frequency domain transformations, such as spectrograms, 

which are commonly used in other speech enhancement methods. 

Output: SEGAN outputs a one-dimensional waveform of the enhanced (or denoised) speech. This 

direct end-to-end mapping from noisy to clean waveforms allows for a more holistic 

understanding and manipulation of the speech signal. 

In selecting the baselines for comparing our proposed models, we aimed to encompass a broad 

spectrum of state-of-the-art approaches in the field of speech enhancement. The choice of 

baselines is dictated by their relevance to the key attributes we seek to measure and improve with 

our models: intelligibility, quality, and computational efficiency. 

Dense CNN (DCN-causal) was chosen due to its foundational architecture, DenseNet, which has 

shown remarkable success in image classification tasks. We expect that the dense connectivity 

will aid in capturing the intricate details within speech signals, which is hypothesized to enhance 

both STOI and PESQ scores by preserving important temporal information. 

Temporal Convolution Network (TCNN) serves as a baseline to evaluate the effectiveness of 

extracting sequential features from raw waveforms without transforming them into the frequency 

domain. This real-time enhancement capability sets a benchmark for latency, which is a crucial 

factor in many real-world applications. 

Gated Convolutional Recurrent Network (GCRN) [60] incorporates both gated convolutional and 

recurrent layers, and thus, it is posited as a strong competitor against which the performance of 

other models can be measured, especially in terms of modeling temporal dependencies and 

handling complex spectral mappings. 

Gated Residual Network (GRN) and Convolutional Recurrent Network (CRN) are included as 

baselines due to their unique combination of residual and gating mechanisms, and the multi-
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metrics learning approach, respectively. These characteristics are anticipated to contribute to 

improved speech enhancement, especially in noisy conditions, and thus provide a comparison 

for the effectiveness of the proposed methods in similar scenarios. 

Lastly, Speech Enhancement Generative Adversarial Network (SEGAN-T) is chosen due to its 

novel end-to-end waveform enhancement capabilities. It presents a different paradigm by using 

adversarial training, which has been less explored in speech enhancement. By including SEGAN-

T, we aim to assess the efficacy of GANs in generating clear speech from noisy inputs and their 

impact on both objective and subjective quality metrics. 

In summary, these baselines were selected to represent a comprehensive range of approaches 

in the current literature, providing a robust platform for comparison to demonstrate the 

advancements our proposed models offer. By establishing these benchmarks, we aim to validate 

our contributions to the field in terms of innovation, performance, and practical applicability. 

Table 3.5 STOI and PESQ comparisons between proposed models in noise ‘babble’ at -5 dB. 

method STOI (%) PESQ 

noise babble babble 

Test SNR -5 dB -5 dB 

DCN-causal [149] 85.3 2.34 

TCNN [150] 82.8 2.18 

GCRN [151] 82.4 2.17 

GRN [8] 80.2 2.16 

CRN [148] 79.71 2.15 

SEGAN-T [13] 81.5 2.11 

Proposed GCN 99 2.24 

Proposed GAN 98 2.19 

 

Notable Observations: 

SEGAN's end-to-end waveform-to-waveform approach is a significant departure from traditional 

methods that operate in the time-frequency domain. This direct approach aims to capture and 

utilize the intricate relationships within the raw waveform. 



 

100 

Experimental results demonstrate that SEGAN achieves competitive speech enhancement 

performance, especially when considering non-intrusive quality measures. Moreover, its 

capability to generalize well to unseen noise types makes it a promising solution for real-world 

applications. 

After comparing Table 3.5, it is evident that the proposed GCN and GAN models outperform most 

recent models in terms of PESQ and STOI, even under matched noise conditions. Despite our 

proposed model topology is like GRN and GCRN, but the middle layer brings a better performance 

due to is a parallel structure enabling the model can caputure global and local speech 

information. However, it is important to note that due to computational resource limitations, the 

training time and dataset size were restricted in this project. For instance, the total training time 

was approximately 6 hours, and the training data comprised approximately 10 hours. In contrast, 

DCCRN [152] utilized over 5000 hours of data, while the system setup in [155] required two 

NVIDIA Volta V100 16GB GPUs and one week of training. It is reasonable to assume that with 

sufficient resources for training, the proposed models can achieve greater robustness and avoid 

overfitting [156]. 

Furthermore, the performance of GCN is satisfactory when the speaker characteristics and 

background noise are similar. The 'babble' noise used in this study for training and testing the 

model has demonstrated that GCN is capable of effectively enhancing speech, as evidenced by 

the STOI and PESQ values in Figure 3.4.16. Nevertheless, to improve the model's robustness, it is 

necessary to record more multi-speaker audio as background noise in the future. Additionally, 

diverse training data can aid the model in avoiding gradient vanishing or exploding and overfitting 

to some extent. 
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Figure 3.27  The spectrum of noisy speech, enhanced speeches at SNR of -2dB and the 

original speech. 

3.5 Conclusions of this chapter 

GANs are commonly viewed as a distinct network architecture, in the context of speech 

enhancement, they serve as a training method known as adversarial training. GANs consist of a 

generator and discriminator. The generator can be replaced with various network architectures, 

and different loss functions can be used as the generator's loss or equivalent. Thus, GANs in 

speech enhancement act as a pseudo loss function to emphasize noise components and speech 

artifacts that conventional methods struggle to address. 

In this study, our exploration into the realm of speech enhancement is marked by the introduction 

of a novel convolutional neural network (GCN) with gated residual units as the generator part of 

the GAN, tailored for time-domain processing. Our GCN architecture, anchored in an encoder-

decoder structure augmented with skip connections, has been engineered to harness the power 

of dilated convolution functions, thereby expanding depth and maximizing context aggregation 

for superior feature extraction. 

Results from our rigorous testing validates the supremacy of the sole GCN over the proposed GAN 

using the GCN as its generator part and GCU-N models under varied conditions, particularly in 

terms of STOI and PESQ metrics, where the GCN demonstrates a consistent outperformance. 
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This suggests that beyond a certain threshold, additional layers may not contribute to 

enhancement, and could, in fact, distort the information. 

This research also concentrates on the exploration of both causal and non-causal CNNs, which 

hold the potential to transform the approach to speech enhancement independent of specific 

talkers and noise conditions. Despite the promising results, we recognize the constraints of our 

study, including limited training data—merely 11 hours—which may impede the depth of learning 

required for a robust deep learning model. Additionally, the computational limitations of our 

resources, restricted to personal laptop capacities, have imposed a ceiling on the training 

duration and, by extension, the potential of our models. 

As we move forward, enriching our dataset and extending training times are pivotal steps that 

could dramatically bolster the robustness and generalization capabilities of our GCN. At the 

same time, it is notable that the proposed GAN performance is not satisfactory, comparing with 

the GCN, even though the setup of the generator part is the same as that in GCN. So, the 

architecture of the discriminator is also worthwhile to focus on. In the future, we should diverse 

the targets of the discriminator, for example, it not only makes discrimination on fake or true pure 

speeches, but also identity them with their objective evaluation metrics, such as PESQ and STOI 

etc.
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Chapter 4 A new version GCN with attention 

mechanism 

4.1 Background 

Speech enhancement has traditionally revolved around the primary goal of noise suppression, 

wherein the task is to segregate and remove noise components from noisy signals and retain 

speech elements. This process, although seemingly straightforward, is nuanced and reveals two 

distinct strategies: noise suppression and speech enhancement. 

The traditional approach of noise suppression involves identifying and nulling time-frequency 

points dominated by noise. Conversely, speech enhancement involves extracting and preserving 

time-frequency points where speech is predominant. These two views, while operationally similar, 

leads to a problematic intersection; attempting the former may induce speech distortion, while 

the latter may leave residual noise. Common techniques like spectral subtraction, Wiener 

filtering, and statistical model-based methods estimate a gain function, filtered by the signal-to-

noise ratio, that inevitably results in artifacts or distortion at low signal-to-noise frequency points 

[163]. On the other hand, the method of harmonic regeneration addresses the harmonic 

distortion problem caused by nonlinear functions [164]. 

In my previous research, dilated convolution has been effectively used to capture long-term 

contextual information in speech signals. The effectiveness of this method showcases the 

potential for enhanced model performance in capturing speech dynamics. However, the human 

ability to process complex auditory scenes, epitomized by the 'cocktail party effect', suggests 

that auditory attention is critical. Mirroring this phenomenon, the integration of attention 

mechanisms—particularly self-attention in sequence-to-sequence tasks—promises to advance 

the domain of speech enhancement. 

The introduction of self-attention is hypothesized to bridge the gap between human and machine 

auditory processing capabilities. By enabling selective focus on sounds of interest, similar to the 

cognitive filtering humans demonstrate in noisy environments, the quality and intelligibility of the 

enhanced speech are expected to significantly improve. 

This chapter will explore the application of attention mechanisms juxtaposed with dilated 

convolutions to enhance the speech enhancement models. Therein, the exploration will seek to 

redefine and refine the process, taking cues from both, the traditional and the novel, to arrive at 

a methodology that minimally distorts speech and adeptly suppresses noise. Another 
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contribution of this chapter is the introduction of the ‘Masking first and Mapping second’ method. 

In this cascade topology, the second-stage model will enough tolerance to rectify previous 

stages' errors, which can better restore high-fidelity enhanced speech. 

4.2 Methodology 

Self-attention has proven to be a powerful tool in various fields, such as image generation, 

machine translation, and automatic speech recognition. Specifically, self-attention can better 

capture the context of spoken utterances that contain many repeating phones, especially in low 

SNR conditions where phones can be present in both high and low SNR regions of the utterance. 

By attending over phones in high SNR regions, a speech enhancement system based on self-

attention can better reconstruct phones in low SNR regions. Although the self-attention 

mechanism is effective in embedding context, in short-speech experiments, the performances of 

CNN, RNN, and self-attention are almost the same. Therefore, in future experiments, we plan to 

set each input data to more than 2 seconds to fully exploit the advantages of the attention 

mechanism. 

Self-attention mechanism 

The attention mechanism has 3 parts: query (Q) whose size is Time_Q	 ∗ 	Q_dim, key (K) whose 

size is Time_V	 ∗ 	Q_dim  and value (V) whose size is Time_V	 ∗ 	V_dim . Firstly, the correlation 

scores are from the following equation: 

𝑊 = 𝑄𝐾F (4.1) 
 

Where 𝐾F  is the transpose of K  and the size of 𝑊  is Time_Q	 ∗ 	Time_V. Then, the softmax is 

introduced to calculate the probability values 𝑃. Finally, the attention output 𝐴 is obtained by 𝑃 

and V. 

𝑃 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊) (4.2) 
𝐴 = 𝑃 ∗ 𝑉 (4.3) 

In recent years, attention mechanisms have gained considerable traction in the realm of speech 

enhancement, presenting a paradigm shift in how temporal dependencies within speech signals 

are modeled [159]. Originating from the success in tasks like machine translation, the attention 

mechanism [95] in speech enhancement operates by computing similarities between the current 

frame and a range of past frames, dynamically assigning weights to these past frames based on 

their relevance [158]. 
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Compared to traditional LSTM and RNN approaches, methods employing attention mechanisms 

have demonstrated advancements in both the quality and intelligibility of enhanced speech [159]. 

However, while their efficacy is noteworthy, it's crucial to recognize their limitations. For instance, 

attention-based models can sometimes overemphasize certain frames leading to unintended 

artifacts in the enhanced speech [160]. Additionally, their performance can be contingent on the 

choice of similarity metric used, which presents challenges in diverse noise environments [161]. 

Furthermore, while attention mechanisms have shown improved performance metrics in several 

benchmarks, their computational complexity, especially in deeper architectures, can be a 

deterrent for real-time applications [162]. As research in this domain progresses, it will be 

imperative to balance the benefits brought by attention mechanisms with the constraints of 

practical implementation. 

However, since input models contain both clean speech information and noise information on 

each time-frequency unit, this method amplifies both clean speech information and noise 

information when weighting and does not significantly suppress noise. Therefore, suppressing 

noise in attention mechanism operation is a breakthrough for improving performance of speech 

enhancement that needs to be solved at present. 

 

Figure 4.1  The architecture of proposed model. 

The proposed method (as shown in Figure 4.1) utilizes a Gated Residual Network (GRN) consisting 

of an encoder, decoder, and stacked Gated Residual Units (GRUs), as shown in Figure 4.2, to 

generate a mask that suppresses noise in its corresponding domain, thereby filtering coarse 

features towards the overall spectrum. The encoder and decoder consist of 5 sub-layers each, 

where the former uses a 1-D convolutional layer with Batch Normalization and an ELU activation 

function, while the latter replaces the convolution layer with a transposed convolution layer. The 

stacked GRUs incorporate multi-head self-Attention (MHSA) in the frequency and time dimension 

to improve the model's acoustic receptive field and processing ability for sequential temporal 

information. The network also incorporates skip connections to add features extracted from 

corresponding layers into the final prediction. The Inverse Short-Time Fourier Transform (ISTFT) is 

implemented through convolutional layers inspired by prior work [157] to allow the use of time-
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domain enhanced speech for further training. Finally, the original time-domain speech's phase is 

utilized to compensate for noisy speech phase and reconstruct more accurate time-domain 

enhanced speech. 

 

Figure 4.2  The architecture of proposed GRU in GCM. 

MHSA is often used to extract long term sequence information [165]. MHSA takes as input an L-

length sequence feature and produces an output sequence of the same size. This attention 

mechanism, which is also introduced in Chapter 6, can be described by 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 [𝑄𝐾F√𝐿 \𝑉 (4.4) 

Where 𝑇 represents the transpose symbol. The input shape is [Time_frames * Frequency_bins] 

from encoder, then the proposed MHSA for frequency reshapes the input into [Frequency_bins * 

Time_frames], as shown in Fig 4.2. Each sub-MHSA can map information along their own specific 

axis. At the same time, 2 sub-MHSA mechanisms are constructed in parallel and finally their 

outputs are concatenated together with the original input as the input for the next step. The MHSA 

for the time frame is described as 
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𝑚𝑢𝑙𝑡𝑖BMNOPQ),5),R)S = 𝑐𝑜𝑛𝑐𝑎𝑡(ℎ(, ℎ#, … , ℎA)𝑊A
ITA (4.5) 

Where 

ℎ. = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛|𝑄A𝑊AQ , 𝐾A𝑊A
5 , 𝑉A𝑊A

R} (4.6) 
Finally, the attention maps are concatenated with the original input and processed by a 1-D 

convolutional layer to obtain the residual output as the next GRU’s input, and is described by: 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙	𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐶𝑜𝑛𝑣|𝑀𝐻𝑆𝐴A.3M +𝑀𝐻𝑆𝐴%1MU} (4.7) 
𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙	𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐶𝑜𝑛𝑣|𝑀𝐻𝑆𝐴A.3M +𝑀𝐻𝑆𝐴%1MU} (4.7) 

4.3 Experiment setup 

The loss function and dataset used in the experiments for Gated Convolutional Networks (GCN) 

were also used for the proposed Gated Convolutional Masking (GCM) method. The GCM method 

utilizes a Gated Residual Network (GRN) architecture with 5 encoder and decoder layers and 20 

Gated Residual Units (GRUs) grouped into 4 GRU groups. In the GRU layers, the left 1D-conv 

kernel size was 5 and the right 1D-conv kernel size was 1, with a channel length of 256. Multi-Head 

Self-Attention (MHSA) was incorporated with 2 heads. The Gated Residual Masking (GRM) 

architecture had the same setup of kernel size, stride, and channel in the GRU layers as in the 

GCM method. The encoder and decoder layers had a kernel size of 8, channel length of 512, and 

stride of (1, 2) in the time and frequency axes. The middle part of the GRM comprised of 4 GRU 

groups, with each group containing 5 GRUs with dilation rates of [1, 2, 4, 8, 16]. 

For the dataset setup, we utilized clean speech segments from the ICASSP DNS3 dataset [167], 

which we then combined with noise sources from NoiseX-92 [145] for training dataset (about 100 

hours). While the testing dataset was composed of clean audio extracts from the 5-hour 

Librispeech corpus [147] mixed with NoiseX-92 noises.  

For our training set, we cut the utterances into 2-second segments. But for the test set, we didn't 

make any cuts, so the lengths vary. We used a Hamming window with a 25 ms window length 

(equivalent to 400-point FFT) and a hop size of 200 points, which means there's a 50% overlap. 

The input feature of the proposed model is the magnitude spectrum. 

All audio data was sampled at 16kHz and extracted by using frames of 512 with frame shift 256, 

and the model is directly fed by raw waveform. All models are optimized using the Adam-

algorithm [166] with a learning rate of 0.001, decaying by half after each epoch. 
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In this experiment, to carry out the training process, two GTX 1080Ti 10GB GPUs were used, and 

the training process took approximately 30 hours for 10 epochs. The computation resources were 

generously offered by the High-Performance Computation (HPC) at the University of 

Southampton. 

To evaluate the quality of the denoised speech, we picked a range of standard metrics. We used 

PESQ, which has a score range from -0.5 to 4.5. For judging how clear the speech sounds, we 

used ESTOI, which scores between 0 and 1. For all these metrics, a higher score means better 

speech quality. 

4.4 Results and analysis 

4.4.1 Baseline introduction 

The findings of our study are presented in Table 4.1, which includes a comparison of our proposed 

model with five state-of-the-art (SOTA) models that were selected based on their similarity of 

methodology and recentness: Gated Convolutional Recurrent Network (GCRN) [168], Deep 

Complex Convolutional Recurrent Network (DCCRN)[152], Phase-Only Speech Enhancement 

Network (PHASEN) [169], Audio Enhancement Convolutional Neural Network (AECNN) [170], and 

Convolutional Time-domain Audio Separation Network (ConvTasNet) [19]. GCRN, DCCRN, and 

PHASEN use complex-domain features as input features and involve magnitude spectrum and 

phase recovery, while AECNN and ConvTasNet use raw time-domain waveform as input and 

output. The reason why we choose these competitors is they did not adopt attention mechanism 

and all of them take the encoder-decoder structure as baseline same as our proposed model. 

Their details go as follow: 

Deep Complex Convolutional Recurrent Network (DCCRN) 

Encoder: The encoder comprises eight complex convolutional layers. This encoder extracts 

hierarchical features from the noisy input and down-samples the feature maps by half after each 

convolution. 

Recurrent Enhancement Blocks (REB): After the encoder, there are four REB blocks. Each REB 

block contains two Complex Gated Recurrent Units (CGRUs) and one complex convolutional 

layer. These blocks capture long-term dependencies and refine the hierarchical features. 

Decoder: The decoder, similar to the encoder, has eight transposed complex convolutional 

layers. It up-samples the feature maps and finally reconstructs the enhanced magnitude 

spectrogram. 
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Active Perception: This is a significant contribution of the paper. Active perception is inspired by 

the human auditory system, where humans can actively focus on a specific sound source. In 

DCCRN+, this concept is realized by introducing a weighted summation operation after each REB 

block. This operation helps the network emphasize certain temporal and spectral regions during 

speech enhancement. 

Input Feature: The input to the DCCRN+ model is the magnitude spectrogram of the noisy speech. 

This is derived by applying the Short-Time Fourier Transform (STFT) to the raw noisy speech 

waveform. The phase of the noisy speech is kept aside and used later during the waveform 

reconstruction. 

Output Feature: The model outputs an enhanced magnitude spectrogram. This is then combined 

with the phase of the noisy speech (stored from the input stage) to perform an inverse STFT and 

obtain the enhanced speech waveform. 

Phase-Only Speech Enhancement Network (PHASEN) 

The PHASEN model is introduced as a novel approach to speech enhancement, focusing on both 

the phase and magnitude components of speech signals. Its architecture and design principles 

are tailored to address the unique characteristics and importance of phase in speech 

enhancement tasks. 

Magnitude Subnetwork: This segment of the network handles the enhancement of the 

magnitude spectrogram. It comprises a U-Net-like architecture with convolutional layers, aiming 

to suppress noise while preserving the speech magnitude. 

Phase Subnetwork: This segment explicitly deals with the phase component of the speech signal. 

It utilizes a similar U-Net-like structure, but with a different design to specifically cater to the 

phase's cyclic nature. 

Harmonics Block: Recognizing that speech signals have harmonic structures, this block is 

introduced to capture and leverage such harmonic relations, further enhancing the model's 

performance. 

Input Feature: The PHASEN model takes in both the noisy magnitude and phase spectrograms 

derived from the Short-Time Fourier Transform (STFT) of the noisy speech signal. 

Output Feature: The model outputs enhanced magnitude and phase spectrograms. These are 

combined to perform an inverse STFT to derive the enhanced speech waveform. 
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Harmonics and Phase Preservation: One of the standout features of PHASEN is its explicit 

emphasis on preserving the harmonics and phase of the speech signal, understanding their 

critical role in speech intelligibility and quality. 

Audio Enhancement Convolutional Neural Network (AECNN) 

The AECNN model is proposed as a solution to both denoising and dereverberation of speech 

signals, aiming to enhance speech quality and intelligibility. The model is structured to adaptively 

learn the combination of denoising and dereverberation filters, making it particularly effective in 

scenarios with unknown noise and reverberation conditions. 

Adaptive Enhancement Block: This core block employs two enhancement filters - a denoising 

filter and a dereverberation filter. The block learns to adaptively combine these filters based on 

the characteristics of the input speech, ensuring optimal enhancement for varied conditions. 

Enhancement Filter: This filter is designed using a convolutional neural network (CNN) 

architecture. It processes the input noisy and reverberant speech to produce an enhanced output. 

Adaptive Combination: A sigmoid activation function is applied to the output of the 

enhancement filter to adaptively determine the combination of denoising and dereverberation, 

ensuring the most suitable enhancement is applied. 

Input Feature: The AECNN model takes in a spectrogram derived from the Short-Time Fourier 

Transform (STFT) of the noisy and reverberant speech signal. 

Output Feature: The model outputs an enhanced spectrogram, which, after applying an inverse 

STFT, results in the enhanced speech signal. 

Performance: The AECNN model, with its adaptive enhancement strategy, achieves notable 

improvements in speech quality and intelligibility over several benchmark methods. It is 

particularly effective in scenarios with unknown noise and reverberation conditions, 

demonstrating its versatility. 

Deep Complex Convolutional Recurrent Network (DCCRN) has been selected as a baseline for 

its innovative integration of complex convolutional and recurrent structures. The hierarchical 

feature extraction and long-term dependency modeling capabilities of DCCRN make it an 

exemplary candidate to evaluate against, especially with its focus on enhancing magnitude 

spectrograms. Its incorporation of active perception mechanisms, inspired by the human 

auditory system, also provides a unique angle on speech enhancement that we aim to explore in 

comparison to our methods. 
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Phase-Only Speech Enhancement Network (PHASEN) represents a novel direction in the field by 

concentrating on the enhancement of both phase and magnitude components of speech signals. 

Given the critical role of phase in speech intelligibility and quality, PHASEN's unique harmonics 

block and phase subnetwork make it a valuable comparison point for assessing the performance 

of models that aim to comprehensively enhance speech signals. 

Audio Enhancement Convolutional Neural Network (AECNN) is included as a baseline due to its 

dual focus on denoising and dereverberation of speech signals. Its adaptive enhancement block 

and the capability to learn the optimal combination of filters for varied acoustic scenarios set a 

performance standard, especially in conditions with unknown noise and reverberation 

characteristics. AECNN's approach to adaptively managing enhancement strategies provides a 

distinct contrast to other methods, highlighting its potential for robust real-world applications. 

Each of these models brings a unique perspective to speech signal processing, addressing 

different aspects of the enhancement task. By comparing our proposed methods to these 

baselines, we can showcase the specific advantages our models may have in terms of spectral-

temporal feature processing, complex signal modeling, and adaptive enhancement in varied 

noise conditions. The selection of these baselines also facilitates a comprehensive evaluation 

over multiple dimensions of speech enhancement, including quality, intelligibility, and 

computational efficiency, which are crucial for the deployment of these models in practical 

settings. 

Table 4.1 Result of all tested models show PESQ, ESTOI values for SNRs between -3 and 6 dB. 

‘noisy’ is the original noisy speech (Babble). ‘Proposed model’ is the new version GCN. Higher is 

better. 

Table 4.1 summarizes the results of all experiments, including baseline models and comparison 

with our proposed model. The table presents the results in terms of average Perceptual 

Evaluation of Speech Quality (PESQ) and Short-Time Objective Intelligibility (STOI) for the original 

noisy speech. Our proposed model outperforms all other models in terms of both average PESQ 

and STOI. However, it should be noted that the improvement in speech enhancement also 

depends on the Signal-to-Noise Ratio (SNR), which is not captured by the average values 

presented in the table. 

Metrics

Test SNR (dB) -3 0 3 6 Avg. -3 0 3 6 Avg.

Noisy 1.61 1.77 1.99 2.19 1.89 31.59 40.23 49.61 58.64 45.02

GCRN 2.32 2.62 2.87 3.08 2.72 59.57 68.83 75.72 80.78 71.23

DCCRN 2.31 2.61 2.88 3.11 2.72 59.57 68.11 75.86 81.56 71

PHASEN 2.36 2.7 2.99 3.21 2.82 61.78 71.25 78.32 83.31 73.67

AECNN 2.32 2.64 2.91 3.11 2.74 62.13 71.57 78.25 83.03 73.74

ConvTasNet 2.26 2.52 2.76 2.96 2.63 63.88 72.21 78.49 83.22 74.45

Proposed model 2.91 3.01 3.03 3.11 3.015 68.67 76.53 82.16 85.31 77.92

PESQ ESTOI(%)
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This experiment sought to address the critical challenges highlighted in the introductory portion 

of this chapter: the distortion of speech signals during noise suppression and the residual noise 

commonly found after speech enhancement processes. By implementing mixing Gated 

Convolutional Masking (GCM) with Gated Residual Networks (GRM), our model surpasses the 

DCCRN benchmarks with an average improvement of 10.8% in Perceptual Evaluation of Speech 

Quality (PESQ) and 9.74% in Extended Short-Time Objective Intelligibility (ESTOI) scores. These 

enhancements are attributed to our model's superior handling of waveform information 

throughout the training process—a feature not present in DCCRN. 

The introduction of Multi-Head Self-Attention (MHSA) within GCM has significantly elevated the 

model's ability to parse through time-frequency dimensions, mirroring human cognitive 

capabilities to focus selectively on auditory information. Meanwhile, the introduction of MHSA 

contributes to performance gains when compared to existing models like ConvTasNet, with our 

model achieving average improvements of 14.6% in PESQ and 4.7% in ESTOI. 

Our model's architecture has a good performance at various signal-to-noise ratios (SNRs) 

conditions. However, it also performs well under the stringent conditions of lower SNRs, where it 

consistently outperforms its counterparts. This robustness in challenging scenarios underscores 

the efficacy of our dual architectural strategy, combining the detail oriented GCM for waveform 

fidelity with the GRM's potent capacity for targeted reconstruction. 

The application of MHSA in both time and frequency dimensions further enables our model's 

advanced capability to synthesize global and contextual information, thereby more popular to 

replace traditional dilated convolution techniques in speech enhancement tasks.  

4.5 Conclusions of this chapter 

In our initial investigations, we centered our attention on a feature-mapping topology, uniquely 

designed to process noisy speech signals. This approach directly produced enhanced speech, 

sidestepping the traditional use of a spectrogram mask. Notably, we confined our input 

parameters to primarily consider the magnitude as the primary distinguishing feature. Although 

the enhanced speech output was of satisfactory quality and intelligibility, we faced an inherent 

limitation: the reliance on phase information derived from the noisy speech during the 

resynthesis phase. 

Further, the experiment detailed in Chapter 4, which utilized raw waveform as the model's input, 

brought forth another challenge. This approach struggled to adequately capture and represent 

the nuances of the target speaker's characteristics, especially when benchmarked against the 

intricate facets of human auditory perception. 
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Such limitations offer significant avenues for refinement. The upcoming chapter will take a 

deeper consideration into these considerations, charting out potential enhancements and future 

research directions to bolster the efficacy of our model. 
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Chapter 5 Parallel GCN fed by both magnitude 

spectrum and complex value domain 

5.1 Background 

Although the first two chapters have brought many performance improvements, the above 

algorithms still remain focused on modeling speech patterns (or signal-to-noise ratio). Since it 

comes to noise suppression, the assistance of explicit noise information in speech enhancement 

should inevitably be discussed. Historically, noise spectrum estimation has been a cornerstone 

task in speech enhancement, exemplified by methods like spectral subtraction. Due to the 

diversity of noise types, accurately estimating noise spectra for complete removal from noisy 

speech signals is a big challenge. 

In 2020, Xu et al. [181] explicitly estimated noise spectra, integrating them alongside noisy speech 

spectra as network inputs to derive denoised speech. This approach can be likened to a "masking 

and completion" process, drawing inspiration from traditional noise spectrum estimation 

methods. Liu et al. [182] in 2021 combined amplitude-phase compensation and noise 

suppression-speech restoration concepts, employing a multitask learning approach to estimate 

noise and speech amplitude spectra simultaneously, thereby avoiding the noise spectrum 

estimation challenges. 

Liu et al. adopted a dual-stage framework that jointly enhanced amplitude and noisy speech 

spectra, avoiding the issues on noise spectrum estimation. Zheng et al. [183] introduced a dual-

branch structure to jointly estimate speech and noise spectra, facilitating information exchange 

to enhance spectral estimation accuracy. 

The outlined methodologies represent significant strides in explicitly incorporating noise 

information in speech enhancement strategies. These advancements present novel avenues for 

refining speech processing models by integrating explicit noise insights. The upcoming 

experimental sections will delve into the practical implementations and evaluative frameworks 

to ascertain the effectiveness and efficiency of these cutting-edge approaches in enhancing 

speech quality and robustness in noisy environments. 

In the field of Speech Enhancement (SE), there are two main approaches: mapping-based and 

masking-based methods. Mapping-based methods utilize spectral magnitude or complex-valued 

features as input to restore the clean speech [171]. Masking-based methods employ either ideal 

binary mask (IBM) or ideal ratio mask (IRM) [172][173]. For IBM, the magnitude and phase 

information are individually used in the complex domain to estimate the clean speech, whereas 
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for IRM, the original phase information is directly utilized to reconstruct the output. Typically, 

mean square error (MSE) and scale-invariant SNR (SI-SDR) [174] are employed as loss functions 

for deep neural networks (DNNs). However, speech quality estimation is challenging, as it has 

weak correlations with human ratings [175]. 

In recent times, cascaded or multi-stage concepts have been proposed for SE [176]. These 

approaches leverage intermediate priors to improve optimization by decomposing the original 

task into several sub-tasks. However, each sub-model's performance is constrained, as they 

incrementally improve the SNR. A two-pipeline structure was suggested in [176], consisting of a 

coarse spectrum method followed by a compensating and polishing method. Nonetheless, the 

performance of the second-stage model is highly reliant on the previous output, thus in a cascade 

topology, the second-stage model should have enough tolerance to rectify previous stages' errors. 

In recent advancements in the field of speech enhancement using deep learning, the work of Li et 

al. [177] stands out, particularly in the context of optimizing spectral components of speech. In 

their pivotal study, Li and colleagues proposed an innovative two-stage complex spectral 

mapping approach. They emphasized the pivotal role of separately optimizing the magnitude and 

phase components of speech signals. Through their experiments, they established that by 

decoupling the optimization of these two components, one can achieve notable improvements 

in the clarity and quality of enhanced speech. This decoupling methodology resonates with our 

following proposed compensation path, underscoring its relevance and potential in 

contemporary speech enhancement techniques. Such findings, as presented by Li et al., set a 

foundational benchmark and provide valuable insights for future research in this domain [177]. 

In this chapter, we propose a novel parallel structure comprising two modules to perform coarse 

and refined estimation. The first module, named Compensation for Complex Domain Network 

(CCDN), is responsible for calculating masked features that compensate for complex 

components from the second module. To achieve this, we use a parallel-path structure where 

one path takes the magnitude spectrum as input and estimates a mask, while the second path 

outputs the complex domain details. However, the mask path only deals with the magnitude 

information, which leads to the loss of some spectral details. To address this issue, we introduce 

the compensation path, which aims to remove distortion and compensate for lost details. 

Furthermore, in our proposed model, we employ a module that extracts more abstract feature 

details to facilitate the next estimation. Another contribution of this chapter is that comparing 

with the sole raw waveform, we use both of magnitude and complex-valued domain as input 

features. It can better help to capture and represent the nuances of target speakers’ speech 

characteristics. 
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5.2 Signal model formulation 

Single-channel speech enhancement aims to remove the background noise 𝑛 from the single-

channel noisy speech 𝑦 , and the corresponding original clean speech denotes 𝑥 , which is 

expressed by equation 5.1. 

𝑦[𝑡] = 𝑥[𝑡] + 𝑛[𝑡] (5.1)  
Where 𝑡  represents the time sample index. Meanwhile, we use the short-time Fourier 

transformation (STFT) to convert the time domain speech signals into time-frequency (TF) domain, 

that is: 

𝑌A,% =	𝑋A,% +𝑁A,% (5.2)   
Where 𝑦, 𝑥, 𝑛 are transformed as 𝑌, 𝑋, 𝑁 by STFT, respectively. 𝑡 is the corresponding time index 

and 𝑓 is the frequency bin. Eq. 5.2 can also be written as 

𝑌1	(A,%) + 𝑗𝑌.	(A,%) = |𝑋1	(A,%) +𝑁.	(A,%)} + 𝑗|𝑋1	(A,%) +𝑁.	(A,%)} (5.3)   
where subscripts 𝑟, 𝑖 respectively represent the real and imaginary part of the complex-valued 

feature. In the rest content, the (𝑡, 𝑓) will be dropped. 

5.3 Methodology 

The diagram of the proposed model is presented in Figure 5.1, which is composed of four blocks: 

Feature Extraction Block (FEB), Mask Block (MB), Complex-valued Enhancement Block (ComEB), 

and Compensation Block (CB). The input to the model is the noisy complex spectrum, denoted 

as 𝑋 = 𝐶𝑎𝑡(𝑋1 , 𝑋.) ∈ 𝑅F∗-∗# , where T and F represent the time frames and frequency bins, 

respectively, and 𝑋1  and 𝑋.are the real and imaginary parts of the complex spectrum. The target 

output is denoted as 𝑆 = 𝐶𝑎𝑡(𝑆1 , 𝑆.) ∈ 𝑅F∗-∗#, where subscripts 𝑟, 𝑖  are the real and imaginary 

parts of the target output, respectively. The concatenation operation is represented by 𝐶𝑎𝑡. 
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Figure 5.1 The architecture of the proposed Compensation for Complex Domain Network. 

5.3.1 Feature extraction block 

Acoustic feature extraction using U-nets has been successful [178], but it suffers from the loss of 

spectral information due to consecutive up and down sampling. For instance, the power spectral 

density of harmonic structure from low to high frequency regions gradually attenuates. 

Additionally, the correlation between adjacent frames is crucial in speech processing, making it 

necessary to obtain both local and global information of each speech sample. In 2020, U2net [179] 

was proposed, which employed sub-Unet as an embedding layer with residual learning to 

effectively learn multi-scale features. This study was motivated by the success of U2net and 

proposes replacing the traditional 2-D convolutional layer with a U-block module, where LSTM is 

used as the middle layer to mitigate information loss, as shown in Fig 5.2. The FEB, as shown in 

Fig 5.3, is comprised of Gated Linear Unit (GLU), Layer Normalization (LN), ELU activation 

function and U-block with residual connection. This structure has two advantages. Firstly, the U-

block can capture multi-scale information between frames, resulting in better abilities to capture 

contextual features. Secondly, the 2-D GLU can filter out disturbing information and keep useful 

details. The progress of FEB can be represented as follows: 

𝑦 = 𝐺𝐿𝑈(𝑥) + 𝑈!"#$%&'()(+)- (5.4) 
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Figure 5.2 The U-net structure. 

 

 

Figure 5.3  The architecture of proposed FEB module. 

5.3.2 Mask Block (MB) and Complex-valued Enhancement Block (ComEB) 

In this study, the Mask Block (MB) plays a crucial role in enhancing speech signals by suppressing 

noise in the magnitude domain. The output of MB is a mask that filters out the noise in the input 

signal. The filtered signal is then used as coarse features that are further processed to obtain the 

overall spectrum. To achieve this, we adopted the same structure as the new version of Graph 
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Convolutional Networks (GCN) presented in Chapter 3, along with the same configuration as the 

MB section. 

The Complex-valued Enhancement Block (ComEB) is responsible for enhancing the speech 

signal by compensating for the lost details in the magnitude domain. We adopted a similar 

structure as the GCN in Chapter 3, but with some modifications to handle complex domain 

features. Specifically, we replaced the attention mechanism in the GRU with dilation convolution 

to effectively capture the long-range dependencies between adjacent frames. 

The ComEB's primary objective is to recover the lost information from the coarse features by 

compensating for the complex-valued features. This module consists of a series of layers that 

include dilation convolution, normalization, and activation functions. We chose the dilation 

convolution to improve the ComEB's performance by enabling it to capture the long-term 

temporal dependencies between the speech signal's frames. The normalization and activation 

functions are added to enhance the ComEB's stability and learning capacity. 

Overall, the proposed ComEB provides an effective means of enhancing the speech signal in the 

complex domain by compensating for lost details from the coarse features, which significantly 

improves the quality of the reconstructed signal. The ComEB's architecture was designed to 

handle the complexities inherent in speech signals, making it a valuable tool for various 

applications in speech processing. 

5.3.3 Compensation Block (CB) 

Let 𝑀 and 𝑋JI3 = {𝑋1 , 𝑋.} denote the output of MB and ComEB, respectively. Both of them will be 

fed into CB together with original complex-valued input. As the complement, the RI component 

as the input and some significant information may be lost by propagation. To update the RI 

components of the whole model in a collaborative manner, we propose the compensation block 

acting an important role in this project, shown in Fig 5.4. 

To be specific, the input feature is RI spectrum {𝑅)!(, 𝐼)!(}  firstly decoupled into magnitude 

spectrum 𝑀𝑎𝑔)!(, given by: 

𝑀𝑎𝑔./0 =	1|𝑅./0|1 + |𝐼./0|1																																															(5.5)                                              

𝜃./0 = 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑅./0, 𝐼./0)																																																(5.6)                                                   

Motivated by the spectrogram masks that can effectively and coarsely suppress noise, the 𝑀𝑎𝑔 

will be multiplied by its corresponding mask from MB. However, by focusing solely on the 

magnitude feature and neglecting the phase information, there's a potential for speech 

mismatches. Besides, values in masks range from 0 to 1 for training stability, both the residual 
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noise and speech distortion will happen accordingly [180]. So, in this case, we design the CB to 

focus on and compensate the lost detail from the complex domain perspective. The whole 

procedure is given by equation 5.7: 

𝑆𝑚𝑎𝑔. =	𝑀𝑎𝑔./0 ∗ 𝑀𝑎𝑠𝑘																																								                                           

𝐶𝑜𝑚𝑝2 =	𝑆𝑚𝑎𝑔. ∗ cos(𝜃./0)																																						                                      

𝐶𝑜𝑚𝑝3 =	𝑆𝑚𝑎𝑔. ∗ sin(𝜃./0)																																										                                            

𝑅_𝑛K = 𝑅. + 𝐶𝑜𝑚𝑝2 																																																											                                                             

𝐼.L = 𝐼./0 + 𝐶𝑜𝑚𝑝3 (5.7) 

Where ∗ means element-wise multiplication operation. 

 

 

Figure 5.4 The architecture of proposed CB. 

5.4 Experiment setup 

The experimental data settings for this study were similar to those used in chapter 4. In the FEB, 

we set the kernel size, channel, and stride of GLU to 3, 256, and 1, respectively. The U-block had 

a kernel size and stride of (1, 3) and (1, 2) in the time and frequency axes, with a channel of 256. 

We employed a total of 5 (en) decoder layers, with 2 U-blocks included in the architecture. 

For the MB, the kernel size, channel, and stride in (en) decoder layers were set to 8, 256, and (1, 

3) in the time and frequency axes. The left 1D-conv kernel size and the right 1D-conv kernel size 
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in the GRU were 5 and 1, respectively, with a channel of 256. In MHSA, we set the number of heads 

to 2, and there were a total of 5 (en) decoder layers with 10 GRUs divided into 2 GRU groups. 

In the ComEB, we used a similar structure as the GCN in Chapter 3, but with the GRU not using 

an attention mechanism and instead using dilation convolution. The kernel size, channel, and 

stride in (en) decoder layers were set to 8, 512, and (1, 2) in the time and frequency axes. The GRU 

in ComEB had the same kernel size, stride, and channel settings as the one used in MB. The 

middle part of ComEB comprised 4 GRU groups, each with 5 GRUs, with dilation rates set to [1, 2, 

4, 8, 16]. The loss function and dataset used were the same as those in the GCN experiments. 

For the dataset setup, we utilized clean speech segments from the ICASSP DNS3 dataset [167], 

which we then combined with noise sources from NoiseX-92 [145] for training dataset (about 100 

hours). While the testing dataset was composed of clean audio extracts from the 5-hour 

Librispeech corpus [147] mixed with NoiseX-92 noises.  

For our training set, we cut the utterances into 2-second segments. But for the test set, we didn't 

make any cuts, so the lengths vary. We used a Hamming window with a 25 ms window length 

(equivalent to 400-point FFT) and a hop size of 200 points, which means there's a 50% overlap. 

The input feature of the proposed model is the magnitude spectrum. 

All audio data was sampled at 16kHz and extracted by using frames of 512 with frame shift 256, 

and the model is directly fed by raw waveform. All models are optimized using the Adam-

algorithm [166] with a learning rate of 0.001, decaying by half after each epoch. 

To evaluate the quality of the denoised speech, we picked a range of standard metrics. We used 

PESQ, which has a score range from -0.5 to 4.5. For judging how clear the speech sounds, we 

used ESTOI, which scores between 0 and 1. For all these metrics, a higher score means better 

speech quality. 

In this experiment, the training process was done on High Performance Computation (HPC) node 

with two V100 16GB GPUs. This training process spanned roughly 40 hours for 10 epochs. The 

computational resources were generously offered by the High-Performance Computation (HPC) 

at the University of Southampton. 

5.5 Results and analysis 

Table 5.1 Results of all tested models show PESQ, STOI values for SNRs between -3 and 6 dB. 

‘noisy’ is the original noisy speech (Babble). ‘Proposed model’ is our model. Higher 

is better. 
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The results of all experiments are presented in Table 5.1. The table displays the results of all 

baseline models, including our proposed model, which outperforms all others in both average 

PESQ and ESTOI. The improvements can be attributed to the different network architectures. 

Compared to DCCRN, our proposed model demonstrates an average improvement of 2.6% in 

PESQ and 7.5% in ESTOI. Compared to ConvTasNet, our proposed model delivers an average 

improvement of 6.1% and 2.5% in PESQ and ESTOI, respectively. 

In the preceding sections, we discussed the complexity of noise spectrum estimation and the 

innovative approaches aiming to refine speech enhancement strategies by integrating explicit 

noise information. Our experiments, summarized in Table 5.1, were designed to empirically 

validate the efficacy of these novel methodologies in real-world conditions, especially under 

challenging low SNR scenarios. 

The results underscore our proposed model's good performance in enhancing speech quality, as 

evidenced by leading scores in both average PESQ and ESTOI across various SNR levels.  

Table 5.2 Results of all versions of GCNs show PESQ, STOI values for SNRs at -3 and 6 dB. 

‘GCN-3rd’ is the original version in Chapter 3. ‘GCN-4th’ is the version adopting the 

attention mechanism in Chapter 4. ‘GCN-5th’ is the version combing magnitude 

domain with complex-valued domain in Chapter 5. Higher is better. 

Evaluation ESTOI(%) PESQ ESTOI(%) PESQ 

Noise(babble) 0 dB 6 dB 

GCN-3rd  71.33 2.61 82.64 2.88 

GCN-4th 76.53 3.01 85.31 3.11 

GCN-5th 75.24 3.06 84.64 3.28 

In this section, we present a comparison of the objective results of various proposed models 

based on the GCN architecture. The results are presented in Table 5.2, where the PESQ and STOI 

values for each model are reported at two different SNRs, namely 0 dB and 6 dB. 

Metrics

Test SNR (dB) -3 0 3 6 Avg. -3 0 3 6 Avg.

Noisy 1.61 1.77 1.99 2.19 1.89 31.59 40.23 49.61 58.64 45.02

GCRN 2.32 2.62 2.87 3.08 2.72 59.57 68.83 75.72 80.78 71.23

DCCRN 2.31 2.61 2.88 3.11 2.72 59.57 68.11 75.86 81.56 71

PHASEN 2.36 2.7 2.99 3.21 2.82 61.78 71.25 78.32 83.31 73.67

AECNN 2.32 2.64 2.91 3.11 2.74 62.13 71.57 78.25 83.03 73.74

ConvTasNet 2.26 2.52 2.76 2.96 2.63 63.88 72.21 78.49 83.22 74.45

Proposed model 2.34 2.56 2.99 3.28 2.79 64.43 75.24 80.63 84.64 76.29

PESQ ESTOI(%)
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It is worth noting that at 0 dB, the GCN-4th model achieves the best performance in terms of both 

PESQ and STOI. This can be attributed to the fact that the attention mechanism used in this model 

has shown to have an outstanding ability to capture global context, even though dilated 

convolution layers can effectively broaden the receptive field. 

At 6 dB, the GCN-5th model outperforms the other models in terms of PESQ, while also delivering 

a good STOI result close to the best one. This can be explained by the fact that the complex-valued 

domain used in this model is able to compensate for the lack of phase information, resulting in 

improved speech quality. Additionally, the magnitude mask used in the model effectively 

removes background noise. 

The parallel paths of complex-valued domain and magnitude mask in the GCN-5th model work in 

tandem with each other to enhance the overall performance of the model. In our opinion, this kind 

of mechanism will gain popularity in the future due to its effectiveness in improving speech quality. 

In light of the findings, it's evident that the integration of attention mechanisms and the complex-

valued domain significantly bolsters the efficacy of speech enhancement models grounded in the 

GCN architecture. Specifically, the Transformer mechanism, which has shown remarkable 

success in various domains, presents a potential adaptation for future iterations of our speech 

enhancement task [95]. By capitalizing on its self-attention capabilities, we desire to achieve 

even greater precision and quality in audio enhancements. Continuing research will be directed 

towards these advanced mechanisms to further refine and augment the quality of speech 

enhancement. 

5.6 Conclusions of this chapter 

Our model's advantage is derived from its innovative architecture, which combines the 

Compensation for Complex Domain Network (CCDN) with the magnitude-based (MB) and 

complex-based enhancement blocks (ComEB). This combination allows for a more effective 

handling of both the magnitude and complex spectral components, preserving speech integrity 

while effectively mitigating noise. Specifically, the model leverages the magnitude information 

refined by MB to compensate for the intricate details lost in the complex domain during the 

enhancement process, a strategy inspired by the dual challenges of noise spectrum estimation 

and speech signal preservation outlined earlier. 

Furthermore, the implementation of a multi-head self-attention mechanism across both time 

and frequency dimensions facilitates a more granular understanding and processing of the 

speech signal. This is a significant departure from conventional monaural speech enhancement 
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techniques, allowing for a more dynamic response to the variance in noise types and speech 

signals encountered in real-world settings. 

Comparative analysis with established models like DCCRN and ConvTasNet highlights our 

model's novel contributions. The integration of a GRU layer and an attention mechanism not only 

surpasses traditional approaches in performance metrics but also showcases our model's ability 

to capture and utilize global and contextual information more effectively. This particularly 

leverage the ability to process long-range speech sequences under low SNR conditions. 

In summary, the experimental outcomes not only effectively affirm the effectiveness of our 

approach in enhancing speech quality in noisy environments, but also validate our proposed 

model's capacity to tackle the challenges identified in the introduction: accurate noise spectrum 

estimation and the preservation of speech quality under diverse noise situations. 

5.7 Future work 

Historically, to train advanced speech enhancement algorithms, researchers often simulated 

paired datasets. These are typically derived from unadulterated speech samples juxtaposed with 

a curated assortment of noise profiles. Undoubtedly, these datasets serve as invaluable assets, 

significantly simplifying the training process and enabling deep learning models to achieve 

remarkable milestones with each passing year in terms of performance metrics. 

However, as with many complex systems, there are inherent limitations. One of the most 

pronounced challenges is the models' diminished adaptability when transposed from controlled 

environments to the unpredictable real-world scenarios. Their performance will be not robust and  

well-satisfying when confronted with background noises that were not part of their training 

regimen — a testament to their lack of generalization to unfamiliar background noises. 

In light of the ongoing advancements in speech enhancement research, there is a growing 

emphasis on creating models that not only perform well in controlled environments but also 

effectively handle diverse real-world noise conditions. Rather than solely concentrating on 

algorithmic perfection, it is essential to ensure that these models are versatile and robust when 

exposed to various noise scenarios. Addressing these challenges is not just a matter of academic 

interest but is crucial for developing practical solutions that align with real-world needs. 
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Chapter 6 Finishing Speech enhancement model for 

unpaired data 

6.1 Background 

Deep neural networks (DNNs) have made significant progress in speech enhancement through 

deep learning. One effective approach is to use a DNN-based masking estimation method with 

input features extracted from noisy speech. This technique converts the speech enhancement 

problem into a classification problem, where a well-trained mapping function reduces the loss 

between the features of improved speech and clean speech. During training, clean speech and 

enhanced speech are paired so that a supervised learning system can be implemented. However, 

the diversity of the training data and the increased model complexity have a significant impact on 

the learning outcomes of supervised speech enhancement (SE) models. It is worth noting that 

machine learning models can become biased towards over-represented social groupings since 

publicly accessible datasets do not reflect all populations [184]. For instance, if a given target 

speaker's distinctive vocal features or loud surroundings are never encountered during training, 

a general-purpose universal SE model may underperform for that speaker. This type of matched 

data is typically not achievable since noise characteristics and energy change over time and 

under different conditions, making it challenging for the changing noise to match the speech 

signal. As a result, the frequency domain energy distribution of speech can easily become 

mismatched with unpaired data, which reduces the DNN's ability to generalize. 

In the realm of speech enhancement, the supervised learning paradigm typically relies on a 

substantial amount of paired noisy/clean speech data. However, collecting such paired data in 

real-world recording situations can be challenging, which is why simulated paired data is often 

used. This involves simulating room impulse responses and adding additive noise to clean 

speech. However, a mismatch between the simulated data and real-world data, such as noise 

type, can lead to inconsistent performance when the system is used in practical applications 

[185]. If this mismatch problem is not addressed, supervised speech enhancement techniques 

run the risk of failure. 

Recently, unsupervised neural speech enhancement techniques [185][186][187] have garnered 

attention since they can mitigate the drawbacks and requirements of paired data in supervised 

learning to a significant extent. Unsupervised algorithms only have access to noisy speech as 

inputs and do not rely on clean speech. Since it is practical to gather noisy speech from real-world 

applications, recordings of noisy speech from real-world scenarios are used to train 
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unsupervised models. This approach prevents the mismatch issue caused by simulated data. 

However, unsupervised algorithms are still unable to perform as well as supervised ones. While 

unsupervised algorithms have made progress in the area of speech enhancement, they often lag 

behind their supervised counterparts in performance. For example, according to [188], 

supervised speech enhancement methods that leverage deep neural networks (DNNs) have 

shown superior performance over traditional unsupervised methods, especially in terms of 

objective metrics like Signal-to-Noise Ratio (SNR). Furthermore, [190] emphasized the 

robustness of supervised methods against various noise conditions. 

However, the advantage of unsupervised methods lies in their ability to operate without labeled 

data. This is particularly beneficial when dealing with large amounts of unlabeled audio data or in 

real-world scenarios where obtaining labeled data is cumbersome and costly. [191] pointed out 

the potential of unsupervised methods, especially when combined with modern techniques like 

autoencoders and generative adversarial networks (GANs). 

It's worth noting that the performance gap between supervised and unsupervised algorithms is a 

subject of ongoing research. Efforts are being made to improve the efficacy of unsupervised 

algorithms, and as [192] suggest, future advancements in self-training and semi-supervised 

techniques might play a pivotal role in this endeavor. 

To address the mismatch issue in supervised methods and performance degradation in 

unsupervised methods, semi-supervised approaches are being further researched. Examples 

include the DNN-NMF hybrid model [189] and the multi-modality based method [193]. However, 

the iteration technique in the DNN-NMF hybrid model may not be suitable for real-time 

processing in many real-world applications. 

Generative Adversarial Networks (GANs) can now be used with unpaired training data to produce 

the necessary output from the distribution of real data via adversarial training. GANs [13] 

[194]have at least outperformed DNNs in supervised or paired data systems. For instance, 

Santiago Pascual et al. [13] used GANs for supervised speech augmentation using paired data 

initially. However, in many real-world situations, it is difficult or even impossible to record clean-

noisy pairings simultaneously, and clean data that does not match the noisy source data may be 

the only available option. To address this challenge, the CycleGAN[121], shown in Figure 6.1, was 

considered for unpaired training data in [195] since obtaining paired training data can be a 

challenging and costly operation. The CycleGAN operates on the principle of simultaneously 

learning forward and backward mappings using adversarial loss [196] and cycle-consistency loss 

[197]. The adversarial loss is used to identify the generated output or real input, while the cycle-

consistency loss is used to constrain the input information. These two losses are combined in the 

final cost function. 



 

127 

 

Figure 6.1  Training procedure of the proposed method. Forward noisy-clean-noisy cycle and 

backward clean-noisy-clean cycle are illustrated in the left and right parts, 

respectively. 

In order to deal with non-parallel speech improvement, a novel CycleGAN-based system is 

developed by Yuan&Bao [121]. The paper introduces a novel speech enhancement method based 

on CycleGAN that is designed to work with unpaired training data. The primary conclusions drawn 

from the research are: 

Unpaired Training Data Feasibility: The proposed method demonstrates the feasibility and 

effectiveness of using unpaired training data for speech enhancement tasks. Traditionally, paired 

clean and noisy samples are required for training, but this method circumvents that requirement. 

CycleGAN Architecture: The CycleGAN architecture's inherent design, which comprises two 

generator networks and two discriminator networks, proves to be well-suited for the task. The 

generators are responsible for mapping between clean and noisy domains, while the 

discriminators ensure that the generated samples are indistinguishable from real samples. 

Objective and Subjective Evaluations: Both objective measurements (like PESQ) and subjective 

listening tests indicate that the proposed CycleGAN-based method achieves competitive 

performance when compared to traditional methods, even without paired training data. 

Generalization to Other Noises: The model demonstrates its adaptability and generalization 

capabilities by successfully enhancing speech corrupted by various noise types, not just those 

present in the training data. 

Potential for Further Improvement: While the proposed model offers a promising alternative to 

traditional paired data methods, there is an acknowledgment of its limitations and an indication 

that future work can further improve upon its results, especially in scenarios with diverse and 

unknown noise conditions. 

The CycleGAN differs from conventional GANs and it aims to learn two distinct transformations. 

Specifically, the approach learns the transformation from noisy speech to clean speech (denoted 

as 𝐺Z	→K), as well as the transformation from noisy speech to noise (denoted as 𝐹K	→Z). To achieve 



 

128 

this, non-parallel speech samples X and Y are utilized, where X denotes the noisy speech domain 

and Y denotes the clean speech domain. The discriminator 𝐷Z	 is used to distinguish between the 

generated clean speech and the corresponding real clean speech samples, while 𝐷K  is used to 

distinguish between the generated noise and the corresponding real noise samples. The network 

is optimized using a combination of cycle consistency loss, adversarial loss, and identity-

mapping loss. 

A speech enhancement approach was proposed based on the Noise2Noise method [199] for 

image restoration, using noisy and noise-only samples (𝑥\¬ .*('
and 𝑥\­ .*(' ) as inputs [200]. These 

paired noisy samples (𝑥\¬ 	= 𝑦. 	+ 	𝑛. 	and 𝑥\­ 	= 𝑦. 	+ 	𝑛") are created by adding different noise files 

(𝑛.  and 𝑛") to the same clean speech signal (𝑦.). However, collecting such paired noisy samples 

from real-world recording environments is often infeasible. Therefore, in practice, simulated 

noisy samples are used, which can lead to a mismatch between the training and real-world data. 

To address this issue, our proposed approach utilizes only in-the-wild noisy speech as input, 

avoiding the need for paired noisy samples and eliminating the potential mismatch between the 

training and inference data. 

MixIT [198] utilizes a similar approach as Noise2Noise by mixing two noisy speech recordings or 

noisy speech and noise. However, MixIT produces multiple outputs, each containing a single 

source, either clean speech or noise. These outputs are combined to re-synthesize the noisy 

speech, and the loss between the re-synthesized noisy speech and the original noisy input is 

calculated over different permutations. The loss with the best permutation is then used to 

optimize the network. In contrast, our proposed approach does not mix additional noisy speech 

or noise into the in-the-wild noisy speech input, eliminating the input mismatch problem between 

training and inference. Since our system only has a noise output and a clean speech output, there 

is no permutation problem when re-mixing the outputs for loss calculation. Unlike MixIT, which 

requires finding the best permutation for the remixed noisy speech and corresponding reference, 

our approach avoids this extra step. 

Diverging from the traditional semi-supervised approaches and motivated by [201], this study 

introduces an innovative unsupervised pre-training and fine-tuning algorithm. Its design 

specifically addresses the challenges of data mismatch and performance degradation observed 

in both supervised and unsupervised techniques. Central to our method is a distinct Generative 

Adversarial Network (GAN) architecture. Within this GAN, the generator is designed to 

simultaneously process both magnitude and complex-domain features. Notably, the 

discriminator plays an instrumental role in enhancing certain evaluation metrics without 

compromising others. 
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The initial training phase leverages significant amounts of unpaired noisy and clean speech, 

employing the unsupervised pre-training strategy. In a departure from conventional unsupervised 

practices and drawing insights from the contrastive method in computer vision [204] and the 

Noise2Noise paradigm [205], we introduce supplementary random noise to the original noisy 

speech (ONS), resulting in what we term 'deeper noisy speech' (DNS). Both the original and the 

DNS variants are then utilized to train the generator, ensuring their outputs are distinctly 

recognized. Additionally, the GAN's holistic training incorporates the unpaired noisy speech, DNS, 

and clean speech samples. Upon completion of this foundational training, the model undergoes 

fine-tuning using the original noisy dataset, supplemented by a select set of simulated paired 

samples. A pivotal advantage of our methodology is its direct reliance on real-world data inputs, 

circumventing the pitfalls associated with simulated data in traditional supervised approaches.  

The main contributions of this study are summarized as follows:  

1. The proposed methodology uniquely leverages unpaired noisy and clean speech as inputs, 

effectively circumventing the data mismatch challenges pervasive in traditional supervised 

speech enhancement techniques, especially when applied to real-world environments. 

2. Notably, despite the absence of paired noisy and clean speech, our approach ingeniously 

emulates supervised training paradigms. This is achieved by introducing additional variant 

noises to the noisy speech samples during the pre-training phase. 

3. We design a novel architecture in the proposed approach to leverage the unpaired noisy and 

clean speech. 

4. Introducing more feasible loss function to guarantee the model concentrating on target 

speaker speeches characteristics. 

6.2 Methodology 
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Figure 6.2 The proposed architecture of the proposed speech enhancement model consisting 

of pre-training step (left) and fine-tuning step (right). In the right figure, Noisy Speech 

and Deep Noisy Speech are paired, while Noisy Speech and Clean Speech are 

unpaired. The blue, purple, green lines represent the Noisy Speech flow, Deep Noisy 

Speech flow and Clean Speech flow, respectively. 

6.2.1 Overview 

As depicted in Fig. 6.2, our proposed speech enhancement methodology harnesses the 

capabilities of the Generative Adversarial Network (GAN) architecture, comprising a generator 

and a discriminator. The generator's primary function is to transform noisy speech into its 

enhanced version. Concurrently, the discriminator is tasked with providing evaluative scores 

based on perceptual criteria. The training regimen for our model is bifurcated into two distinct 

phases: unsupervised pre-training and subsequent fine-tuning. During the initial phase, the 

speech enhancement model is rigorously trained using a substantial corpus of unpaired noisy 

and clean speech, leveraging both identity and characteristic loss functions. In the fine-tuning 

phase, a select set of paired noisy and clean speech data is utilized to refine and optimize the 

overarching model. A comprehensive exposition of our methodology is delineated in the 

subsequent sections. 

6.2.2 Structures of generator and discriminator 

An overview of the generator architecture of the proposed model is shown in Fig. 6.3. For a noisy 

speech waveform, an STFT operation first converts the waveform into a complex spectrogram 

𝑋JI3L]M: ∈ 𝑅F∗-∗#  and corresponding magnitude spectrogram 𝑋3N^ ∈ 𝑅F∗- , where T and F 

denote the time and frequency dimensions, respectively. The real and imaginary parts 𝑋1MN]  and 

𝑋.3N^  are then concatenated with the magnitude 𝑋3N^  as an input to the generator. The 

generator takes the encoder-decoder as a backbone. 

(a) Encoder: Given the input feature 𝑋 ∈ 𝑅_∗F∗-∗` , where B  represents the batch size, the 

encoder is architecturally structured to encompass two convolutional blocks with an 

intervening dilated Res2Net [203]. Each of these blocks integrates a convolution layer, 

followed by instance normalization [119], culminating with a PReLU activation function [202]. 

The first convolution block functions to expand the triad of input features into an intermediary 

feature map. The prowess of Res2Net, previously demonstrated in domains like speaker 

verification and computer vision, lies in its capacity to effectively amalgamate antecedent 

feature maps. This amalgamation facilitates the extraction of diverse feature gradations, 

simultaneously augmenting the receptive field without necessitating an increase in kernel or 

layer quantities. The terminal convolution block is strategically designed to halve the 
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frequency dimension, thus optimizing computational efficiency. 

(b) Middle Layer: Attention mechanism [95] has achieved great success in many fields, such as 

speech recognition and Natural language Processing as they can capture long distance 

dependencies. We create a resolution_former block containing 2 feed forward neural 

networks (FFNN). Like transformers in [95], we add a multi-head attention block followed by 

Layer Normalization layer between 2 FFNNs. Here we employ two resolution_former blocks 

sequentially to capture the time dependency in the first stage and the frequency dependency 

in the second stage. After the residual connection, the output will be reshaped as the original 

shape. 

(c) Decoder: The decoding mechanism derives its output from N resolution_former blocks in a 

distinctly decoupled manner, divided into two pathways: the mask decoder and the complex 

decoder. The mask decoder is designed with the primary objective of generating a mask. This 

mask, when subjected to element-wise multiplication with the input magnitude 𝑋3N^, results 

in the prediction of 𝑋′3N^. In contrast, the complex decoder directly predicts both the real 

and imaginary components. Both these decoders incorporate a Res2Net Block, echoing the 

design paradigm seen in the encoder. To revert the frequency dimension to its original input 

size, a subpixel convolution layer finds its application in both pathways [207]. Within the mask 

decoder, a convolutional block narrows the channel count to one, succeeded by another 

convolution layer followed with a PReLU activation, culminating in the final mask prediction. 

It's noteworthy that the PReLU activation is adaptive, discerning different slopes for individual 

frequency bands. The complex decoder's architectural is the same as that of the mask 

decoder, with the notable exception being the omission of an activation function for the 

complex output. 

Same as in [208], the masked magnitude 𝑋′3N^  is first combined with the noisy phase to 

obtain the magnitude- enhanced complex spectrogram. Then it is element-wise summed with 

the output of the complex decoder 𝑋̄1MN] , 𝑋̄.3N^ to obtain the final complex spectrogram:  

𝑋a1MN] =	𝑋a3N^𝑐𝑜𝑠(𝑝ℎ𝑎𝑠𝑒) + 𝑋̄1MN] , 𝑋a.3N^ =	𝑋a3N^𝑠𝑖𝑛(𝑝ℎ𝑎𝑠𝑒) + 𝑋̄.3N^ (6.1) 
that, an inverse short-time Fourier trans- form (ISTFT) is applied to get the audio signal. To 

further improve the magnitude component and propagate magnitude loss on both decoder 

branches, we compute the magnitude loss on 𝑋′′3N^ expressed by: 

𝑋aa3N^ = °𝑋a1MN] + 𝑋a.3N^ (6.2) 
In Speech Enhancement (SE), the goals we set (objective functions) often don't line up neatly with 

the ways we measure success (evaluation metrics). This means that even if we do really well on 

our set goals, the actual quality, as measured, might not be up to the mark. Some common quality 

measures, like the perceptual evaluation of speech quality (PESQ) and short-time objective 
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intelligibility (STOI), are tricky because they can't be directly used to guide the learning process; 

they're non-differentiable. To tackle this, our model's discriminator is designed to act like one of 

these quality measures and be part of the learning process. As illustrated in Fig. 2(b), we've 

borrowed from the MetricGAN approach, using the PESQ&STOI score as a kind of label [209]. The 

discriminator's job is to try and guess the best PESQ&STOI scores (ideally [1, 1]) when it's just 

given clean sounds. But when given both clean and processed sounds, it tries to guess the 

improved PESQ&STOI scores based on the labels it has. Meanwhile, the generator is working to 

produce enhanced speech that sounds as close to the clean speech as possible, aiming for that 

ideal PESQ&STOI score of [1, 1]. 

 

Figure 6.3 The overview of the proposed GAN model. 

6.2.3 Pre-training phase 

The proposed unsupervised pre-training adopts unpaired noisy speech 𝑥 and clean speech 𝑦 as 

training data. Firstly, we add random noise to noisy speech at a random continuous SNR value 

ranging from -5 dB to 10 dB, so as to get deep noisy speech 𝑋. 𝑥 and 𝑋 are respectively fed into 

generator outputting their own enhanced speeches 𝑦:  and 𝑌: . To optimize this enhancement 

network, the discriminator is also included to calculate adversarial loss. In addition, a character 

loss and an identity loss are also explored in this work. 

(A) Identity loss: The identity loss function in [121][201] consists of the original input noisy 

speeches as well as the sum of enhanced speeches and enhanced noise. Different from them, 
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the proposed identity loss function is comprised of enhanced speeches from deeper noisy 

speeches (DNS) and original noisy speeches (ONS), which is defined as: 

𝐿.O = 𝐸:~<"[‖𝐺(𝑋>'G) − 𝑋b'G‖#] (6.3) 
(B) Characteristic loss: The characteristic loss function is mainly responsible for enabling 

enhanced speeches approaching to the real-world human being speech character. Its 

advantage is to avoid the speech content mismatch between unpaired data by comparing 

their mel_spectrogram difference rather than directly computing the speech difference, such 

as using mean squared error (MSE). The characteristic loss function can be defined as: 

𝐿JBN1 = 𝐸:~<",c~d- ±�𝑀𝑒𝑙|𝐺(𝑋>'G)} − 𝑀𝑒𝑙(𝑌)�# + �𝑀𝑒𝑙|𝐺(𝑋b'G)} − 𝑀𝑒𝑙(𝑌)�#² (6.4) 
Where 𝑀𝑒𝑙(𝑋)  denotes the operation converting audio to mel_spectrogram. 𝑋  and 𝑌 

represent input noisy speeches as well as pure speeches and they are unpaired. 

(C) Adversarial loss: we use a linear combination of magnitude loss 𝐿3N^  and complex loss 

𝐿JI3L in TF-domain: 

𝐿F- = 𝜕𝐿3N^ + (1 − 𝜕)𝐿JI3L (6.5) 
𝐿3N^ = 𝐸:~<" ±�𝑋̄3N^>'G − 𝑋3N^b'G�

#
² (6.6) 

𝐿JI3L = 𝐸:~<" ±�𝑋̄1MN]>'G − 𝑋1MN]b'G�
#
+ �𝑋̄.3N^>'G − 𝑋.3N^b'G �

#
² (6.7) 

Where 𝜕 is weighting factor, which is set to 0.6 in this experiment. Meanwhile, 𝑋̄3N^>'G , 𝑋̄1MN]>'G, 

𝑋̄.3N^>'G  denote DNS (ONS) magnitude, complex domain output of generator fed with their 

corresponding ONS magnitude, complex domain (𝑋3N^b'G , 𝑋1MN]b'G, 𝑋.3N^b'G ). Similar to least-square 

GANs [121], the adversarial training is following a minimal optimization task over the 

discriminator loss 𝐿>  and the corresponding generator loss 𝐿89'  expressed as follows:  

𝐿89' = 𝐸K~<. ±�𝐷|𝑌3N^, 𝑋̄3N^} − 1	�#² (6.8) 
𝐿>./J = 𝐸:~<",K~<. ±�𝐷(𝑌3N^, 𝑌3N^) − 1	�# + �𝐷(𝑌3N^, 𝑋̄3N^b'G) − 𝑆𝑐𝑜𝑟𝑒<DGQ&GFb6 	�#

+ �𝐷(𝑌3N^, 𝑋̄3N^>'G) − 𝑆𝑐𝑜𝑟𝑒<DGQ&GFb6 	�#² 														(6.9) 
Where D refers to the discriminator, 𝑆𝑐𝑜𝑟𝑒<DGQ&GFb6  refers to the normalized PESQ&STOI 

score, ranging from 0 to 1, between unpaired clean speeches and enhanced speeches. 

Besides that, we also add a time loss 𝐿A.3M  as another penalization to guarantee the 

resynthesized speech quality: 

𝐿A.3M = Ef~d/[‖𝑤𝑎𝑣µ>'G −𝑤𝑎𝑣b'G‖#] (6.10) 
Where 𝑤𝑎𝑣µ>'G and 𝑤𝑎𝑣b'G represent enhanced waveform from DNS and ONS waveform. So 

the final generator loss function is expressed as follows: 

𝐿^M) = 	𝛼 ∗ 𝐿F- + 𝛽 ∗ 𝐿89' + 𝛾 ∗ 𝐿A.3M (6.11) 
Where 𝛼, 𝛽, 𝛾 are weight factors of their corresponding loss functions and set to 0.4, 0.5 and 

0.1 in this experiment. 
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6.2.4 Fine-tuning step 

Since the performance of pre-training is unsatisfied, the enhancement network is always fine-

tuned with simulated paired noisy and clean speech by supervised learning to reduce the 

mismatch between the simulated data and the unpaired data. The same as [201], we take a small 

amount of simulated paired data for the fine-tuning step. The simulated paired data is used to 

optimize the generator hyperparameters from the noisy to clean speech by supervised learning. 

With the fine-tuning training, the capability of the enhancement network learned from the 

unsupervised pre-training stage is further strengthened. The loss function for the fine-tuning step 

is defined as follows: 

𝐿^M) = 𝐸ZK~<0. ±𝛼 ∗ 𝜕 ∗ �𝑋̄3N^ − 𝑌3N^�# + 𝛼 ∗ (1 − 𝜕)�𝑋̄1MN] − 𝑌1MN]�#
+ 𝛼 ∗ (1 − 𝜕)�𝑋̄.3N^ − 𝑌.3N^�# + 𝛽 ∗ �𝐷(𝑋̄3N^, 𝑌3N^) − 1�#
+ 𝛾 ∗ ‖𝑤𝑎𝑣µZ −𝑤𝑎𝑣K‖#²																																																									(6.12) 

𝐿>./J = Egc~d1- ±�D|𝑌3N^, 𝑌3N^} − 1	�# + �D|𝑌3N^, 𝑋̄3N^} − 𝑆𝑐𝑜𝑟𝑒<DGQ&GFb6 	�#² (6.13) 
Where X and Y are paired noisy speeches and clean speeches. 

6.3 Objective experiment  

6.3.1 Datasets 

In our experimental framework, we constructed synthetic datasets following the methodology of 

previous research [210]. During the pretraining phase, we utilized clean speech segments from 

the ICASSP DNS3 dataset [167], which we then combined with noise sources from NoiseX-92 

[145] and Musan-2 [206]. These mixtures were created at varying sound levels, ranging from -5 to 

10 dB. For the fine-tuning stage, we curated a bespoke paired dataset, named FT-SMALL. This 

dataset was composed of clean audio extracts from the 5-hour Librispeech corpus [147] mixed 

with noise from Musan-3 [206]. The deliberate variation in noise types between the paired and 

unpaired datasets supports our hypothesis: simulated paired data won’t perfectly mimic real-

world unpaired samples. Our evaluation was conducted using a 2 hours’ long test dataset that 

included clean speeches from eight unique speakers, each blended with noises from Musan-1. 

Notably, these speakers were distinct from those featured in both the FT-SMALL and the pre-

training dataset. For both Musan-1, Musan-2 and Musan-3, we used an equal division of the 

complete Musan dataset [206].  
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For our training dataset, we cut the utterances into 2-second segments. But for the test dataset, 

we didn't make any cuts, so the lengths vary. 

6.3.2 Implement details 

We used a Hamming window with a 25 ms window length (equivalent to 400-point FFT) and a hop 

size of 200 points, which means there's a 50% overlap. In the generator, we set the number of 

resolution_former blocks, N, to 2 and the channel number, C, to 64. When training, we used the 

AdamW optimizer [146] for both the generator and the discriminator and trained them for 10 

rounds or epochs. The learning speed, or rate, was set at 5×10−4 for the generator and 1×10−3 for 

the discriminator. We also adjusted the learning rate as we went, reducing it by half every 2 

epochs. 

In this experiment, to carry out the training process, two V100 16GB GPUs were used, and the 

training process took approximately 120 hours for 10 epochs. The computation resources were 

generously offered by the High-Performance Computation (HPC) at the University of 

Southampton. 

6.3.3 Objective evaluation metrics 

To evaluate the quality of the denoised speech, we picked a range of standard metrics. We used 

PESQ, which has a score range from -0.5 to 4.5. We also used a set of metrics: (1) prediction for 

signal distortion (CSIG); (2) background noise intrusiveness (CBAK); (3) overall speech quality 

(COVL) [211]. All these MOS-based scores range from 1 to 5. For judging how clear the speech 

sounds, we used STOI, which scores between 0 and 1. For all these metrics, a higher score means 

better speech quality. 

6.3.4 Results 

We compared our results (as shown in Table 6.1) with established methods such as CycleGAN 

[121], NeTT [212], NyTT [213], and M-4 [201], drawing data from the study [201]. The comparative 

findings can be seen in Table 1. Our method generally outperformed other state-of-the-art (SOTA) 

techniques, especially with unseen data. This suggests that the initial settings, achieved through 

our unique pre-training strategy, significantly enhance the performance of the speech 

enhancement model during the subsequent fine-tuning phase. Additionally, our approach 

expedited the model's convergence speed. For instance, a model with a modest 2.94 M 

parameters neared convergence in just 10 epochs without compromising its efficacy. 
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Table 6.1 Comparisons between the proposed method and other supervised fine-tuned 

models initialized by state-of-the-art unsupervised methods. Selected SNR in test 

data ranges from 0dB to 15 dB. 

 

To verify our design choices, we carried out an ablation study to check our design decisions 

whether brings a better performance comparing with the baseline model in same training and 

testing conditions, and the results are presented in Table 6.2. For our baseline, we used a model 

identical to our proposed one. However, instead of initializing it with a pre-training step, we 

trained it directly using fine-tuning data. Additionally, we created unpaired pretraining data using 

all speeches from Librispeech and noises from NoiseX-92. This data was used to set the starting 

weights for our proposed model with the pre-training strategy. 

Table 6.2 Ablation experiment comparisons among the proposed method based on different 

training data. Selected SNR in test data ranges from 0dB to 15dB. 

 

Our analysis indicates that even with identical structures, the proposed model surpasses the 

baseline in performance. This improves the model's robustness and its ability to generalize 

effectively to unseen data, likely attributed to the weight initialization derived from the pre-

training phase. Notably, as we augmented the volume of fine-tuning data, there was a marked 

improvement in the performance of the proposed model, particularly evident in the PESQ and 

STOI metrics. Upon comparing Table 1 with Table 2, it's striking to observe that our model, after 

fine-tuning with FT-SMALL data, exceeds the performance of the baseline model that utilized a 

larger fine-tuning dataset. This underscores the pivotal role that weight initialization through pre-

training plays in the overall model efficacy. 

 

Method Fine-tuning data Test data

PESQ SDR CSIG CBAK COVL

CycleGAN 1.58 12.1 2.17 2.63 1.83

NETT 1.64 12.5 2.26 2.71 1.91

NyTT 1.59 12.1 2.13 2.63 1.81

M-4 1.52 12.4 2.32 2.61 1.87

Proposed model 1.91 12.7 2.82 2.68 2.12

Evaluation metrics

FT-SMALL TEST-MUSAN1

Method Test data

Speech Noise PESQ CSIG CBAK COVL STOI

Baseline train-clean-100 NoiseX-92 1.41 2.33 2.54 2.05 0.86

Proposed model train-clean-100 NoiseX-92 1.64 2.44 2.59 2.17 0.91

Baseline train-clean-100, dev-clean NoiseX-92+MUSAN2 1.89 2.89 2.68 2.37 0.89

Proposed model train-clean-100, dev-clean NoiseX-92+MUSAN2 2.01 3.2 2.62 2.55 0.93

TEST-MUSAN1

Fine-tuning data Evaluation metrics
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6.4 Subjective experiment  

6.4.1 Objective 

The purpose of this experiment is to evaluate the performance of a speech enhancement system 

by assessing the discernibility of enhanced speech, noisy speech, and pure speech as perceived 

by voluntary participants from different groups. The groups are decided by 2 factors: (1) whether 

participants have hearing impairment or age over 60; (2) whether they are native English speakers. 

6.4.1.1 Procedure 

1. Recruitment of Participants: Volunteers willing to participate in the experiment are recruited, 

ensuring they are informed about the experiment's purpose, methodology, and their role. 

2. Preparing the Experiment Setup: The participants are seated comfortably in a quiet, 

soundproof room. They are provided with headphones connected to the speech enhancement 

system.  

3. Speech Playback: The speech enhancement system is programmed to play a series of speech 

samples randomly. These samples include enhanced speech (speech after processing by the 

enhancement system), noisy speech (speech with background noise), and pure speech (clean 

speech without any enhancement or noise). 

4. Repetition Task: Participants are instructed to listen carefully to each speech sample and 

repeat exactly what they hear. Emphasis is on accurately repeating the speech content to the best 

of their abilities. At the same time, participants also require providing score ranging from 1 to 5 

for the speech quality. 

5. Speech Recording: The system will record the participant's repeated speech in real-time. 

6. Evaluation: A speech recognition system (from 

“https://github.com/Uberi/speech_recognition”) is utilized to transcribe and analyze the 

recorded speech. It determines the recognition rate, representing the accuracy and clarity of the 

participant's speech repetition. 

7. Data Analysis: The recognition rates for each type of speech (enhanced, noisy, and pure) are 

then compared and statistically analyzed to determine the effectiveness of the speech 

enhancement system. The recognition rate serves as a proxy for the enhancement system's 

performance – the higher the recognition rate, the better the system's performance. 
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6.4.1.2 ASR-based Analysis in Subjective Audio Enhancement Experiments 

1. Overview 

In our experiment, we employed Automatic Speech Recognition (ASR) to evaluate the intelligibility 

of enhanced audio compared to the original, unprocessed audio. Volunteers were exposed to 

both versions of the audio clips, and their verbal repetitions of what they heard were recorded. 

These recorded samples were then processed through ASR to determine the Word Right Rate 

(WRR) as a measure of quality and intelligibility. 

2. ASR Workflow 

We utilized an open source ASR engine, which operates based on deep neural networks, to 

transcribe the audio clips. Each audio clip, both the reference (pure audio) and the volunteers' 

repeated versions, were passed through the ASR engine to produce a textual transcript. The 

produced transcripts were then used to calculate the WRR. 

3. Criteria for Correct Identification 

Determining what counts as a 'correct' identification by the ASR system required careful 

consideration. We defined a word as 'correctly' identified if: 

(1) It exactly matched the word in the reference transcript. 

(2) Minor variations, such as tense or plurality, were considered correct. For instance, 'run' and 

'ran' were considered a match. 

(3) Homologues or synonyms were not considered a match, given that they can significantly alter 

the meaning of a sentence. 

4. Handling Ambiguities 

In cases where the ASR engine recognized a similar-sounding word (homophones) or a plural form, 

we resorted to contextual analysis. If the recognized word fit the context of the sentence and did 

not alter its meaning, it was considered a correct identification. 

5. Calculation of Word Right Rate (WRR) 

The WRR was calculated as the ratio of correctly identified words to the total number of words in 

the reference transcript. Mathematically, it is represented as: 

𝑊𝑅𝑅 = 𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑜𝑟𝑟𝑒𝑐𝑡	𝑤𝑜𝑟𝑑𝑠𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑤𝑜𝑟𝑑𝑠	𝑖𝑛	𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ∗ 100% (6.14) 
6. Manual Validation 

In order to validate the accuracy of the ASR (Automatic Speech Recognition) system, we selected 

a subset of the recordings to be manually transcribed. By comparing these transcriptions with the 

ASR outputs, we aimed to verify the system's reliability. Our analysis revealed that the ASR system 

achieved more than an accuracy rate of 95%when compared to the manual transcriptions, 

underscoring its robust performance in our speech enhancement context. 
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7. Temporal Analysis 

An analysis was conducted to examine the ASR performance over time within each audio clip. 

The results indicated no significant difference in WRR between the beginning and the end of the 

audio clips, suggesting stable performance throughout. 

8. Comparative Analysis 

The results from the ASR system should also be compared with subjective quality scoring 

evaluations from the participants.  

9. Error Analysis 

A detailed error analysis was conducted to identify patterns in the ASR system's mistakes. It was 

observed that the system frequently misrecognized certain technical terms and struggled with 

heavily accented words, for example, some international participants have strong accent and 

lead to lower recognition rate. 

10. Ethical Considerations 

All participants provided informed consent with 7 forms which have been approved by the 

University of Southampton ethic board before participating in the study. Audio data was stored 

securely, and all personally identifiable information was removed to ensure privacy. 

11. Limitations and future work 

While ASR provided an automated and efficient way to evaluate audio quality, it's worth noting 

that it has its limitations. ASR engines can sometimes misinterpret words, especially in the 

presence of background noise or accents. However, given the high accuracy rates of modern ASR 

engines, we consider the results to be highly indicative of the audio quality. At the same time, the 

participants in this study included a diverse range of volunteers, varying in age, gender, and native 

language. This should be done to test the robustness of the ASR system across different accents 

and speaking styles in future. Such as focusing on optimizing the ASR system for specific accents 

or exploring the impact of background noise levels on ASR performance. 

 

6.4.2 Participants and experiment setup 

In this experiment, a total of 11 participants were involved, which included 5 native English 

speakers and 6 non-native English speakers. Among them, 5 participants self-reported as having 

hearing impairments or being aged over 60. The remaining 6 participants reported no hearing 

impairments and were below the age of 60.Each participant will randomly listen and repeat 50 

speech samples from pure speeches, noisy speeches as well as enhanced speeches. Meanwhile, 

they also need to give speech quality scores corresponding to speeches they have heard. 
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To ensure participants could easily recall the content of each speech sample, we selected 'pink' 

as the background noise, and each pure speech sample was limited to a maximum of 10 words. 

Preliminary observations indicated that speech samples longer than 4 seconds or containing 

more than 10 words posed challenges in recall, leading to potential discrepancies. As the 

primary focus of the experiment was on speech quality and intelligibility, it was imperative to 

minimize memory-related confounding factors. 

6.4.3 Subjective results 

The results consist of 2 parts (as shown in Table 6.3&6.4 and Figure 6.4):  

Listening and Repeating: In this part, participants are required to listen to the speech and repeat 

it. 

Scoring Speech Quality: Here, each speech is scored based on its quality. 

The ultimate results are calculated as a combination of both parts (0.5 * Word_Correct_Rate + 

0.5 * Speech_Quality_Score), as this approach is taken because some non-native English 

speakers may struggle to fully comprehend the speech content, which is an important factor 

should be improved, such as the original corpus selection. Even for those with expertise in English, 

it can be challenging to remember and reproduce all the content accurately. 

 

Table 6.3 The subjective experiment result and bold shows the average scores. There are totally 

11 participants joining in this experiment. 5 native English speakers as well as 6 non-

native English speakers. 5 participants with hearing impaired or aged over 60 and 6 

participants without hearing impaired and aged under 60. 

 

Table 6.4 Average Word Right Rates and Speech Quality Scores Across Various Listener 

Demographics and Speech Conditions. 

 

Native English Speaker Hearing Impaired or Aged over 60 Noisy_speech Enhanced_speech Pure_speech Noisy_speech Enhanced_speech Pure_speech

No No 55.64% 68.23% 74.94% 37.50% 73.75% 93.40%

No No 53.66% 65.40% 70.20% 44% 75% 100%

No No 38.72% 50.07% 62.06% 21.33% 66.36% 100%

No No 40.44% 51.64% 55.53% 21.25% 65.55% 91.43%

No No 48.52% 54.39% 61.02% 32% 68.33% 89.17%

Yes Yes 39.33% 59.41% 66.20% 36.56% 80% 98.89%

Yes Yes 45.88% 56.47% 83.20% 38.75% 52.22% 86.96%

Yes Yes 71.57% 80.66% 88.74% 40.70% 50.90% 92.70%

Yes Yes 65.30% 82.98% 90.07% 52.22% 63.08% 98%

Yes No 64.57% 77.21% 84.70% 43.33% 55.56% 99.13%

No Yes 42.97% 54.81% 61.11% 33.33% 64.44% 100%

Participant Word_Correct_Rate Speech Quality Score

Native English Speaker Hearing Impaired or Aged over 60

Noisy_Speech Enhanced_Speech Pure_Speech Noisy_Speech Enhanced_Speech Pure_Speech

No No 47% 58% 65% 31% 70% 95%

No Yes 43% 55% 61% 33% 64% 100%

Yes No 65% 77% 85% 43% 56% 99%

Yes Yes 56% 70% 82% 42% 62% 94%

Word_Right_Rate Speech_Quality_Score
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Figure 6.4 The summary of Table 6.3, the participants order remains unchanged. 

6.4.3.1 Summary on the Impact of the Speech Enhancement Model 

1. Benefits for the Hearing-Impaired or Aged Population 

Based on the collected data, it's evident that the speech enhancement model significantly 

improves both the "Word Right Rate" (WRR) and "Speech Quality Score" (SQS) for the hearing-

impaired or individuals aged over 60. Specifically, these participants showed higher scores in 

both metrics when exposed to enhanced speech compared to noisy speech. For individuals who 

are either hearing-impaired or aged over 60, the average "Word Right Rate" increased from 49.5% 

for noisy speech to 71.55% for enhanced speech. Similarly, the "Speech Quality Score" for this 

group also improved, going from 37.5% for noisy speech to 63% for enhanced speech. This 

suggests that the model holds considerable promise for applications aimed at improving auditory 

experiences for people with hearing difficulties or older adults. 

2. Independence from English Proficiency Levels 

The experiment included both native and non-native English speakers. One striking observation 

from the data is the universal improvement in speech quality and comprehension across both 

native and non-native English speakers in "Word Right Rate" and "Speech Quality Score" when 

listening to enhanced speech as opposed to noisy speech. For native English speakers, the 

average "Word Right Rate" improved from 60.5% for noisy speech to 73.5% for enhanced speech. 

Non-native speakers also showed a marked improvement, with rates increasing from 45% for 

noisy speech to 56.5% for enhanced speech. The "Speech Quality Score" followed a similar trend 
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for both groups. This indicates that the benefits of the speech enhancement model are not 

restricted by the listener's proficiency in English and can universally improve auditory 

comprehension and quality. 

3. General Improvement in Speech Quality 

Beyond these specific insights, it is noteworthy that the model improved "Speech Quality Score" 

across all types of listeners. Across all participants, the "Speech Quality Score" showed 

significant improvements when comparing noisy speech (mean score around 37.25%) to 

enhanced speech (mean score around 63%). This is indicative of the model's general efficacy in 

enhancing auditory experiences, which could be beneficial in a variety of contexts, ranging from 

telecommunication to automated voice-assistant technologies. 

4. Enhanced Speech Comprehension 

The improvement in "Word Right Rate" underlines the model’s effectiveness not just in improving 

the quality of speech but also in making it more comprehensible. This is crucial in contexts where 

clear communication is essential, such as emergency services or customer support. 

6.5 Conclusions of this chapter 

In this study, we present a novel speech enhancement technique. Initially, it employs a mixed 

method utilizing both unpaired noisy speech for pre-training (unsupervised) learning and paired 

noisy/clean speech for fine-tuning (supervised) learning. Our method also introduces a unique 

framework that works with both magnitude and complex spectrogram components. By 

integrating the attention mechanism with contrastive learning strategies, our approach efficiently 

captures both long-range and immediate features across time and frequency dimensions. 

Additionally, we incorporated a metric discriminator that directly enhances non-differentiable 

evaluation scores, addressing metric mismatches. Our experiments confirm that our method not 

only increases system performance and speech quality but is also adaptable to other speech 

enhancement applications. Importantly, our technique demonstrates resilience against 

unfamiliar noises and distortions, as evidenced by our ablation study. 

To verify our proposed model real-world performance, our study has presented the results of a 

subjective experiment aimed at evaluating the performance of our proposed speech 

enhancement model. These findings were gathered through the participation of a diverse group 

of individuals, including native and non-native English speakers, as well as individuals with 

hearing impairments or aged over 60.  
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The results demonstrate a significant enhancement in speech quality scores using our proposed 

model, despite varying degrees of English proficiency, and hearing capabilities. The overall 

enhancement in speech quality was marked at 69.13%, with a substantial improvement noted 

among both native and non-native English speakers, 38.8 % and 109.4% respectively. 

Most notably, the proposed model proved to be highly effective for individuals with hearing 

impairments or those aged 60 and above. This group saw a remarkable enhancement of 70.3% in 

speech quality, demonstrating the model's potential to significantly improve the quality of life for 

people who struggle with speech comprehension in noisy environments. 

On the other hand, younger individuals without hearing impairments also reported a heightened 

level of comfort when listening to the enhanced speech, highlighting the broad applicability and 

benefits of our proposed model. 

In conclusion, the proposed model substantially improves the clarity and intelligibility of speech, 

thereby increasing the comfort and comprehension of individuals across varied levels of English 

proficiency, ages, and hearing capabilities. These results underscore the potential of our model 

as a versatile tool for enhancing speech quality in various real-world scenarios. Future work will 

continue to refine and expand on these promising results. 

Following this experiment, while participants perceived it as meaningful and creative, we have 

identified several unsatisfying areas and limitations that require consideration and adjustment. 

Corpus Accessibility: It is crucial to ensure that the corpus (the collection of texts or recordings) 

is easy to remember and understand. We believe that the ease with which participants can grasp 

the content plays a vital role in their ability to accurately repeat what they have heard. 

Equipment Latency Issues: Latency in the equipment used for this experiment has been a 

source of discomfort. Ideally, after the prompt sound, the computer should promptly begin 

recording participants' speech. Unfortunately, there have been delays in the equipment's 

response. For example, we observed instances where the participant's repeated speeches were 

not fully captured by our computer, resulting in suboptimal results. 

Diverse Speaker Selection: All audio materials were generated by a single speaker. To enhance 

the generalizability and robustness of our experiment, it is necessary to incorporate speeches 

from multiple speakers. This variation can provide a more comprehensive understanding of the 

participants' performance. 
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Chapter 7 Conclusion 

7.1 Contributions 

This research tackles the challenge of speech enhancement through the use of advanced 

machine learning models. The goal is to improve the clarity of speech that is often degraded by 

background noise, a common issue that affects both human listeners and automated speech 

recognition systems. This thesis not only presents advancements in the technical aspects of 

speech enhancement but also underscores their real-world applicability and impact. 

Key Contributions: 

1. GANs in Speech Enhancement: The study explores the potential of GANs for enhancing 

speech signals, which could lead to new applications in audio processing. 

2. Improved GCNs with Attention: An upgraded version of GCNs is introduced, which uses 

attention to better understand the relationships in speech data, potentially improving 

speech enhancement results. 

3. Cascaded structure: The combination of the Masking-based method and the Mapping-

based method. 

4. Dual-Input Architecture: A new model that takes both magnitude spectrum and complex-

value data as inputs is presented. This approach could capture more details in speech 

signals, leading to better enhancement techniques. 

5. Unpaired Data Model: Addressing the scarcity of paired training data in real-world scenarios, 

the research develops a model that works well with unpaired data, which is a significant 

advantage for practical use. 

7.2 Limitations 

While our work has made significant strides in advancing speech enhancement methodologies, 

some limitations and avenues for future research include: 

1. Phase Information Integration: Address the challenge of effectively integrating phase 

information in waveform reconstruction, exploring innovative solutions to incorporate this 

vital aspect under guaranteeing the requirement of low latency. 

2. Model Robustness: Lack the robustness of speech enhancement models in handling various 

noisy conditions, for instance,  low SNRs and complex unknown noise environments. 

3. Real-World Application: Extend the evaluation of models beyond controlled environments 

to diverse real-world scenarios, focusing on usability, practicality, and adaptability. 
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4. Human-Centered Evaluation: Conduct more extensive human-centered evaluations, 

especially involving individuals with hearing impairments, to ensure the models' 

effectiveness aligns with real-world user needs. 

7.3 Future Work 

Exploring Hybrid Approaches: Investigate the potential of hybrid models that combine the 

strengths of different deep learning architectures, leveraging GANs, attention mechanisms, and 

unsupervised pre-training synergistically for enhanced speech enhancement. 

Model Sliming and Compression: Continue to explore methods for compressing models in a 

way that preserves their performance. The pursuit of models that are both causally coherent and 

computationally efficient is crucial for the advancement of real-time speech enhancement 

technologies. Research into innovative neural network structures and reduction techniques 

could be particularly beneficial. The motivation behind this is to facilitate the deployment of 

speech enhancement technologies in environments with limited computational resources. A 

specific operational plan could include benchmarking various model compression techniques 

such as weight pruning, quantization [215], and knowledge distillation [216]. 

Latency-Adaptive Algorithms: Explore algorithms that can adapt their complexity in response to 

the latency requirements of various applications. This could involve creating models that can 

toggle between low and high complexity modes based on the immediacy needed by the 

application. The reason for this exploration is to enhance user experience in real-time 

applications where latency is critical, such as in telecommunication or live translation services 

in some noisy environment. The operational plan might involve: 

1. Designing a dynamic system within the model that can assess the available processing 

power and adjust its complexity accordingly. 

2. Testing the models in various real-world scenarios to ensure robustness and reliability. 

Interdisciplinary Knowledge Application: Draw on insights from fields like computer vision or 

natural language processing, where real-time processing and model efficiency are paramount, to 

discover new strategies for speech enhancement. Investigating transfer learning and cross-

modal learning techniques could reveal novel methods for improving speech enhancement 

models. The rationale for this approach is to leverage successful strategies from other domains 

to innovate within the field of speech enhancement. A concrete plan could include: 

1. Establishing a feature fusion mechanism [214] to align speech and other abstract features 

(like text embedding, computer vision padding and so on). 
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2. Applying techniques from computer vision or natural language processing to audio signal 

processing. 

In conclusion, the challenges posed by real-time speech enhancement, such as model causality 

and computational demands, also offer opportunities for future research. By focusing on model 

efficiency, adaptive algorithms, transparent benchmarking, cross-domain learning, and 

responsible open-source contributions, the field can progress in a way that is both technically 

sound and advantageous to the broader community. By tackling these challenges and exploring 

new research paths, we can push the frontiers of speech enhancement technology, leading to 

more robust, adaptable, and user-oriented models in the future. 
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Appendix 

Project source code: 

Darwin-Cjq/Gated-Residual-Network: Stacked glus (github.com) 

Darwin-Cjq/Proposed_model: PhD project in University of Southampton (github.com) 
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