
University of Southampton Research Repository

Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are
retained by the author and/or other copyright owners. A copy can be downloaded for personal non-
commercial research or study, without prior permission or charge. This thesis and the accompanying
data cannot be reproduced or quoted extensively from without first obtaining permission in writing from
the copyright holder/s. The content of the thesis and accompanying research data (where applicable)
must not be changed in any way or sold commercially in any format or medium without the formal
permission of the copyright holder/s.

When referring to this thesis and any accompanying data, full bibliographic details must be given, e.g.

Thesis: Mehmet Said Nur Yagmahan (2024) "Generic Formal Patterns for Cloud Native Application
Development", University of Southampton, School of Electronics and Computer Science, PhD Thesis,
pages 1-121.

Data: Mehmet Said Nur Yagmahan (2024) "Generic Formal Patterns for Cloud Native Application
Development".





University of Southampton

Generic Formal Patterns for Cloud Native
Application Development

by

Mehmet Said Nur Yagmahan

ORCiD: 0000-0003-4981-4286

A thesis for the degree of Doctor of Philosophy

in the

Faculty of Engineering and Physical Science

School of Electronics and Computer Science

July 2024

Supervisors: Abdolbaghi Rezazadeh, Michael Butler

http://www.southampton.ac.uk
msny1y17@soton.ac.uk
https://orcid.org/0000-0003-4981-4286
https://www.feps.soton.ac.uk/
https://www.southampton.ac.uk/about/faculties-schools-departments/school-of-electronics-and-computer-science




University of Southampton

Abstract

Faculty of Engineering and Physical Science

School of Electronics and Computer Science

Doctor of Philosophy

Generic Formal Patterns for Cloud Native Application Development

by Mehmet Said Nur Yagmahan

With advances in cloud computing and distributed systems, cloud-native applications provide

immense flexibility to developers in terms of building scaleable and efficient applications and

systems. One of the predominant architectures that epitomises this shift in modern application

development is the service-oriented architecture (SOA). While SOA offers developers signifi-

cant flexibility during system development, it inadvertently increases overall system complex-

ity, which may result in design and implementation flaws.

To deal with complexity, formal methods offer abstraction. By conceptualising systems at

higher abstraction levels, they help developers and system architects achieve a better grasp

of the system’s entirety and its nuances. Moreover, in service-oriented architecture and cloud-

native applications, access control is a crucial component because it serves as the gatekeeper,

specifying who can access the system or use which resources or services. Therefore, it should

be designed robustly to protect resources and ensure the application’s security.

In this research, we mainly focus on developing formal modelling patterns to assist cloud-

native application developers in securely designing their cloud-native systems. Therefore,

firstly, we will develop a set of formal modelling patterns for the functionalities of server-

less systems in the Event-B environment. In the next stage, we incorporate an access control

mechanism for the serverless system into our previously proposed patterns. Then, to illustrate

the usefulness of our patterns and approach, we model two distinct scenarios of a project man-

agement application with serverless architecture. We conclude by summarising our findings

and highlighting the research’s prospective directions and potential applications.

http://www.southampton.ac.uk
https://www.feps.soton.ac.uk/
https://www.southampton.ac.uk/about/faculties-schools-departments/school-of-electronics-and-computer-science
msny1y17@soton.ac.uk




Contents

List of Figures ix

List of Tables xiii

Declaration of Authorship xv

Acknowledgements xvii

Abbreviations xxi

1 Introduction 1
1.1 Thesis Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Web Services 5
2.1 A Brief History of Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Microservices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Serverless Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 Advantages of Serverless Architecture . . . . . . . . . . . . . . . . . . 10

2.4.2 Disadvantages of Serverless Architecture . . . . . . . . . . . . . . . . 11

2.5 Cloud Platforms Offering Serverless . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.1 Microsoft Azure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.2 Google Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5.3 Amazon Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Security and Access Controls in AWS Environments . . . . . . . . . . . . . . . 14

2.6.1 AWS-Based Serverless Application Architecture . . . . . . . . . . . . . 14

2.6.1.1 Amazon Cognito . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6.1.2 AWS API Gateway . . . . . . . . . . . . . . . . . . . . . . . 15

2.6.1.3 AWS Lambda . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6.1.4 AWS IAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6.2 Authorization and Access Control in AWS . . . . . . . . . . . . . . . . 17

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Formal Methods 21
3.1 Formal Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Formal Specification Languages . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Model-based Specification Languages . . . . . . . . . . . . . . . . . . . 22

3.2.2 Algebraic Specification Languages . . . . . . . . . . . . . . . . . . . . 22

v



CONTENTS vi

3.2.3 Formal Specification Languages used for Cloud Systems . . . . . . . . 23

3.2.4 TLA+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.5 Event-Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.6 Event-B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.6.1 The Structure and Syntax . . . . . . . . . . . . . . . . . . . . 24

3.2.6.2 Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.6.3 Proof Obligation . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.6.4 Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.6.5 Event-B Tool: Rodin . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.6.6 ProB (Animator and Model Checker for Event-B) . . . . . . 27

3.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Formal Methods in Web Services . . . . . . . . . . . . . . . . . . . . . 28

3.3.1.1 Security of Cloud . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1.2 Security of Customers in The Cloud . . . . . . . . . . . . . . 29

3.3.2 Web Service Composition . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.3 Access Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.4 Other Relevant Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Formal Patterns for Serverless App 31
4.1 Request Handling Pattern (RHP) . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Request Order Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.1 Single Service Request (SSR) . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.1.1 Representation RHP and SSR Patterns in Event-B . . . . . . 35

4.2.2 Linear Service Request (LSR) . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.2.1 Representation LSR Pattern in Event-B . . . . . . . . . . . . 39

4.2.3 Branching Service Request (BSR) . . . . . . . . . . . . . . . . . . . . . 42

4.2.3.1 Representation BSR Pattern in Event-B . . . . . . . . . . . . 44

4.2.4 Chained Branching Service Request (CBSR) . . . . . . . . . . . . . . . 46

4.2.4.1 Representation CBSR Pattern in Event-B . . . . . . . . . . . 47

4.2.5 Comparison of ROP Patterns . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 POs of RHP / ROP Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Formal Patterns for Authorization Mechanism 53
5.1 Formal Patterns for Authorisation Mechanism . . . . . . . . . . . . . . . . . . 54

5.1.1 A Non-Deterministic Authorization Mechanism . . . . . . . . . . . . 54

5.1.2 First Refinement: Introducing Sub-typing Generalization . . . . . . . . 55

5.1.3 Second Refinement: Replacing the Non-deterministic Authorizer with

a Deterministic Authorizer . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1.4 Third Refinement: The complete Access Control in AWS . . . . . . . . 61

5.2 POs of Authorization Mechanism Model . . . . . . . . . . . . . . . . . . . . . 62

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Case Studies 65
6.1 Case Study: Project Management System . . . . . . . . . . . . . . . . . . . . . 65

6.1.1 Scenario 1: Updating Project Status . . . . . . . . . . . . . . . . . . . . 68

6.1.1.1 Model "updating project status" Functionality . . . . . . . . 69

vi



vii CONTENTS

6.1.1.2 Event-B Model of The Scenario . . . . . . . . . . . . . . . . 71

6.1.2 Scenario 2: "Promoting a User as Project Manager" . . . . . . . . . . . 84

6.1.2.1 Model "Promoting a User as Project Manager" Functionality 86

6.1.2.2 Event-B model of Scenario 2 . . . . . . . . . . . . . . . . . . 88

6.2 Case Study: Learning Management System . . . . . . . . . . . . . . . . . . . . 92

6.2.1 Scenario 3: Updating Project Status . . . . . . . . . . . . . . . . . . . . 95

6.2.1.1 Model ”Hand in an Assignment” Functionality . . . . . . . . 96

6.2.1.2 Event-B Model The Scenario . . . . . . . . . . . . . . . . . . 98

6.3 POs of Case Study Scenarios’ Models . . . . . . . . . . . . . . . . . . . . . . . 105

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7 Conclusion 107
7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

References 113

vii





List of Figures

2.1 The concept of cloud computing, adapted from [42] . . . . . . . . . . . . . . . 6

2.2 Hypervisor and Container, adapted from [14] . . . . . . . . . . . . . . . . . . 7

2.3 The patterns of Web Services Collaboration . . . . . . . . . . . . . . . . . . . . 8

2.4 A general Structure of Serverless Concept, adapted from [115] . . . . . . . . . 9

2.5 Structure of Application with Serverless Architecture . . . . . . . . . . . . . . 10

2.6 A Basic Structure of a Web App with Serverless Architecture in AWS Environ-

ment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 The structure of a serverless application . . . . . . . . . . . . . . . . . . . . . 16

2.8 The structure of an AWS IAM Policy . . . . . . . . . . . . . . . . . . . . . . . 18

2.9 An AWS IAM Policy Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.10 The Relation between IAM Identities and Policies . . . . . . . . . . . . . . . . 19

3.1 Roughly the mechanism in Event-Calculus, adapted from [99] . . . . . . . . . 24

3.2 The structure of an Event-B model . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 The follow of refinements in event-b Model . . . . . . . . . . . . . . . . . . . . 25

3.4 A view of ProB Model Checker . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Access to Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 A Generic Pattern for Request Handling in a Cloud-Native Apps . . . . . . . . 32

4.3 Single Service Request Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Entities for Request Handling Pattern (Context01) . . . . . . . . . . . . . . . . 35

4.5 Event-B model of Request Handling Pattern . . . . . . . . . . . . . . . . . . . 36

4.6 The structure of multiple requests which have LSR pattern . . . . . . . . . . . 38

4.7 The tree-like diagram of a LSR pattern . . . . . . . . . . . . . . . . . . . . . . 38

4.8 The Event-B events in a LSR pattern . . . . . . . . . . . . . . . . . . . . . . . 41

4.9 The structure of multiple requests which have BSR pattern . . . . . . . . . . . 42

4.10 The Tree-like diagram of BSR Pattern . . . . . . . . . . . . . . . . . . . . . . . 43

4.11 Response Events of subsequent request in BSR Pattern . . . . . . . . . . . . . 44

4.12 Initiate Request to Service3 Events in BSR Pattern . . . . . . . . . . . . . . . . 45

4.13 The structure of multiple requests which have CBSR pattern . . . . . . . . . . 46

4.14 The Tree-like diagram of CBSR Pattern . . . . . . . . . . . . . . . . . . . . . . 46

4.15 The relation between chain number and branching . . . . . . . . . . . . . . . 48

4.16 Guards and Actions About Chain in Initiate Request Events . . . . . . . . . . . 48

4.17 Updating The Status of a Chain when a Request fails . . . . . . . . . . . . . . 49

4.18 To Represent <> Condition in Event-B Model . . . . . . . . . . . . . . . . . . 49

4.19 Invariants in RHP and ROP Pattern Model . . . . . . . . . . . . . . . . . . . . 50

4.20 POs of RHP and ROP Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

ix



LIST OF FIGURES x

5.1 A Non-Deterministic Authorization Mechanism . . . . . . . . . . . . . . . . . 54

5.2 Resource and Resource Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3 Refining Request Execution Based on Resource Types . . . . . . . . . . . . . . 56

5.4 An abstraction of permission mechanism in AWS environment . . . . . . . . . 57

5.5 Event-B Invariants Representing Abstract Permission Mechanism . . . . . . . 57

5.6 Authorization of a request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.7 Event-B Encoding of the Request Authorization . . . . . . . . . . . . . . . . . 59

5.8 Deterministic Authorizer Events . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.9 Introducing IAM user, IAM role and IAM policy . . . . . . . . . . . . . . . . . 61

5.10 The Effect of New Features on Authorization Events . . . . . . . . . . . . . . . 61

5.11 POs of Authorization Mechanism’s Model . . . . . . . . . . . . . . . . . . . . 62

6.1 A Basic Structure of a Web App with Serverless Architecture in AWS Environ-

ment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2 The Structure of "Updating Project Status" Functionality . . . . . . . . . . . . 68

6.3 The Authorisation entities in "Updating Project Status" Functionality . . . . . 69

6.4 The tree-like representation of "updating project status" functionality . . . . . 70

6.5 Features Specific to AWS system . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.6 Features Specific to Case Study System and Scenario . . . . . . . . . . . . . . 72

6.7 Invariants of Abstraction for Scenario 1 . . . . . . . . . . . . . . . . . . . . . . 73

6.8 Initialisation for Scenario 1 Abstraction . . . . . . . . . . . . . . . . . . . . . . 74

6.9 Request Initiation Events for Scenario 1 Abstraction . . . . . . . . . . . . . . . 74

6.10 Some Events in Scenario 1 Abstraction . . . . . . . . . . . . . . . . . . . . . . 75

6.11 Local Action Event Project DB Table . . . . . . . . . . . . . . . . . . . . . . . . 76

6.12 Permission Entities for Scenario 1 . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.13 Ref 1: Initialisation Event for Scenario 1 . . . . . . . . . . . . . . . . . . . . . . 77

6.14 Ref 1: Visual of the Required Permissions for Fulfilment of "updating project

status" functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.15 RefiningNon-Deterministic Authorisation intoDeterministic for the EPUpdProSt

endpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.16 RefiningNon-Deterministic Authorisation intoDeterministic for the FunUpdPro-

Data Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.17 Application specific features: Roles, policies . . . . . . . . . . . . . . . . . . . 81

6.18 Invariants Introducing Roles, policies . . . . . . . . . . . . . . . . . . . . . . . 81

6.19 Ref 2: Initialisation Event for Case Study Scenario 1 . . . . . . . . . . . . . . . 82

6.20 Ref 2: Authorisation Verification events Permit Cases . . . . . . . . . . . . . . 83

6.21 The Structure of "Promoting a User as Project Manager" Functionality . . . . . 84

6.22 The Authorisation entities in "Promoting a User as Project Manager" Function-

ality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.23 The tree-like representation of ”Promoting a User as Project Manager” func-

tionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.24 The Features Related to Scenario 2 Configuration . . . . . . . . . . . . . . . . 88

6.25 Abstract Invariants for Scenario 2 . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.26 Initialisation for Scenario 2 Abstraction . . . . . . . . . . . . . . . . . . . . . . 90

6.27 Request Initiation Events for Scenario 2 Abstraction . . . . . . . . . . . . . . . 90

6.28 Local Action Events for Scenario 2 Abstraction . . . . . . . . . . . . . . . . . . 91

6.29 Initialisation Events for Scenario 2 in Refinement Steps . . . . . . . . . . . . . 92

x



xi LIST OF FIGURES

6.30 A Basic Structure of Learning Management System . . . . . . . . . . . . . . . 94

6.31 The Structure of "Hand in an Assignment" Functionality . . . . . . . . . . . . 95

6.32 The Fulfilling of "Hand in an Assignment" Functionality . . . . . . . . . . . . 96

6.33 The tree-like representation of ”Hand in an Assignment” functionality . . . . 96

6.34 Features Specific to the Case Study System and the Scenario . . . . . . . . . . 98

6.35 Invariants for "Hand in An Assignment" Scenario (Abstract Machine) . . . . . 99

6.36 Initialisation Event in Abstraction Machine . . . . . . . . . . . . . . . . . . . . 100

6.37 Data Transition during Among Requests . . . . . . . . . . . . . . . . . . . . . 101

6.38 Permission Entities for "Hand in An Assignment" Scenario . . . . . . . . . . . 102

6.39 Ref 1: Initialisation Event for "Hand in An Assignment" Scenario . . . . . . . . 103

6.40 The required Role and Policy entities in Context . . . . . . . . . . . . . . . . . 104

6.41 Ref 1: Initialisation Event for "Hand in An Assignment" Scenario . . . . . . . . 104

6.42 POs of The First Case Study Scenario Model . . . . . . . . . . . . . . . . . . . 105

6.43 POs of The Second Case Study Scenario Model . . . . . . . . . . . . . . . . . . 105

6.44 POs of The Third Case Study Scenario Model . . . . . . . . . . . . . . . . . . . 106

xi





List of Tables

6.1 General Requirements for Learning Management System . . . . . . . . . . . . 66

6.2 Requirements of Admins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.3 Requirements of Department Managers . . . . . . . . . . . . . . . . . . . . . . 66

6.4 Requirements of Project Managers . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.5 Requirements of Developers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.6 Requests During the Process of Scenario 1 . . . . . . . . . . . . . . . . . . . . 71

6.7 Requests During The Process of Scenario 2 . . . . . . . . . . . . . . . . . . . . 87

6.8 General Requirements for Learning Management System . . . . . . . . . . . . 93

6.9 Requirements of Admins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.10 Requirements of Head of School . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.11 Requirements Lecturers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.12 Requirements of Students . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.13 Requests During The Process of ”Hand in an Assignment” Scenario . . . . . . 97

xiii





Declaration of Authorship

I , Mehmet Said Nur Yagmahan , declare that this thesis and the work presented in it is my own

and has been generated by me as the result of my own original research.

I confirm that:

1. This work was done wholly or mainly while in candidature for a research degree at this

University;

2. Where any part of this thesis has previously been submitted for a degree or any other

qualification at this University or any other institution, this has been clearly stated;

3. Where I have consulted the published work of others, this is always clearly attributed;

4. Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work;

5. I have acknowledged all main sources of help;

6. Where the thesis is based on work done by myself jointly with others, I have made clear

exactly what was done by others and what I have contributed myself;

7. Parts of this work have been published as:

Signed:.......................................................................... Date:..................

xv

https://www.southampton.ac.uk/people/5xjsyl/mr-mehmet-yagmahan




Acknowledgements

I would like to express my deep gratitude to people who have played a pivotal role in the

successful completion of my doctoral thesis. The following acknowledgements are dedicated

to those whose significant contributions have shaped this academic journey.

First and foremost, my deepest gratitude goes to my parents, Mehmet Zeki Yagmahan and

Nezahat Yagmahan. They have consistently illuminated my path, much like a lighthouse guid-

ing a ship to a safe harbor. Their unwavering support and encouragement have been the cor-

nerstone of my academic pursuits.

I would also like to express my sincere thanks to my esteemed supervisors, Dr. Abdolbaghi

Rezazadeh and Prof. Michael Butler. Their invaluable contributions, support, and motiva-

tional guidance have been instrumental in my commitment to rigorous study and the ultimate

completion of my research. Their insightful suggestions have profoundly influenced the de-

velopment of my project, leading to a more robust and refined outcome.

In addition, I extend my gratitude to each member of my family and my friends, whose moral

support has been a constant source of strength throughout my academic journey.

Finally, I dedicate a special acknowledgement to my country, Turkey, more specifically the

Ministry of National Education, which provided financial support to me during my academic

research.

xvii





To Meryem Yagmahan

Bêyî dîtineke dawî,

Tu ji çûyî pira min ku direje bîranînên min ê zarokatiye dibû

Cihê te bi Seyda Mela Mehmûd re Bihuşta Nûranî be...
1

1
EN: Without a last seen

You, that is my bridge that goes to my childhood memories, left as well

May you are at Holly Heaven with Seyda Mela Mehmûd ...

xix





Abbreviations

AC Access Control

API Application Programming Interface

AWS Amazon Web Services

BSR Branching Service Request

CBSR Chained Branching Service Request

IAM Identity Access Management

LSR Linear Service Request

POs Proof Obligations

RHP Request Handling Pattern

ROP Request Ordering Pattern

SSR Single Service Request

TLA Temporal Logic of Action

URL Uniform Resource Locator

VDM Vienna Development Method

xxi





Chapter 1

Introduction

Cloud computing has transcended the traditional paradigms of data and resource sharing,

evolving into a robust platform for developing and deploying new types of distributed ap-

plications, called cloud-native applications. Cloud-native apps use new architectural models

such as serverless, also known as FaaS (Function as a Service).

The serverless architectural paradigm provides access to autonomous, executable fragments

of code, termed serverless functions. These self-contained code units are engineered to be in-

voked and executed without worrying about server-side management operations for a limited

execution time. In a serverless application, the execution of a serverless function may sat-

isfy a single or multiple task(s).For instance, a task could be writing to a specific table on a

database. For more complicated functionalities, serverless functions may connect with multi-

ple resources and services provided by the cloud platform.

In the context of serverless architectures, the functionalities of a cloud-native application are

decomposed into discrete, stateless functions. These functions may interact with various cloud

platform resources and services to fulfill their task. Therefore, functions act as a glue between

cloud platform resources and services to form the backbone of an application’s backend, em-

bodying the essence of the serverless paradigm [26].

When different access levels for users (authorization) are required in a system, access control

mechanisms come into the picture. Access control is a sophisticated mechanism that gov-

erns permissions regarding the access, utilisation, and management of data, resources [15],

and functions. Therefore, an access control mechanism is the heart of cloud-native systems,

specifically applications with serverless architecture, in terms of satisfying a functionality. Any

conflict or inconsistency in the access control mechanism may cause malfunctions or consid-

erable losses in a cloud-native system.

1



CHAPTER 1. INTRODUCTION 2

To avoid those issues, many cloud providers, like AWS and Microsoft Azure, have adopted a

shared responsibility model [39, 105, 13]. This collaborative approach divides the tasks of main-

taining security between cloud providers and cloud users. According to Amazon documenta-

tion [97], there are two key domains in the shared responsibility model, which are "security of

the cloud" and "security in the cloud".

Security of the Cloud: This domain defines the responsibility of the cloud providers. The

cloud providers are responsible for keeping the cloud infrastructure secure. The responsibility

includes safeguarding the fundamental physical and virtual infrastructure, ensuring proper

isolation between customers, and maintaining the integrity of the core services.

Security in the Cloud: On the other hand, the "security in the cloud" domain shows what

tasks and obligations are under the responsibility of cloud users. This responsibility covers the

configuration of access levels and the overall management of who (or what) can access specific

resources in the cloud environment. To do that, cloud providers offer some services and tools

for cloud customers to manage and configure access to resources and services in their cloud

accounts.

Various cloud providers provide different access control mechanisms that are specific to their

cloud environments. For instance, Identity and Access Management (IAM) and Cognito ser-

vices help to configure granular access control in the Amazon Web Services (AWS) environ-

ment, while Microsoft’s Azure platform relies on Azure Active Directory to achieve similar

ends.

Moreover, using cloud-native concepts provides a huge set of opportunities to develop more

efficient and scalable applications compared with those developed in traditional ways in terms

of resource usage. Therefore, cloud computing concepts, especially the serverless concept,

have become popular. For example, according to a report by Right Scale in 2019 [36], 93% of

enterprises use cloud services. The report also stated that serverless is the most common cloud

concept among customers, with a 75% growth rate [36].

However, in the meantime, it poses its own challenges, such as those that arise from the com-

plexity of service or function composition and the configuration of access control mechanisms.

These challenges often expose defects in the development and configuration of the application

itself. For instance, according to a report published by the Carnegie-Mellon Software Engi-

neering Institute (SEI) [34], 70% of all system defects are related to system requirements and

architecture. Furthermore, a recent study [68] highlights that customermisconfigurationswere

the underlying cause of 65% of cloud incidents. Those defects andmisconfigurations can signif-

icantly increase the vulnerability of an application, leading to potential security exposures or

malfunctions. Therefore, a rigorous approach is required to deal with the overall system com-

plexity when cloud native application developers design their systems and the corresponding

access control mechanisms in cloud environments.

2



3 CHAPTER 1. INTRODUCTION

ResearchQuestion : Given the considerable complexity of configuring resource management

and access control mechanisms for cloud-native applications, how might the abstraction and

refinement approaches in formal methods help cloud-native application developers to handle

these complex configurations when they design their systems?

The Aim: The goal of this research is to provide formal modelling patterns to help cloud-

native application developers to manage the complexity related to designing their serverless

systems and corresponding access control mechanism in a cloud environment. We also aim to

create some guidelines on how app developers can use the proposed model patterns to model

a specific functionality of their systems.

Objectives: To achieve the above goal, we are conducting the following approach:

• Modelling the Behaviour of a Request: Firstly, in a cloud environment, a function-

ality is posed through requests. Therefore, a generic formal pattern to represent the

detailed behaviour of a request life-cycle helps us to comprehend how components in

a cloud environment work. To satisfy a specific functionality, the process may necessi-

tate the engagement of various services, requiring the execution of several requests in

a particular order. Therefore, by producing formal patterns for common case of request

ordering, a clearer comprehension of the functionalities inherent to cloud-native appli-

cations can be achieved. Those patterns can assist cloud-native application developers

in the modelling and development of the functionalities of their complex cloud-native

systems.

• Modelling the Access Control Mechanism: Secondly, in the cloud environment, any

request attempting to access a resource must undergo authorisation mechanism. There-

fore, following the modelling of the detailed behaviour of a request, we introduce the

access control mechanism and its effect on a request’s acceptance or denial. By employ-

ing an abstraction strategy in the formal modelling of the access control mechanism,

we aim to give a clearer perspective for comprehending the complex procedures of the

authorisation mechanism in the cloud environment. This may also help cloud-native

developers to design their systems in a more effective way in terms of configuring the

access mechanisms that impact their cloud-native systems.

• Scenarios as Case Studies: Finally, three distinct functionalities of two different

serverless applications have been chosen as case studies. These case studies are devel-

oped and formally modelled to understand how a cloud-native application works. This

also helps to figure out how cloud services and resources connect to each other. Through

the analysis of these case studies, this research aims to show how the proposed generic

formal patterns can be instantiated into the model of a particular functionality of a spe-

cific cloud-native system.

3



CHAPTER 1. INTRODUCTION 4

1.1 Thesis Organisation

The report is organised as follows:

Chapter 2 explores cloud concepts and web services, detailing how technologies and concepts

have evolved in cloud computing.

Chapter 3 begins by highlighting the importance of formal methods in software development

and then describes specific formal languages, such as Event-Calculus, TLA+, and Event-B. After

that, research concerning the implementation of formal methods in cloud-native systems and

access controls is discussed.

Chapter 4 introduces the development of a pattern (RHP) to model the behaviour of the life-

cycle of a request. And then by applying the RHP pattern, we produce several patterns for

common cases of request ordering, representing a functionality in a serverless system.

In Chapter 5, we introduce a generic pattern for authorisation mechanism and show its con-

nection with patterns developed in Chapter 4.

In Chapter 6, we implement our proposed patterns to model three distinct functionalities from

two different case study systems, illustrating the usability of our patterns.

Finally, Chapter 7 concludes the report with a brief summary and an outline of future work.

4



Chapter 2

Web Services

This chapter outlines the evolution of cloud computing, transitioning from general concepts

to the specifics of serverless architecture. It discusses cloud platforms that support serverless

computing after highlighting the critical role of access control in cloud-native systems. The

chapter concludes by addressing the inherent complexity of cloud-native systems, especially

serverless systems, and advocating for formal methods as a solution to navigate this complex-

ity.

2.1 A Brief History of Cloud Computing

Before cloud computing, companies managed their data and applications by building and us-

ing bare metal servers, requiring substantial investment. Building a bare metal server system

not only incurred considerable costs but also demanded extensive efforts in terms of its con-

struction, deployment, and management, making it an impractical option for many businesses.

After that, on account of reducing these costs, servers are grouped into local networks to cen-

tralize file storage. This cluster of servers is referred to as a data center. Data centers provide

shared computing resources, resulting in cost reductions. And then, hardware was virtualised

to enhance resource usage efficiency and reduce the workload associated with physical hard-

ware [109]. As depicted in Figure 2.2, virtualization introduces a middleware layer, known as

a hypervisor, built atop the operating system (OS), which allows developers to run multiple

operating systems on this virtualisation tier. Importantly, the virtualisation technology, which

is a key component of the cloud computing concept [25], paved the way for the evolution of

cloud computing [106, 110].

Cloud computing is a general term to identify a category of on-demand computing services.

In the philosophy of cloud computing, resources are virtualised and readily accessible [86, 38].

Thanks to cloud technology, not only end-users/developers keep away from operational con-

cerns about underlying hardware, but also the usage of the resource is increased. As high-

lighted in a report from the University of California, Berkeley [38], cloud computing has the

5



CHAPTER 2. WEB SERVICES 6

following essential characteristics: pay-per-use, elastic capacity, and virtualised resources. Fur-

thermore, leading IT companies such as Microsoft, Google, Amazon, and IBM have built mas-

sive data centres offering virtualised/abstracted computing resources.

Figure 2.1: The concept of cloud computing, adapted from [42]

Advancements in virtualization technology have significantly increased the level of abstrac-

tion in cloud computing systems. This progress has led to the adoption of distinct concepts

in the cloud computing paradigm, based on their level of abstraction. Figure 2.1 details the

virtualization of the most prevalent cloud concepts: Infrastructure as a Service (IaaS), Plat-

form as a Service (PaaS), and Software as a Service (SaaS). Firstly, in IaaS architecture, which

stands for Infrastructure as a Service, cloud providers offer highly scalable compute resources,

networking, storage, and servers [16], whereas configuring the operating system, managing

storage, and managing/deploying applications remain the responsibility of end-users. Notable

examples of IaaS include Amazon Web Services [88], Microsoft Azure [7], and Google Com-

pute Engine [73]. Moreover, in the case of PaaS architecture (Platform as a Service), both the

operating system and server software are abstracted from end-users, in addition to the IaaS

abstraction. AWS Elastic Beanstalk[91], Google App Engine [72], and Heroku [46] can be ex-

amples of the PaaS structure. Lastly, the highest abstraction level can be seen in the SaaS

architecture (Software as a Service). In this architecture, even the applications are provided

by vendors, leaving end-users with the role of merely using the application. Netsuite [67],

Dropbox [30], and Salesforce [84] can be examples of software created with a SaaS structure.

6



7 CHAPTER 2. WEB SERVICES

Figure 2.2: Hypervisor and Container, adapted from [14]

Containerisation takes virtualisation a step further, potentially reducing an application’s de-

pendence on a specific platform. The container architecture offers a logically segregated en-

vironment, facilitating the operation of applications. As a result, applications built within

containers are platform-agnostic, potentially leading to significant improvements in resource

utilization. However, in this architecture, developers are responsible for deploying containers

and managing their administrative operations.

Briefly, throughout the evaluation of cloud technologies and tools, there are mainly two major

trends that may be observed: increasing the efficiency of resource usage and decreasing the

workload entrusted to end-users.

2.2 Microservices

In traditional software engineering, early applications were typically designed employing a

monolithic architecture. In this architecture, an application and its dependencies are assem-

bled into a single unit or container. As a result, the modules are not independent, so they do

not run independently [29]. However, the monolithic structure causes some issues, includ-

ing scalability, flexibility, and reliability. For instance, from a reliability viewpoint, if a single

module of the system malfunctions, it could cause the entire system to fail.

In contrast, in a microservices architecture, the system is decomposed into small, autonomous

components[55] that communicate with each other, often through APIs[62]. If a service in this

architecture grows too large, it should be further divided into new, smaller services, maintain-

ing the philosophy of simplicity inherent in microservices. As Fowler suggests[37], the idea

behind the microservices architecture can be encapsulated by the phrase "do just one thing,

but do it well". Therefore, because each component (microservice) is like a small, indepen-

dent system, the agility of the overall system can be significantly enhanced in a microservices

architecture[47].

7



CHAPTER 2. WEB SERVICES 8

2.3 Web Services

Web services are software components that are published, located, and invoked across the

Web [77], making them accessible to other software systems [100, 43]. Similar to the microser-

vices concept, web services also conceptualise the idea that individual applications can be di-

vided into relatively small independent services [63]. In other words, each service specialises

in a certain set of tasks, and their collaboration composes the overall software system. Before

diving into how web services are composed, the types of web services will be discussed.

There are two kinds of web services that are commonly used: SOAP-based web services and

RESTful web services [71]. First of all, SOAP, an acronym for Simple Object Access Protocol,

is primarily an XML-based protocol used for communicating with a web service. It is used

between the service consumer and the service provider. A service consumer could also be

another service. A SOAP-based web service is published in WSDL (Web Services Description

Language), providing an XML document that defines the web service. Moreover, these web ser-

vices communicate with each other by using SOAP messages [63]. SOAP defines how services

talk to each other. On the other hand, REST, standing for Representational State Transfer, is an

architectural design that describes constraints related to web service implementation. REST-

ful services have URLs (Universal Resource Identifier) that provide access to them. System

resources are managed and manipulated by HTTP methods, which are PUT, GET, POST, and

DELETE [48]. Both Rest and SOAP web services allow developers to create their own APIs,

enabling communication between services. However, RESTful web services can use different

formats, including JSON, XML, or plain text, for their messaging, whereas SOAP only allows

XML [65]. Moreover, the fact that these messaging formats are language-agnostic enables

developers to build a system with web services that are developed in different languages or

technologies.

Figure 2.3: The patterns of Web Services Collaboration

8



9 CHAPTER 2. WEB SERVICES

When it comes to the collaboration of services, as illustrated in Figure 2.3, two patterns are

common: service orchestration and service choreography. In the orchestration pattern, an or-

chestrator service organises the interactions among different services, following a centralised

pattern. In contrast, the choreography pattern promotes decentralisation, where a web service

communicates directly with other services. In this approach, no single service holds control

over the others [63].

2.4 Serverless Technology

Serverless computing, an increasingly sought-after solution in the computing landscape, has

been observed in research papers since 1995 [55]. However,the definition of the term "server-

less" has changed over time. Nowadays, the term "serverless" is widely used for the Function

as a Service (FaaS) architecture, even though, as Roberts [80] remarks, there is no consensus

on what serverless precisely means.

FaaS, defined as "an event-driven cloud execution model" [52], offers to break down an ap-

plication into a set of small stateless functions [64]. As previously noted, service-oriented

architectures offers to split a monolithic structure into services, each focusing on specific busi-

ness solutions. Then, with the advent of the microservices paradigm, an application or system

can be divided into more fine-grained components, known as microservices. Lastly, the FaaS

concept goes a step further, suggesting that an application be divided into even finer-grained

functions. Because of the fact that these functions are more fine-grained than microservices,

they could be termed nanoservices [55].

Figure 2.4: A general Structure of Serverless Concept, adapted from [115]

Figure 2.4 demonstrates a basic pipeline for a serverless architecture, generally involving the

following steps:

9



CHAPTER 2. WEB SERVICES 10

1 Firstly, a user sends a request to the system.

2 The system finds related functions that fulfil the request’s needs.

3 The function and related resources are loaded into a Docker container.

4 The container is executed.

5 The result is sent to the user as a response.

Furthermore, containerization is a key concept in FaaS architecture [64, 85]. To be more pre-

cise, short-lived container environments form the backbone of the serverless architecture. For

instance, whenever a request for a serverless application is made, a short-lived container is cre-

ated, and the serverless function code starts to run inside it. The containers have limited time

to stay up idle. If it expires, the container is removed, and the resources keeping to response the

request are freed. Moreover, although in serverless architectures, containers are widely used,

the developers who build an app with serverless architectures are kept away from operations

about deploying or managing a container.

Figure 2.5: Structure of Application with Serverless Architecture

In a nutshell, serverless architecture, namely FaaS, as demonstrated in Figure 2.5, offers devel-

opers the ability to run function code in a compute service to trigger any cloud or third-party

APIs without requiring any server-side or backend operations. Therefore, it can be said that

functions run in a compute service, and APIs make up the skeleton of the serverless architec-

ture.

2.4.1 Advantages of Serverless Architecture

Serverless architecture can have substantial benefits in terms of cost or workload from the ap-

plication developer’s point of view. For instance, a study by Villamizar et al. [107] shows that

companies that build their systems with serverless architecture instead of monolithic architec-

ture can drop infrastructure costs by up to 77%. The following points illustrate some of the key

advantages of this architectural pattern:

10



11 CHAPTER 2. WEB SERVICES

• Less server-side operations and more focus on business: Most infrastructure and

server-side operations are abstracted away from developers. This leads to developers

concentrating more on their core business solutions.

• Dynamic resource allocation: Resources are dynamically allocated or deallocated

based on the system’s needs, resulting in considerable resource efficiency.

• Reduced operational cost: Another striking upside of serverless technology is its po-

tential cost reduction. Cloud providers offering serverless technology typically imple-

ment a pay-per-use billingmodel, which allows end-users to pay only for resourceswhen

they are in use. To put it another way, no resource is allocated or chargeable until the

serverless functions run [32]. This feature, coupled with auto-scaled resources, can pro-

vide immense savings, particularly when web traffic is highly fluctuating. To take the

study by Adzic and Chatley [6] as an example, the cost reduction can see even 98%.

• Enhanced system security: While developers still need to address issues like authen-

tication, authorization, and code vulnerabilities, cloud platforms handle most other se-

curity aspects [115]. The cloud platforms can also provide tools to assist developers in

making their systems more secure. For example, Amazon offers the IAM (Identity and

Access Management) [93] service for developers to specify access control for their re-

sources.

• Reduced Complexity: The use of cloud services and serverless functions may reduce

the complexity of the application’s code.

2.4.2 Disadvantages of Serverless Architecture

However, serverless technology is not a silver bullet in all circumstances. In some cases, server-

less may not be a good solution. Some limitations of serverless architecture include:

• Short-lived functions: Due to the fact that serverless functions have a limited exe-

cution lifecycle time, for instance, a lambda function can stay alive for up to 900 sec-

onds [95], serverless architecture proves an ineffective solution for tasks involving long-

running operations.

• Vendor lock-in risks: The use of cloud services, tools, and APIs makes an application

dependent on the cloud platform. Therefore, switching to a cloud provider may necessi-

tate code modifications, changes to services, or even remodelling the whole structure of

the application. This may make switching cloud providers exceedingly difficult. More-

over, reliance on cloud providers may adversely affect the performance of an application

and potentially lead to system downtime. An illustrative example of this issue occurred

in 2016 when Facebook decided to shut its Parse service, causing significant disruption

for numerous applications [115]. This incident forced app developers to find an alterna-

tive service or solution instead of Parse.

11



CHAPTER 2. WEB SERVICES 12

• Security Concerns: The shared environment of serverless architectures can raise se-

curity concerns. The responsibility of securing the serverless application is divided be-

tween the cloud provider and the developer, which may lead to ambiguities.

2.5 Cloud Platforms Offering Serverless

With advances in cloud concepts and the technology of Web services, business solutions can

be designed, built, and offered on the Internet. Several major IT companies, such as Face-

book, Microsoft, Twitter, and Google, provide resources and web services to enterprises. The

enterprises use them in their business solutions as third-party components [100].

Besides the vast array of web services, many cloud providers, including Amazon, Google, and

Microsoft, also offer compute services that enable application developers to create and execute

serverless functions. As mentioned Section 2.4, those serverless functions can be used to

build business logic of a serverless system. Therefore, the serverless architecture is primarily

function-oriented. A frontend/client application connects with serverless functions through

APIs.

Microsoft, Google, and Amazon are among the most prevalent and highly regarded third-party

providers of serverless technology. In the following sections, these cloud platforms will be

discussed in more detail.

2.5.1 Microsoft Azure

Azure [7] is a platform for cloud computing services that was released by Microsoft in 2010.

It offers IaaS, PaaS, and SaaS technologies and tools. With Azure, application developers are

able to use Microsoft’s own cloud services and resources without the need to manage internal

infrastructure [2].

In the Microsoft Azure platform, Azure Function [9] and Azure API Management [8] services

form the backbone of Azure Serverless design patterns. These services can also be used as

gluing components to create backend services to provide specific business logic for an appli-

cation [101].

Azure Function is a Microsoft computing service that enables the development of business

solutions on the Azure platform. First of all, it employs a code-first approach [2], allowing

application developers to execute small segments of code, referred to as Azure serverless func-

tions, without concerning themselves with the deployment or management process. These

functions, which can be written in C#, F#, Node.js, Python, PHP, batch, or bash, can trigger or

be triggered by any APIs or services. Secondly, Azure functions can be integrated with various

development or deployment tools, like Visual Studio Team, OneDrive, Dropbox, and Git [102].

Last but not least, Microsoft Azure also provides numerous templates for common problems as

12



13 CHAPTER 2. WEB SERVICES

well [101], which may assist developers in creating a more secure serverless pattern for their

business problems.

Azure API Management is a Microsoft service that allows you to create and publish both in-

ternal and external APIs. APIs can play a key role in communication between services and

provide a connection between front-end applications and back-end systems built with services

provided by the Azure platform. As previously mentioned, Azure API Management and Azure

functions form the skeleton of an Azure serverless solution.

2.5.2 Google Cloud

GCP [75] (abbreviated for Google Cloud Platform), provided by Google, comprises an extensive

array of services that allow developers partial access to Google’s internal infrastructure [49].

Among these services, two of them are especially crucial to building a business solution with

serverless architecture in GCP, which are Google Cloud Functions [76] and Google Cloud End-

points [74]. Their philosophy is similar to the aforementioned Azure functions and Azure API

Management. Google Cloud Endpoints allow developers to develop, deploy, and manage APIs,

while by using Google Cloud Functions, developers can build serverless functions in a GCP

environment.

One of the specific features of GCP is its integration with Firebase [35], which is a BaaS (Back-

end as a Service) platform for mobile and web application developers. Firebase offers many

services for development, while Google Cloud Functions can respond to events by triggering

some Firebase elements or/and HTTPS requests [66].

2.5.3 Amazon Web Services

Amazon is one of themost prominent cloud platforms, offering serverless technology alongside

a wide range of web services. The AWS (AmazonWeb Services) platform, officially launched in

2006, initially provided three main services: Simple Storage Service (S3) [96] and EC2 (Elastic

Compute Cloud) [92]. The number of web services offered by AWS has since grown exponen-

tially, with 80 web services available in 2011, 280 in 2013, 1,017 in 2016, and 1,430 in 2017 [28].

This rapid pace of growth makes Amazon dominant in cloud technology. According to a report

released by Synergy Group [45] in 2017, AWS constitutes 34% of the cloud market (IaaS, PaaS),

whereas other platforms such as Microsoft and Google have 11% and 8%, respectively, in the

cloud markets.

Asmentioned before, a serverless architecture fundamentally relies on two components: server-

less functions provided by a computing service and APIs. In the AWS context, serverless func-

tions are created and managed by AWS Lambda [94], while APIs are deployed and managed

by the AWS API Gateway [89].

13



CHAPTER 2. WEB SERVICES 14

In AWS serverless architecture, a frontend app mostly connects with backend services (AWS

services) using restful APIs created and managed by the AWSAPI Gateway. Each API endpoint

triggers a Lambda serverless function. After Lambda functions process the incoming data from

API calls, these functions connect with an AWS service to perform the requested action, such

as writing a record to a database.

2.6 Security and Access Controls in AWS Environments

Given our focus on AWS-based serverless systems, this section will provide detailed infor-

mation about the architecture of AWS-based serverless systems, along with a comprehensive

discussion on access control mechanisms within AWS environments.

2.6.1 AWS-Based Serverless Application Architecture

Figure 2.6: ABasic Structure of aWeb Appwith Serverless Architecture in AWS Environment

Figure 2.6 illustrates the basic structure of an application with serverless architecture in an

AWS environment. In AWS Serverless Architecture, firstly, Amazon Cognito provides an au-

thentication process for application users. Moreover, Cognito can distribute IAM roles as user

roles for app users to provide different access levels in the AWS cloud system. Then, an au-

thenticated user connects to the system through API endpoints that are created and managed

by the API Gateways service. An authorizer in the API Gateway checks the permission of the

user’s role to execute the requested endpoint or not. If it allows, the requested endpoint is

executed, and the requested endpoint calls the related lambda function (a serverless function

14



15 CHAPTER 2. WEB SERVICES

in the AWS context). The called function will be executed in a container to fulfil the request.

The function may need to connect to any other AWS service or a third-party external API. In

the case of the Figure 2.6, it needs to make a request to Dynamo (an AWS service that offers a

non-relational database) to fulfil the request. For instance, it could be to update the data in the

database. A lambda function needs permission when it makes a request to other services. The

function can provide this permission by using an IAM role as an execution role.

To understand the AWS architecture, the AWS services that are used in Figure 2.6 are explained

in more detail.

2.6.1.1 Amazon Cognito

AmazonCognito[90] is an identity provider service, offering authentication, authorization, and

user management for web/mobile applications. Amazon Cognito consists of two components,

which are the user pool and the identity pool. The user pool serves as a user directory to create

and store users for applications, whereas the identity pool allows application developers to

manage the permissions of users of their applications[115] on AWS resources.

Identities (users) can be provided in several ways, such as by fetching from social accounts,

creating in the Cognito user pools, or fetching from any private identity providers. Then,

the Cognito identity pool provides unique AWS credentials for each user. The permissions

allowing access to AWS resources are also assigned to these credentials. Therefore, authorised

users can access and use AWS resources.

2.6.1.2 AWS API Gateway

AWS API Gateway[89] is a web service that allows developers to create and manage RESTful

APIs. The APIs, which are managed and deployed by API Gateway, make a bridge between

frontend applications and backend AWS services.

In most serverless scenarios, API Gateway makes a connection between Lambda functions

(serverless functions) and a frontend application. The app client communicates with the sys-

tem in the AWS cloud environment through APIs provided by the API Gateway using CRUD

operations (Create, Read, Update, Delete). Additionally, these APIs trigger lambda functions,

which interact with other AWS services.

Moreover, permissions for different levels of access can also be created for APIs, thereby en-

hancing system security. API Gateway supports several mechanisms for controlling and man-

aging access to your API, such as API Gateway resource-based policies and IAM-based autho-

rizers. With an API Gateway Resource-based policy, one can specify a whitelist or blacklist

for accessing the API resources, whereas an IAM-based authorizer grants access to application

users to access API endpoints based on their respective IAM roles.

15



CHAPTER 2. WEB SERVICES 16

2.6.1.3 AWS Lambda

AWS Lambda[94] is an event−driven computing web service[103] that allows developers to

run their code without concerning about the provision or management of servers. As men-

tioned before, serverless functions, or lambda functions in the AWS context, are a core concept

for serverless architecture.

Figure 2.7: The structure of a serverless application

As shown in Figure 2.7, the backend of a serverless system seems to be mostly dominated

by APIs and lambda functions. The lambda functions are written and executed as isolated,

independent, stateless, and often granular[103].

Lastly, Lambda functions may make a request to an AWS service to provide inputs for its

process. However, in AWS philosophy, no service has permission to perform an action on

another service. As also shown in Figure 2.6, the required permissions can be granted to lambda

functions via IAM roles.

To understand how a request is allowed or denied in the AWS cloud, we should have a closer

look at the access control mechanism, which is mainly managed by the AWS IAM (Identity

and Access Management) service.

2.6.1.4 AWS IAM

AWS Identity and Access Management (IAM)[93] is a fundamental web service defining and

managing permissions in the AWS environment. The IAM service basically consists of two

components, which are IAM identities and IAM policies. The IAM identities control the au-

thentication, while the IAM policies determine the authorization of resource usage.

IAM policies are AWS JSON−based access control objects that make a connection between

AWS identities and AWS resources by defining permissions.

16



17 CHAPTER 2. WEB SERVICES

Each AWS account has one root user who has full administrative rights. IAM identities allow

the management of an AWS account by multiple users, if required. Moreover, the permissions

for these identities are specified by the IAM policy provided. Therefore, different access levels

for an AWS cloud account are provided. There are two different IAM identities: IAM users and

IAM roles. The difference between an IAM user and an IAM role is that the former uses perma-

nent credentials to access AWS cloud resources, whereas the latter uses temporary credentials.

In some cases, the temporary credentials might be crucial, like a front-end application needing

AWS credentials to connect with AWS resources. Moreover, the main aspect of the IAM role

is the ability to share its permission with another object outside of IAM services.

2.6.2 Authorization and Access Control in AWS

The authorization and access control mechanisms in AWS are managed by the IAM service. As

previously mentioned, the access control mechanism is managed by using IAM identities and

IAM policies. With those components, restricted access to cloud resources can be designed.

IAM Policy is a JSON-based AWS object that defines the level of access for IAM identities or

resources. In the AWS cloud environment, there are basically two fundamental types of poli-

cies: identity-based policy and resource-based policy, categorised according to their function

in granting permissions. The identity-based policies specify what actions an IAM identity can

perform on what resources, whereas the resource-based policies define who can access the

related resource with what permissions. To put it another way, identity-based policy grants

permissions to IAM identities to access resources in an AWS account, while resource-based

policy is directly attached to a resource to restrict or grant access to the related resource[87].

Notably, not all AWS services support the resource-based policies. For instance, among the ser-

vices in the structure depicted in Figure 2.6, only API Gateway and Lambda services (functions)

support resource-based policies[98].

17



CHAPTER 2. WEB SERVICES 18

Figure 2.8: The structure of an AWS IAM Policy

Figure 2.8 illustrates the basic structure of IAM policy. A policy consists of a version part and

a statement part. The version indicates the version of the policy language, while the statement

can consist of an array of statements that define the permissions. Each statement may include

the following elements:

• Sid : It is an optional statement ID to differentiate between your statements.

• Effect : It indicates whether the policy allows or denies access. Its value could be “Allow”
or “Deny”.

• Principal : It shows the actors (AWS root users, IAM users, IAM roles, or federated

users) whose access is allowed or denied.

• Action : It includes a list of actions that the policy allows or denies.

• Resource : It specifies a list of resources to which the actions apply.

• Condition : It defines the circumstances under which the policy grants permission.

Figure 2.9: An AWS IAM Policy Example

18



19 CHAPTER 2. WEB SERVICES

Figure 2.9 illustrates an IAM policy instance. Any IAM identity with the policy shown in Fig-

ure 2.9 is granted permission towrite on project, department, and employee tables in DynamoDB

database.

When a request is sent to a resource in the AWS cloud, the AWS framework aggregates all the

statements that the requester has, along with all the statements of the requested resource if it

has a resource-based policy. And then, over those statements, the logic of the authorization in

AWS works like following :

• By default, all requests are denied. (implicit deny)

• If there is at least one "allow" statement in the context, and if there is no "deny" statement

about the request, the request is allowed. (explicit allow)

• However, if there is at least one "deny" statement about the request, the request is denied

because a "deny" statement always overwrites an "allow" statement. (explicit deny)

For instance, User1 wants to write on Table1 in the database. In the beginning, by default,

there is no permission to perform the requested action (implicit deny). To grant permission

to write on Table1 successfully, User1 must have a policy to allow writing on Table1 (explicit

allow), but s/he must not have any policy to restrict this action (explicit deny).

Figure 2.10: The Relation between IAM Identities and Policies

As depicted in Figure 2.10, IAM identities have a set of policies, while the permissions that are

granted or restricted are defined with statements.

As shown in figure 2.10, the main object for permission is policy. A policy has an array of

statements. Moreover, each statement grants or restricts a permission that is about to perform

a set of actions on a set of resources. Therefore, statements in a policy define permissions that

the policy provides for its related entities. These entities could be an IAM user or an IAM role.

An IAM role can be used by an agent, which could be an app user or a function to access a

resource in AWS.

19



CHAPTER 2. WEB SERVICES 20

To see how the authorization mechanism in the AWS environment works, take the scenario of

writing data by an app user in a DB table in the system illustrated in figure 2.6 as an example.

The following requirements should be satisfied to allow requests:

• The app user role must be allowed to execute the endpoint that is related to writing data

in API Gateway.

• The related function must have a resource-based policy that allows the endpoint related

to data writing to execute the function.

• The executed function must have an execution IAM role that allows it to write data to

the requested table in the database.

As seen from this example, the authorization of a request that satisfies the business-level func-

tionality of a system that is built with serverless architecture could be considerably complex.

Therefore, the design of access control mechanisms for a serverless system becomes crucial.

2.7 Conclusion

Despite advances in distributed systems and cloud technologies that provide highly distributed

and scalable applications, developing these types of applications introduces significant com-

plexity, particularly in service composition and access control configurations. This increase in

complexity heightens the likelihood of defects and security gaps, potentially leading to sub-

stantial losses. For instance, a poorly designed authorization mechanism may allow unautho-

rised access to system resources. Therefore, it is crucial for serverless application developers to

carefully design service compositions and authorization mechanisms to prevent such adverse

outcomes. Robust development methods and verified solutions are more important than ever,

and our aim is to contribute to this goal.

20



Chapter 3

Formal Methods

As computer systems become more complex and their role in modern economics becomes in-

creasingly critical, the presence of potential defects can be extremely hazardous. Therefore,

detecting and fixing potential bugs before the application/system becomes operational is cru-

cial for preventing losses andmaking the systemmore secure. Numerous studies have explored

the impact of requirements analysis and architectural design in the software development life

cycle. Take the Glass and Boehm studies as examples; both studies highlight these impacts.

The Boehm first law states that [18, 33]:

"Errors are most frequent during the requirements and design activities and are the

more expensive the later they are removed."

whereas Glass’s law said that [40]:

"Requirement deficiencies are the prime source for project failures."

A report published by the Carnegie-Mellon Software Engineering Institute (SEI) in 2013 [34]

shows that defects related to requirements analysis and architecture design can constitute

about 70% of all system defects. However, as Butler highlighted [22], early identification of

errors in development could be difficult by virtue of a lack of precision in formulating speci-

fications and the high complexity of a system. This complexity can manifest in several ways,

such as the complexity of requirements,the multifaceted nature of system environments, or

the sophisticated design of a system itself. To deal with requirement ambiguities and system

complexity, formal methods may enter the picture. With formal methods, defects related to

design can be significantly reduced or eliminated during the early stages of the development

life cycle [33].

21



CHAPTER 3. FORMAL METHODS 22

3.1 Formal Specification

Formal methods are techniques to specify, develop, and verify a system using mathematical

notation [19]. As Lamport stated [58], mathematics is a standard language developed over a

couple of millennia to describe things precisely. By using this precision inherent in mathe-

matical expression, formal methods create a more precise and consistent system design and

specification than those founded on natural language based methods.

When it comes to challenges related to complexity, formal methods offer the concept of ab-

straction to get a clear understanding of a system. The abstraction concept helps to focus on

the essential functionality of a system, thereby allowing for the temporary disregard of intri-

cate details [22]. Such an approach ensures that the underlying complexity does not obstruct

the analysis and comprehension of the system’s core objectives and behaviour.

3.2 Formal Specification Languages

There is a wide array of formal method specification languages to implement formal modelling

in a software development cycle. They are mostly based on techniques in mathematical and

logical notation to build a rigorous model of a system. Such a formal model may enable the

features of the system to be verifiable.

Formal specification languages can be categorised into model-based specification languages

and algebraic (or axiomatic) specification languages.

3.2.1 Model-based Specification Languages

Model-based specification is a formal method technique that models a system using a system

state model to describe its behaviours. In this approach, invariants that define constraints

should be satisfied at all times [60], while transitions between states are detailed through pre-

conditions and post-conditions [17]. Z [111], VDM (Vienna Development Method [51], and

Event-B [3] are examples of a model-based approach.

3.2.2 Algebraic Specification Languages

In the algebraic approach, also known as the axiomatic approach, the behaviour of a system

is modelled as axioms. The structure of algebraic languages basically consists of abstract data

types, function signatures, and axioms that define what functions do. Notable examples of

algebraic specification languages include OBJ [41] and CASL (CommonAlgebraic Specification

Language) [111].

22



23 CHAPTER 3. FORMAL METHODS

3.2.3 Formal Specification Languages used for Cloud Systems

Formal methods can be used by both cloud providers and app developers who develop systems

in cloud environments. For instance, Amazon uses formal methods to enhance the security

of its cloud environment [28, 70], whereas the formal method based tool Zelkova provided

by Amazon is used by cloud customers to identify potential misconfigurations in their sys-

tems [12].

Moreover, languages such as TLA+ [112], Event-Calculus [54], and Event-B [3] are examples of

formal methods languages for modelling cloud-native systems. These languages are commonly

employed to model service-based systems or access control mechanisms. First of all, TLA+ is

used by the Amazon Formal Verification team to detect design flaws in various AWS systems,

including but not limited to DynamoDB, S3, and EC2 [69]. Then, Event-Calculus offers a formal

approach to defining actions and their consequent effects. There are several studies, like [113]

and [114], that use Event-Calculus to model access control mechanisms in the cloud. Lastly,

Event-B allows developers to design their systems using an incremental approach [21]. This in-

cremental approach lets you design a complex system very abstractly, followed by gradual and

systematic development of the model. Such an approach is beneficial in dealing with system

complexity, which is mostly high in service-based systems. There are also several studies, such

as [56] and [11], that focus on modeling and verifying service-based systems with Event-B.

3.2.4 TLA+

TLA+ is a formal specification language rooted in TLA (Temporal Logic of Actions), first-order

logic, and ZF set theory [59]. TLA is a logic language to describe and reason about the be-

haviour of concurrent or distributed systems [57]. TLA+ embodies TLA in a formal language

by involving first-order logic and ZF set theory, which helps to form large and modular speci-

fications [112]. A typical specification in the TLA+ language is:

Init ∧ □Next ∧ Liveness

Init describes all initial states in a system, while□Next specifies the next state relation. Liveness

defines the liveness of a system as a conjunction of fairness conditions on actions [59]. Once

a system has been formally modelled using TLA+, the correctness of the formal model can be

assessed with TLC, a dedicated model checker for TLA+ specifications [112].

3.2.5 Event-Calculus

Event-Calculus is a logic-based formal language to describe actions and their consequential

effects [99]. In Event-Calculus, the treatment of time is based on the notion of events, which

23



CHAPTER 3. FORMAL METHODS 24

are represented in the form of Horn clauses
1
, which can be executed as a logic program [54].

Figure 3.1: Roughly the mechanism in Event-Calculus, adapted from [99]

Figure 3.1 shows a basic structure of the event-calculus function. As shown in figure 3.1, Event-

calculus represents a logical mechanism for inferring "what is true when" predicated on the

inputs that define "what happens when" and "what actions do". For example, supposing that

"listening to music makes me relax" and "I listen to music at ten o’clock" are given to the Event-

Calculus mechanism as inputs. Provided these inputs to the Event-Calculus mechanism, the

mechanism would certificate the output "I am relaxing at 10:20". If nothing else breaks the

event that makes me relax, the "be relax" event will continue to execute.

3.2.6 Event-B

Event-B [3] is a formal modelling language grounded in set theory and predicate logic, de-

veloped by Abrial. The key features of the Event-B language are abstraction and refinement,

which help to manage system complexity [21]. In the Event-B approach, a system is initially

modelled in an abstract form, and then the model is developed through refinement steps to

build a comprehensive model that fully encapsulates the system’s characteristics. This "incre-

mental fashion" [3] brings Event-B to the fore. Although abstraction of a system is a common

feature across various formal specification languages, the use of refinement to model incre-

mentally is a typical feature of Event-B developments.

3.2.6.1 The Structure and Syntax

An Event-B model consists of two components, which are context and machine. The former

represents the static part of the model, while the latter includes the dynamic components of

the model. Contexts provide axiomatic properties of the model, whereas machines provide

behavioural properties of the model [24].

1
Horn clause: it is a subset of classical logic that is augmented with negation as failure [54]

24



25 CHAPTER 3. FORMAL METHODS

Figure 3.2: The structure of an Event-B model

Figure 3.2 illustrates the relationship between a machine and a context. The phrase "machine_x

sees context_x"means that the static types formulated by context_x are accessible tomachine_x.

In the context component, there can be four elements, which are carrier sets, constants, axioms,

and theorems. Carrier sets represent user defined static types. Axioms define sets or constants,

whereas theorems are features that axioms should follow [24].

When it comes to the machine component, it contains variables, invariants, theorems, and

events. Here, variables define the states in the model, and invariants are predicates that must

remain satisfied at all times. Events, on the other hand, are the statements that specify the

change of state.

In Event-B modelling, a system is initially modelled at an abstract level. This abstract repre-

sentation is then refined through subsequent steps, gradually shaping the model to correspond

to the system’s real-world configuration more closely. By dividing the development process

into incremental steps, the refinement methodology permits developers to build the model

in manageable stages. This iterative refinement approach helps in both comprehension and

manipulation of complex systems, thereby illustrating the efficacy of Event-B in tackling com-

plicated modelling tasks by breaking them down into more manageable pieces.

3.2.6.2 Refinement

Refinement in Event-B refers to the systematic process of developing an abstract model to

more accurately represent the real systemwewant to build. The development process typically

starts with an abstract model that focuses on only the most crucial functions [108]. After that,

throughout the refinement steps, the model gradually developed by defining detailed design

functions.

Figure 3.3: The follow of refinements in event-b Model

25



CHAPTER 3. FORMAL METHODS 26

In the refinement mechanism, a machine can make an association, named refines, with another

machine, while a context makes a connection, called extends, with another context. Crucially,

there must be consistency between the refined machine and the machine being refined. Al-

though the behaviour of the refined machine may differ, it must not conflict with the behaviour

of the machine being refined [81]. This consistency is verified by using proofs [24].

Furthermore, there are two different approaches to refinement, which are vertical refinement

and horizontal refinement [24]. In the vertical refinement, design details related to the existing

functionality in the abstract model are added, whereas new functionalities that do not exist in

the abstract model are defined in the horizontal refinement.

3.2.6.3 Proof Obligation

Proof Obligation (PO) is a key feature of Event-B formalism. POs are responsible for veri-

fying properties of a model that need to be proved, such as the consistency between an ab-

stract state and a concrete state. The outcome of these checks shows whether the feature has

been formally verified. There are several different types of proof obligations, including Well-

Definedness (WD), Invariant Preservation INV, and Guard Strengthening (GRD). Below is a brief

description of these:

• Well-definedness (WD): WD POs assess whether the expressions/features in the model

are well-defined or not.

• Invariant Preservation (INV): INVs are concerned with whether any invariant is violated

when events run. Invariants are conditions that must hold true at all times, and this

type of proof obligation ensures that these conditions are not violated during the state

transition (event execution).

• Guard Strengthening (GRD): GRD POs ensure that a concrete guard is stronger than its

abstract one. In operational terms, thismeans that the concrete event can only be enabled

if the abstract event is also enabled. This helps maintain the alignment between the

concrete and abstract aspects of the model.

By applying various proof obligations, the Event-B formalism guarantees that the model is

rigorously verified at different levels, contributing to the overall integrity and reliability of the

system.

3.2.6.4 Decomposition

As an Event-Bmodel is elaborated through the refinement process, the complexity of themodel

inherently increases. In response to this escalating complexity, the decomposition approach

26



27 CHAPTER 3. FORMAL METHODS

serves as a solution, allowing the division of an Event-B model into smaller sub-models. This

division not only reduces the overall complexity of the model but also distributes Proof Obli-

gations (POs) across the sub-models, which facilitate their discharge.

There are two styles for implementing the decomposition approach, which are shared variable

and shared event. In the shared-variable style [24], an Event-B model is divided into sub-models

based on variables, while shared-event, as proposed by Butler [20], offers to split the model with

consideration of events. In the event-shared approach, an event is shared among sub-models,

while variable sharing is not permitted.

3.2.6.5 Event-B Tool: Rodin

Rodin is an open-source tool that is developed on top of the Eclipse platform [31], supporting

Event-B modelling, refinement, and mathematical proof steps [4]. It plays a critical role in

using the implementation of Event-B formalism in software development.

Rodin has two key features, which are automation and extensibility. Firstly, the tool is built

with the user’s experience in mind. It automates the generation and discharge of proof obliga-

tions [23], which allows developers to focus on building and refining their models. Moreover,

the Rodin tool platform allows for the seamless integration of additional development tools via

plug-ins. This flexibility can help users adapt the Rodin platform to their specific needs, which

may enhance modelling efficiency. For instance, the UML-B plug-in allows users to design the

model as a flow chart using UML-like graphical notation and then generate a corresponding

Event-B modelling script from it.

3.2.6.6 ProB (Animator and Model Checker for Event-B)

ProB is an animator and model-checking plug-in tool for the Rodin platform. It provides an

animation of an Event-B model, allowing users to traverse between different states in the

model. When a user traverses between states, ProB checks whether any invariant is violated

or not [61]. Moreover, ProB will generate and display counter-examples when an invariant

violation is discovered [5].

27



CHAPTER 3. FORMAL METHODS 28

Figure 3.4: A view of ProB Model Checker

Figure 3.4 shows a screenshot of the ProB animator plugin in the Rodin Platform. On the left

side of the figure, the events of the model are depicted, and users can run these events with

a restricted set of parameters. Icons are used to denote the status of each event: a green icon

means an event is available to run, while a red icon shows that it is disabled for execution.

When an event is run, the values representing the current states of the model are illustrated

in the top-right section of the screen. Meanwhile, the bottom-right side of the screen shows

invariant violations and errors in events. For example, the current state in the Figure 3.4 states

that there are no errors in events, but one or more invariant violations have occurred.

3.3 Related Work

3.3.1 Formal Methods in Web Services

Since web services and many resources serve as a service on cloud platforms, system complex-

ity has escalated dramatically. Moreover, the pace of development on some cloud platforms has

been exceedingly rapid. For instance, AWS released 80 services and features in 2011, whereas

the number of its services and features saw 1430 in 2017 [28]. Amazon has used formal methods

since 2011 to prevent the system from serious and subtle bugs related to system design [70].

In the paper explaining why Amazon uses formal methods [69], Newcombe stated that since

Amazon has many sophisticated distributed systems and relentless rapid business growth, en-

gineers at Amazon chose formal methods to assist them in solving challenging design problems

in critical systems. In the context of the web services and cloud technologies industry, formal

methods are used to seek solutions for problems primarily in two domains, which are "security

of cloud" and "security of customers in the cloud".

28



29 CHAPTER 3. FORMAL METHODS

3.3.1.1 Security of Cloud

Firstly, the aim of the "security of cloud" tenet is to ensure that the cloud infrastructure remains

secure following its launch or any modifications. The security team at AWS performs formal

security reviews for all features and services [28]. Amazon also uses formal methods to prove

that their initial boot code in the data centre is memory safe [27]. It’s noteworthy that not

just AWS but other cloud providers also use formal methods and techniques to provide a more

secure environment in their cloud systems. For example, Microsoft Azure uses CloudSDV

(Cloud Static Driver Verifier) [10] to enhance the security and reliability of software in cloud

environments.

3.3.1.2 Security of Customers in The Cloud

The second domain perspective in which formal methods offer a solution is "security of cus-

tomers in the cloud". As mentioned in Section 2.6, access and use of resources in a cloud account

are under the responsibility of cloud account owners. To help with this complex task, AWS of-

fers a set of tools based on formal method techniques to customers to provide clarity about who

can access their data and resources with what permission. For example, Zelkova [12], which

is an SMT (Satisfiability Modulo Theories) based formal reasoning tool, can be used to analyse

access control policies and determine their degree of openness in a cloud environment. There

are also two different research studies on offering a formal reasoning solution to enhance the

security of access control policies. The [113] study offers a formal attribute-based access con-

trol model developed with Event-Calculus that is able to model and verify AWS IAM policies,

whereas the [114] study addresses the problem related to conflicts in policies in multi-cloud en-

vironments. In the [114] study, Zahoor specified and classified the policy conflicts and offered

an Event-Calculus based model to reason about them.

3.3.2 Web Service Composition

Web services may connect to each other to create business logic. Services communicate with

each other viamessages. In the intricate process of designing service composition, subtle errors

may arise that can undermine the functionality of the system. At this point, formal methods

provide a critical advantage, as many of them come equipped with tools to verify the correct-

ness of service compositions. For instance, the study run by Lahouij et al. in 2018 [56] offers an

Event-B based formal approach to prove the correctness of cloud composite services, whereas

the framework offered by [82] support formal modelling for data-centric web services, aiming

to verify the correctness properties for service compositions. Moreover, Abbassi et al. have

proposed an incremental design approach by using Event-B to model and verify the dynamic

reconfiguration of web service compositions [1].

29



CHAPTER 3. FORMAL METHODS 30

3.3.3 Access Control

Formal methods are also useful techniques to verify access control mechanisms. The study

by Vistbakka [108] specifies and verifies a dynamic role-based access control
2
using Event-B,

whereas Gouglidis proposes a formal definition for the ABAC (Attribute-Based Access Control)

model to formally verify resilience specifications in a set of ABAC policies [44]. Moreover,

Khayat and Abdallah have provided a formal state-based model for Flat Role-Based Access

Control (FRBAC), the specification of which is described in Z notation [53]. Finally, Tarkhanov

offers a policy algebra-based method to solve the problems related to rights restrictions in

enterprise document management systems [104].

3.3.4 Other Relevant Works

There aremany studies to depict that formal methodsmake a significant contribution to the de-

velopment of web-based or distributed systems. To begin with, an approach developed by Rauf

et al. verifies the correctness of a system built with REST services by using Event-B and its re-

finement technique [78]. Moreover, [50] formalises the Web Services Atomic Transaction(WS-

AT) protocol in TLA
+
and uses the TLCmodel checker to detect unexpected behaviors. Finally,

the research by Rezazadeh [79] states the contribution of formal methods to web-based appli-

cation development. As shown in Rezazadeh’s research, the refinement and decomposition

features of Event-B are so beneficial when designing distributed / web-based systems.

3.4 Conclusion

To conclude, formal methods offer substantial benefits for detecting subtle bugs in design or

making a design more secure, especially in complex or distributed systems. Formal modelling

languages, like Event-Calculus, TLA+, and Event-B, draw an abstract formal model of a sys-

tem, which gives a comprehensive understanding of the system. However, two features of

Event-B, which are iterative refinement strategies, decomposition, and having a powerful tool,

make Event-B a more efficient solution in the domain of complex and distributed systems.

The refinement approach allows designers to conceptualise a system at a highly abstract level,

progressively developing the model through several refinement steps, whereas the decompo-

sition approach lets designers divide the model into several sub-models if the model is too big

to handle. These methodologies not only facilitate the handling of complex systems but also

contribute to a more robust and accurate design process.

2
A Role-based dynamic access control for a reporting management system

30



Chapter 4

Formal Patterns for Serverless App

Figure 4.1: Access to Resources

In cloud-based systems, as illustrated in Figure 4.1A, everything is considered a resource

that can be accessed by sending/processing a request. However, to successfully fulfil the re-

quest, the requester must have the appropriate permissions to access the requested resource

(Figure 4.1B). Therefore, request execution and the corresponding authorization mechanisms

become crucial for effective and secure resource management in cloud-based systems.

In this chapter, our objective is to develop formal model patterns to assist cloud-native applica-

tion developers in modelling their systems. We introduce two distinct types of formal patterns,

which are the Request Handling Pattern (RHP) and the Request Ordering Pattern (ROP). More-

over, in RHP pattern, we modelled the authorization mechanism at a high level, introducing it

non-deterministically. In Chapter 5, this abstract formal representation of authorization mech-

anisms will be developed through stepwise refinement to fit the concrete system.

31



CHAPTER 4. FORMAL PATTERNS FOR SERVERLESS APP 32

The Request Handling Pattern (RHP) represents the behaviour of a request in a generalised

context. It outlines the lifecycle of a request, providing insights into how the request is pro-

cessed and managed within a cloud-native environment. A detailed explanation of how the

RHP pattern is formulated is provided in Section 4.1.

On the other hand, the Request Ordering Pattern (ROP) helps in the modelling of specific func-

tionalities that are fulfilled by a single request execution or a set of requests that are executed

in specific orders. The ROP patterns focus on a set of requests that must be executed in a par-

ticular sequence to achieve a desired outcome. Section 4.2 delves into how ROP patterns are

developed and shows the complexity of request sequencing to fulfil a specific functionality.

4.1 Request Handling Pattern (RHP)

In a cloud system, all entities are considered as resources. Moreover, API calls play a pivotal role

in communication and interaction between resources and services. For instance, in the AWS

cloud environment, each service has its own specific set of API endpoints, which are URLs

that a client can use to send their API requests. In order to access the desired resources, clients

can send requests to those specific endpoints. In the AWS cloud environment, authorization is

required for each API request before it can be processed. The authorization is managed by an

evaluation of IAM policies related to the requester.

Figure 4.2: A Generic Pattern for Request Handling in a Cloud-Native Apps

Therefore, as shown in Figure 4.2A, a service exposes its functionality through API requests

made by a requester client. If the requester is authorised, s/he can access the desired resources

through the API request made. More specifically, at first, a request is initiated by a requester

user before calling the corresponding service. Based on whether the requester is authorised

or not, the execution of the requested action is succeeded or failed. Lastly, the service makes

a response to the requester. As a result, the life cycle of a request can be introduced as a

combination of processes.

The tree-like diagram in Figure 4.2B is the Request Handling Pattern (RHP), which illustrates

the detailed behavioural aspects of a request life cycle. Drawing inspiration from Fathabadi’s

32



33 CHAPTER 4. FORMAL PATTERNS FOR SERVERLESS APP

work [83], our representation diverges by focusing on the sequence and interrelations of re-

quests for a specific functionality or scenario fulfilment, rather than detailing a refinement

strategy. The components or processes in the RHP in Figure 4.2B are :

• initate_req represents to initialise a request.

• call_service represents to call a service with the initialised request.

• authz_ver represents an authorizer to check whether the requester is authorised to per-

form the called request or not.

• XOR represents a choice that only one of its branches could be enabled at a time.

• AuthzSuc and authz_ f ail represent the authorization of a request execution. The for-

mer shows the success case, while the latter depicts the failure case. Throughout the life

cycle of a request, only one of them can be enabled. This choice is determined based on

the output of the authorizer, which is shown as authz_ver in the diagram.

• If the execution of a request succeeds (AuthzSuc), the required actions for the requested
service are processed (service_local_act). If data or a process from any other service is

needed to fulfil the request, a further request will be made that replicates a new RHP

pattern again.

• service_resp represents a response to a request.

The order of execution of RHP components in Figure 4.2B are from left to right. The rectan-

gular leaves without frame represent single task events whereas ones with double-line frame

represent a process. Process means an abstraction of one or multiple events. The rectangular

component with a star represents a new further request handling pattern while the dashed line

shows that this component can be skipped in some cases.

Furthermore, a textual representation of RHP could be like ( 4.1) which may make pattern

representation more readable in some cases. As shown in textual representation in(4.1), events

showing the behaviour aspects of a request are the parameters for the RHP formal pattern.Those

parameters are; ir (initate_req), cs (call_service), av (authz_ver), sla (service_local_act), FR
(Further Request), af (authz_ f ail), and sr (service_resp). Therefore, the textual representation
of the RHP can be shown as

RHP(ir, cs, av, sla, FR, af, sr) =
ir >> cs >> av >> (AS XOR af) >> sr

AS = sla >> [FR]

(4.1)

The>> operator in the textual representation in( 4.1) shows the sequencing between the two

parameter components, while XOR shows the choice between two parameter components.

33



CHAPTER 4. FORMAL PATTERNS FOR SERVERLESS APP 34

Moreover, FR (Further Request) shows a new Request Handling Pattern for further requests.

Therefore, the workflow of the pattern in 4.1 starts with initate_req and the execution of this

process enables the execution of the next process, call_service, by representing the >> op-

erator. After the called request is checked whether it is authorised or not (authz_ver), the
authorization will be succeeded (AuthzSuc) or failed (authz_ f ail). The choice is made by us-

ing the XOR operator. Then, if the authorization is succeeded, the local action is performed

(service_local_act). And then, if a further request is required to fulfil the prior request, the

optional further request is made, which creates a new RHP pattern for the new request. Lastly,

after all required requests are fulfilled, the cloud system makes a response to the requester

(service_resp).

4.2 Request Order Patterns

RHP is a generic pattern to model the detailed behaviour of a request life cycle when the

request is processed. However, to fulfil a functionality, either a single request or multiple

requests in the cloud system could be executed. Therefore, the order of requests’ executions

becomes crucial when multiple requests’ executions are required to fulfil a functionality. For

each functionality, the number and order of the required requests can vary. In this context, we

introduce four request ordering patterns that are likely to be commonly used in designing a

functionality. Those request ordering patterns are Single Service Request (SSR), Linear Service

Request (LSR), Branching Service Request (BSR), and Chained Branching Service Request (CBSR).

Moreover, each request in ROP patterns is defined by the RHP pattern. If there are multiple

requests in a ROP pattern, the tracking among requests is satisfied by extra flags and relations,

such as a relation that keeps the preceding and subsequent requests. Briefly, the RHP pattern

introduces the detailed behaviour of a single request execution, while ROP patterns introduce

a functionality that may require multiple request executions in a particular order. In other

words, ROP patterns consist of multiple RHP patterns in a specific order.

4.2.1 Single Service Request (SSR)

In this structure, as shown in Figure 4.3A, a functionality is fulfilled by making a request to

a cloud service, and the requested service can fulfil the request without necessitating for any

data or process from any other services to fulfil the requested functionality.

34



35 CHAPTER 4. FORMAL PATTERNS FOR SERVERLESS APP

Figure 4.3: Single Service Request Pattern

Figure 4.3A shows the tree-like diagram of the SSR pattern. As shown in the diagram, if a

request is authorised successfully, service_local_act event will fulfil the request. There is no
need for further requests. Therefore, the textual representation of SSR is :

SSR(ir, cs, av, sla, af, sr) =
RHP(ir, cs, av, sla, SKIP, af, sr) =

ir >> cs >> av >> (AS XOR af) >> sr

AS = sla

(4.2)

The textual representation 4.2 defines the SSR pattern in RHP. However, because there is no

further request, the parameter FR (Further Request) in RHP is replaced with SKIP, meaning that

there is no further request. Because of that, we introduce the RHP and SSR patterns together

in the same section.

4.2.1.1 Representation RHP and SSR Patterns in Event-B

As the SSR pattern introduces a single request execution, the module includes a single RHP

pattern. Because there are no further requests in a functionality fulfilment process, there is no

need for tracking between requests.

Figure 4.4: Entities for Request Handling Pattern (Context01)

35



CHAPTER 4. FORMAL PATTERNS FOR SERVERLESS APP 36

To model the RHP pattern in Event-B, we introduce REQUEST, STATUS, and EFFECT sets as
basic types in the context of the abstract model, as detailed in Figure 4.4. STATUS helps us to

track a request throughout its execution life-cycle, whereas EFFECT helps us to flag a request

allowed or denied as their authorization result.

The request variable in inv0_1 shows the registered requests that are alreadywhile processed_reqs(inv0_2)

illustrates the request that are processed and respond.

invariants
@inv0_1 request⊆ REQUEST

@inv0_2 processed_reqs⊆ request

@inv0_3 : req_status ∈ request→ STATUS

@inv0_4 : req_authz ∈ request 7→ EFFECT

The status and the authorization result of a request are defined as variables in the machine

since they could be changed during the execution life cycle. The variable req_status in inv0_3

invariant says that each request has only one status, while req_authz in inv0_4 says that a

request could have at most one authorization outcome.

Figure 4.5: Event-B model of Request Handling Pattern

Each parameter in the RHP pattern in Equation (4.1) represents an Event-B event in our formal

model. Moreover, as shown in the SSR pattern (Textual Representation 4.2), we assume that

there are no further requests when the requester is authorised. The relationship and sequenc-

ing between those events are shown in Figure 4.5. Figure 4.5 shows the Event-B model of the

RHP pattern, which is the abstraction of the SSR pattern at the same time. Before a request is

made, only initiate_req is enabled. The initiate_req event represents the initiation of a new

36



37 CHAPTER 4. FORMAL PATTERNS FOR SERVERLESS APP

request (new_req) by adding it to the request variable (@act0_1 in initiate_req event) and its

status set to Initiated which enables the call_service event. Therefore, the sequencing be-

tween the events is achieved by updating the status of the request variable specified using the

req_status. The events presented in Fig. 4.5 are a direct representation of Fig.4.3B, or the RHP

pattern which is textually shown in (4.2). Moreover, the choice between the service_local_act
and authz_ f ail events are nondeterministic at this level of abstraction.

context context02 extends context01
sets
RESOURCE

ACTION

end

Moreover, in the refinement step, we need to introduce resources and actions to represent the

requested resources and actions. Therefore, in the extended context, RESOURCE and ACTION

are defined as carrier sets.

invariants
@inv1_1 req_res ∈ request→ RESOURCE

@inv1_2 req_act ∈ request→ ACTION

Additionally, in the refined machine, the requested resources and actions are introduced as

invariants inv1_1 and inv1_2, respectively. Therefore, when a request is initiated, the requested

resource and the requested action must also be defined, as shown in the refined init_req event

by act1_1 and act1_2, respectively.

event init_req extends init_req
any res act

where
@grd1_1 res ∈ RESOURCE

@grd1_2 act ∈ ACTION

then
@act1_1 req_res(new_req) := res

@act1_2 req_act(new_req) := act

end

However, when a client user submits a service request, the requested service may rely on data

or processes from other services in order to effectively meet the client’s requirements.

37



CHAPTER 4. FORMAL PATTERNS FOR SERVERLESS APP 38

4.2.2 Linear Service Request (LSR)

Figure 4.6: The structure of multiple requests which have LSR pattern

Typically, to fulfil a functionality, the execution of multiple requests in a specific order is re-

quired. Therefore, when a client user initiates a request for a service, the requested service

may necessitate the utilisation of data or processes from other services to fulfil the client’s

request. The basic pattern could be a linear chain for requests’ executions, as shown in Fig-

ure 4.6. In the structure of this pattern, each individual request may require, at most, a singular

supplementary request to other services to adequately fulfil its own task. Take the pattern in

Figure 4.6 as an example; it represents a functionality that can be satisfied when requests sub-

mitted to the services in the figure are fulfilled in the ordered way. To satisfy the functionality

visualised in Figure 4.6, a client user sends a request 1 to service 1, but the service 1 needs a data

or process from service 2 to fulfil request 1. Therefore, service 1 sends request 2 to service 2 to

get the required data or processes. However, service 2 also requires request 3 for service 3 to

fulfil request 2. In summary, the fulfilment of request 1 depends on request 2, which depends on

the successful fulfilment of request 3.

Figure 4.7: The tree-like diagram of a LSR pattern

38



39 CHAPTER 4. FORMAL PATTERNS FOR SERVERLESS APP

Figure 4.7 is a tree-like representation of the LSR pattern in Figure 4.6. Each level in the tree

introduces a RHP pattern for a request by starting with request 1 for service 1. As seen in

the diagram, the execution of a request depends on the authorization result of its predecessor

request.

LSR1 =

RHP(irs1, cs1, av1, sla1, LSR2, af1, sr1)
LSR2 =

RHP(irs2, cs2, av2, sla2, SSR3, af2, sr2)
SSR3 =

RHP(irs3, cs3, av3, sla3,SKIP, af3, sr3)

(4.3)

Textual Pattern 4.3 shows the textual representation of the LSR pattern in Figure 4.7. As shown

in both the graphical (Fig.4.7) and textual (4.3) representations of the LSR pattern, the last

required request (request 3) has the SSR pattern because no further request is needed to fulfil

request 3.

4.2.2.1 Representation LSR Pattern in Event-B

To model the LSR pattern, it is essential to identify and differentiate the target resources or ser-

vices. Therefore, we refine the RHP pattern by introducing features to define to track different

request in a process and define the requested resource and action action.

As a solution, we first introduce RESOURCE as a new type to represent various resources in

a cloud account. Moreover, as depicted in axm1_1, we separate resources into six different

services to define different resources at a high level.

sets
RESOURCE

constants
Service1 Service2 Service3

Service4 Service5 Service6

axioms
@axm1_1 partition(RESOURCE,Service1,Service2,Service3,

Service4,Service5, Service6)

In the SSR pattern, to track a request in its execution life cycle, we introduce the req_status

variable. No additional tracking flag is needed due to the nature of the pattern, where a single

request is sufficient to fulfil a functionality. However, in the LSR pattern, where a set of requests

in sequential order is required to satisfy a functionality, it becomes essential to keep track

39



CHAPTER 4. FORMAL PATTERNS FOR SERVERLESS APP 40

of requests as well during the process of functionality fulfilment. Therefore, we introduce

subsequent_reqs as in inv1_3 to keep track of requests whose outcomes influence one another.

The domain of subsequent_reqs shows prior requests, while requests in the range represent

subsequent/complementary requests. Moreover, inv1_4 says a complement request can have

at most one prior request.

invariants
@inv1_1 req_res ∈ request→ RESOURCE

@inv1_2 req_act ∈ request→ ACTION

@inv1_3 subsequent_reqs ∈ request↔ request

@inv1_4 subsequent_reqs−1 ∈ request 7→ request

@inv1_5 has_further_req ∈ request 7→ BOOL

As previously mentioned, the last request in a sequence of the LSR pattern has an SSR pattern.

This can be observed in request 3, as shown in Figure 4.6, where no further request is needed to

fulfil request 3. Moreover, the has_further_req variable in inv1_5 illustrates whether a request is

the last request in a chain or not. Each request has a boolean value associated with it. Requests

that map to the value of FALSE are considered the last request in their chain, indicating that

no further request is required to fulfil the current functionality. Lastly, likewise in the SSR

pattern, the req_res variable ( inv1_5) shows the association between each request and the

corresponding resource, such as services in Figure 4.6, whereas the req_act ( inv1_5) variable

shows the requested action.

The determination of the number of services and their interconnections to achieve the fulfil-

ment of a functionality can be designed in the application set-up phase by the developer(s)

of the application. We show our LSR pattern based on the design in Figure 4.6, where three

specific services in a specific order are required to fulfil a functionality. The number of ser-

vices does not impact the structure of our pattern; it can be applied to all designs where the

necessary services follow a linear, sequential order.

40



41 CHAPTER 4. FORMAL PATTERNS FOR SERVERLESS APP

Figure 4.8: The Event-B events in a LSR pattern

Figure 4.8 shows some events in the refined machine where the features of the LSR pattern

are introduced. The events in Figure 4.8 include all features of their equivalent events in the

SSR pattern in Figure 4.5. For instance, the event of call_serv1 in Figure 4.8 also involves all

parameters, guards, and actions of call_service in Figure 4.5. Figure 4.8 illustrates the additional

features that aid in clearly differentiating between the two patterns, thereby facilitating a more

comprehensive understanding of their distinctions.

As shown both in the graphical and textual representation of the LSR pattern, a request is,

firstly, initiated. To initiate a request, the authorization of its predecessor request is required,

except for the first request in the pattern. Therefore, the first request in the pattern does

not have a predecessor request, whereas others have a predecessor request, necessitating a

check in the request initialization event. As shown in Figure 4.8, the initiate_req_serv1 event

represents the initiation of a request for service1, which is the first request in the pattern. grd1_1

in initiate_req_serv1 ensures that the request initiated for service1. act1_1makes an association

between the requested resource (res) and the new request, showing that the new_req request

is initiated for the resource of the res. Additionally, the parameter act defines the requested

action.

Moreover, if the request is not the first request in the pattern, the predecessor request should

also be taken into consideration. Take the initiate_req_serv2 event in Figure 4.8 as an example;

the parameter of pre_req represents the predecessor request. The grd1_3 guard enforces the

order of services as defined in the pattern, so to initiate a request for service 2, the predecessor

request should be submitted to service1. grd1_5 guarantees that the predecessor request was

successfully executed, whereas grd1_7 says that the predecessor request requires a further

41



CHAPTER 4. FORMAL PATTERNS FOR SERVERLESS APP 42

request to be fulfilled. Lastly, an association between the predecessor request and the new

request is created (act1_3).

Finally, in order to generate a response for a request, all required further requests must be

fulfilled; for instance, grd1_2 and grd1_4 guards in service1_resp enforce that there must be

no further request required for service 1 to fulfil its request. Moreover, when a request is

responded, if the responded request is not the first request in the pattern, the has_further_req

value of its predecessor request is updated as "FALSE" (act1_1 in service2_resp), meaning that

the predecessor request is ready to be fulfilled. Then the responded request is also removed

from the subsequent_reqs variable (act1_2 in service2_resp).

The Linear Request Service (LSR) Pattern may help us to model a functionality if the required

requests follow a linear order. In this pattern, each request in the model requires, at most, one

additional request to fulfil its task. However, the LSR pattern is not suitable for cases where any

of the requests require more than one further request to be fulfilled. For instance, a service may

require data from two different services to fulfil an incoming request. To address this limitation,

our proposed Branching Service Request (BSR) pattern offers a solution to effectively model

such more complex cases.

4.2.3 Branching Service Request (BSR)

Figure 4.9: The structure of multiple requests which have BSR pattern

To satisfy a functionality, the required requests may need to follow a non-linear order. In such

cases, a service that processes a request within the order might require input or involvement

frommultiple distinct services, resulting in branching structures, as exemplified by the request

1 to service 1 in Figure 4.9. To successfully fulfil request 1, service 1 must initiate request 2 to

service 2, followed by request 3 to service 3.

42



43 CHAPTER 4. FORMAL PATTERNS FOR SERVERLESS APP

Figure 4.10: The Tree-like diagram of BSR Pattern

In order to effectively model this type of branching request order design, our proposed Branch-

ing Service Request (BSR) pattern offers a suitable approach. The textual representation 4.4

and the tree-like diagram in Figure fig:BSRTree illustrate the BSR pattern for the design in

Figure 4.9. As clearly seen in Textual Representation 4.4, after request 1 is successfully autho-

rised (av1), the sequence of events under BSR2 is initiated, encapsulating the whole process

conducted by service 1. To effectively execute Request 1, Service 1 necessitates data or process

inputs from two different services.

BSR1 (irs1, cs1, av1, sla1, BSR2, af1, sr1) =

BSR2 = SSR2 <> SSR3

SSR2 =

RHP(irs2, cs2, av2, sla2, SKIP, af2, sr2)

SSR3 =

RHP(irs3, cs3, av3, sla3, SKIP, af3, sr3)

(4.4)

BSR2 is defined in Textual Representation 4.4 as follows:

BSR2 = SSR2 <> SSR3

The "<>" symbol signifies that the initiation of the process on the right (SSR3) is dependent

on the successful execution of the left process (SSR2). Then, both SSR2 and SSR3 processes

follow the Single Service Request (SSR) pattern, as mentioned in Section 4.2.1. Moreover, in

the graphical representation of the pattern (Figure 4.10), this condition is shown by the blue

diamond operator.

43



CHAPTER 4. FORMAL PATTERNS FOR SERVERLESS APP 44

4.2.3.1 Representation BSR Pattern in Event-B

Structures following the BSR pattern require a set of requests in a specific order to fulfil a

functionality. However, unlike the LSR pattern, a request may require multiple further requests

to be fulfilled. Therefore, the significant features of the BSR pattern are that we need to track

all the requests made by the same service, and we should go into further steps only if all the

requests made are successfully executed.

invariants
@inv1_6 : proc_further_req ∈ request 7→ request

Therefore, we introduce the proc_further_req variable to track subsequent requests that have

the same predecessor request. It basically shows the processed further/subsequent request.

When a further request is fulfilled, it is removed from subsequent_req and added to proc_further_req.

For example, assuming that req1 requires req2 request to be fulfilled, making req1 and req2 the

predecessor request and the subsequent request, respectively. Therefore, the pair of {req2 7→
req1} is added to proc_further_req, indicating that req2, which is required for req1 fulfilment,

is fulfilled.

Figure 4.11: Response Events of subsequent request in BSR Pattern

The process of adding the executed subsequent request to proc_further_req will be done in

service_resp events of subsequent requests. Figure 4.11 illustrates response events for service

1, service 2, and service 3. Action of act1_3 in response events of service 2 and service 3

show the pair of processed request and its predecessor request are added to proc_further_req.

The reason why we specify the proc_further_req variable as the reverse of subsequent_reqs is

because it makes it easier to check the executed subsequent requests when a new branch is

created, such as grd1_9 in the initiate_req_serv3 event in Figure 4.12.

44



45 CHAPTER 4. FORMAL PATTERNS FOR SERVERLESS APP

Figure 4.12: Initiate Request to Service3 Events in BSR Pattern

initiate_req_serv3 event in Figure 4.12model a request initiation for Service 3 of the structure in

Figure 4.9. Therefore, to initiate a request to service 3 (irs3 of SSR3 in textual representation 4.4),

the request 2 that is made to service 2 needs to be successfully executed. The condition shown

with the symbol "<>" in BSR ( 4.4) maps to grd1_8 and grd1_9 guards. grd1_8 enforces that

there is at least a fulfilled subsequent request of pre_req parameter request. Moreover, grd1_9

guarantees that all the processed subsequent requests whose predecessor ispre_req parameter

request are successfully executed.

In summary, our proposed BSR pattern offers an effective way to model a functionality whose

process includes a request that requires data from multiple different services. In the BSR pat-

tern, a single service might depend on inputs from several other services to fulfil incoming

requests. However, this pattern reaches its limitations when the input-providing services form

a sequential chain services, leading to complexities that the BSR pattern cannot efficiently ad-

dress. For such cases, the Chained Branching Service Request (CBSR) pattern emerges as a

more suitable solution, offering an advanced approach to handle the modeling more complex

functionalities

45



CHAPTER 4. FORMAL PATTERNS FOR SERVERLESS APP 46

4.2.4 Chained Branching Service Request (CBSR)

Figure 4.13: The structure of multiple requests which have CBSR pattern

For the fulfilment of a functionality, a cloud platform may require data or processing from a

set of different services. As depicted in Figure 4.13, the order of those services can be quite

complicated. There is a branching in the order of requests in Figure 4.13 akin to functional-

ities following a BSR pattern. However, unlike those adhering to a BSR pattern, Figure 4.13

illustrates branches comprising a series of distinct requests in a specified order, resembling

a chain. To model such complex functionalities, we propose the Chained Branching Service

Request (CBSR) pattern. In the CBSR pattern, each branch may constitute a chain of requests.

Moreover, the failure of any request within a chain results in the omission of further request

chains. For instance, in Figure 4.13, if any request in the chain starting with request 2 fails, the

whole chain starting with request 4 will be skipped.

Figure 4.14: The Tree-like diagram of CBSR Pattern

46



47 CHAPTER 4. FORMAL PATTERNS FOR SERVERLESS APP

Figure 4.14 shows a graphical representation of the CBSR pattern. As clearly seen from the

diagram, for the fulfilment of request 1, both LSR(serv2) and LSR(serv4) branches must be suc-

cessfully fulfilled.

Textual Representation 4.5 illustrates the Chained Branching Service Request (CBSR) pattern.

If the first request’s (request 1) authorization result (av1) is "Allowed", the process of CBSR2,

which includes all further requests’ processes for fulfilling request 1, is enabled.

CBSR1 (irs1, cs1, av1, sla1, CBSR2, af1, sr1) =

CBSR2 = LSR2 <> LSR4

LSR2 =

RHP(irs2, cs2, av2, sla2, SSR3, af2, sr2)
SSR3 =

RHP(irs3, cs3, av3, sla3, SKIP, af3, sr3)

LSR4 =

RHP(irs4, cs4, av4, sla4, SSR5, af4, sr4)
SSR5 =

RHP(irs5, cs5, av5, sla5, SKIP, af5, sr5)

(4.5)

In Textual Representation 4.5, CBSR is defined as :

CBSR2 = LSR2 <> LSR4
This implies that CBSR2 is composed of two sub-processes, LSR2 and LSR4, both of which abide

by the Linear Service Request (LSR) pattern. Moreover, the <> symbol interposed between

the sub-processes signifies that LSR4 can only be initiated following the successful execution of

all requests within the LSR2 process. Therefore, within the context of the Textual Representa-

tion 4.5, request 4 can only be initiated after request 1, request 2, and request 3 are successfully

executed, respectively.

4.2.4.1 Representation CBSR Pattern in Event-B

In the CBSR pattern, the execution of a request may require data or processing from multiple

different services. Those data/processesing could be produced after a set of requests are exe-

cuted in a specific order. For instance, service 1 can fulfil request 1 only after both LSR2 and

LSR4 have been successfully executed, respectively. Therefore, to effectively track whether a

request in a process fails or succeeds, we introduce "chain" and "chain status" into the model.

47



CHAPTER 4. FORMAL PATTERNS FOR SERVERLESS APP 48

A chain defines a set of requests within the same process. Moreover, a new chain is defined

whenever a new branching occurs, as demonstrated in Figure 4.15.

Figure 4.15: The relation between chain number and branching

Therefore, to model the CBSR pattern in Event-B, like other ROP patterns, we refine an RHP

pattern. Besides all variables in the Event-B representation of the BSR pattern, we also intro-

duce the chain concept for the request in the same branching. Firstly, we define CHAIN as a

carrier set in the context to model request’s chains. Moreover, in the refined machine, inv1_7

illustrates the existing chains. req_chain in inv1_8 depicts the association between requests

and chains, whereas chain_status in inv1_9 shows the status of chains.

invariants
@inv1_7 chain⊆ CHAIN

@inv1_8 req_chain ∈ request 7→ chain

@inv1_9 chain_status ∈ chain→ STATUS

The status of a chain could be either Succeeded or Failed. The chain status is updated to Failed

if at least one of the requests within the chain fails. Conversely, the chain status could be

Succeeded if only all the requests within the chain are successfully executed.

Figure 4.16: Guards and Actions About Chain in Initiate Request Events

If the initiated request is either the first request of an entire scenario or a new branching within

the scenario, as in Figure 4.16A, a new chain is created (act1_4) and an association between the

new request and the new chain is created (act1_5). The status of the chain is defined as Succeded

48



49 CHAPTER 4. FORMAL PATTERNS FOR SERVERLESS APP

(act1_6). In other cases, the initiated request is in an existing branch, like both req3 and req5

requests in Figure 4.15, the newly initiated request is added to the chain of the predecessor

request of the new request (act1_4), as shown in Figure 4.16B.

Figure 4.17: Updating The Status of a Chain when a Request fails

The status of a chain is updated to Failed when at least one of the requests in the chain fails.

As depicted in Figure 4.17, when a request fails, the status of its chain is updated to Failed in

act1_2.

Figure 4.18: To Represent <> Condition in Event-B Model

Lastly, a service can make a second or more further requests if only all its previous requests

and their corresponding subsequent requests are successfully executed. This is represented

by the <> condition in the CBSR pattern (Textual Representation 4.5). To accommodate this

condition, we introduce the <> condition with the guards of grd1_8 and grd1_9, as shown in

Figure 4.18.

The grd1_8 ensures that the predecessor request (pre_req) has at least one processed subsequent

request. Recall from Figure 4.12, pre_req is the predecessor of the newly initiated request as

well. Moreover, the grd1_9 guard ensures the authorization results of all processed subsequent

requests of pre_req (req_status) and the status of their chain (chain_status) must be Succeded.

49



CHAPTER 4. FORMAL PATTERNS FOR SERVERLESS APP 50

Thus, when request 4 is initiated, which is the beginning of LSR4, grd1_9 guarantees that all

requests within LSR2 are successfully executed.

4.2.5 Comparison of ROP Patterns

Figure 4.19: Invariants in RHP and ROP Pattern Model

Depending on the structure of the cloud components of a functionality, our proposed patterns

offer an effective approach to model the functionality in Event-B. Figure 4.19 shows invariants

in the RHP and ROP patterns.

Firstly, the Request Handling Pattern (RHP) represents the behaviour of a single request life

cycle. In this pattern, the phase of a request during its execution life-cycle (req_status in inv0_3)

and its authorization outcome (req_authz in inv0_4) are introduced. By refining the RHP pat-

terns, ROP patterns are developed to model the functionalities of a serverless system.

Moreover, the Single Service Request (SSR) pattern, our most basic request ordering pattern, is

effective for modelling functionalities that are met by the execution of a single request. There-

fore, it is sufficient to track the phases of a request execution during its life cycle that are already

introduced in abstraction (RHP). Because ROP patterns represent functionalities, the requested

resource and the requested action are also introduced in inv1_1 and inv1_2, respectively.

However, if the functionality requires multiple requests across different services, the order of

these requests also requires tracking. In cases requiringmultiple requests, the most basic struc-

ture could be a linear order of requests. To be fulfilled, each request may require input from

only one further request to another service. For such structures where requests are ordered

linearly, we developed the Linear Service Request (LSR) pattern. In the LSR Pattern, we track

request execution to ensure the proper order of the requests (subsequent_reqs in inv1_3). A flag

50



51 CHAPTER 4. FORMAL PATTERNS FOR SERVERLESS APP

is also associated with each request to identify whether it requires input from other services

or not. (has_further_req in inv1_5).

Moreover, if any request within a functionality requires inputs from multiple services, we

propose the BSR pattern to model the functionality. In the BSR pattern, processed subsequent

requests are kept (proc_further_req in inv1_6) to verify that all processed subsequent requests

are successfully executed when initiating a new one.

Finally, for more complex cases where a request needs inputs from multiple services that also

require inputs from other services, we propose the Chained Branching Service Request (CBSR)

pattern. This pattern introduces the concepts of a chain (req_chain in inv1_8) and chain status

(chain_status in inv1_9). The former concept defines chains for requests in different branches,

while the latter defines the status of those chains. By determining the status of a chain, it can

be ascertained whether a request in a chain (branch) fails or not.

4.3 POs of RHP / ROP Patterns

Proof obligations are logical condition that must be proved to ensure the correctness of the

model. In this section, the statistics about discharging og POs in RHP and ROP patterns.

The table in Figure 4.20 shows proof statistics of RHP and ROP patterns. In the development

of RHP pattern (machine01_RHP), 18 POs were generated by the Rodin tool, while in ROP

patterns development, 4, 57, 65, and 131 more POs were generated for SSR(machine02_SSR),

LSR(machine02_LSR), BSR(machine02_BSR), and CBSR (machine02_CBSR) pattern, respec-

tively.

Figure 4.20: POs of RHP and ROP Patterns

All POs in RHP pattern were automatically proved. Because ROP formal patterns are devel-

oped by refining RHP formal pattern, POs in RHP development were inherited to ROP formal

patterns development.

51



CHAPTER 4. FORMAL PATTERNS FOR SERVERLESS APP 52

Therefore, as illustrated in Figure 4.20, Besides RHP POs in abstraction, all generated four POs

automatically were proved in SSR development. Moreover, in LSR pattern development, 53 out

of 57 POs were automatically proved by tool, while 60 out of 65 were automatically proved.

Lastly, of 131 generated POs, 115 were automatically proved by ROdin tool, whereas 16 POs

manually proved.

52



Chapter 5

Formal Patterns for Authorization
Mechanism

In a cloud system, including a serverless system, to access a specific resource, a request must

be made. The cloud system’s acceptance or rejection of this request is contingent on whether

the requester is authenticated and possesses the appropriate permissions. Subsequently, the

cloud system will issue a response indicating either success or failure.

When a request is received by a cloud system, authentication is first checked. After the re-

quester’s identity has been authenticated, AWS checks for authorization to determine whether

the authenticated entity has the necessary permissions to perform the requested action on the

requested resources. However, as authentication is beyond the scope of our current model, we

assume that requests that are sent by registered requesters, like existing app users or functions

in the system, are already authenticated.

In this research, we focus on the authorization mechanism. Each request made in cloud a envi-

ronment must go through the authorization mechanism, and only those requests with proper

authorization are accepted. This makes the authorization mechanism crucial for ensuring the

proper and secure functioning of a cloud-native system.

Several different cloud providers exist in the market, each with distinct offerings and no stan-

dardisation in terms of the services provided or the way to design a systemwith those services.

In our research, we specifically focus on AWS services because they have the lion’s share of

the cloud computing market and there are more documents compared to other providers.

Moreover, a comprehensive explanation of the architecture of AWS-based serverless applica-

tions and the functioning of the authorization mechanism in AWS environment are provided

in Section 2.6.

In this chapter, we introduce an Event-B formal modelling approach tailored for the authoriza-

tion and access control mechanisms in an AWS environment.

53



CHAPTER 5. FORMAL PATTERNS FOR AUTHORIZATION MECHANISM 54

5.1 Formal Patterns for Authorisation Mechanism

In this section, it shows howwemodel the authorizationmechanism at a high abstract level and

then refine our model to represent the authorization mechanism on the AWS cloud platform.

5.1.1 A Non-Deterministic Authorization Mechanism

The authorization mechanism in the AWS platform is very complex. We use the abstraction

and refinement features of Event-B to manage the complexity of the authorization process. At

first, we focus on the outcome of an authorization process, which is either to accept or reject

a request.

Figure 5.1: A Non-Deterministic Authorization Mechanism

In the abstract model, as represented in Chapter 4, the authorization mechanism is introduced

in a non-deterministic way. authz_ver event in Figure 5.1 represents the authorization mecha-

nism. In this event, the authorization outcome for a request is assigned non-deterministically

by using the value of the parameter: ar. The type of ar is defined by grd0_2 as EFFECT, a

binary set whose value could be either Allow or Deny. The output of the authz_ver event will

determine which event is enabled in the next stage. The success case (service_local_act) is en-

abled when the authorization result is Allow, whereas the result of Deny makes the failure case

(authz_fail) enable.

@inv0_4 : req_authz ∈ request 7→STATUS

The variable req_authz in inv0_4 displays the results of the authorization. The relationship

is a partial function because a request could only have an authorization result after passing

through the authorization mechanism.

54



55 CHAPTER 5. FORMAL PATTERNS FOR AUTHORIZATION MECHANISM

5.1.2 First Refinement: Introducing Sub-typing Generalization

Figure 5.2: Resource and Resource Types

Everything within a cloud platform constitutes a resource, and a request is made for a resource.

Therefore, to model the request processing uniformly, as shown in Figure 5.1, we introduce an

abstract RESOURCE type. In the next stage, we use a sub-typing mechanism to introduce dif-

ferent resource types. This sub-typing approach allows us to specialise in the request process-

ing associated with various resource sub-types. The inv1_1 invariant defines the link between

requests and the abstract resource type:

@inv1_1 : req_res ∈ request→ RESOURCE

To implement our subtyping approach of Figure 5.1 in Event-B, we use a partition operator.

The axm1_1 axiom states that Cognito, Function, Data, IAM, EndPoint, and OtherRes sets

are subsets of the RESOURCE set. We incorporate the OtherRes set to enhance the model’s

flexibility, enabling the introduction of a new resource type as a subset of the OtherRes set.

Then, in axm2_2 and axm5_1 axioms, we refine the Data and IAM subset further to represent

the relevant subtypes.

axioms
@axm1_1 : partition(RESOURCE,Cognito,Function,Data,IAM,EndPoint,OtherRes)
@axm2_2 : partition(Data,DataTable,DataRec)
@axm5_1 : partition(IAM, IAMUser,IAMRole,IAMPolicy)

55



CHAPTER 5. FORMAL PATTERNS FOR AUTHORIZATION MECHANISM 56

Figure 5.3: Refining Request Execution Based on Resource Types

The introduction of the sub-typing mechanism discussed earlier allows us to refine the abstract

model to introduce more details about the operations of a serverless app. For example, in Fig-

ure 5.3, we see how the abstract service call_service is refined to include two new functional-

ities: calling service 1 and calling service 2 in a serverless app. The operations of a serverless

app are not restricted to these two cases, but the aim here is to demonstrate the effectiveness

of our approach to abstractly specifying the operations of a serverless app and refining it later

to introduce more details.

Instead of subtyping using the partition operator, an alternative approach would have been to

define each resource class as a distinct type. This approach would distinguish between requests

made for each type of resource and specify their relations separately. Consequently, some con-

cepts that we define with a single invariant, like inv1_1 (req_res ∈ request → RESOURCE),
would have to be replaced with multiple invariants for different kinds of resources, such as

data, function, and so on. This approach would also increase the complexity of the specifi-

cation of request handling, as we would need to introduce a separate set of events for each

request type. For example:

@inv3_4a : req_res_data ∈ request→DATA

@inv3_4aa : req_res_fun ∈ request→ FUNCTION

...

56



57 CHAPTER 5. FORMAL PATTERNS FOR AUTHORIZATION MECHANISM

5.1.3 Second Refinement: Replacing the Non-deterministic Authorizer with
a Deterministic Authorizer

Figure 5.4: An abstraction of permission mechanism in AWS environment

To fulfil a request successfully, the requester must have permission to perform the requested

access. As outlined in Section 2.6.2, the authorization mechanism in AWS is considerably com-

plex. To manage this complexity, we devise an abstract Event-B specification of this access

control and then refine it gradually to introduce all necessary details. The core idea of this

abstraction is to define a permission relation that directly relates the actor/requester to the

statement. This approach allows us to bypass some intermediary entities, such as the IAM

role, described in Section 2.6.2, thereby simplifying our model. Figure 5.4 illustrates our ab-

straction of the permission mechanism in the AWS environment. It is worth noting that we

have maintained the core idea of actor and resource-based permissions as described in Sec-

tion 2.6.2.

Figure 5.5: Event-B Invariants Representing Abstract Permission Mechanism

57



CHAPTER 5. FORMAL PATTERNS FOR AUTHORIZATION MECHANISM 58

The formal specification of variables in Figure 5.4 is provided in the Event-B excerpt in Fig-

ure 5.5. These definitions reflect the structure of AWS entities we described earlier in Sec-

tion 2.6.1. The structure of statements and resource-based statements are presented in Fig-

ure 5.5A. A statement in inv2_1 introduces the existing permissions in the system. In the defi-

nition of a statement, what actions (inv2_4) are allowed or denied (inv2_5) on what resources

(inv2_3) are introduced. If the statement is a resource-based statement (inv2_2), sta_pr shows

the entities who are granted or restricted access permission in the statement.

Moreover, the relationships between various AWS entities and these statements are defined in

Figure 5.5B. We used the actor variable to represent all AWS entities where they can be as-

sociated with a permission object. Additionally, we have a subset of resources with which a

resource-based policy can be associated. We represent this subset by the access_managable_resouce

variable. It should be noted that the function entity can be part of both sets. That means that

a function can utilise both actor and resource-based permissions.

Figure 5.6: Authorization of a request

Introducing concrete variables in the access control system paves the way to refine the autho-

rization rules. A graphical illustration of the authorizationmechanism is provided in Figure 5.6.

Each request is associated with a requester, and its abstract form is about performing an action

on a resource. A request will only be allowed if the associated requester actor has permission to

carry out the requested action on the requested resource. In this regard, the actions-resources

pairs in the request (req_act , req_res) must be a subset of permitted resources-actions pairs in

the permission object (sta_act , sta_res).

The permission can either be actor-based permission, directly associated with the actor cap-

tured by actor_permission, or it can be resource-based permission, which defines which ac-

tor is allowed to perform the requested action on the resource and is represented by the re-

source_permission. These two cases are presented in Figure 5.6A and Figure 5.6B. An example

of a resource-based policy is an API Gateway endpoint that triggers a function execution by

sending a request to the Lambda service. In this case, the requested function must possess a

resource-based statement that explicitly allows the endpoint to execute this function.

58



59 CHAPTER 5. FORMAL PATTERNS FOR AUTHORIZATION MECHANISM

Figure 5.7: Event-B Encoding of the Request Authorization

The "EFFECT" element in both types of permission objects is a mechanism to define the per-

mission in positive or negative terms and, therefore, can take the value of allow or deny, re-

spectively. The Event-B encoding of the conditions we have illustrated graphically in figures

5.6A and 5.6B are presented in inv2_14 and inv2_15 in Figure 5.7, respectively.

After introducing the necessary variables and invariants to represent the authorization con-

straints, now is the right time to refine the abstract authorizer of Section 5.1.1. The aim is to

replace the non-deterministic version of the authorizer presented in Figure 5.1 with a more

deterministic one.

As previously discussed, the initiator of a request could be either an actor or an endpoint. The

authorization process must distinguish between these cases because different types of permis-

sions are used for each case. For instance, resource-based permissions should be used when the

initiator is an endpoint. The authorization process can consist of several cases depending on

the type of request initiator, the presence or absence of the permission object, and the possible

values of the "EFFECT" element within the permission. These cases might include:

1. The requester is an actor and the actor has an allow statement for the request.

2. The requester is an actor and the actor has a deny statement for the request.

3. The requester is an actor and the actor does not have any statement for the request.

4. The requester is an endpoint and the requested resource has an allow statement to allow

the endpoint to make a request.

5. The requester is an endpoint and the requested resource has a deny statement to reject

the endpoint to make a request.

6. The requester is an endpoint and the requested resource does not have any statement

about the endpoint to make a request.

59



CHAPTER 5. FORMAL PATTERNS FOR AUTHORIZATION MECHANISM 60

Figure 5.8: Deterministic Authorizer Events

In Figure 5.8, we cover case 1, where the requester is an actor having an appropriate statement,

and case 6, where the requester is an endpoint having no related statement. Due to space

constraints, we do not cover the model representations of other cases in this text.

The authz_ver_actor_permit event detailed in Figure 5.8 specifies the case that the requester is

an actor having an allow value in his/her statement. Guard grd2_1 in the authz_ver_actor_permit

event ensures that the requester is an actor, while grd2_3 states that pm comprises a set of state-

ments that includes all the requester’s statements that are related to the requested resource and

action. Moreover, grd2_4 ensures the presence of at least one "Allow" statement in the pm, au-

thorising the performance of the requested action on the requested resource. Simultaneously,

grd2_5 ensures that there are no "Deny" statements in the pm that would prohibit performing

the requested action on the requested resource.

Theauthz_ver_for_endp_reject_no_perm event represents the case where the requester is an

endpoint and there is no related statement, resulting in the request being rejected. Among the

statements (resource-based statements) associated with the requested resource, guard grd2_3

in this event puts all statements that include the requester, the requested resource, and action

together in the pm set. Simultaneously, grd2_4 ensures that the pm set is empty.

The witness in events illustrated in Figure 5.8 is the mechanism enabling us to transform the

abstract, non-deterministic authorization system into a deterministic one. In these refined

events, the abstract parameter ar, which makes the authorizer non-deterministic, is replaced

with an authorization result based on permissions associated with the requester.

60



61 CHAPTER 5. FORMAL PATTERNS FOR AUTHORIZATION MECHANISM

5.1.4 Third Refinement: The complete Access Control in AWS

As mentioned in Section 2.6.2, the AWS authorization mechanism uses IAM users, IAM roles,

and IAM policies to manage access to the cloud resources. Policies incorporate an array of

statements that dictate the execution of each issued request. In this refinement to provide a

complete representation of the AWS authorization mechanism, we refined our previous model

by introducing IAM roles, IAM policies, and their relations with other entities.

Figure 5.9: Introducing IAM user, IAM role and IAM policy

The core idea in this refinement is to replace the actor_permission and resource_permission re-

lations with more concrete versions that encompass AWS entities such as IAM users and IAM

roles. Figure 5.9 provides a graphical illustration of the abstract and the concrete relation-

ships. The provided inv3_comp1a and inv3_comp2a define the composition relation between

the abstract and refined ones.

Figure 5.10: The Effect of New Features on Authorization Events

61



CHAPTER 5. FORMAL PATTERNS FOR AUTHORIZATION MECHANISM 62

Refining the abstract authorization mechanism and introducing the concrete features, as pre-

sented in Figure 5.9 also affect authorizers’ events. For instance, Figure 5.10 shows how in-

troducing role and policy affect the authz_ver_actor_permit event in the refinement step. An

actor has a role that is linked to policies defining its access level. Therefore, as can be seen in

Figure 5.10, grd2_3 guard in the abstract event, which represents the requester’s permission

statements related to the requested resource action, is refined into grd3_4 in the refined event

by using new concrete features like role and policy. Therefore, grd3_4 guard in the refined

event ensures that pm includes all statements of policies of the actor’s role that are related to

the requested resource and action.

5.2 POs of Authorization Mechanism Model

The authorization mechanism is introduced in two refinement steps by refining authz_ver

event in RHP and ROP patterns. Moreover, ROP patterns are developed by refining the RHP

pattern. To ensure the correctness of the authorization model and the consistency between

refinement steps, all proof obligations (POs) that are logic conditions must be discharged.

Figure 5.11: POs of Authorization Mechanism’s Model

Figure 5.11 illustrates the PO statistics in the development of a refinement strategy for the

model that introduces the authorization mechanism in the AWS cloud environment. As de-

tailed in previous sections, to show the refinement strategy for formal modelling of the autho-

rization mechanism, the SSR pattern is used to refine. As illustrated in Figure 5.11, 148 POs

were generated, 115 of which were automatically proved, while 33 of which were manually

proved.

62



63 CHAPTER 5. FORMAL PATTERNS FOR AUTHORIZATION MECHANISM

5.3 Conclusion

To conclude, cloud-based systems predominantly allow users to access resources over the net-

work. To safeguard resources and ensure secure access, it is essential to clearly define the iden-

tities and permissions of those identities attempting to access the system. Otherwise, unautho-

rised access may cause significant loss in the system. Therefore, authorzation, which mainly

manages user actions on a set of resources in a system [44], is a key mechanism to make a

system more secure in any cloud concept, including serverless architectures.

To design and configure access control mechanisms properly, formal methods may help cloud

native app developers. Moreover, in the formal modelling pattern proposed in this section, we

develop invariants and guards to identify any conflicts in the access control mechanism and

rectify them.

63





Chapter 6

Case Studies

In the previous chapters, we presented our formal patterns for modelling a functionality of a

serverless system (Chapter 4) and the incremental introduction of the authorization mecha-

nism specific to serverless applications in the AWS environment (Chapter 5). These patterns

aim to manage the complexity of the modelling process and enhance the robustness of the

authorization mechanism in the final model.

In this chapter, by using proposed patterns (Chapter 4 and 5), we modelled three different

case study scenarios from two different domains. The first two scenarios are from the ‘Project

Management System’ case study, while the third scenario is from the ‘Learning Management’

case study.

Tomodel these scenarios, we first selected the appropriate ROP pattern. Then scenario-specific

features were integrated into the pattern to adapt it to the particular scenario. Lastly, the

authorization mechanism is introduced, as detailed in Chapter 5, in the model.

The aim is to demonstrate the usability of our patterns in modeling various scenarios within

the same domain as well as different scenarios across different domains.

6.1 Case Study: Project Management System

Project Management System is a system to enable a companies or institution to create and

manage projects. The system is characterised by employee, project, department, and role.

Each employee is introduced by an application user, whereas roles define the access level of

a user to the system. Moreover, user roles are admin, project manager, department manager,

and developer.

General requirements for the Project Management System are shown in Table 6.1, whereas

requirements for admins, department manager, project manager, and developer are illustrated

in Table 6.2, Table 6.3, Table 6.4, and Table 6.5, respectively.

65



CHAPTER 6. CASE STUDIES 66

R1 Each employee work at only one department.

R2 Each project is run under one department.

R3 Each project has a status to define its completion level.

R4 Status of a project can be changed by its project manager.

R5 Each user has a role that determines his/her access level in the system.

R6 Those roles are: admin, project manager, department manager, and developer.

Table 6.1: General Requirements for Learning Management System

R7 An admin can add/delete a user to/from the system.

R8 An admin can add/delete a project to/from the system.

R9 An admin can add/delete a department to/from the system.

R10 An admin can add/delete a role to/from the system.

R11 An admin can assign a user to a department as a department manager.

R12 An admin can view the personal information of any user.

Table 6.2: Requirements of Admins

R13 A Department Manager can add/delete a user to/from his/her Department.

R14 A Department Manager can allocate a employee to a project in his/her Department.

R15 A Department Manager can allocate a employee to a project as Project Manager in

his/her Department.

R16 A Department Manager can list department, employee, and project information in

his/her department.

Table 6.3: Requirements of Department Managers

R17 A Project Manager can allocate a developer to his/her project.

R18 A Project Manager can remove a developer from his/her project.

R19 A Project Manager can update the information of his/her project.

R20 A Project Manager can list all developer’s information in his/her project.

Table 6.4: Requirements of Project Managers

R21 A Developer can update his/her information.

R22 A Developer can list his/her information.

R23 A Developer can list the project s/he attend.

Table 6.5: Requirements of Developers

66



67 CHAPTER 6. CASE STUDIES

The project management system that is characterised by employee, project, department, and

role entities is built in the AWS environment. Figure 6.1 depicts the structure of the system in

the AWS cloud environment.

Figure 6.1: ABasic Structure of aWeb Appwith Serverless Architecture in AWS Environment

The functionalities that we have chosen are from a "project management system" built on the

AWS environment, as shown in Figure 6.1. The system manages application users through

the Cognito service, associating each user with an IAM role as a user role, defining their ac-

cess level. These access levels introduce which users can execute which API endpoints in the

API Gateway. Each of these API endpoints is designed to satisfy a distinct functionality of the

"project management system". One such endpoint, EPPromoteUser, when executed by an au-

thorised user, triggers the corresponding Lambda function (a serverless function in the AWS

context) to fulfil the request. To execute a lambda function, the requester must either have

an IAM role granting the necessary permissions or be granted permission by the function’s

resource-based policy. If the requester is an API endpoint in the API Gateway, permission to

execute the function must be granted by the function’s resource-based policy. This is because

an API endpoint cannot use an IAM user, requiring permission to be granted directly to the

requester endpoint. When the function is executed, it may need to access resources from differ-

ent services, such as database tables in DynamoDB. Each lambda function is linked to an IAM

role known as the function execution role, which defines the access level of the associated

function. Therefore, a function can access those resources that are allowed by its execution

role.

67



CHAPTER 6. CASE STUDIES 68

6.1.1 Scenario 1: Updating Project Status

Figure 6.2: The Structure of "Updating Project Status" Functionality

The scenario: User1, with a Project Manager role, wants to update the status of Project1, a

project that he manages in the project management system. The structure of the "updating

project status" functionality in the AWS environment is illustrated in Figure 6.2. The following

steps are executed to fulfil this functionality:

1. User1 initiates a request to update the status of Project1.

2. The client app sends User1’s request to the API Gateway service.

3. The API Gateway receives the request.

4. The authorizer of the EPUpdProSt endpoint determines whether User1 has permission

to execute EPUpdProSt endpoint, the endpoint associated with "updating project status"

functionality.

5. If User1 has the proper permission, the EPUpdProSt endpoint is executed.

6. When the requested endpoint is executed successfully, the endpoint calls the FunUpdPro-

Data lambda function.

7. The authorizer of the FunUpdProData function determines whether the EPUpdProSt

endpoint is allowed to execute the function in the function’s resource-based policy.

8. The FunUpdProData function is executed if the EPUpdProSt endpoint is permitted.

9. The executed FunUpdProData lambda function sends a request to DynamoDB to update

the status of Project1.

10. The authorizer of Project table determines whether the FunUpdProData function has

permission to update the requested table.

11. The status of Project1 is updated if the FunUpdProData function is allowed.

68



69 CHAPTER 6. CASE STUDIES

Figure 6.3: The Authorisation entities in "Updating Project Status" Functionality

Furthermore, Figure 6.3 clearly depicts the authorization entities involved, such as IAM roles

or policies, and their respective responsibilities during the fulfilment of the "updating project

status" functionality.

6.1.1.1 Model "updating project status" Functionality

As illustrated in Figure 6.2, the structure of the "updating project status" functionality in the

AWS environment iswell-suited for implementing our LSR pattern, as explained in Section 4.2.2,

to model in Event-B.

To fulfil "updating project status" functionality, three distinct requests must be executed in lin-

ear order. Figure 6.4 illustrates the implementation of the LSR pattern to model the "updating

project status" functionality as a case study. As shown in the figure, LSR(ue)1, LSR(u f )2, and
SSR(pt)3 introduce requests sent to the EPUpdProSt endpoint, the FunUpdProData function,

and the Project database table, respectively. Therefore, as depicted in Figure 6.4, to update

Project1’s status, the FunUpdProData lambda function, whose execution depends on the suc-

cessful execution of the EPUpdProSt endpoint, must be successfully executed.

1ue : EPUpdProSt endpoint
2u f : FunUpdProData function
3pt : Project database table

69



CHAPTER 6. CASE STUDIES 70

Figure 6.4: The tree-like representation of "updating project status" functionality

Textual Representation 6.1 illustrates the implementation of the LSR pattern for modelling

the "updating project status" scenario in textual form. The textual representation helps us in

analysing the model in Figure 6.4 in terms of an RHP pattern.

LSR(ue) =
RHP(ir_ue, c_ue, av_ue, la_ue, LSR(uf), af_ue, r_ue)
LSR(uf) =
RHP(ir_uf, c_uf, av_uf, la_uf, SSR(pt), af_uf, r_uf)
SSR(pt) =
RHP(ir_pt, c_pt, av_pt, la_pt, SKIP, af_pt, r_pt)

(6.1)

The abbreviation in the Textual Representation 6.1 means the following :

ir_ = initiate request to

c_ = call

av_ = authorisation verification of

70



71 CHAPTER 6. CASE STUDIES

la_ = local action in

af_ = authorisation failure of

r_ = response of

Therefore, the abbreviations of events in the RHP pattern of LSR(eu) mean :

ir_ue = initiate request to EPUpdProSt endpoint

c_ue = call EPUpdProSt endpoint

av_ue = authorization verification of EPUpdProSt endpoint

la_ue = local action in EPUpdProSt endpoint

af_ue = authorization failure of EPUpdProSt endpoint

r_ue = response of EPUpdProSt endpoint

Finally, the requests are required for fulfilment of the "updating project status" functionality

map to entities in the pattern. Table 6.6 offers a lucid mapping between the requests and their

associated entities within the pattern and the system:

In Pattern In The System Request

LSR(ue) The request that is sent EPUpdProSt Endpoint

to execute

req1

LSR(uf) The request that is sent FunUpdProData Func-

tion to execute

req2

SSR(pt) The request that is sent DynamoDB to update

project table (project status)

req3

Table 6.6: Requests During the Process of Scenario 1

6.1.1.2 Event-B Model of The Scenario

First of all, in the first context (context01), the features that are required for the RHP pattern

(request, request status, request authorization), as detailed in Figure 4.4, are defined. And then,

to model "updating project status" functionality, as illustrated in Figure 6.2, users, endpoints,

functions, and data, which are specific to the AWS system, must be introduced as different

resources in the context, as shown in Figure 6.5.

Moreover, actions are also defined as carrier set in the context, as illustrated in Figure 6.5.

Therefore, the requested action could be represented. The axm1_2 axiom defines some spe-

cific actions that are required for case study functionality fulfilment. InvokeApi represents the

action of an API execution, while ExecFun shows the action of a function execution. Similarly,

UpdItemDB depicts the action of updating an existing item in a database table.

71



CHAPTER 6. CASE STUDIES 72

Figure 6.5: Features Specific to AWS system

The context 03 in Figure 6.5 introduces and details resources in Cognito and a database. In

a database, we have database tables and data records (axm2_1) and each data record belongs

to a database table (axm2_3). Likewise, Cognito, which is a restricted database service for

usermanagement, authentication, and authorization, comprises cognito user pools and cognito

users. Cognito users represent application users in the application domain (axm2_2), each

cognito user (app user) belongs to a cognito user pool (axm2_4).

Figure 6.6: Features Specific to Case Study System and Scenario

Furthermore, Context 04 context in Figure 6.6 introduces features that are related to our case

study system (project management system), specifically focusing on the ’updating project sta-

tus’ scenario.

Figure 6.7 shows the invariants in the abstract machine of the model for "updating project

status functionality. Invariants in Figure 6.7A are coming from the RHP pattern, detailed in

Section 4.1. Figure 6.7B shows invariants related to the LSR pattern that is developed by refin-

ing the RHP pattern, as explained in Section 4.2.2.

72



73 CHAPTER 6. CASE STUDIES

Figure 6.7: Invariants of Abstraction for Scenario 1

Additionally, Figure 6.7C shows invariants to introduce features specific to the AWS cloud

environment. For instance, inv1_9 states that each API Gateway endpoint is associated with

a lambda function that can be triggered when the endpoint is executed. The invariants in

Figure 6.7D mainly introduce application-specific features relevant to our case study system.

For example, invariants inv1_10 and inv1_11 define the application specific entities, which

are "projects" and "departments". The user is defined in inv1_6. Moreover, inv1_14 depicts

that multiple users can work on various projects, whereas inv1_12 clarifies that each project

is managed by a single user. Each project has a status, showing its completion percentage

(inv1_17 ). Lastly, a user or a project is associated with only one department (inv1_15 and

inv1_16, respectively).

Furthermore, the invariants in Figure 6.7E represent data in the payload of a request. The

r_data_usr variable (inv1_18) shows the application user initiating a request to update a project’s

status, whereas the r_data_pro variable (inv1_19) depicts the targeted project. Moreover, r_data_st

(inv1_20) shows the new updated status value.

The model also includes certain setup features specific to our case study system. These fea-

tures are assumed to be implemented during the application setup stage. Notably, the setup

configurations, such as the association of each endpoint with a lambda function (act1_8), are

introduced in the ’Initialisation’ event illustrated in Figure 6.8.

73



CHAPTER 6. CASE STUDIES 74

Figure 6.8: Initialisation for Scenario 1 Abstraction

In addition to the overall system setup, the case study scenario requires particular configura-

tions. These are also detailed in the Initialisation event in Figure 6.8. For instance, act1_5 intro-

duces the registration of User1, while act1_11 allocates User1 to Project1 as a project manager.

Significantly, in Figure 6.8, the configurations highlighted in yellow pertain to the necessary

configurations for the case study system (Project Management System). In contrast, the remain-

ing configurations are specific to the case study scenario, which is the "updating project status"

functionality.

Figure 6.9: Request Initiation Events for Scenario 1 Abstraction

Figure 6.9 illustrates how the generic initiate request events in the RHP pattern are refined into

specific request initiation events for a given functionality in the LSR pattern format. Events in

Figure 6.9A, Figure 6.9B, and Figure 6.9C represent the initiation of a request to the EPUpdProSt

endpoint, the FunUpdProData lambda function, and the Project DB table, respectively. The

grd1_1 in init_req_ue, init_req_uf, and init_req_pt specify the target resource of requests. For

example, the grd1_1 in init_req_ue says the request is initiated for the EPUpdProSt endpoint.

As shown in Textual Representation 6.1, the process to fulfil the "updating project status" func-

tionality begins with initiating a request to the EPUpdProSt endpoint (init_req_ue). In the

74



75 CHAPTER 6. CASE STUDIES

init_req_ue event, the details about the functionality, including the user attempting the update

(rdu), the project targeted for update (rdp), and the new status value (rds), are put in the request

payload (request body) (act1_3, act1_4, and act1_5, respectively). Then, when a new request is

initiated during the process, this information is subsequently transferred to the new request,

as seen in the init_req_uf and init_req_pt events (act1_4, act1_5, and act1_6).

Additionally, as each endpoint is associated with a lambda function, the lambda function can be

executed when the associated endpoint is successfully executed. This association is captured

in the grd1_8 guard in Figure 6.9B. The grd1_8 guard ensures that the requested function (res)

is associated with the requester endpoint (req_res(pre_req)).

Figure 6.10: Some Events in Scenario 1 Abstraction

Figure 6.10 illustrates various events in the Event-B model of "updating project status" func-

tionality. As depicted in Figure 6.10, the events in each RHP pattern of different requests can

be distinguished by determining the value of req_res(req), which shows the target resource of

a request. The guards that are highlighted in yellow in Figure 6.10 define the target resource

of the request. For example, the grd1_1 guard in Figure 6.10A distinguishes call_ue from other

calling service events, saying that one in Figure 6.10A is related to the request targeting the

EPUpdProSt endpoint. In each event, the grd1_1 guard specifies its corresponding request,

which can be seen in other events in Figure 6.10.

75



CHAPTER 6. CASE STUDIES 76

Figure 6.11: Local Action Event Project DB Table

After successful execution of the requests to both the EPUpdProSt endpoint and the FunUpdPro-

Data function, the FunUpdProData function makes a request to the Project DB table to update

the status of the requested project. The local_act_pt event in Figure 6.11 represents the process

performed in the DynamoDB database following acceptance of the request to the project DB

table.

Therefore, when the local_act_pt event is executed, the requested project’s status is updated

(act1_2). This update relies on data from preceding requests, specifically

r_data_pro(req) (grd1_2) and r_data_st(req) (grd1_3). Moreover, grd1_4 ensures that the user

requesting the status update is the project manager of the relevant project.

Implementing Deterministic Authorization Mechanism in Scenario 1 :

As mentioned before, in AWS philosophy, no service does not inherently have the right to

perform any actions on the resources of other AWS services. Reflecting this principle, specific

permissions must be granted for each request in the system. In the context of our scenario,

where the scenario of "updating project status" is being fulfilled, several permissions must be

carefully configured.

Firstly, the application user (User1) must be granted permission to execute a specific endpoint

(the EPUpdProSt endpoint) in the API Gateway. Following this, the executed endpoint itself re-

quires permission to initiate the corresponding Lambda function (the FunUpdProData Lambda

function). Lastly, the executed function must have the requisite permission to write to the

requested database table (in this case, the Project DynamoDB table).

To achieve this layered authorization, Lambda functions and application users use IAM roles,

while the permissions required for API Gateway endpoints can be granted through the Lambda

function’s resource-based policy. This configuration illustrates the granular control required in

the AWS environment, showcasing the necessity of precision in designing and implementing

access controls.

76



77 CHAPTER 6. CASE STUDIES

Firstly, we introduce the entities related to permission that are required for case study repre-

sentation.

Figure 6.12: Permission Entities for Scenario 1

As detailed in Section 5.1, permissions are structured through the use of statements, each com-

prising mainly three attributes: resource, action, and effect. These statements provide an ex-

plicit specification of which actions are allowed or denied on particular resources.

As shown in Figure 6.12, STATEMENT is defined in context as carrier set. In the associated ax-

iom, statements that is essential for the fulfilment of the case study functionality are introduced

(axm4_1).

Figure 6.13: Ref 1: Initialisation Event for Scenario 1

The Initialisation event in Figure 6.13 illustrates necessary setup configurations for the fulfil-

ment of the case study functionality. Actions from act2_2 to act2_7 show the configuration

of permission statements, whereas act2_10 and act1_11make associations between permission

statements and their corresponding entities.

77



CHAPTER 6. CASE STUDIES 78

Figure 6.14: Ref 1: Visual of the Required Permissions for Fulfilment of "updating project

status" functionality

Figure 6.14 visualises configurations that are done in the INITIALISATION event, as detailed in

Figure 6.13. Therefore, the sta1 statement grants permission toUser1 to execute the EPUpdProSt

API endpoint, while sta3 gives permission to the FunUpdDataPro function to update the Project

database table. Additionally, the sta2 statement allows the EPUpdProSt endpoint to execute the

FunUpdDataPro function.

event init_req_ue extends init_req_ue
any rq
when
@grd2_1 rq ∈ (Endpoint ∪ Function ∪ CogUser)

then
@act2_1 requester(new_req) := rq

end

In this refinement level, requester is defined so each request ismade by a requester that could an

app user, a function or an endpoint. (requester ∈ request→ (Endpoint

⋃
Function

⋃
CogUser)

). Moreover, as shown in init_req_ue Event-B event above, when a new request is initiated, a

relation between the new request and the requester entity is created (act2_1).

78



79 CHAPTER 6. CASE STUDIES

Figure 6.15: Refining Non-Deterministic Authorisation into Deterministic for the EPUpdProSt

endpoint

In Figure 6.15, the refinement process of the authorization mechanism for requests directed

at the EPUpdProSt endpoint is depicted. We follow the methodology that we propose in Sec-

tion 5.1.3 to refine the non-deterministic authorization mechanism into a deterministic autho-

rization mechanism. Whenever an app user sends a request to an API Gateway endpoint, the

requester app user must have proper permission.

Therefore, we consider just the cases pertaining to actor permissions (as explored in Sec-

tion 5.1.3). The abstract authorizer event (authz_ver_ue) is refined into three distinct events,

capturing three different cases of authorization: the case that the requester has proper per-

mission (authz_ver_actor_permit_ue), the case that the requester has a reject about the re-

quested action (authz_ver_actor_reject_restrict_ue), and the case that the requester does not

have any associated permission (authz_ver_actor_reject_no_perm_ue). Moreover, the grd1_1

and grd2_1 guards are pivotal in defining the request, defining that the target resource must

be the EPUpdProSt endpoint (grd1_1) and the requester should be an app user (grd2_1).

79



CHAPTER 6. CASE STUDIES 80

Figure 6.16: Refining Non-Deterministic Authorisation into Deterministic for the FunUpdPro-

Data Function

Moreover, Figure 6.16 illustrates the refinement of the authorizationmechanism concerning re-

quests to the FunUpdDataPro function. Given that this function is triggered by an API Gateway

endpoint, and given the inherent limitations of the API Gateway endpoint in the AWS environ-

ment, which lacks the ability to act as a permissions-bearing entity, resource permissions linked

to the FunUpdDataPro function must be explicitly granted the permission of function execu-

tion to the inquiring endpoint. Therefore, as shown in Figure 6.16, three of the cases detailed

in Section 5.1.1 could be possible for refinement of the FunUpdDataPro function authorization

mechanism. These cases are: the case where the resource permission of the function allows the

requester endpoint (authz_ver_for_endp_permit_uf ), the case where the resource permission

of the function bans the requester endpoint (authz_ver_for_endp_reject_restrict_uf ), and the

case where there is no statement in the resource permission of the function for the requester

endpoint (authz_ver_for_endp_reject_no_perm_uf ).

The refinement of the authorization mechanism pertaining to requests targeted at the project

database table closely mirrors the structure seen in Figure 6.15, given the FunUpdDataPro func-

tion’s reliance on an IAM role for directing requests to the Project database table.

However, it is vital to highlight that in the AWS context, permissions are granted to specific

identities, like an application user or function, through IAM roles and IAM policies. In the

further refinement stage, as detailed in the refinement strategy proposed in Chapter 5, these

AWS specific nuances will be introduced in the model.

Introducing AWS-based Authorization mechanism specific features in Scenario 1:

80



81 CHAPTER 6. CASE STUDIES

Asmentioned in Section 5.1.4, in this refinement step, themiddle-ware abstractions actor_permission

and resource_permission are replaced with AWS specific authorization entities, like IAM roles

and IAM policies.

Figure 6.17: Application specific features: Roles, policies

As depicted in Figure 6.17, application specific features like roles and policies that are required

for the execution of the case study scenario are created in the extended context. RoleAppPro-

jMan defines the project manager application user role, while RoleFunUpdProData shows an

IAM execution role for the FunUpdDataPro lambda function. Together, these roles, accompa-

nied by their corresponding policies, are required to model the authorization mechanism for

the fulfilment of "updating project status" functionality.

Figure 6.18: Invariants Introducing Roles, policies

Invariants in Figure 6.18 represent role and policy features in the refined machine.

Moreover, the inv3_comp1a and inv3_comp2a invariants in Figure 6.18 are gluing invariants

to illustrate the relationship between the abstract permission-sharing invariants and their re-

fined counterparts. Therefore, actor_permission, which says that each actor has a set of per-

missions, embodies in a composition of states in the refined machine, illustrating that every

81



CHAPTER 6. CASE STUDIES 82

actor has a role linked to a set of policies, each encompassing a set of statements. Similarly,

resource_permission, which says that a resource may have a set of permissions, is replaced with

a composition of states stating that a resource may have a policy containing a set of statements.

Figure 6.19: Ref 2: Initialisation Event for Case Study Scenario 1

Figure 6.19 shows the setup features tied to roles and policies. As the abstract states ac-

tor_permission and resource_permission are replaced with the composition of states, those ab-

stract states are replaced with the refined details in the INITIALISATION event and in the rest

of the model.

As illustrated in Figure 6.19, act2_1 sets the registered roles that are required for the execu-

tion of the case study scenario. The actions act2_2, act2_3, and act2_4 define the policies and

their types, while the actions act2_8 and act2_9 define the permission statements that those

policies have. act2_5 makes relationships between roles and their corresponding actors, which

are application users or functions, whereas the act2_6 and act2_7 actions create associations

between policies and their related to roles or resources.

82



83 CHAPTER 6. CASE STUDIES

Figure 6.20: Ref 2: Authorisation Verification events Permit Cases

Introducing roles and policies and the stepwise evolution of abstract states like actor_permission

and resource_permission affects authorisation verification events. Due to space limitations, Fig-

ure 6.20 selectively shows the effects on refinement of

authz_ver_actor_permit_ue and authz_ver_for_endp_permit_uf. The authz_ver_actor_permit_ue

event (shown in Figure 6.20A) illustrates the permit case of authorisation mechanism for re-

quests targeting the EPUpdProSt endpoint. The guard grd3_4 states that pm includes all state-

ments that belong to the requester role’s policies and that are related to the requested resource.

Moreover, the guard grd3_5 ensures that there is at least one statement that allows the re-

quested action in the statements in pm, while grd3_6 ensures that there is no statement that re-

stricts the requested action in the statements in pm. Furthermore, authz_ver_for_endp_permit_uf

(elaborated in Figure 6.20B) represents the permit case of authorization mechanism for re-

quests targeting the FunUpdProData function. In this case, the resource-based policy of the

FunUpdProData function must include a statement to grant permission to the inquiring end-

point to execute the FunUpdProData function (grd3_3, grd3_4, grd3_5 in Figure 6.20B).

83



CHAPTER 6. CASE STUDIES 84

6.1.2 Scenario 2: "Promoting a User as Project Manager"

Figure 6.21: The Structure of "Promoting a User as Project Manager" Functionality

The scenario: User1, with a Department Manager role, wants to allocate User2 to Project1

as project manager. Figure 6.21 illustrates the structure of the "Promoting a User as Project

Manager" functionality. In system design, we assume that the developer of the case study

system follows the single responsibility principle, resulting in each function having a single

task to do. For instance, the only task of the UpdData function is to update the DynamoDB

table. To fulfil the "Promoting a User as Project Manager" functionality, the following steps

must be satisfied:

1. User1 initiates a request (req1) to promote User2 as project manager of Project1.

2. The client app sends User1’s request (req1) to the API Gateway service.

3. The API Gateway receives the request.

4. The authorizer of the EPPromoteUser endpoint determines whether User1 has permission

to execute the EPPromoteUser endpoint, the endpoint associated with ”Promoting a User

to Project Manager” functionality.

5. If User1 has the proper permission, the EPPromoteUser endpoint is executed.

6. When the requested endpoint is executed successfully, the endpoint calls the FunUsrPro-

mote lambda function (req2).

7. The authorizer of the FunUsrPromote function determines whether the EPPromoteUser

endpoint is allowed to execute the function in the function’s resource-based policy.

84



85 CHAPTER 6. CASE STUDIES

8. The FunUsrPromote function is executed if the EPPromoteUser endpoint is permitted.

9. When the FunUsrPromote function is executed, it first makes a request to the FunUpd-

Role function (req3), which is responsible for updating the role of an application user, to

execute.

10. The authorizer of the FunUpdRole function determines whether the FunUsrPromote func-

tion has proper permission to execute the function.

11. The FunUpdRole function is executed if the FunUsrPromote function is allowed.

12. The FunUpdRole function sends a request to the cognito user pool (req4) to update the

role of User2.

13. The authorizer in the Cognito checks whether the FunUpdRole function has permission

to update the role of User2.

14. The user role of User2 is updated as "Project Manager" after the FunUpdRole function

request (req4) is authorised.

15. The FunUsrPromote function initiates a new request (req5) to the FunUpdData function,

which is responsible for updating the database table (project table).

16. The FunUsrPromote function sends the request (req5) to the FunUpdData function after

both the request to the FunUpdRole function (req3) and the request to the cognito user

pool (req4) are successfully executed.

17. The FunUpdData function is executed if the FunUsrPromote function has proper permis-

sion.

18. The FunUpdData function sends a request to the project DynamoDB database (req6) to

allocate User2 to Project1 as project manager.

19. User2 allocates to Project1 as projectmanager if the FunUpdData function has permission

to do so.

Figure 6.22: The Authorisation entities in "Promoting a User as Project Manager" Function-

ality

85



CHAPTER 6. CASE STUDIES 86

Additionally, Figure 6.22 provides a comprehensive illustration of authorization elements, in-

cluding IAM roles and IAM policies, and their corresponding responsibilities during the ful-

filment of the "updating project status" functionality. For instance, for fulfilment of the func-

tionality, the user role of the requester must have permission to execute the requesting API

Gateway endpoint, while the resource-based policy of the FunUsrPromote function must allow

the requester endpoint to execute the FunUsrPromote function.

6.1.2.1 Model "Promoting a User as Project Manager" Functionality

Figure 6.23: The tree-like representation of ”Promoting a User as Project Manager” function-

ality

In Figure 6.21, the architectural design of the "Promoting a User as Project Manager" function-

ality built in the AWS environment is shown. Using our CBSR pattern, as elaborated upon in

Section 4.2.4, could offer an effective approach to modelling the functionality in Event-B.

To fulfil the "Promoting a User as Project Manager" functionality, six distinct requests, as de-

tailed in Figure 6.21, must be successfully executed. The tree-like diagram in Figure 6.23 depicts

requests, their orders, and relations between them during the process of the functionality of

”Promoting a User as Project Manager”. Each dashed and coloured square represents a request

handling pattern. Moreover, the blue diamond represents a set of conditions and the branch

under the diamond can be enabled only if the conditions of the diamond are satisfied. The

conditions represented by diamond are the successful execution of all requests at the same

level and their subsequent requests. For example, as depicted in Figure 6.23, to make a re-

quest FunUpdData function to execute (LSR(udf)), the request targeting FunUpdRole function

(LSR(urf)), and the request targeting cognito user pool (LSR(cup)) must be successfully exe-

cuted.

86



87 CHAPTER 6. CASE STUDIES

Textual Representation 6.2 illustrates the implementation of CBSR pattern to model the "Pro-

moting a User as Project Manager" scenario that is detailed in Figure 6.23.

CBSR(pe) =
RHP(ir_pe, cs_pe, av_pe, la_pe, BSR(upf), af_pe, r_pe)

CBSR(upf) = LSR(urf) <> LSR(udf)

LSR(urf) =
RHP(ir_urf, cs_urf, av_urf, la_urf, SSR(cup), af_urf, r_urf)
SSR(cup) =
RHP(ir_cup, cs_cup, av_cup, la_cup, SKIP, af_cup, r_cup)

LSR(udf) =
RHP(ir_udf, cs_udf, av_udf, la_udf, SSR(pt), af_udf, r_udf)
SSR(pt) =
RHP(ir_pt, cs_pt, av_pt, la_pt, SKIP, af_pt, r_pt)

(6.2)

The abbreviation in the Textual Representation 6.2 means the following :

_pe = EPPromoteUser Endpoint

_upf = FunUsrPromote Function

_urf = FunUpdRole Function

_udf = FunUpdData Function

_cup = Cognito User Pool

_pt = Project DB Table

The requests that are required for the fulfilment of the functionality map to the entities in

Textual Representation 6.2. Table 6.7 provides a clear representation of how these requests

correspond to entities in both the pattern and the system:

In Pattern In The System Request

BSR(pe) The request that is sent EPPromoteUser Endpoint to execute req1

BSR(upf) The request that is sent FunUsrPromote Function to execute req2

LSR(urf) The request that is sent FunUpdRole Function to execute req3

SSR(cup) The request that is sent Cognito User Pool to update a app user role req4

LSR(udf) The request that is sent FunUpdData Function to execute req5

SSR(pt) The request that is sent DynamoDB to update project table req6

Table 6.7: Requests During The Process of Scenario 2

87



CHAPTER 6. CASE STUDIES 88

6.1.2.2 Event-B model of Scenario 2

Likewise, the "updating project status" functionality scenario, features specific to the AWS

environment, features related to the case study system, and features that are required for ful-

filment of the "Promoting a User as Project Manager" functionality are required in contexts

and machines’ initialisation events in the model. The setup configuration related AWS envi-

ronment and case study system are the same as the model of scenario in Section 6.1.1.1.

Figure 6.24: The Features Related to Scenario 2 Configuration

Figure 6.24 illustrates some features and configurations that are required for scenario 2. User1

and User2 are Cognito users (axm3_2), which are app users in application domain. Moreover,

axm3_3, and axm3_4 ensures those users belong to the same cognito User Pool, which is Cu-

pEmInPro. We assume that CupEmInPro Cognito user pool defines the cognito user pool that

connects with the case study application.

88



89 CHAPTER 6. CASE STUDIES

Figure 6.25: Abstract Invariants for Scenario 2

Figure 6.25 shows the invariants of the abstract of the model of scenario 2. First of all, Fig-

ure 6.25A shows invariants about to the RHP pattern. And then, this pattern is refined into a

CBSR pattern tomodel the case study system scenario. Moreover, the invariants in Figure 6.25B

are invariants to introduce features of the CBSR pattern, whereas the ones in Figure 6.25C are

invariants specific to the AWS cloud environment. Furthermore, Figure 6.25D defines the fea-

tures specific to the case study system, while invariants in Figure 6.25C introduce the structure

of request payload pertaining to the scenario. Therefore, in the request’s payload, information

about the user who attempts to update a user role (r_data_usr), the user whose role is updated

(r_data_promUsr), and the project to which a user is allocated as project manager must be kept

(r_data_pro).

89



CHAPTER 6. CASE STUDIES 90

Figure 6.26: Initialisation for Scenario 2 Abstraction

As shown in Figure 6.26, the configurations for scenario 2, "promoting a user as project man-

ager", have many similarities with scenario 1 (Figure 6.7). However there are some differences.

Firstly, we use CBSR pattern in Scenario 2 so the order of the requests are modelled based on

the approach detailed in Section 4.2.4. The structure of request body also is different from the

request body of the scenario 1 because different information is required to fulfill the function-

ality in the scenario 2. In Scenario 2, data of two distinct app users and one project are required

: the user who attempts to promote role of a user (r_data_usr), the user whose role is prompted

(r_data_promUsr), and the project which a project manager is allocated to (r_data_pro).

Figure 6.27: Request Initiation Events for Scenario 2 Abstraction

90



91 CHAPTER 6. CASE STUDIES

Figure 6.27 depicts initiating some requests during the fulfilment of scenario 2. The init_req_pue

event (Figure 6.27A) introduces the initiation of a request targeted to the "EPPromoteUser"

endpoint, whereas the init_req_upf represents initiating a request sent to the FunUsrPromote

function (Figure 6.27B). Then, init_req_cup defines initiating a request sent to CupEmInPro cog-

nito user pool (Figure 6.27C). The value of the res parameter specifies the target resource of

the request (grd1_1 in all events in the figures.

It’s worth noting that, as explained in the model of Scenario 1 in Section 6.1.1.1 as well, the

information in a request must be transferred to a further request during the process of func-

tionality fulfilment. In the init_req_pue event (illustrated in Figure 6.27A), the parameters - rdu,

rdp, and rdpu - show the requester user, the project that a new project manager is allocated

to, and the user that will be promoted as project manager, respectively. The corresponding

actions, such as act1_6, act1_7, and act1_8 in Figure 6.27A, represent the association between

these informational elements and the new request, respectively. During the process of the

functionality, when a new request is initiated, this information is transferred to it. For instance,

when the EPPromoteUser endpoint initiates a request targeting the FunUsrPromote function, as

seen in init_req_upf (Figure 6.27), it transfers the information received from the app user in its

request. (act1_5, act1_6, and act1_7 in init_req_upf ).

Figure 6.28: Local Action Events for Scenario 2 Abstraction

After req1, req2, req3, and req4 requests in Table 6.7 successfully executed, the local_act_cup in

Figure 6.28A that represents updating the role of an app user (cognito user) will be enabled to

execute. Moreover, the successful executions of req1, req2, req3, req4, req5, and req6 requests

in Table 6.7 enable the local_act_pt in Figure 6.28B that defines the update on the project DB

table. As app user roles are not introduced in this abstract level of the model, the action related

to app users’ role will be introduced in the refined event of local_act_cup.

Implementing And Refining Authorisation Mechanism in Scenario 2 :

To introduce the authorization mechanism in the model of Scenario 2, we follow the approach

explained in Chapter 5. Therefore, the implementation authorization mechanism in the model

of Scenario 2 ("Promoting a User as Project Manager" functionality) is the same as introducing

91



CHAPTER 6. CASE STUDIES 92

and refining the authorization mechanism in the model of Scenario 1 ("Update Project Status"

functionality) in Section 6.1.1.2.

Figure 6.29: Initialisation Events for Scenario 2 in Refinement Steps

Furthermore, likewise, in the model of Scenario 1, the setup configuration of Scenario 2 is set in

initialisation events. Initialisation events in Figure 6.29 are the required setup configurations

for the fulfilment of Scenario 2 functionality. In refinement 1 step, the structure of permis-

sions and their impacts on the authorization mechanism are introduced, while refinement 2

step introduces roles, policies (AWS-specific authorization entities), and their effects on the

authorization mechanism. Therefore, Figure 6.29A shows setup configurations: the required

users, permissions, and resources for fulfilment of Scenario 1, whereas Figure 6.29B adds the

configurations regarding roles, policies, and corresponding relations. For instance, in the Ini-

tialisation event in Figure 6.29A, Sta1 is a permission statement (act2_2) which allows (act2_6)

to invoke (act2_5) EPPromoteUser endpoint (act2_4). The Sta1 permission is granted to the

User1 app user (act2_9).

6.2 Case Study: Learning Management System

The learning management system serves as a comprehensive solution for educational insti-

tutions, facilitating various functions such as module management for lecturers and assign-

ment submission for students, among other capabilities. The case study system, represent-

ing the learning management system, is characterised by several key entities, including user,

personal information, role, school, module, content, and assignment entities. Users are cate-

gorised based on their roles in the system, with designations such as students, lecturers, heads

of school, and admin, each granted distinct access and administrative privileges. For instance,

92



93 CHAPTER 6. CASE STUDIES

moderating a module requires a user to have a lecturer role. General requirements for the

LearningManagement System are shown in Table 6.8, whereas requirements for admins, heads

of school, lecturers, and students are outlined in Table 6.9, Table 6.10, Table 6.11, and Table 6.12,

respectively.

R1 Each module is moderated by a lecturer.

R2 Each module belongs to only one school.

R3 Each module has a specific content.

R4 A student can enrol in multiple modules.

R5 To pass the modules that are taken, a student should hand-in and pass their exams.

R6 Each module has one or more exam(s).

R7 Each user has a specific personal information to define him/her.

R8 Each user has a role that determines his/her access level in the system.

R9 Those roles are: Student, Lecturer, Head of School, and Admin.

Table 6.8: General Requirements for Learning Management System

R10 An admin can add/delete a student to/from the system.

R11 An admin can add/delete a lecturer to/from the system.

R12 An admin can view the personal information of any user.

Table 6.9: Requirements of Admins

R13 A head of school can create/delete/update a new module in his/her school.

R14 A head of school can assign a lecturer to a specific module in his/her school.

R15 A head of school can view the personal information of all lecturers/students in his/her

school.

R16 A head of school can create/update the maximum limit of student enrollments for a

module.

Table 6.10: Requirements of Head of School

R17 A lecturer can view the personal information of all students who have enrolled in

his/her module(s).

R18 A lecturer can view/update their personal information.

R19 A lecturer can add/upload module materials.

R20 A lecturer can set an exam for their modules.

R21 A lecturer can manage/view grades of assignments that done by students (insert,

update, calculate final grade).

Table 6.11: Requirements Lecturers

93



CHAPTER 6. CASE STUDIES 94

R22 A student can view/update his/her personal information.

R23 A student can enrol in courses that are available.

R24 A student can hand in assignments of modules that s/he takes.

R25 A student should be able to view only their own grade.

Table 6.12: Requirements of Students

Figure 6.30: A Basic Structure of Learning Management System

The graph in Figure 6.30 visualises the relations between entities in the system detailed above

requirements. When this system is built on the AWS cloud environment, for application users

and their personal information, the Amazon Cognito service is used, whereas the DynamoDB

database service is used to managemodule, school, content, and assignment features. Moreover,

to design different access level rights, like student and lecturer rights, the AWS IAM service

is used. The structure of the learning management system that is built with an AWS-based

serverless architecture is similar to the project management system (case study 1) in terms of the

services used. Therefore, Figure 6.1 also represents the structure of the learning management

system in the AWS cloud environment. As mentioned before, each system functionality maps

to an API Gateway endpoint. Moreover, to satisfy a functionality, a user must be able to execute

the corresponding endpoint.

94



95 CHAPTER 6. CASE STUDIES

6.2.1 Scenario 3: Updating Project Status

Figure 6.31: The Structure of "Hand in an Assignment" Functionality

The scenario: User1, with a Student role, wants to hand in Assignment1 of Module1, a module

that s/he is enrolled in. The structure of the ”Hand in an Assignment” functionality in the

AWS environment is illustrated in Figure 6.31. The following steps are executed to fulfil this

functionality:

1. User1 initiates a request to hand in Assignment1 of Module1.

2. The client app sends User1’s request to the API Gateway service.

3. The API Gateway receives the request.

4. The authorizer of the EPHandAsgmt endpoint determines whether User1 has permis-

sion to execute the EPHandAsgmt endpoint, the endpoint associated with "Hand in an

Assignment" functionality.

5. If User1 has the proper permission, the EPHandAsgmt endpoint is executed.

6. When the requested endpoint is executed successfully, the endpoint calls the FunHan-

dAsgmt lambda function.

7. The authorizer of the FunHandAsgmt function determines whether the EPHandAsgmt

endpoint is allowed to execute the function in the function’s resource-based policy.

8. The FunHandAsgmt function is executed if the EPHandAsgmt endpoint is permitted.

9. Then the executed FunHandAsgmt lambda function sends a request to DynamoDB to

read the Module DB table to check whether User1 enrolled in Module1.

10. The authorizer of theModule table determines whether the FunHandAsgmt function has

permission to read the requested table.

95



CHAPTER 6. CASE STUDIES 96

11. The FunHandAsgmt function makes a request to the Assignment DB table to put As-

signment1 if User1 enrolled in Module1 that Assignment1 belongs to.

12. The authorizer of theAssignment table determineswhether the FunHandAsgmt function

has permission to update the requested table.

13. The Assignment1 is written if the FunHandAsgmt function is allowed.

Figure 6.32: The Fulfilling of "Hand in an Assignment" Functionality

Moreover, Figure 6.32 illustrates the authorization entities involved, such as IAM roles or poli-

cies, and their respective responsibilities during the process of the fulfilment of the "Hand in

an Assignment” functionality.

6.2.1.1 Model ”Hand in an Assignment” Functionality

Figure 6.33: The tree-like representation of ”Hand in an Assignment” functionality

As depicted in Figure 6.31, for the fulfilment of the ”Hand in an Assignment” functionality,

four distinct requests must be successfully executed. Moreover, there is a branching in the

96



97 CHAPTER 6. CASE STUDIES

sequential order of requests. Therefore, the BSR pattern, detailed in Section 4.2.3, could be

helpful to model this functionality.

The tree-like diagram in Figure 6.33 visualises the use of BSR pattern to build a model for

”Hand in an Assignment” functionality. As illustrated in Figure 6.33, the requests required in

the process of ”Hand in an Assignment” functionality fulfilment are represented as follows:.

In Pattern In The System Request

BSR(hae) The request that is sent the EPHandAsgmt endpoint to

execute

req1

BSR(haf) The request that is sent the FunHandAsgmt function to

execute

req2

SSR(mt) The request that is sent the Module DB table to read req3

SSR(at) The request that is sent the Assignment DB table to up-

date the requested the assignment value

req4

Table 6.13: Requests During The Process of ”Hand in an Assignment” Scenario

Therefore, as clearly detailed in Figure 6.33, a request to update the Assignment table (SSR(at))

can be executed after a request to execute the FunHandAsgmt lambda function (BSR(haf))

and then a request to read the Module table (SSR(mt)) are successfully executed consecutively.

Moreover, a request to execute the FunHandAsgmt lambda function (BSR(haf)) can be executed

if a request to invoke the EPHandAsgmt API Gateway endpoint (BSR(hae)) is successfully ex-

ecuted.

BSR(hae) =
RHP(ir_hae, cs_hae, av_hae, la_hae, BSR(haf), af_hae, r_hae)

BSR(haf) = SSR(mt) <> SSR(at)

SSR(mt) =
RHP(ir_mt, cs_mt, av_mt, la_mt, SKIP, af_mt, r_mt)

SSR(at) =
RHP(ir_at, cs_at, av_at, la_at, SKIP, af_at, r_at)

(6.3)

Furthermore, Textual Representation 6.3 shows the textual form of BSR pattern implementa-

tion to model the ”Hand in an Assignment” scenario.

97



CHAPTER 6. CASE STUDIES 98

6.2.1.2 Event-B Model The Scenario

In this section, we model the ”Hand in an Assignment” scenario in Event-B based on the BSR

implementation in Section 6.2.1. Our Event-Bmodel of the scenario consists of six contexts and

three machines. In the first context, as shown in Figure 4.4, the features that are required to

track events in the life-cycle of a request execution and flags related to authorization outcome

are introduced. Then, resources, resource types, and actions are introduced in context 02,

whereas in context 03, details about Data and Cognito resource types are defined. These two

contexts are shown in Figure 6.5 in Section 6.1.1.2.

Figure 6.34: Features Specific to the Case Study System and the Scenario

Figure 6.34 depicts context 04, where entities specific to the case study system (Learning Man-

agement System) and the scenario ("Hand in An Assignment") are introduced. The entities of

the case studies, including School, Module, Content, Assignment, Personal information, are de-

fined as DBTable (database table) typed resources (axm3_6), while CupLrnMngSys represents a

Cognito user pool for the case study system (Learning Management System) (axm3_2). User1,

School1, Module1, Asgmt1, Content1, PersInfo1 constants represent the features required for

the case study scenario (”Hand in an Assignment”).

98



99 CHAPTER 6. CASE STUDIES

Figure 6.35: Invariants for "Hand in An Assignment" Scenario (Abstract Machine)

Figure 6.35 illustrates invariants in the abstract machine of the model of the case study sce-

nario. To begin with, like previous case study scenarios implementation, Figure 6.35A shows

the invariants about the RHP pattern features in the abstract machine. Then, invariants in

Figure 6.35B introduce the BSR pattern features that we proposed in Section 4.2.3. Moreoever,

Figure 6.35C depicts invariants specific to the AWS cloud environment features, while Fig-

ure 6.35D introduces the invariants specific to the case study system (Learning Management

System). Invariants that are between inv1_11 and inv1_15 show the data entities of the case

study system. For example, inv1_11 represents the registered modules in the system. More-

over, each user has one personal information (inv1_16). A user can enrol in multiple modules

(inv1_18). Types of users, such as students and lecturers, will be introduced in further re-

finement steps. Additionally, Each assignment and content belongs to one module (inv1_20,

inv1_21, respectively), while each module belong to a school (inv1_22). Lastly, a user may hand

in multiple assignments (inv1_19).

Furthermore, Figure 6.35E introduces information in the request’s payload body that includes

the required data to satisfy the scenario. Therefore, those invariants are specific to our case

study scenario ("Hand in An Assignment"). The required data involves the requester app user

(inv1_23), the assignment that is handed in (inv1_25), and information about whether the re-

quester app user is enrolled in the module of the assignment (inv1_24).

99



CHAPTER 6. CASE STUDIES 100

Figure 6.36: Initialisation Event in Abstraction Machine

The required configurations and setup are done in Initialisation event (Figure 6.36) for the

execution of the case study scenario. For instance, the following are some of the required

statements for the scenario.

• User1 is a registered user in the system (act1_6).

• Module1 is a module in the system (act1_9).

• Asgmt1 is an assignment in the system (act1_12).

• User1 is enrolled in Module1 (act1_17 ).

• Asgmt1 is an assignment of Module1 (act1_19).

Event-B events and their order is samewith events in BSR pattern, detailed in Section 4.2.3. Sec-

tion 6.2.1.1 shows how the BSR pattern is implemented to model the "Hand in An Assignment"

scenario, illustrating the events and their orders in the modelling of the scenario. For instance,

based on the pattern implementation, in the beginning, the only enable event is a request ini-

tiation to the endpoint (init_req_hae) and, following calling the initiated request (call_hae),

the authorization check of the called request (authz_ver_hae). If the authorization outcome is

"succeeded", a request to execute the corresponding function is initiated (init_req_haf ) after

the local action in the endpoint proceeds (local_act_hae), and so on so forth.

100



101 CHAPTER 6. CASE STUDIES

Figure 6.37: Data Transition during Among Requests

As mentioned in previous case study scenarios implementation in Chapter 6, the data required

for a functionality fulfilment is put in the body of a request while it is initiated. This data is

transmitted to the further request if there is a subsequent request.

Moreover, the structure of a request payload body is specific to its corresponding function-

ality. Invariants in Figure 6.35C introduce the structure of a request body for "Hand in An

Assignment" functionality. Furthermore, Figure 6.37 shows how the request payload body is

created/updated and transmitted to the further request, which impacts the satisfaction of the

functionality. Firstly, in the initation request event of the corresponding endpoint (init_req_hae

in Figure 6.37A), information about the requester user, the assignment that will be handed in,

and enrolment of the requester in module of the assignment are put in the request payload

body, act1_3, act1_4, and act1_5, respectively. In further request initiations (Figure 6.37B), the

information in the preceding request is transmitted to the new initiated request.

As mentioned before, r_data_module gets a Boolen value to show whether the requester app

user is enrolled in the module of the assignment that s/he attempts to hand in. In the initia-

tion of the request to endpoint (Figure 6.35A), "FALSE" is assigned. After the request to read

the "Module" DB table is successfully executed, in the local_act_mt event (Figure 6.35C), the

value of r_data_module is updated as "TRUE". The grd1_3 guard in the event ensures that the

requester is enrolled in the module of the assignment.

Furthermore, to initiate a request targeting to update assignment, the requester user must enrol

in the module of the assignment. To ensure this condition, the init_req_at event has an extra

101



CHAPTER 6. CASE STUDIES 102

guard (grd1_10), which is

r_data_module(pre_req) = TRUE

Finally, the local_act_at event will be available if the authorization result of the request gets

"Succeeded" in the authz_ver_at event. This can be clearly seen in the textual or visual rep-

resentation of the implementation of the pattern (Textual Rep.6.3 or Fig.6.33). Then, in the

local_act_at event (Fig.6.35D), the assignment DB table is updated based on the information in

the request body (act0_3 in Fig.6.37).

To define users who have different access levels, permissions are defined. By defining permis-

sion, we can refine the authorization mechanism, which is non-deterministic, into a determin-

istic authorization mechanism.

Implementing Deterministic Authorization Mechanism

In the AWS cloud environment, each request must satisfy the authorization mechanism to

perform the requested action. The authz_ver_... in the model represents the authorization

mechanism for corresponding requests non-deterministically. Therefore, we follow the ap-

proach detailed in Chapter 5 to refine the non-deterministic authorization mechanism into a

deterministic one by using permissions. As illustrated in Figure 5.5, app users and functions

are defined as actors (inv2_7 ), and their permissions are introduced by associating them with

permission statements (inv2_10). It is worth noting that endpoint is not an actor, so there

is no permission statement directly associated with endpoint. However, a function may have

resource-based permission (inv2_12) that allows requesters to access the function as a resource.

Therefore, when an endpoint makes a request to execute a function, the function must have

resource-based permission that allows the requester endpoint to execute the function. Lastly,

the structure of a permission statement is shown in Figure 5.5A in Chapter 5.

Figure 6.38: Permission Entities for "Hand in An Assignment" Scenario

To model a functionality fulfilment, several permissions should be introduced as a setup con-

figuration. Figure 6.38 shows introducing the required actions and statements for "Hand in

An Assignment" functionality. For instance, InvokeApi represents the action of an endpoint

execution, Execfun represents the action of a function execution, and so on and so forth. As

detailed in Chapter 5, actions are introduced in Context02, while statements are introduced in

Context05. Moreover, Figure 6.38 shows the entities specific to the case study scenario.

102



103 CHAPTER 6. CASE STUDIES

Figure 6.39: Ref 1: Initialisation Event for "Hand in An Assignment" Scenario

The Initialisation event, as detailed in Figure 6.39, sets setup configurations, including configu-

rations for a successful execution of the case study functionality. For instance, for a successful

execution, there must be a registered app user who is able to execute the EPHandAsgmt end-

point in the system. Therefore, as shown in Figure 6.39, User1 has Sta1 (act2_9) statement

which grants permission to execute EPHandAsgmt endpoint (act2_4, act2_5, act2_6).

We follow the refining strategy in Section 5.1.3. Therefore, each authz_ver_... event that is

for the EPHandAsgmt endpoint, Module DB table, and Assignment DB table is refined into

three distinct events, mapping to case 1, case 2, and case 2 of the authorization process shown

in Section 5.1.3. authz_ver_... event for FunHandAsgmt function is refined into three distinct

events, mapping to case 4, case 5, and case 6 of the authorization process since resource-based

permissions are needed when an endpoint is a requester.

Implementing Role and Policy features

In the previous refinement step (Section 6.2.1.2), the permission statements and their associ-

ations with corresponding requesters and resources are introduced. However, this is an ab-

straction of the authorization mechanism that works in the AWS cloud environment. To refine

this abstraction model to fit the real system, we introduce role and policy entities and their

associations, as detailed in Section 5.1.4. The diagram in Figure 5.9 shows how role and pol-

icy are implemented in the current abstract model, whereas invariants in Figure 6.18 illustrate

introducing them in the refined machine.

103



CHAPTER 6. CASE STUDIES 104

Figure 6.40: The required Role and Policy entities in Context

The constants in context in Figure 6.40 introduce the roles and policies that are used in the

Learning Management System. For instance, RoleAppLecturer represents the role that defines

the rights of lecturers in the system.

Figure 6.41: Ref 1: Initialisation Event for "Hand in An Assignment" Scenario

The Initialisation Event in Figure 6.41 introduces setup configurations for "Hand in An As-

signment" in terms of role, policies, and their permissions. Here, just the roles and policies of

a student to be able to hand in an assignment and their corresponding entities, like FunHan-

dAsgmt Function, and the rights of those policies are introduced.

Lastly, the effect of introducing role and policy on authorization mechanism (authz_ver_...

events) is detailed in Figure 5.10, while the proposing refinement strategy for modelling au-

thorization mechanism in the AWS cloud environment is detailed in Chapter 5.

104



105 CHAPTER 6. CASE STUDIES

6.3 POs of Case Study Scenarios’ Models

Proof Obligations (POs) are formal conditions to be verified to ensure the correctness and

reliability of an Event-B model. In this section, statistics about the POs of the case studies’

models that we developed by using our proposed formal patterns are illustrated.

Figure 6.42 depicts the statistics about POs of the first case study scenario, "Update Project

Status" in the Project Management System (Section 6.1.1). To model this functionality, the LSR

pattern is used.

Figure 6.42: POs of The First Case Study Scenario Model

As shown in Figure 6.42, in model of the functionality, the Rodin tool generated 295 POs, of

which 71% were automatically discharged.

Figure 6.43: POs of The Second Case Study Scenario Model

Moreover, the second case study scenario is "Promoting a User as Project Manager" in Project

Management System (Section 6.1.2). CBSR pattern was used to model the second functionality.

Figure 6.43 demonstrates POs statistics of the model of the second case study functionality. In

105



CHAPTER 6. CASE STUDIES 106

total 560 POs were generated. 358 of them automatically were proved by Rodin tool, whereas

202 of them required a manual trigger to be discharged.

Figure 6.44: POs of The Third Case Study Scenario Model

Furthermore, Figure 6.44 shows the statistics of the model of the third case study scenario that

is "Updating Project Status" in Learning Management System (Section 6.2.1). The BSR pattern

is implemented to model the functionality. Figure 6.44 illustrates the proof obligations that

generated by Rodin tool. 264 of them were automatically discharged, while the remaining 131

POs were manually proved.

6.4 Conclusion

In order to perform a certain functionality of a cloud native system, one or more requests to

the relevant cloud services must be fulfilled. Each request made in the AWS cloud environment

needs to be checked whether the requester is authorised to perform the requested action on

the requested resource, which makes the authorization mechanism quite complex. This makes

a proper design of the authorization mechanism and the system crucial. Our proposed pat-

tern offers an effective way to model AWS-based cloud native functionalities. Moreover, the

reason that multiple scenarios from different domains are used is to show the usability and

effectiveness of our proposed patterns to model various serverless system functionalities.

106



Chapter 7

Conclusion

Service−oriented architecture offers significant benefits in system reusability and security as-

pects. Firstly, each service focuses on a solution, which can be used in different problem do-

mains. In the cloud−native architecture, services, specifically web services, which are mostly

provided by a third−party cloud vendor like AWS, are used to build a/an system/application.

This modular approach enhances reusability and alleviates a considerable workload from de-

velopers. Moreover, the serverless approach goes a step further by offering serverless functions

by cloud providers. Serverless functions that may represent business logic are executed on the

cloud without any considerations about managing servers. This enables the creation of back-

end systems without the need for extensive server-side operations.

Nevertheless, it brings its own set of challenges in the meanwhile, such as those stemming

from the complexity of service or function composition and the configuration of access control

mechanisms. Those challenges can lead to flaws during application development or configura-

tion. As emphasised in the report referenced in the introduction chapter (Chapter 1), miscon-

figurations of cloud account users and cloud-native application users have been identified as a

prominent factor in cloud incidents. Such flaws and improper configurations can severely com-

promise an application’s vulnerability, leading to potential security breaches, malfunctions, or

system failures. As a result, to deal with the inherent complexity of serverless systems, includ-

ing the configuration of serverless functions and the corresponding access control mechanism,

a rigorous approach is required when cloud-native application developers design their systems

on serverless cloud platforms.

Therefore, this research focuses on the question of how to deal with the high complexity of the

design and configuration of resourcemanagement and access control mechanisms in serverless

cloud environments. We explore how abstraction and refinement approaches in formal meth-

ods could assist cloud-native application developers in effectively managing these complexities

during the design phase of serverless systems.

To address this question, the main focus of this research is the development of some generic

formal modelling patterns to help cloud-native developers design their systems in serverless

107



CHAPTER 7. CONCLUSION 108

cloud environments. In doing so, we developed RHP and four ROP Event-B based formal mod-

elling patterns to help developers to model their serverless system. RHP helps to model the

behaviour of a request that sends/manages to/in a serverless cloud environment, whereas ROP

patterns focus on modelling an application level scenario/functionality that may consist of a

single or multiple request(s). We also developed a refinement strategy to model authorization

mechanism.

7.1 Contributions

The main contribution of this thesis is to develop some generic patterns and refinement strate-

gies for cloud-native app developers to help in modelling their serverless systems using formal

methods. The objective of these patterns and refinement strategies is to assist cloud-native

app developers in handling the complexity of development and ensuring the robustness of the

final application. Specifically, we have developed a set of patterns to incorporate various as-

pects of serverless application development in a stepwise manner to handle the complexity of

this kind of system. Furthermore, the formal refinement and verification incorporate robust re-

source management to minimise the possibility of security gaps and introduce inconsistencies

in the serverless application. Finally, these patterns were applied to formally model various

case study scenarios, demonstrating their usefulness and effectiveness.

These contributions can be detailed as follows:

1. Request Handling Pattern (RHP) - A generic formal modelling pattern for mod-
elling the behaviour of a request :

As mentioned before, serverless architecture structures an application as a collection of small,

independent functions, each dedicated to a specific task. This structure provides significant

flexibility and a high level of fine granularity in system design. In a serverless cloud environ-

ment, the smallest business task or functionality might be encapsulated within a single request

life-cycle, while more complex functionalities may require a sequence of requests executed in

a specific order. Recognising the pivotal role of requests as fundamental building blocks for

a functionality that is exposed on a serverless system, we developed the Request Handling

Pattern (RHP), as detailed in Section 4.1. The RHP is a generic formal modelling pattern that

represents the behaviour of a request life-cycle. Based on the RHP, the lifecycle of a request

has been segmented into five distinct phases, each represented by an Event-B event. Those

phases are:“initiation of the request”, “calling a service”, “authorization verification check", ei-

ther “service local action” (if the authorization outcome is "Allow") or “authorization fail”, and

“service response”. Both graphical and textual representations of this pattern are provided in

Section 4.1.

2. Request Ordering Patterns (ROP) - Generic formal modelling patterns for mod-
elling a functionality :

108



109 CHAPTER 7. CONCLUSION

In a serverless cloud environment, a functionality is exposed through the execution of requests.

For the fulfilment of a functionality, the required resource, data, or processes could be provided

by either a single request or a set of requests in a specific order. To model a functionality

that is fulfilled in a serverless cloud environment, several ROP patterns were developed in

Section 4.2. Those patterns represent the order of requests and their corresponding effects

during a functionality satisfaction. To develop ROP patterns, the RHP pattern is also used to

introduce the behaviour of requests that are required for the fulfilment of the functionality that

is modelled.

• Single Service Request (SSR): This pattern is ideal for modelling functionalities that

require only one single request execution. For example, consider a scenario where a

user directly requests a database to update data. The SSR pattern succinctly captures

this straightforward, one-step process.

• Linear Service Request (LSR): This pattern is developed for the case that multiple re-

quests’ execution in linear order is required to perform a functionality. To put it another

way, each request in the process of a functionality satisfaction can require at most one

further request to be fulfilled. An illustrative example is an application where users ac-

cess a serverless function to update data in a database table. In this case, a user’s request

to the function triggers a subsequent request from the function to the database. As a re-

sult, to satisfy the requested functionality (update data), two requests are required, and

their order must be:

Requestuser 7→ f unction, Request f unction 7→DB_table

• Branching Service Request (BSR): The BSR pattern is developed for cases where a

single request in the process of a functionality satisfaction might lead to multiple subse-

quent requests to be fulfilled. For instance, if application users are authorised to execute

a serverless function to update data in Table 1 in DB, but the function needs to read data

from Table 2 first, the process involves multiple steps. Therefore, to satisfy the function-

ality, after the app user makes a request to a function, the function sends a request to

the DB to read the data in Table 2. Based on the data read, the function sends a second

request to database to update the data in Table 1. Thus, the request order must be:

Requestuser 7→ f unction, Request f unction 7→DB_table_2, Request f unction 7→DB_table_1

• Chained Branching Service Request (CBSR): During the process of fulfilling a func-
tionality, the order of the required requests may be forked, like in the above case, which

is well-suited for the BSR pattern. However, in each branch, multiple requests could be

required. For those more complicated cases, we developed a CBSR pattern. This pattern

is particularly useful for modelling complicated interactions in serverless systems where

functionalities involve complex, multi-step, and branched sequences of requests.

3. A Refinement Strategy for Authorization Mechanism

109



CHAPTER 7. CONCLUSION 110

In serverless cloud environments, specifically in the AWS environment, each request goes

through the authorization mechanism to verify whether the requester has the proper permis-

sions to perform the requested action on a specific resource.

In our earlier work (RHP and ROP patterns), we focused on the behaviour of requests and the

order and association between them when they fulfil a functionality. In those patterns, we in-

troduced authorization mechanisms at a high level, modelling them with authz_ver_... events

in a nondeterministic way. In Chapter 5, we refined these non-deterministic events into multi-

ple refined deterministic events by introducing the concept of permissions. In this refinement

stage, the model of the authorization mechanism is refined from a high-level abstract view

(non-deterministic) to a more detailed and deterministic one. In the subsequent refinement

phase, we introduced AWS specific features, namely role and policy, tailoring our model to fit

an AWS-based serverless system more accurately.

4. Sub-typing Generalisation in Formal Modelling

During the modelling of functionalities in a serverless cloud environment, we identified com-

monalities across various elements, such as requests and permissions, which apply to different

cloud objects.

For instance, the action of making a request to a serverless function versus a database table.

Originally, defining each cloud object as a separate carrier set led to redundant definitions for

different types of requests. To address this duplication or redundancy, we adopted a sub-typing

generalisation approach, as detailed in Section 5.1.2. In this approach, all objects in the cloud

environment are collectively defined as ’RESOURCE’, with specific object types like endpoints

and database tables differentiated through partitioning. For example, we define different re-

source types in the model as:

@axm1 : partition(RESOURCE, Function, EndPoint ...)

As a result, we have a generic concept/notation for different types of resources. And then the

req_res represents the target resource of a request.

@inv1 : req_res ∈ request→ RESOURCE

Therefore, this approach simplifies the model by providing a generic notation for different

resource types, enabling the representation of requests to any resource in a cloud environment.

5. Modelling Case Studies by Using The Proposed Patterns

By implementing our developed patterns, several case study scenarios are modelled to show

the efficiency and usability of the patterns. We modelled three case study scenarios, two of

them from "Project Management System" and one of them from "Learning Management Sys-

tem". Modelling different scenarios from different case study systems illustrates the usability

of the developed patterns and approaches. Modelling case studies may also help gain a better

understanding of serverless cloud systems.

110



111 CHAPTER 7. CONCLUSION

7.2 Future Works

While the current study has significantly contributed to our understanding of serverless sys-

tems, authorization mechanisms in serverless cloud environments, and the use of formal mod-

elling in serverless architecture, it also unveils a spectrum of opportunities for future inquiry.

In this section, we outline some potential directions for future work as follows:

• Modelling more case studies from different domains by using the current developed pat-

terns may help us identify further challenges in serverless environments and formal

modelling applications of serverless systems.

• The authenticationmechanism could also be crucial for requests in serverless cloud envi-

ronments. Moreover, it could be quite complicated. For example, in the AWS cloud envi-

ronment, each request is uniquely signed, and the signature algorithm is highly complex.

Therefore, an effective formal modelling approach to modelling this signature algorithm

(authentication mechanism) can be developed. Furthermore, this approach might be

implemented in our patterns and the refinement approach to the model authorization

mechanism.

• Rodin is an effective tool to model in Event-B. A RODIN plug-in can be developed to get a

textual or tree-like graphical representation of a ROP pattern with some parameters and

then translate them into corresponding Event-B modelling scripts. This may increase

the use and efficiency of the proposed patterns.

• As briefly mentioned in Section 2.5, cloud platforms that offer serverless technology

may have different structures and concepts in terms of building a serverless system and

configuring and implementing authorization mechanisms. More research can be done

to investigate serverless architecture on different cloud platforms. Moreover, the pro-

posed patterns could be developed to implement and model the functionalities of differ-

ent serverless systems built on different cloud environments.

111





References

[1] Imed Abbassi, Mohamed Graiet, Souha Boubaker, Mourad Kmimech, and Nejib Ben

Hadj-Alouane. A formal approach for verifying qos variability in web services com-

position using event-b. In 2015 IEEE International Conference on Web Services, pages

519–526. IEEE, 2015.

[2] Kumar Abhishek and Srinivasa Mahendrakar. Serverless Integration Design Patterns with

Azure. Packt Publishing, 2019. ISBN 978-1-78839-923-4.

[3] Jean-Raymond Abrial. Modeling in Event-B: system and software engineering. Cambridge

University Press, 2010.

[4] Jean RaymondAbrial, Michael Butler, StefanHallerstede, and Laurent Voisin. A roadmap

for the rodin toolset. In Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 5238 LNCS,

page 347, 2008. ISBN 3540876022. .

[5] Jean-Raymond Abrial, Michael J. Butler, Stefan Hallerstede, Thai Son Hoang, Farhad

Mehta, and Laurent Voisin. Rodin: an open toolset for modelling and reasoning in event-

b. International Journal on Software Tools for Technology Transfer, 12:447–466, 2010.

[6] Gojko Adzic and Robert Chatley. Serverless computing: economic and architectural

impact. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engi-

neering - ESEC/FSE 2017, pages 884–889, New York, New York, USA, 2017. ACM Press.

ISBN 9781450351058. . URL http://dl.acm.org/citation.cfm?doid=
3106237.3117767.

[7] Microsoft Azure, 2019. URL https://azure.microsoft.com.

[8] Microsoft Azure. Azure api management, 2019. URL https://azure.
microsoft.com/en-gb/services/api-management/.

[9] Microsoft Azure. Azure functions, 2019. URL https://azure.microsoft.
com/en-gb/services/functions/.

[10] Rahul Kumar B, Thomas Ball, Jakob Lichtenberg, Nate Deisinger, Apoorv Upreti, and

Chetan Bansal. CloudSDV enabling Static Driver Verifier Using Microsoft Azure. In

113

http://dl.acm.org/citation.cfm?doid=3106237.3117767
http://dl.acm.org/citation.cfm?doid=3106237.3117767
https://azure.microsoft.com
https://azure.microsoft.com/en-gb/services/api-management/
https://azure.microsoft.com/en-gb/services/api-management/
https://azure.microsoft.com/en-gb/services/functions/
https://azure.microsoft.com/en-gb/services/functions/


REFERENCES 114

Integrated Formal Methods, volume 1, pages 523–536. Springer International Publishing,

2016. ISBN 978-3-319-33692-3. .

[11] Guillaume Babin, Yamine Aït-Ameur, and Marc Pantel. Web service compensation at

runtime: formal modeling and verification using the event-b refinement and proof based

formal method. IEEE Transactions on Services Computing, 10(1):107–120, 2016.

[12] John Backes, Pauline Bolignano, Byron Cook, Catherine Dodge, Andrew Gacek, Kasper

Luckow, Neha Rungta, Oksana Tkachuk, and Carsten Varming. Semantic-based Auto-

mated Reasoning for AWS Access Policies using SMT. In Proceedings of the 18th Confer-

ence on Formal Methods in Computer-Aided Design, FMCAD 2018. IEEE, jan 2018. ISBN

9780983567882. .

[13] Kelly W Bennett and James Robertson. Security in the cloud: understanding your re-

sponsibility. In Cyber Sensing 2019, volume 11011, page 1101106. International Society

for Optics and Photonics, 2019.

[14] David Bernstein. Containers and cloud: From lxc to docker to kubernetes. IEEE Cloud

Computing, 1:81–84, 2014.

[15] Elisa Bertino. Policies, access control, and formal methods. In Handbook

on Securing Cyber-Physical Critical Infrastructure, pages 573–594. Elsevier Inc.,

2012. ISBN 9780124158153. . URL http://dx.doi.org/10.1016/
B978-0-12-415815-3.00023-6.

[16] Sushil Bhardwaj, Leena Jain, and Sandeep Jain. Cloud Computing : a Study of Infras-

tructure As a Service ( Iaas ). International Journal of Engineering, 2(1):60–63, 2010. ISSN

0976-0253.

[17] Dines Bjørner. Pinnacles of software engineering: 25 years of formal methods. Annals

of Software Engineering, 10(1-4):11–66, 2000.

[18] B. W. Boehm, R. K. Mcclean, and D. E. Urfrig. Some experience with automated aids to

the design of large-scale reliable software. IEEE Transactions on Software Engineering,

SE-1(1):125–133, March 1975. .

[19] Jonathan P. Bowen and Michael G. Hinchey. Seven More Myths of Formal Methods.

IEEE Software, 12(4):34–41, 1995. ISSN 07407459. .

[20] Michael Butler. Decomposition Structures for Event-B. In Integrated Formal Methods

iFM2009. Springer, 2009.

[21] Michael Butler. Mastering system analysis and design through abstraction and refine-

ment. Engineering Dependable Software Systems, 34:49–78, 2013. .

[22] Michael Butler. Reasoned modelling with Event-B. In Engineering Trustworthy Software

Systems, volume 10215 LNCS, pages 51–109. Springer, Cham, 2016. ISBN 9783319568409.

.

114

http://dx.doi.org/10.1016/B978-0-12-415815-3.00023-6
http://dx.doi.org/10.1016/B978-0-12-415815-3.00023-6


115 REFERENCES

[23] Michael Butler and Stefan Hallerstede. The Rodin Formal Modelling Tool. In BCS-

FACS Christmas 2007 Meeting Formal Methods In Industry London, pages 1–5, 2007. URL

http://eprints.ecs.soton.ac.uk/14949/.

[24] Michael Butler, Asieh Salehi Fathabadi, and Renato Silva. Event-B and Rodin. In Jean-

Louis Boulanger, editor, Industrial Use of Formal Methods: Formal Verification. Wiley-

ISTE, 2012. ISBN 978-1-848-21363-0. URL https://eprints.soton.ac.uk/
340229/.

[25] Rajkumar Buyya, Chee Shin Yeo, and Srikumar Venugopal. Market-oriented cloud com-

puting: Vision, hype, and reality for delivering it services as computing utilities. In 2008

10th IEEE International Conference on High Performance Computing and Communications,

pages 5–13. Ieee, 2008.

[26] Miguel A. Calles. Authentication and Authorization. In Serverless Security: Under-

stand, Assess, and Implement Secure and Reliable Applications in AWS, Microsoft Azure,

and Google Cloud, pages 229–256. Apress, 2020. ISBN 9781484261002.

[27] Hana Chockler, Georg Weissenbacher, David Hutchison, Takeo Kanade, Josef Kittler,

Jon M Kleinberg, Friedemann Mattern, John C Mitchell, Moni Naor, C Pandu Rangan,

Bernhard Steffen, Demetri Terzopoulos, Doug Tygar, and Gerhard Weikum. Model

Checking Boot Code from AWS Data Centers. In Computer Aided Verification, pages

467–486. Springer International Publishing, 2018. ISBN 978-3-319-96141-5. . URL

http://dx.doi.org/10.1007/978-3-319-96142-2{_}12.

[28] Byron Cook. Formal ReasoningAbout the Security of AmazonWe Services. International

Conference on Computer Aided Verification, Computer A:38–47, 2018. .

[29] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Mazzara, Fabrizio

Montesi, Ruslan Mustafin, and Larisa Safina. Microservices: Yesterday, Today, and Tomor-

row, pages 195–216. Springer International Publishing, 2017. ISBN 978-3-319-67425-4. .

URL https://doi.org/10.1007/978-3-319-67425-4_12.

[30] Dropbox, 2019. URL https://www.dropbox.com.

[31] Eclipse, 2019. URL https://www.eclipse.org/.

[32] Adam Eivy. Be Wary of the Economics of ’Serverless’ Cloud Computing. IEEE Cloud

Computing, 4(2):6–12, 2017. ISSN 23256095. .

[33] Albert Endres and H. Dieter Rombach. Requirements definition , prototyping , and mod-

eling. In A handbook of software and systems engineering: empirical observations, laws

and theories. Pearson Education, 2003.

[34] Peter Feiler, John Goodenough, Arie Gurfinkel, Charles Weinstock, and Lutz Wrage.

Four pillars for improving the quality of safety-critical software-reliant systems.

Technical report, Carnegie-Mellon University Pittsburgh PA Software Engineering

115

http://eprints.ecs.soton.ac.uk/14949/
https://eprints.soton.ac.uk/340229/
https://eprints.soton.ac.uk/340229/
http://dx.doi.org/10.1007/978-3-319-96142-2{_}12
https://doi.org/10.1007/978-3-319-67425-4_12
https://www.dropbox.com
https://www.eclipse.org/


REFERENCES 116

Inst., 2013. URL https://apps.dtic.mil/dtic/tr/fulltext/u2/
a585679.pdf.

[35] Firebase, 2019. URL https://firebase.google.com/.

[36] Flexera. 2019 state of the cloud from rightscale. Technical report, Right

Scale, 2019. URL https://media.flexera.com/documents/
rightscale-2019-state-of-the-cloud-report-from-flexera.
pdf.

[37] Susan J Fowler. Production-ready microservices: Building standardized systems across an

engineering organization. O’Reilly Media, Inc., 2016.

[38] Armando Fox, Rean Griffith, Anthony Joseph, Randy Katz, Andrew Konwinski, Gunho

Lee, David Patterson, Ariel Rabkin, and Ion Stoica. Above the clouds: A berkeley view

of cloud computing. Dept. Electrical Eng. and Comput. Sciences, University of California,

Berkeley, Rep. UCB/EECS, 28(13):2009, 2009.

[39] Eric Tierling Frank Simorjay. Shared responsibilities for cloud computing. whitepa-

per, Microsoft Azure, 2019. URL https://azure.microsoft.com/en-gb/
resources/shared-responsibility-for-cloud-computing/.

[40] Robert L Glass. Software runaways-Lessons learned frommassive software project failures.

Prentice Hall, 1998.

[41] Joseph A Goguen and Joseph J Tardo. An introduction to obj: A language for writing

and testing formal algebraic program specifications. In Proceedings of the Conference on

Specifications of Reliable Software, pages 170–189. IEEE CS Press, 1979.

[42] Velkoski Goran, Simjanoska Monika, Ristov Sasko, and Gusev Marjan. Business case:

From iaas to saas. SMEs Development and Innovation: Building Competitive Future of

South-Eastern Europe, 801, 2014.

[43] Karl Gottschalk, Stephen Graham, Heather Kreger, and James Snell. Introduction to web

services architecture. IBM systems Journal, 41(2):170–177, 2002.

[44] Antonios Gouglidis, Vincent C. Hu, Jeremy S. Busby, and David Hutchison. Verifica-

tion of Resilience Policies that Assist Attribute Based Access Control. In Proceedings

of the 2nd ACM Workshop on Attribute-Based Access Control, pages 43–52, 2017. ISBN

9781450349109. .

[45] Synergy Research Group. The leading cloud providers continue to run away with the

market. Technical report, Tech. rep, 2017.

[46] Heroku, 2019. URL https://www.heroku.com.

116

https://apps.dtic.mil/dtic/tr/fulltext/u2/a585679.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/a585679.pdf
https://firebase.google.com/
https://media.flexera.com/documents/rightscale-2019-state-of-the-cloud-report-from-flexera.pdf
https://media.flexera.com/documents/rightscale-2019-state-of-the-cloud-report-from-flexera.pdf
https://media.flexera.com/documents/rightscale-2019-state-of-the-cloud-report-from-flexera.pdf
https://azure.microsoft.com/en-gb/resources/shared-responsibility-for-cloud-computing/
https://azure.microsoft.com/en-gb/resources/shared-responsibility-for-cloud-computing/
https://www.heroku.com


117 REFERENCES

[47] Pooyan Jamshidi, Claus Pahl, Nabor das Chagas Mendonça, James Lewis, and Stefan

Tilkov. Microservices: The journey so far and challenges ahead. IEEE Software, 35:

24–35, 2018.

[48] Eric Jendrock. Building RESTful Web Services with JAX-RS, pages 207–218. Pearson

Education India, 2011.

[49] Geewax JJ. What is "Cloud". In Google Cloud Platform in Action, pages 3–23. Manning

Publications, 2018. ISBN 9781617293528.

[50] James E Johnson, David E Langworthy, Leslie Lamport, and Friedrich H Vogt. Formal

specification of a web services protocol. The Journal of Logic and Algebraic Programming,

70(1):34–52, 2007.

[51] Cliff B Jones. Systematic software development using VDM, volume 2. Prentice Hall

Englewood Cliffs, 1990.

[52] Ali Kanso and Alaa Youssef. Serverless: Beyond the Cloud. Proceedings of the 2Nd Inter-

nationalWorkshop on Serverless Computing, pages 6–10, 2017. . URLhttp://0-doi.
acm.org.mylibrary.qu.edu.qa/10.1145/3154847.3154854.

[53] Etienne J. Khayat and Ali E. Abdallah. A formal model for flat role-based access control.

IFIP Advances in Information and Communication Technology, 173:233–246, 2005. ISSN

18684238. .

[54] Robert Kowalski and Marek Sergot. A logic-based calculus of events. In Foundations of

knowledge base management, pages 23–55. Springer, 1989.

[55] Nane Kratzke. A brief history of cloud application architectures. Applied Sciences

(Switzerland), 8(8):1–25, 2018. ISSN 20763417. .

[56] Aida Lahouij, Lazhar Hamel, Mohamed Graiet, and Mohammed El Malki. A formal

approach for cloud composite services verification. In 2018 IEEE 11th Conference on

Service-Oriented Computing and Applications (SOCA), pages 161–168. IEEE, 2018.

[57] Leslie Lamport. The temporal logic of actions. ACM Transactions on Programming Lan-

guages and Systems (TOPLAS), 16(3):872–923, 1994.

[58] Leslie Lamport. Who builds a house without drawing blueprints? Communications of

the ACM, 58(4):38–41, mar 2015. ISSN 00010782. .

[59] Leslie Lamport, JohnMatthews, Mark Tuttle, and Yuan Yu. Specifying and verifying sys-

temswith TLA+. In Proceedings of the 10th workshop on ACM SIGOPS European workshop,

pages 45–48, 2002. .

[60] Axel Van Lamsweerde. Formal specification: a Roadmap. In Proceedings of the Confer-

ence on the Future of Software Engineering, pages 147–159. Association for Computing

Machinery, 2000. ISBN 1581132530. .

117

http://0-doi.acm.org.mylibrary.qu.edu.qa/10.1145/3154847.3154854
http://0-doi.acm.org.mylibrary.qu.edu.qa/10.1145/3154847.3154854


REFERENCES 118

[61] Michael Leuschel and Michael Butler. Prob: A model checker for b. In Keijiro Araki,

Stefania Gnesi, and Dino Mandrioli, editors, FME 2003: Formal Methods, pages 855–874,

Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[62] David S. Linthicum. Practical Use of Microservices in Moving Workloads to the Cloud.

IEEE Cloud Computing, 3(5):6–9, 2016. ISSN 23256095. .

[63] Venkata Swamy Martha and Maurin Lenglart. Webservices Engineering, pages 173–196.

Springer Singapore, Singapore, 2019. ISBN 978-981-13-3224-1. . URL https://doi.
org/10.1007/978-981-13-3224-1_7.

[64] Garrett McGrath and Paul R Brenner. Serverless computing: Design, implementation,

and performance. In 2017 IEEE 37th International Conference on Distributed Computing

Systems Workshops (ICDCSW), pages 405–410. IEEE, 2017.

[65] Anna Monus. SOAP vs REST vs JSON comparison, 2019. URL https://raygun.
com/blog/soap-vs-rest-vs-json/.

[66] Laurence Moroney. Cloud Functions for Firebase. In The Definitive Guide to Firebase:

Build Android Apps on Google’s Mobile Platform, pages 139–162. apress, 2017. ISBN 978-

1-4842-2943-9. .

[67] Netsuite, 2019. URL https://www.netsuite.com.

[68] Palo Alto Networks. Unit 42 cloud threat report. Technical report, Palo Alto

Networks, 2020. URL https://www.paloaltonetworks.com/prisma/
unit42-cloud-threat-research.

[69] Chris Newcombe. Why Amazon chose TLA+. Lecture Notes in Computer Science (includ-

ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

8477 LNCS:25–39, 2014. ISSN 16113349. .

[70] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and Michael

Deardeuff. How Amazon Web Services Uses Formal Methods. Communications of the

Acm, 58(4), 2015. .

[71] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful web services vs. "big"’

web services: Making the right architectural decision. In Proceedings of the 17th Interna-

tional Conference on World Wide Web, WWW ’08, pages 805–814, New York, NY, USA,

2008. ACM. ISBN 978-1-60558-085-2. . URL http://doi.acm.org/10.1145/
1367497.1367606.

[72] Google Cloud Platform. Google app engine, 2019. URL https://cloud.google.
com/appengine/.

[73] Google Cloud Platform. Google compute engine, 2019. URL https://cloud.
google.com/compute/.

118

https://doi.org/10.1007/978-981-13-3224-1_7
https://doi.org/10.1007/978-981-13-3224-1_7
https://raygun.com/blog/soap-vs-rest-vs-json/
https://raygun.com/blog/soap-vs-rest-vs-json/
https://www.netsuite.com
https://www.paloaltonetworks.com/prisma/unit42-cloud-threat-research
https://www.paloaltonetworks.com/prisma/unit42-cloud-threat-research
http://doi.acm.org/10.1145/1367497.1367606
http://doi.acm.org/10.1145/1367497.1367606
https://cloud.google.com/appengine/
https://cloud.google.com/appengine/
https://cloud.google.com/compute/
https://cloud.google.com/compute/


119 REFERENCES

[74] Google Cloud Platform. Google cloud functions, 2019. URL https://cloud.
google.com/functions.

[75] Google Cloud Platform, 2019. URL https://cloud.google.com.

[76] Google Cloud Platform. Cloud endpoints, 2019. URL https://cloud.google.
com/endpoints/.

[77] Jinghai Rao and Xiaomeng Su. A survey of automated web service composition meth-

ods. In Jorge Cardoso and Amit Sheth, editors, Semantic Web Services and Web Process

Composition, pages 43–54, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. ISBN

978-3-540-30581-1.

[78] Irum Rauf, Inna Vistbakka, and Elena Troubitsyna. Formal verification of stateful ser-

vices with rest apis using event-b. In 2018 IEEE International Conference on Web Services

(ICWS), pages 131–138. IEEE, 2018.

[79] Abdolbaghi Rezazadeh. Formal Patterns for Web-based Systems Design. Phd thesis,

University of Southampton, 2006. URL https://eprints.soton.ac.uk/
267101/.

[80] Mike Roberts. Serverless architectures what is serverless?, 2018. URL https://
martinfowler.com/articles/serverless.html.

[81] Ken Robinson. System modelling & design using event-b. The University of New South

Wales. Recuperado en agosto de, 2012.

[82] Iman Saleh, Gregory Kulczycki, and M Brian Blake. Formal specification and verifica-

tion of data-centric service composition. In 2010 IEEE International Conference on Web

Services, pages 131–138. IEEE, 2010.

[83] Asieh Salehi Fathabadi, Michael Butler, and Abdolbaghi Rezazadeh. Language and tool

support for event refinement structures in event-b. Formal Aspects of Computing, page

499–523, 2015. .

[84] SalesForce, 2019. URL https://www.salesforce.com.

[85] Peter Sbarski. Going Serverless. In Serversless Architecture on AWS, pages 3–15. Manning

Publications, 2017. ISBN 9781617293825.

[86] Sarah Scalia. A Break in the Clouds. Weatherwise, 59(1):42–47, 2006. ISSN 0043-1672. .

[87] Amazon Web Services. Identity-based policies and resource-based policies, 2019.

URL https://docs.aws.amazon.com/IAM/latest/UserGuide/
access_policies_identity-vs-resource.html.

[88] Amazon Web Services, 2019. URL https://aws.amazon.com/.

119

https://cloud.google.com/functions
https://cloud.google.com/functions
https://cloud.google.com
https://cloud.google.com/endpoints/
https://cloud.google.com/endpoints/
https://eprints.soton.ac.uk/267101/
https://eprints.soton.ac.uk/267101/
https://martinfowler.com/articles/serverless.html
https://martinfowler.com/articles/serverless.html
https://www.salesforce.com
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html
https://aws.amazon.com/


REFERENCES 120

[89] AmazonWeb Services. Aws api gateway, 2019. URLhttps://aws.amazon.com/
api-gateway.

[90] Amazon Web Services. Aws cognito, 2019. URL https://aws.amazon.com/
cognito.

[91] Amazon Web Services. Aws elastic beanstalk, 2019. URL https://aws.amazon.
com/elasticbeanstalk/.

[92] Amazon Web Services. Aws elastic compute cloud, 2019. URL https://aws.
amazon.com/ec2.

[93] Amazon Web Services. Aws identity and access management, 2019. URL https:
//aws.amazon.com/iam/. Accessed: 2024-07-12.

[94] Amazon Web Services. Aws lambda, 2019. URL https://aws.amazon.com/
lambda.

[95] Amazon Web Services. Aws lambda limits, 2019. URL https://docs.aws.
amazon.com/lambda/latest/dg/limits.html.

[96] Amazon Web Services. Aws simple queue service, 2019. URL https://aws.
amazon.com/sqs/.

[97] Amazon Web Services. Aws shared responsibility model, 2020. URL

https://docs.aws.amazon.com/whitepapers/latest/
introduction-devops-aws/shared-responsibility.html.

[98] Amazon Web Services. Aws services that work with iam, 2023. URL

https://docs.aws.amazon.com/IAM/latest/UserGuide/
reference_aws-services-that-work-with-iam.html.

[99] Murray Shanahan. The event calculus explained. In Artificial intelligence today, pages

409–430. Springer, 1999.

[100] Quan Z. Sheng, Xiaoqiang Qiao, Athanasios V. Vasilakos, Claudia Szabo, Scott Bourne,

and Xiaofei Xu. Web services composition: A decade’s overview. Information Sciences,

280:218–238, 2014. ISSN 00200255. .

[101] Praveen Kumar Sreeram. Accelerate Your Cloud Application Development Using Azure

Function Triggers and Bindings. In Azure Serverless Computing Cookbook, pages 7–34.

Packt Publishing, 2017. ISBN 978-1-78839-082-8.

[102] Maddie Stigler. Getting Started. In Beginning Serverless Computing, pages 15–40. apress,

2018. ISBN 978-1-4842-3083-1. .

[103] Slobodan Stojanovic and Aleksandar Simovic. Introduction to serverless with Claudia.

In Serverless Applications with Node.js, pages 3–18. Manning Publications, 2019. ISBN

9781617294723.

120

https://aws.amazon.com/api-gateway
https://aws.amazon.com/api-gateway
https://aws.amazon.com/cognito
https://aws.amazon.com/cognito
https://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/ec2
https://aws.amazon.com/ec2
https://aws.amazon.com/iam/
https://aws.amazon.com/iam/
https://aws.amazon.com/lambda
https://aws.amazon.com/lambda
https://docs.aws.amazon.com/lambda/latest/dg/limits.html
https://docs.aws.amazon.com/lambda/latest/dg/limits.html
https://aws.amazon.com/sqs/
https://aws.amazon.com/sqs/
https://docs.aws.amazon.com/whitepapers/latest/introduction-devops-aws/shared-responsibility.html
https://docs.aws.amazon.com/whitepapers/latest/introduction-devops-aws/shared-responsibility.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html


121 REFERENCES

[104] Ivan Tarkhanov. Policy algebra for access control in enterprise document management

systems. 9th International Conference on Application of Information and Communication

Technologies, AICT 2015 - Proceedings, pages 225–228, 2015. .

[105] Dob Todorov and Yinal Ozkan. Aws security best practices. Technical report, Ama-

zonWeb Services, 2013. URL https://d1.awsstatic.com/whitepapers/
Security/AWS_Security_Best_Practices.pdf.

[106] Will Venters and Edgar A. Whitley. A critical review of cloud computing: Research-

ing desires and realities. Journal of Information Technology, 27(3):179–197, 2012. ISSN

02683962. .

[107] Mario Villamizar, Oscar Garcés, Lina Ochoa, Harold Castro, Lorena Salamanca, Mauri-

cio Verano, Rubby Casallas, Santiago Gil, Carlos Valencia, Angee Zambrano, and Mery

Lang. Cost comparison of running web applications in the cloud using monolithic, mi-

croservice, andAWSLambda architectures. Service Oriented Computing andApplications,

11(2):233–247, 2017. ISSN 18632394. .

[108] Inna Vistbakka and Elena Troubitsyna. Towards integrated modelling of dynamic access

control with UML and Event-B. Electronic Proceedings in Theoretical Computer Science,

EPTCS, 271:105–116, 2018. ISSN 20752180. .

[109] William Voorsluys, James Broberg, and Rajkumar Buyya. Introduction to Cloud Com-

puting architecture. In Cloud Computing: Principles and Paradigms. John Wiley & Sons,

Inc., 2011. ISBN 9780470940105. .

[110] Lizhe Wang, Gregor Von Laszewski, Andrew Younge, Xi He, Marcel Kunze, Jie Tao, and

Cheng Fu. Cloud computing: A perspective study. New Generation Computing, 28(2):

137–146, 2010. ISSN 02883635. .

[111] Jim Woodcock and Jim Davies. Using Z: Specification‚ Refinement‚ and Proof. Prentice

Hall International, 1996.

[112] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model checking tla+ specifications.

In Advanced Research Working Conference on Correct Hardware Design and Verification

Methods, pages 54–66. Springer, 1999.

[113] Ehtesham Zahoor, Zubaria Asma, and Olivier Perrin. A Formal Approach for the Veri-

fication of AWS IAM Access Control Policies. European Conference on Service-Oriented

and Cloud Computing, Service-Or:59–74, 2017. .

[114] EhteshamZahoor, Asim Ikram, Sabina Akhtar, and Olivier Perrin. Authorization policies

specification and consistency management with in Multi-Cloud environment. Nordic

Conference on Secure IT Systems, Secure IT:272–288, 2018. .

[115] Diego Zanon. Understanding the Serverless Model. In Building Serverless Web Applica-

tions, pages 7–25. Packt Publishing, 2017. ISBN 978-1-78712-647-3.

121

https://d1.awsstatic.com/whitepapers/Security/AWS_Security_Best_Practices.pdf
https://d1.awsstatic.com/whitepapers/Security/AWS_Security_Best_Practices.pdf

	List of Figures
	List of Tables
	Declaration of Authorship
	Acknowledgements
	Abbreviations
	1 Introduction
	1.1 Thesis Organisation

	2 Web Services
	2.1 A Brief History of Cloud Computing 
	2.2 Microservices
	2.3 Web Services
	2.4 Serverless Technology
	2.4.1 Advantages of Serverless Architecture
	2.4.2 Disadvantages of Serverless Architecture

	2.5 Cloud Platforms Offering Serverless
	2.5.1 Microsoft Azure
	2.5.2 Google Cloud
	2.5.3 Amazon Web Services

	2.6 Security and Access Controls in AWS Environments
	2.6.1 AWS-Based Serverless Application Architecture
	2.6.1.1 Amazon Cognito
	2.6.1.2 AWS API Gateway
	2.6.1.3 AWS Lambda
	2.6.1.4 AWS IAM

	2.6.2 Authorization and Access Control in AWS

	2.7 Conclusion

	3 Formal Methods
	3.1 Formal Specification 
	3.2 Formal Specification Languages
	3.2.1 Model-based Specification Languages
	3.2.2 Algebraic Specification Languages
	3.2.3 Formal Specification Languages used for Cloud Systems
	3.2.4 TLA+
	3.2.5 Event-Calculus
	3.2.6 Event-B
	3.2.6.1 The Structure and Syntax
	3.2.6.2 Refinement
	3.2.6.3 Proof Obligation
	3.2.6.4 Decomposition
	3.2.6.5 Event-B Tool: Rodin
	3.2.6.6 ProB (Animator and Model Checker for Event-B)


	3.3 Related Work
	3.3.1 Formal Methods in Web Services
	3.3.1.1 Security of Cloud
	3.3.1.2 Security of Customers in The Cloud

	3.3.2 Web Service Composition
	3.3.3 Access Control
	3.3.4 Other Relevant Works

	3.4 Conclusion

	4 Formal Patterns for Serverless App
	4.1 Request Handling Pattern (RHP)
	4.2 Request Order Patterns
	4.2.1 Single Service Request (SSR)
	4.2.1.1 Representation RHP and SSR Patterns in Event-B

	4.2.2 Linear Service Request (LSR)
	4.2.2.1 Representation LSR Pattern in Event-B

	4.2.3 Branching Service Request (BSR)
	4.2.3.1 Representation BSR Pattern in Event-B

	4.2.4 Chained Branching Service Request (CBSR)
	4.2.4.1 Representation CBSR Pattern in Event-B

	4.2.5 Comparison of ROP Patterns

	4.3 POs of RHP / ROP Patterns

	5 Formal Patterns for Authorization Mechanism
	5.1 Formal Patterns for Authorisation Mechanism
	5.1.1  A Non-Deterministic Authorization Mechanism
	5.1.2 First Refinement: Introducing Sub-typing Generalization
	5.1.3  Second Refinement: Replacing the Non-deterministic Authorizer with a Deterministic Authorizer
	5.1.4 Third Refinement: The complete Access Control in AWS

	5.2 POs of Authorization Mechanism Model
	5.3 Conclusion

	6 Case Studies
	6.1 Case Study: Project Management System
	6.1.1 Scenario 1: Updating Project Status
	6.1.1.1 Model "updating project status" Functionality
	6.1.1.2 Event-B Model of The Scenario

	6.1.2 Scenario 2: "Promoting a User as Project Manager"
	6.1.2.1 Model "Promoting a User as Project Manager" Functionality
	6.1.2.2 Event-B model of Scenario 2


	6.2 Case Study: Learning Management System
	6.2.1 Scenario 3: Updating Project Status
	6.2.1.1 Model ”Hand in an Assignment” Functionality
	6.2.1.2 Event-B Model The Scenario


	6.3 POs of Case Study Scenarios' Models
	6.4 Conclusion

	7 Conclusion
	7.1 Contributions
	7.2 Future Works

	References

