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With increasing global recognition of environmental protection and carbon emission re-

duction, renewable energy development is drawing heightened attention. At the same

time, energy conversion efficiency needs to be improved, requiring techniques such as

energy harvesting. In this context, thermoelectric generators (TEGs), which can recycle

thermal energy, have garnered significant interest from researchers.

Traditional modelling of thermoelectric generators (TEGs) typically involves two ap-

proaches: theoretical models and mathematical models. The theoretical, 1-D and 2-D

mathematical models often suffer from reduced accuracy due to the omission of spe-

cific parameters. On the other hand, the 3-D mathematical model, commonly known

as 3-D finite element analysis (FEA), is hindered by slow computational speeds. To

address these limitations, this thesis proposes a novel approach using artificial neural

networks (ANNs) to model TEGs, achieving accuracy and computational efficiency.

This thesis first demonstrates the application of ANNs in constructing a forward model

for a thermoelectric generator. This method attains computation speeds thousands of

times faster than 3D FEA while preserving 98% accuracy compared to the results from

3D FEA. Furthermore, when integrated with optimization algorithms, this model can

effectively optimize the structure of the thermoelectric generator, demonstrating a sig-

nificant advancement in modelling and design efficiency.

Later in this work, an ANN has been applied to build accurate and fast forward mod-

elling of the segmented thermoelectric generator (STEG). More importantly, an itera-

tive method is adopted in the ANN training process to improve accuracy without in-

creasing the dataset size. This approach strengthens the proportion of the high-power

performance in the STEG training dataset. Without increasing the size of the training

dataset, the accuracy was increased from 92% to 98%. Coupling with a genetic algo-

rithm, the trained artificial neural networks can optimise design within 10 seconds
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for each operating condition. It is over 4,000 times faster than the optimization per-

formed by the conventional FEA model. Such an accurate and fast modeller also allows

the mapping of the STEG power against different parameters.

Then, the hybrid TEG system is analyzed. Radiative cooling (RC) can provide a con-

tinuous temperature difference, which a TEG can convert into electrical power. This

novel combination of radiative cooling with TEG expands the category of sustainable

energy sources for energy harvesting. Using 3D FEA, this system provides a systematic

analysis of the concept of RC-TEG by investigating the impact of radiative cooler prop-

erties, TEG parameters, and environmental conditions to provide a complete picture of

the performance of RC-TEG devices. The capability of RC-TEG to provide continuous

power supply is simulated using real-time environmental data from both Singapore

and London on two different days of the year, demonstrating continuous power sup-

ply sufficient for a wide range of IoT devices in all four scenarios.

Finally, this thesis introduces an ANN-based model designed to predict the perfor-

mance of hybrid PV-TEG systems. Utilizing a cyclic approach, the ANN model incor-

porates various factors, including PV coating, morphology, TEG geometry parameters,

temperature-dependent material properties, and environmental conditions like solar

irradiance and convection. The model’s integrated nature allows independent use of

PV and TEG components, enhancing its adaptability and generalizability. Remarkably,

compared to FEA simulations, the ANN model demonstrates over 98% accuracy and

a significant boost in computational efficiency, with a 6,000-fold increase in simulation

speed. This efficiency enables extensive parameter sweeps, offering insightful analysis

into the influence of various factors on the PV-TEG system’s performance.

Overall, the ANN model’s rapid processing capabilities are particularly beneficial for

large-scale simulations and practical applications in renewable energy technology.
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Chapter 1

Introduction

1.1 Background

Producing a secure, sustainable, and efficient energy supply that meets the demands

of the growing global population while simultaneously reducing the environmental

impact of CO2 emissions is widely recognized as one of the most critical societal chal-

lenges for the current generation [1]. According to the report, as of December 2020,

global CO2 emissions were estimated to reach 33 gigatonnes (GT) in 2021. This figure

represents only a 1.2% reduction from the levels recorded in 2019, as per the Interna-

tional Energy Agency (IEA) 2021 data [2]. The slight decline in CO2 emissions in 2021 is

attributed to the global economic slowdown caused by the Covid-19 pandemic, which

began at the end of 2019. However, this reduction is not expected to be sustainable as

the global economy begins to recover. In response to the challenge of controlling car-

bon emissions, many international organizations have collaborated to develop a road

map to manage and reduce CO2 emissions. According to this road map, CO2 emissions

are projected to increase from 34 gigatonnes (GT) in 2020 to 36 GT in 2030 and are ex-

pected to remain around this level until 2050. To achieve this, a significant shift towards

renewable energy sources is necessary, with the road map suggesting that renewable

energy will need to account for most global energy consumption.

In modern society, electricity is an essential source of energy. To generate electricity, the

current efficiency of conventional combustion energy sources, such as coal, natural gas,

and oil, is only about 40%, with the majority of this energy being wasted as heat. Re-

covering just 1% of this wasted energy could yield over 200 TWh of electricity annually,

with an estimated market value of around $20 billion, and bring significant associated

benefits, including a reduction in CO2 emissions [3]. Converting this wasted heat into

sustainable energy, and thereby into electricity, is a critical challenge that necessitates

energy harvesting.
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1.2 TEG design

A thermoelectric generator (TEG), capable of harvesting waste heat and converting this

thermal energy into electricity, can significantly enhance energy supply efficiency and

reduce reliance on fossil fuels [4]. These TEGs are particularly valued for their ability to

convert thermal energy directly into electrical energy. However, traditional methods,

such as using steam to drive turbines, require substantial thermal energy and space.

On the contrary, TEGs based on the Seebeck effect are formed by connecting an n-type

semiconductor material electrically in series and thermally in parallel across a temper-

ature gradient to a p-type semiconductor material, allowing current flow between the

two [5]. A typical thermoelectric device is shown in Figure 1.1[6]. One n-type and one

p-type form the basic structure of a single thermoelectric generator pair. By connecting

multiple pairs of these generators, more power can be generated. Unlike traditional en-

ergy generators, thermoelectric generators convert heat directly into electricity without

the need for moving structures or liquids. They offer a relatively long service life and

operate with minimal noise [7]. These advantages are significant for devices that need

to function at high temperatures over extended periods. Apart from the basic thermo-

electric generator structure, various other thermoelectric configurations have received

considerable attention.

FIGURE 1.1: Schematic overview of the thermoelectric module. Reprinted from [4]

In particular, the segmented TEG (STEG) structure involves combining two thermoelec-

tric materials, one optimized for high temperatures and the other for low temperatures,

spliced together. When STEG works in a higher temperature difference, this design can

ensure that both materials operate within their most suitable temperature ranges, po-

tentially enhancing the overall efficiency of the TEG system by leveraging the distinct

thermal properties of different materials. Thermoelectric generators have applications

in areas such as automotive heat recovery [8] and water pipe heat harvesting.
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Apart from the standalone TEG structures, TEG can also combined with other devices

to form hybrid energy harvesting systems. An essential application of TEG involves

their combination with radiative cooling (RC) devices, representing a new sustainable

energy source. Radiative cooling is a ubiquitous process by which a surface loses heat

through thermal radiation. The significant temperature difference between the earth

(around 300 K) and space (2.7 K) can potentially be utilized to cool the earth’s surface

by emitting thermal infrared radiation to space through the atmosphere [9][10]. The

high transmittance window in the atmosphere at a wavelength between 8-13 um co-

incidentally matches well with the blackbody radiation from a 300 K object, making

the concept of radiative cooling possible by avoiding radiation re-absorption. Based on

this, RC is a substantial heat source as it can generate continuous temperature differ-

ences. Combining RC with TEG can build a device that produces continuous power 24

hours daily.

Furthermore, thermoelectric generators can enhance energy harvesting by integrating

with other renewable sources, such as photovoltaic (PV) systems. Among all renewable

energy sources [11], the photovoltaic cell has garnered significant attention due to its

simple structure and high efficiency. It is a device that converts solar energy into elec-

tricity. While considerable progress has been made in PV system development, much

work is still needed to enhance overall efficiency and reduce costs [12]. A typical photo-

voltaic module can convert 5-20% of incident solar radiation into electricity, depending

on the type of solar cell and climatic conditions [13]. However, a significant proportion

of the remaining incident solar radiation is inadvertently converted into heat. This es-

calates the operational temperature of PV panels, leading to efficiency degradation, a

challenge plaguing the domain of PV systems [14].

Despite the vast demand for renewable energy and the great potential of TEG, the ap-

plications of TEGs are relatively limited. The niche application of TEGs is primarily due

to their low conversion efficiency. More research is needed to improve efficiency in ad-

dressing this. Currently, TEG research focuses on finding new materials, but based on

new materials, the potential for enhancing TEG efficiency by studying complex struc-

tures based on these materials cannot be ignored.[15].

Developing n-type and p-type semiconductor materials with better thermoelectric per-

formance (evaluated by the figure-of-merit, ZT) is one of the critical requirements to

achieve higher TEG power generation performance. In recent years, with further re-

search into thermoelectric generator materials, many state-of-the-art high-quality ther-

moelectric materials have been developed [16]. Several material engineering strate-

gies such as carrier concentration optimization, nanostructuring, and band engineer-

ing have been proposed and materialized in significantly improved ZT values [17] [18]

[19]. Materials including SnSe, PbTe-SrTe, and mosaic crystals have all been reported

to have ZT larger than 2, showing encouraging prospects for the large-scale application

of TEGs. However, even high-quality materials can lead to low output efficiency if the



4 Chapter 1. Introduction

TEG structure is poorly designed. Many sub-optimal designs prevent thermoelectric

generators from utilizing superior materials for higher power generation efficiencies.

Thus, an effectively designed thermoelectric generator is essential for superior materi-

als. It is also necessary to study how to create a better TEG.

Furthermore, the same is the case for optimizing thermoelectric generator structures.

Even for the simplest thermoelectric generator models, many factors are needed to op-

timize the design to the best possible level. First, the geometrical parameters include

the different leg lengths, the area of the upper and lower surfaces, the spacing between

the n-type and p-type legs and the thickness of each layer. Other parameters, such as

contact resistance, can also lead to significant variations in efficiency. The parameters

are also interrelated, so finding a suitable figure is challenging. In addition, other en-

vironmental variables need to be considered, such as ambient temperature, convective

heat flux, and the input of heat flux or temperature differences. Changes in these pa-

rameters can also alter the optimal structure of the thermoelectric generator. The vast

array of parameter variations complicates the design of thermoelectric generators.

An accurate and fast calculated model is essential to design an optimal TEG. Gener-

ally, there are two main modelling approaches: theoretical model and mathematical

model. The theoretical model is built by simplifying the variables, for example, con-

verting the temperature-dependent variables into constant and then integrating them

according to physical equations to obtain the result. However, since the calculation

process omits many conditions, the results are not as accurate. Dimensions can cat-

egorize mathematical modelling. One-dimensional modelling focuses on calculations

along a single dimension. After subdividing, it maintains consistent default param-

eters for each segment and determines the overall output through integration. This

approach allows for the capture of temperature-dependent parameters within the one-

dimensional framework. However, its drawback lies in overlooking errors introduced

by parameters in other dimensions. In a real-world scenario, temperature and other

parameters can vary significantly across different dimensions (e.g., spatial coordinates

like x, y, z). A one-dimensional model may fail to capture the effects of such variations.

With the development of computer technology, 3-D mathematical models, known as fi-

nite element analysis (FEA), can accurately calculate various transient and steady-state

physical variables. It can calculate data such as the output power of thermoelectric

generators using FEA. Common FEA includes relevant commercial software (COM-

SOL, ANSYS). This simulation software enables the calculation of a wide range of data

for complex conditions. In the case of thermoelectric generators, data such as output

power and efficiency can be well simulated.

Nevertheless, with this comes the problem that physical variables in complex environ-

ments require many calculations to implement. Even though computers are running

at significantly higher speeds than a decade ago, designing and optimizing TEG based

on 3-D models still requires significant computational resources, especially when the
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model is complex. Therefore, since both previously used modelling methods have lim-

itations, a better method that enables accurate and quick prediction of TEG power per-

formance would benefit the TEG design.

Artificial Neural Networks (ANN) have garnered widespread attention globally due

to their efficiency in analyzing vast datasets and their revolutionary impact on fields

such as computer vision and speech recognition [20][21][22]. Recently, deep learn-

ing has been proposed to replace the conventional intuition-based design process in

nano-photonics [23][24], providing accurate and efficient design of optical storage [25],

meta-surfaces [26][27], and nanostructured colour filters [28]. It has also found appli-

cation in solid-state systems to discover and predict the performance of new materials

due to its outstanding capability of finding optimal solutions from enormous data with

much lower demands on computational resources [29][30]. Several pioneering works

have also been reported using machine learning to facilitate research on thermoelec-

tric materials [31][32][33]. This data-driven approach aims to predict the results based

on approximation without explicitly solving the question. This approach is helpful for

modelling systems involving many parameters with complicated relations where ana-

lytical methods are not readily available. Before the ANNs can perform the intended

forward modelling, a training process needs to occur in which a dataset is required.

This dataset, which generally involves many input(s) and output(s) relations, needs

to be generated by mathematical simulation. However, this is a one-time investment.

No more computational resources will be consumed once the network is trained cor-

rectly. One of the essential features of ANNs is that they do not need to know the

physical meaning of the data but instead look for patterns directly from the data. This

advantage fits well with the dilemma faced by thermoelectric generators. Therefore,

ANN meets these requirements and is introduced as a new research tool for modelling

thermoelectric generators. The parameters of the thermoelectric generator can then be

optimized in a backward method through other machine learning algorithms, such as

genetic algorithms that find the maximum value [34].

1.3 Aims and objectives

This PhD project aims to explore the possibility of using ANN as a fast and accurate

method in modelling TEG. The aim is to leverage the computational power and adapt-

ability of ANNs to improve the efficiency and accuracy of TEG models, potentially

enhancing the design and optimization of these energy systems. The specific objectives

are as follows:

• To develop an ANN model that predicts the output power density and efficiency

with high accuracy and speed, utilizing specific geometrical parameters and op-

erating conditions.
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• To identify and optimize the parameters by integrating a genetic algorithm with

the ANN model.

• To model a complicated TEG structure, for example, segmented TEG, using ANN

and aims for high accuracy in the modelling process.

• To conduct systematic analyses of the integration of radiative cooling with TEG

to evaluate their combined performance and efficiency.

• To model and analyze photovoltaic thermoelectric generator (PV-TEG) systems

to assess their performance and efficiency under various conditions.

This report is arranged in the following order. Chapter 1 focuses on the relevant con-

cepts that need to be applied in the latter part of the report and why thermoelectric

generators were chosen as the basis for the study. Chapter 2 provides a more detailed

description of the structure, materials, and operating principles. Furthermore, a brief

literature review of thermoelectric generators includes the architecture of TEG. Some

concepts of machine learning and genetic algorithms are also introduced. Chapter 3

describes the research approach used in this report. The corresponding experimen-

tal steps and procedures are described in detail. Chapters 4 and 5 show the experi-

mental results and the related analysis of conventional bulk TEG and segmented TEG,

respectively. Chapter 6 demonstrates the comprehensive analysis of the radiative cool-

ing thermoelectric generator model. Chapter 7 shows the photovoltaic thermoelectric

generator model process and analysis. In the end, Chapter 8 summarises this report’s

empirical content and results, followed by some perspectives for future work.
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Chapter 2

Background and literature review

This chapter comprehensively summarises the principles underlying thermoelectric

generators, including their materials and structures. It also includes a literature review

of various studies related to thermoelectric generators. Building on this foundation, the

chapter then explores the integration of thermoelectric generators with radiative cool-

ing and photovoltaic systems. Finally, it introduces this thesis’s important machine

learning algorithms, specifically artificial neural networks and genetic algorithms.

2.1 Principle of thermoelectric

Two centuries ago, it was discovered that when a heat source is applied to the junc-

tion of two dissimilar metals, a voltage can be detected across the two sides. This

phenomenon is known as the Seebeck effect, which forms the basis of thermoelectric

generators. With the rapid development of semiconductor materials, thermoelectric

generators exhibit various properties that distinguish them from conventional energy

generators [35]. A typical thermoelectric generator, as depicted in Figure 2.1, consists

of n-type and p-type semiconductors. The red leg represents the n-type material, while

the blue is the p-type material. The electrodes, usually made of a metal such as copper,

are shown in yellow. The top and bottom sides of the generator are insulated and ther-

mally conductive materials, such as Aluminium Nitride [36] and Silicon Dioxide [37],

indicated by the brown part in the picture. Voltage can be detected at the load resis-

tance by maintaining a temperature difference between the top and bottom surfaces.

TH is the hot side that applies heat flux, and the TC is the cold side that remains at a low

temperature. The green arrow is the direction of the current flow.

The working principle of thermoelectric generators is based on the Seebeck effect. When

heat flows into the top surface while the bottom surface remains cooler, a temperature
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FIGURE 2.1: Schematic of a single-pair thermoelectric generator model.

difference is created between these two surfaces. This temperature difference gener-

ates a potential difference, the direction of which depends on the material. In an n-type

semiconductor, where electrons are the charge carriers, these electrons move from the

high-temperature side to the low-temperature side. This movement equates to an elec-

tric current flowing through the n-type semiconductor from the bottom to the top.

Conversely, in p-type semiconductors, the charge carriers are holes, which flow from

high to low temperatures according to the Seebeck effect. Consequently, the equivalent

current flows from the top to the bottom surface.

2.2 Thermoelectric materials

From a material perspective, the performance of materials in thermoelectric generators

(TEGs) can be determined by a key parameter known as the figure of merit (ZT). It is

expressed as [38]:

ZT =
S2σ

κ
T (2.1)

where σ is the electrical conductivity, κ is the thermal conductivity, S is the Seebeck

coefficient, and T is the absolute temperature. The Seebeck coefficient is expressed as

[39]:

S =
∆V

∆T
(2.2)

where ∆T is a temperature difference, and ∆V is electrostatic potential difference.

The optimization of the materials can be described by Eqs. 2.1 with high Seebeck co-

efficient S, high electrical conductivity σ and low thermal conductivity κ. The thermal

conductivity κ of thermoelectric materials is differentiated between the two main com-

ponents: electronic thermal conductivity κe and lattice (phonon) thermal conductivity

κl . One of the main challenges in thermoelectric materials is the interdependence of

electrical conductivity σ and thermal conductivity κ [40]. To overcome this, researchers
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employ several strategies: nanostructuring [41], complex crystal structures [42] and

doping [43].

Several common materials with notable ZT are summarized in the literature [44], as

illustrated in Figure 2.2. According to the figure, a material with ZT around or over 1

represents a relatively good material for TEG design. The diagram shows that bismuth

telluride is used for low-temperature applications, effective at just under 200 °C; lead

telluride is suitable for medium to low-temperature ranges, operating at 300-600 °C.

For high-temperature applications, silicon-germanium is used, functioning effectively

at temperatures over 800 °C.

FIGURE 2.2: Overview of ZT vs temperature for different thermoelectric materials.
Reprinted from [44].

Most room-temperature thermoelectric materials are based on bismuth. These materi-

als have a very good ZT 1 at low temperatures. Adding different elements can increase

their electrical conductivity or decrease their thermal conductivity, thus increasing the

ZT. Common materials include bismuth telluride and BiSbTe (ZT=1.4 at 107°C)for room

temperature applications [45].

As for high-temperature materials, there are many types, for example, SnSe, which has

a high figure of merit (ZT=2.6 at 650°C) through its ultra-low thermal conductivity [15].

Again, many alloys of lead telluride perform well at medium to high temperatures.
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Cubic AgPbmSbTe2+m exhibits a high thermoelectric figure of merit material (ZT=2.2

at 527°C) [46]. PbTe-SrTe is an alloy with a high ZT at medium to high temperatures

[47]. In addition to bismuth telluride, some of the other significant bulk thermoelectric

materials are skutterudites (ZT=1.43 at 527°C) [48] clathrates and half-Heusler alloys

(ZT=1 at 627°C) [49].

2.3 Principle of thermoelectric generator

After a brief introduction to the materials used in thermoelectric generators, it is es-

sential to understand their working principles to optimize the generator’s structure.

Besides the Seebeck effect, an opposite phenomenon known as the Peltier effect was

later discovered. The Peltier effect refers to the phenomenon where heat is absorbed

or released at the junction of two different materials when an electric current passes

through them. This temperature change depends on the direction of the current flow

[50]. The heat flow generated by the Peltier effect can be expressed in terms of Eqs. 2.3

[51],

q = SIT (2.3)

Analyzed the basic thermoelectric generator structure, the current can be expressed as:

I =
∆V

R
=

(Sp − Sn)∆T

Rin + RL
=

(Sp − Sn)(TH − TC)

Rin + RL
(2.4)

where Sn and Sp are the n-type and p-type Seebeck coefficient, respectively and Rin, RL

is the internal resistance, load respectively. Therefore, the power on the load is:

P = I2R = { (Sp − Sn)(TH − TC)

Rin + RL
}2RL (2.5)

The derivative of Eqs. 2.5 indicates that the maximum output power is achieved when

the load resistance (RL) is equal to the internal resistance (Rin) of the system. The heat

flowing (q0) from the source needs to balance some of the heat from the Peltier effect

and Joule’s heat, shown in Eqs. 2.6 [52]:

q0 = (Sp − Sn)ITH − 1

2
I2R + (Kp + Kn)(TH − TC) (2.6)

where Kn and Kp are the thermal conductance of n-type and p-type material, respec-

tively. The relationship between thermal conductance and thermal conductivity, resis-

tance and electrical conductivity are shown in Eqs. 2.7 [53], Eqs. 2.8 [54]:

K = κ
A

L
(2.7)

R =
L

σA
(2.8)
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Thus, by combining Eqs. 2.1, Eqs. 2.7 and Eqs. 2.8, the relationship between the device

ZT and thermal conductance and resistance can be derived:

ZT = (Sp − Sn)
2

L
ARin

L(Kp+Kn)
A

T =
(Sp − Sn)2

Rin(Kp + Kn)
T (2.9)

For thermoelectric generators, the ZT is solely dependent on the material. Therefore,

to calculate the maximum efficiency, the ratio of the load resistance to the internal re-

sistance (RL/Rin) is introduced as a parameter M. This allows us to derive an equation

for efficiency concerning M. The efficiency is expressed as P/q0. Combining Eqs. 2.5

and Eqs. 2.6, the efficiency η can be expressed as:

η =
P

q0
=

{ (Sp−Sn)(TH−TC)
Rin+RL

}2RL

(Sp − Sn)ITH − 1
2 I2Rin + (Kp + Kn)(TH − TC)

(2.10)

Combining Eqs. 2.9, Eqs. 2.10, and Eqs. 2.4 while setting the ratio RL/Rin as M, the

efficiency can be simplified to the following form:

η =
M(TH − TC)

TH(1 + M)− 1
2 (TH − TC) +

(1+M)2

Z

(2.11)

The partial derivative of Eqs is taken to determine the maximum efficiency value. 2.11

with respect to M and setting it equal to zero yields Eqs. 2.12:

∂η

∂M
= 0 (2.12)

The results are shown in Eqs 2.13:

Mη =
√

1 + ZTm (2.13)

where Tm is the average temperature (TH+Tc)
2 when the efficiency reaches its peak. Sub-

stituting Eqs. 2.13 into Eqs. 2.11 gives the maximum efficiency ηmax, shown in Eqs. 2.14

[55]:

ηmax = ηc
Mη − 1

Mη +
TC
TH

(2.14)

where the Carnot efficiency ηc is given as [56],

ηc =
TH − TC

TH
(2.15)

The maximum thermoelectric conversion efficiency is constrained by the Carnot effi-

ciency, the ZT, and the temperatures TH (hot side) and TC (cold side). Circuit anal-

ysis reveals that under constant temperature difference, maximum power delivery is

achieved when the load resistance equals the internal resistance, i.e., M = 1. However,

the maximum efficiency is reached at M = Mη , where Mη =
√

1 + ZTm is greater than
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1. Additionally, according to Eqs. 2.14, the larger the ZT, the closer the maximum ef-

ficiency (ηmax) approaches the Carnot efficiency (ηc). This trend shows the necessity of

seeking materials with a higher ZT. By theoretically calculating the relevant parameters

under ideal conditions, we can identify new directions, materials, and structures that

could significantly improve the efficiency of thermoelectric generators. Computational

modelling and simulations can further enhance this efficiency. Additionally, experi-

mental research and development are essential to validate these findings and drive

further improvements.

2.4 Architectures of thermoelectric generator

In addition to searching for materials with a higher figure of merit, optimizing the use

of these materials to achieve high output power and efficiency also requires research

into the devices’ structures. Over the years, this research has led to the development

of many different types of thermoelectric generator structures. However, generally

speaking, these structures share several similarities.

2.4.1 Conventional bulk thermoelectric generator

The bulk TEG represents the most fundamental structure of a thermoelectric generator,

derived directly from the primary Seebeck effect. Figure 2.3 shows the basic schematic

of a single pair conventional bulk TEG. In this design, the n-type and p-type legs are

parallel to ensure uniformity at the cold end plane. The top and bottom surfaces serve

as the substrate. The primary function of these planes is to facilitate heat transfer while

preventing electrical current leakage to other areas. Consequently, the materials chosen

for these planes must have high thermal and very low electrical conductivity to fulfil

these requirements effectively. The most commonly used materials for this part of ther-

moelectric generators are ceramics such as SiO2 (Quartz) with κ 1.4W/(mK)[57], Al2O3

(alumina) with κ 30W/(mK) [58], or AlN(aluminium nitride) with κ 130− 270W/(mK)

[59] at room temperature. SiO2 is used in thermoelectric modules for structural support

and insulation due to its stability at high temperatures. Al2O3 is often used as a sub-

strate material and in insulation layers within TEGs to provide electrical insulation and

mechanical support. AlN is used as substrates and insulators in TEGs due to its ability

to efficiently dissipate heat while electrically isolating different parts of the device[60].

Beneath the top ceramic surfaces of the thermoelectric generator, copper electrodes are

used to connect the n-type and p-type materials. Copper is chosen for its high electrical

and thermal conductivity. The most basic shape for these connections is a cuboid. This

is because cubic or rectangular prismatic shapes are simpler to manufacture compared

to more complex geometries [3]. These shapes can be easily produced using standard
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FIGURE 2.3: Schematic of a bulk TEG.

cutting, machining, and shaping techniques, making the manufacturing process more

efficient and cost-effective. In addition, the cubic shape allows for a more uniform dis-

tribution of heat across the leg’s cross-sectional area. This helps maintain a consistent

temperature gradient, which is crucial for optimizing the thermoelectric effect. There

are also copper electrodes underneath the two legs, but their function differs from those

above. Instead of connecting the two legs, the electrode beneath extends outward to

connect to an external circuit. This external circuit typically consists of a load resistor

in a single-module setup. In the case of large-scale integration, these electrodes connect

to subsequent single-pair bulk thermoelectric generators.

The bulk structure of thermoelectric generators is relatively straightforward and has

several applications in the industry. For instance, automobile thermoelectric generators

(ATEGs) can convert waste heat from vehicles, a common occurrence in everyday life,

into electricity [61]. Although incorporating a thermoelectric generator adds weight to

a car, research, such as that by F. Stablers [62] has shown that the vehicle’s overall effi-

ciency can still improve despite the added weight. In ATEGs, the hot end is connected

to the engine, which generates significant heat, while the cold end is linked to the cool-

ing fluid or directly exposed to the outside air. An optimized thermoelectric generator

can maintain a temperature difference of several hundred Kelvin between the hot and

cold ends, potentially achieving an output power of around 1000 W [63]. In addition to

ATEGs, solar thermoelectric generators are another widely used application.

2.4.2 Segmented thermoelectric generator

Figure 2.4 illustrates the schematic of a single pair of segmented TEG. Based on the

operating principle of TEGs, the temperature along the TEG legs decreases from the
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top to the bottom. Additionally, these materials’ figure-of-merit (ZT) is temperature-

dependent (TD). Therefore, in situations with a large temperature difference, neither

the TEG leg’s top nor bottom will exhibit an optimal ZT.

FIGURE 2.4: Schematic of segmented TEG. Reprinted from [64]

Segmented TEGs (STEGs) represent a crucial innovation to enhance efficiency when

operating under significant temperature differences [65]. This approach involves com-

bining materials that are highly efficient at high temperatures with those that are highly

efficient at low temperatures. Under ideal conditions, each material operates within its

most efficient temperature range, thereby improving the system’s overall performance

[66]. For instance, Flueiral et al. proposed a new STEG design that achieved a con-

version efficiency of 15% under a temperature difference of 675K, which is 20% higher

than previous designs [67]. Since ZT is a highly temperature-dependent parameter

and each thermoelectric material typically performs optimally over a relatively narrow

temperature range, the development of STEGs that combine two or more materials

with different operating temperatures in series within the TEG legs has proven to be

an effective strategy for enhancing TEG efficiency [68]. Notably, Zhang et al. demon-

strated a record-high efficiency of up to 12% using segmented TEG modules composed

of Bi2Te3-based alloys and CoSb3-based filled skutterudites [69].

2.4.3 Other thermoelectric generator structures

As previously mentioned, the n-type and p-type legs in a standard bulk thermoelec-

tric generator are typically cubic. However, recent studies have explored the idea of

altering the shape of these legs, investigating various forms such as pyramidal [70], ex-

ponential [71], and quadratic [72] shapes. The non-uniform cross-section of pyramidal

shapes can create a more favourable temperature gradient within the leg. This can help

maintain a high temperature difference between the hot and cold junctions, which is

crucial for maximizing the thermoelectric effect. For example, Figure 2.5 illustrates a
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flat bulk TEG with pyramidal legs [73]. The rationale behind the design of asymmet-

rical TEGs is to manipulate the thermoelectric resistance of the legs, thereby aiding in

the control of the temperature gradient along the leg.

FIGURE 2.5: Flat bulk thermoelectric generator with pyramidal legs. Reprinted from
[73]

Moreover, in many settings where waste heat is generated, such as in oil or steam

pipelines, this heat is often dissipated through cylindrical ducts. In these scenarios,

cylindrical thermoelectric generators are more suited to the environment. One design

of such a generator, known as a ring TEG, is depicted in Figure 2.6 [74]. In 2015, a com-

pany utilized a similar concept to develop a cylindrical thermoelectric generator aimed

at enhancing vehicle efficiency [75]. In an optimized state, this generator can produce

an output of 30W in a single module.

Research in thermoelectric generators is ongoing and diverse. In addition to the widely

studied bulk TEGs, developments in micro and thin-film thermoelectric generator struc-

tures are also occurring. However, this report primarily focuses on bulk TEGs, so thin-

film thermoelectric generators will not be discussed in detail here.

2.5 Modelling and optimizations of thermoelectric generator

This section will address the issue of modelling TEGs and optimizing the relevant ge-

ometrical parameters and operating conditions once the structure of the TEG model
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FIGURE 2.6: A thermoelectric module of the ring-structured TEG. Reprinted from [74]

has been established. It is relatively rare for TEGs to fully utilize superior thermoelec-

tric materials. [19]. The main reason is the fact that the output power of a TEG relies

not only on the performance of the TE materials but also critically on the TEG design,

including its geometrical configuration, contact resistance and its coupling with heat

source/sink as well as environmental working conditions, which demands careful and

holistic consideration in TEG modelling and optimization [76] [19] [73] [77] [4].

The performance of any of these optimization methods is critically dependent on the

coupled TEG model to identify the output of TEGs accurately and efficiently. It is par-

ticularly challenging considering the non-linear thermoelectric effects and the intricate

inter-dependence of each design parameter [78][79][80]. TEG models can generally be

established through theoretical and mathematical approaches. For example, an early

theoretical model proposed by Min et al. [81] investigated the effect of thermoelement

length on the module’s coefficient of performance. Gou et al. [82] developed a theo-

retical system model for a low-temperature waste heat thermoelectric generator setup.

Newbrook et al. [83] built a simplified theoretical model for a thin film-based TEG per-

formance optimization. Although these theoretical models enable quick estimation of

the TEG performance, the accuracy is limited by their grossly simplified thermoelec-

tric parameters (e.g. temperature-dependent parameters) [84]. Besides the theoretical

model, mathematical model-based simulation also prevails due to its superiority in

solving differential equations and ease of use [78]. Suter et al. [85] implemented a heat

transfer model coupling one-dimensional (1-D) conduction through the thermoelement

legs to study a thermoelectric stack. A similar 1-D model was also adopted by Shen et

al. [84] to analyze the TEG performance with the temperature dependence of TE ma-

terials considered. Zhu et al. also used a similar model to investigate and optimize

the performance of a segmented TEG [86]. Using Figure 2.7 as an example, Zhu views

the entire TEG as 1-dimensional. By default, the various properties of the material in



2.5. Modelling and optimizations of thermoelectric generator 17

the transverse direction are kept consistent. On this basis, the whole TEG is divided

into multiple smaller pieces. When the division is sufficiently small, i.e., the Seebeck

coefficient, thermal conductivity, electrical conductivity, and other parameters of this

part can be defaulted to constant in this area. The relevant parameters can then be

calculated using the formulae and accumulated to approximate results.

FIGURE 2.7: Schematic of the mathematical model of the TEG. Reprinted from [86]

Nonetheless, a 1-D mathematical model ignores the effects in the other two dimen-

sions, increasing the potential for error. Three-dimensional (3-D) modelling techniques,

also known as finite element analysis (FEA), are available on commercial software (e.g.

COMSOL and ANSYS), which enables simultaneous incorporation of all thermoelec-

tric factors and can provide high prediction accuracy for TEG optimization [80]. For

example, a 3-D ANSYS TEG model was coupled with the multi-objective genetic al-

gorithm (MOGA) in both works reported by Chen et al. [87][88], demonstrating out-

standing agreements with experimental results. Meng et al. [89] build up a TEG model

in COMSOL as the direct problem solver to facilitate the multi-objective optimization

of a thermoelectric energy conversion-utilization system. The simplified conjugate-

gradient method proposed by Liu et al. [90] was also coupled with a COMSOL-based

TEG model. These models have superior reliability in calculating TEG power perfor-

mance by allowing simultaneous coupling of nearly all related TE effects and factors.

Ge et al. applied a 3-D COMSOL model in their evolutionary algorithm-based opti-

mization of a segmented TEG [91]. However, such high accuracy for 3-D models comes

at the cost of increased computation demand, prohibiting its wide adoption for TEG

optimization applications.
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After modelling, considering such complexity in TEG design, reliable optimization

methods are preferred over the conventional analytical approach to perform optimiza-

tion. A simplified conjugate-gradient method (SCGM) was proposed by Liu et al. to

realize the parametric optimization for both TEG power and efficiency [90]. The widely

used Taguchi method was also adopted by Chen et al. in the TEG system to find the

optimum conditions for maximizing the performance [92]. He et al. introduced a Hill-

climbing algorithm to achieve a maximum power output [78]. Genetic algorithm (GA),

a subset of evolutionary computation in artificial intelligence (AI), has been extensively

explored for application in TEG design. GA is one derivative-free optimization method

that is appealing for solving optimization problems. It uses stochastic and direct-search

processes to find reasonable approximate solutions to complex issues with little prior

knowledge of the optimization problem. Ge et al. employed a non-dominated sorting

genetic algorithm (NSGA-II) to identify the best geometric ratio for a segmented TEG

[91]. Chen et al. applied the multi-objective genetic algorithm (MOGA) to determine

the optimum leg length and area of thermoelectric elements based on a constant vol-

ume [87]. The same group adopted a similar algorithm to maximize the power of a

segmented skutterudite TEG under different temperatures [88].

2.6 Hybrid thermoelectric generator system

Besides focusing on the thermoelectric generator, investigating its heat sources and ap-

plication scenarios also represents crucial directions for research. TEGs pave the way

for innovative methods of generating renewable energy and expanding sources of en-

ergy recovery. Among these, two primary TEG hybrid systems stand out: the radiative

cooling-thermoelectric generator and the photovoltaic-thermoelectric generator. These

systems exemplify how TEGs can be integrated with other technologies to enhance en-

ergy efficiency and harness energy from diverse sources, further broadening the scope

of renewable energy applications.

2.6.1 Radiative cooling thermoelectric generator

Radiative cooling is a natural process where a surface loses heat by emitting infrared

radiation [53]. All objects emit thermal radiation according to their temperature. The

Earth’s atmosphere is particularly transparent to infrared radiation in the 8-13 µm

wavelength range, known as the ºatmospheric window,º allowing thermal radiation

to escape into space [93]. By designing materials with high emissivity in the infrared

range and low absorptivity in the solar spectrum, radiative cooling can be effectively

applied for various applications, offering an energy-efficient, environmentally friendly

alternative to traditional cooling methods. This process can be harnessed to passively
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cool objects, buildings, and electronic devices without requiring external energy input

[10].

Recent advances in the field have highlighted radiative cooling as a crucial technology

for enhancing energy efficiency and harvesting applications. Initially, the focus of ra-

diative cooling applications was primarily on nighttime scenarios. Several studies have

achieved significant cooling effects at night by optimizing materials [94] and coatings

[95] on radiative cooling surfaces. However, achieving daytime radiative cooling has

been more challenging. This difficulty arises because absorption from the intense solar

spectrum (0.3-3.0 µm) often quickly surpasses the cooling energy [96]. A breakthrough

occurred in 2014 when Raman et al. achieved daytime radiative cooling for the first

time. They developed spectrally selective filters that exhibit high emissivity within the

atmospheric window while having deficient solar spectrum absorption [10]. Since this

achievement, further advancements have been made in enhancing radiative cooling

performance. These improvements involve the selection of specific materials [97] and

the design of photonic structures [98]. These developments have enabled new applica-

tions, such as building-integrated cooling systems [99] and cooling for solar cell panels

[98] [100].

Radiative cooling has been investigated to exploit its temperature difference for en-

ergy generation. And thermal energy can be converted into electricity by integrating

thermoelectric generators [101][102]. The concept of radiative cooling (RC) powered

TEGs has since been developed as a stable, continuous power supply for several dif-

ferent applications. Compared with TEG with solar absorbers [103], integrating it with

a radiative cooler has more advantages in continuous power generation. For example,

Ramen et al. developed an RC-TEG that can work day and night continuously, gener-

ating a power of 25 mW/m2 [104]. Such power is sufficient for transmitting Bluetooth

signals or other IoT work [105]. Zhan et al. enhanced thermoelectric output power via

radiative cooling using a novel nanoporous alumina film [106]. Several studies also

focused on using radiative cooling in wearable TEGs [107] and achieved a power den-

sity of 55 mW/m2 at 293K [108]. Xia et al. developed a thin film RC-TEG that allowed

24-hour continuous power generation [109]. Mu et al. also studied thin film TEGs in

combination with radiative cooling, achieving a constant average 0.18 mV output for

24 hr [110]. In addition, RC-TEG also possesses excellent potential to be implemented

as wearable energy harvesting devices [111] and bright windows [112].

Several analytical studies were conducted to model and investigate the performance of

RC-TEG. For example, Liu et al. have modelled the RC-TEG device mathematically and

examined the effects of different radiative cooling spectra and other relevant parame-

ters on the RC-TE device [113]. A mathematical modelling study of radiative cooling

versus thermoelectric refrigerators was carried out by Liao et al. [114]. Zhao et al. also

conducted mathematical modelling of the RC-TEG device, focusing on optimizing the

TEG parameters [115].
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A variety of parameters from both the radiative cooler and the TEG itself determines

the performance of an RC-TEG. In addition, as a ubiquitous process, the power output

is also highly dependent on its environmental conditions, as the atmospheric window

transmittance can be affected by geographical location [116], cloud cover [117], and

humidity conditions [118]. Such environmental variations can significantly impact the

radiative cooling power and change the RC-TEG performance. However, despite the

growing interest in this novel energy harvesting technology, a comprehensive inves-

tigation of its performance considering all parameters is lacking, to the best of our

knowledge. For example, environmental parameters (e.g. convection, water vapour)

should be considered when optimizing the RC-TEG. In addition, parameters in both

the radiative cooler and the TEG should be optimized simultaneously [119]. Therefore,

a holistic approach should be adopted concerning environmental and device parame-

ters when investigating and optimizing the RC-TEG performance.

2.6.2 Photovoltaic thermoelectric generator

Besides radiative cooling, systems that integrate photovoltaic with thermoelectric gen-

erators have also attracted significant attention. Combining TEGs with PV panels of-

fers a promising approach to utilizing excess heat, thereby enhancing the overall effi-

ciency of the photovoltaic system and generating additional electrical power. Numer-

ous studies have shown that general hybrid PV-TEG systems often achieve higher effi-

ciency than standalone PV systems [120][121][122][123]. However, integrating these

two modules increases the system’s structural design and optimization complexity.

Consequently, developing a robust model that enables quick and accurate simulation

of the PV-TEG system’s performance. Nonetheless, creating such a model presents sig-

nificant challenges.

Recent scholarly investigations have proposed various models for PV-TEG systems,

yet many exhibit inherent flaws, as catalogued in Table 2.1, with ρc contact resistivity,

CPV PV coating, MPV PV morphology, VPV the PV voltage. For instance, Bjùrk et al.

developed an analytical model to study the PV-TEG system with different PV materials

[124]. However, this work estimates the efficiencies of both PV and TEG through an

analytical approach. Apart from material variation, all parameters are held constant,

constraining the model’s versatility for application.

Fini et al. developed a one-dimensional (1D) PV-TEG mathematical model and veri-

fied it through experiments [125]. Similarly, Makki et al. created a one-dimensional

mathematical model of a PV-TEG system with a hot pipe [126]. This model’s primary

variables are limited to ambient temperature, wind speed, and solar radiation, while

other essential parameters for the PV and TEG models are kept constant. The limited

scope of these variables indicates that the model may lack broad generalizability. Babu
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TABLE 2.1: PV-TEG modelling method literature review.

Research PV model TEG model
T-D
property

ρc
CPV ,
MPV

VPV

[124]
mathematical
model

mathematical
model

No No No No

[125]
mathematical
model

3D FEA No Yes No No

[126]
mathematical
model

mathematical
model

No Yes No No

[127]
mathematical
model

mathematical
model

No Yes No No

[128]
mathematical
model

mathematical
model

No Yes No No

[129]
mathematical
model

mathematical
model

No No No No

[130]
mathematical
model

3D FEA Yes No No No

[131]
mathematical
model

3D FEA Yes No No No

[132]
mathematical
model

mathematical
model

No No No No

[133]
mathematical
model

mathematical
model

No No No No

[134]
mathematical
model

mathematical
model

No Yes No No

[135]
mathematical
model

mathematical
model

Yes Yes No No

[136]
mathematical
model

3D FEA Yes No No No

[137]
mathematical
model

3D FEA No No No No

et al. developed a one-dimensional PV-TEG mathematical model to analyze the sys-

tem’s performance with different PV materials and environmental parameters, achiev-

ing an overall improvement of about 6% [127]. Gu et al. developed a one-dimensional

mathematical model to analyze the PV-TEG system, gaining an efficiency improve-

ment of 1.24% to 2.85% relative to the PV system alone [128]. Since these models are

inherently one-dimensional, neglecting parameters in the other two dimensions com-

promises both the model’s accuracy and comprehensive applicability.

Motiei et al. further investigated the thickness and melting point of phase change ma-

terials (PCM) by performing a two-dimensional modelling of the PV-TEG model [129].

This model includes ambient air temperature, wind speed, heat loss and convection,

focusing on the impact of different PCMs. In addition, most PV-TEG models adopt a

simple equation to estimate PV efficiency [138] while using constant values for the ther-

moelectric material properties. These simplifications inevitably diminish the accuracy
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of their respective models. Shittu et al. evaluated the efficiency of the PV-TEG sys-

tem, both with and without a flat plate heat pipe. Their analysis was underpinned by

constructing a 1D mathematical model complemented by a 3D finite element analysis

model, specifically utilizing COMSOL [129] [131]. Employing temperature-dependent

material parameters in their TEG COMSOL model enhances its precision. While 3D

FEA modelling for both yields more precise results, its simulation speed is significantly

slower than mathematical modelling. Therefore, a modelling tool that combines the ac-

curacy of 3D finite element analysis with the efficiency of mathematical modelling is

essential.

Shittu et al. evaluated the efficiency of the PV-TEG system, both with and without a

flat plate heat pipe, using a 1-D mathematical model and a 3-D finite element analysis

model in COMSOL [130]. Their use of temperature-dependent material parameters in

the COMSOL model for TEG enhances its precision. Nonetheless, the omission of con-

tact thermal and electrical contact resistance in their model may introduce limitations.

Regarding the PV efficiency, most models adopt a simple equation of 2.16 [138],

ηPV = ηre f [1 − β(Tc − Tre f )] (2.16)

ηPV is the PV efficiency, and β is the temperature coefficient. Tc is the average tem-

perature of the silicon layer, and Tre f is the reference temperature of 298.15K. ηre f is

the reference efficiency of the polycrystalline silicon solar cell at Tre f . This equation

results in potentially less accurate outcomes than those calculated through a 3D finite

element analysis (FEA) model. While 3D FEA modelling yields more precise results,

its simulation speed is significantly slower than mathematical modelling. Therefore, a

modelling tool that combines the accuracy of 3D finite element analysis with the effi-

ciency of mathematical modelling is essential.

2.7 Machine learning technology

Machine learning, a core artificial intelligence component, involves studying how com-

puters can simulate or implement human learning behaviour to acquire new knowl-

edge or skills. It focuses on the continuous reorganization and improvement of exist-

ing knowledge structures. Machine learning has a long history, dating back centuries.

Key developments such as Bayes’ theorem, Laplace’s derivation of least squares, and

Markov chains in the 17th century laid the groundwork for its widespread applica-

tion. Research approaches and objectives have evolved since the formal study of ma-

chine learning began in the 1950s. Initially concentrating on system execution, the field

expanded to include concepts like neurons, producing more tangible results. Tradi-

tional research directions in machine learning have encompassed decision trees, ran-

dom forests, artificial neural networks, and Bayesian learning [139].
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Bayesian learning represents one of the early research directions in machine learning.

This approach is rooted in a specific case of Bayes’ theorem, which was proved by

the British mathematician Thomas Bayes in 1763. Through the collective efforts of nu-

merous statisticians, Bayesian statistics were gradually established as a fundamental

component of the field after the 1950s [140].

Random Forest (RF), a pivotal algorithm in machine learning, is a method that employs

multiple tree classifiers for classification and prediction tasks [141]. Recent research

on random forest algorithms has seen rapid development, with applications spanning

diverse fields such as bioinformatics, ecology, medicine, genetics, remote sensing ge-

ography, and applied research [142]. In this thesis, Machine learning only focuses on

artificial neural networks and genetic algorithms.

2.7.1 Artificial neural networks

Artificial neural networks (ANNs) are algorithms known for their non-linear adaptive

information processing capabilities [143]. ANN is a general-purpose neural network

with fully connected layers, suitable for a variety of tasks and data types. They can

overcome the limitations of traditional artificial intelligence methods, particularly in

areas such as pattern and speech recognition and in processing unstructured informa-

tion. The concept of artificial neural networks has been around since the 1940s and has

seen rapid development. Convolution Neural Networks (CNNs) include convolutional

layers that apply convolutional operations to the input data, which helps in capturing

spatial hierarchies in images. Therefore CNN are the most commonly used in computer

vision and image recognition applications [144].

In recent years, with the advent of concepts like cloud computing and big data, coupled

with further improvements in computer performance, data collection has significantly

increased. This abundance of data is instrumental in aiding machine learning, dramat-

ically improving its success rate. An artificial neural network is a complex network of

interconnected neurons where each unit processes numerical input and output. Before

it becomes operational, the network must undergo a learning process based on spe-

cific criteria. One of the key strengths of this method is its ability to learn from errors,

reducing the likelihood of repeating the same mistakes. This approach is character-

ized by solid generalization and non-linear mapping capabilities, making it suitable

for modelling systems with limited information. From a functional simulation per-

spective, artificial neural networks exhibit parallelism, enabling them to transfer data

at extremely high speeds.

Artificial neural networks (ANNs) can be categorized into two main types: classifica-

tion networks and regression networks, each with distinct operational characteristics.

Regression ANNs, known for their powerful fitting ability, have been utilized in the
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energy sector for modelling energy consumption, forecasting energy demand [31][32],

and predicting electricity consumption [33]. Another example is convolutional neural

networks (CNNs), which employ convolutional calculations between layers and are

commonly used in image and speech recognition.

ANN technology has been increasingly utilized in energy sectors to analyze and control

the energy consumption in buildings [145] and motor drive applications [146]. More

recently, ANN has been adopted to facilitate the modelling and design of renewable

energy technologies with high fidelity [147] [148]. For example, Rodriguez et al. pre-

dicted solar energy generation through ANN [149]. Wang et al. applied an ANN model

to model the phase-altering thermoelectric materials-based TEG system [150].

The neuron is the most fundamental component of a neural network, as illustrated in

Figure 2.8. In its simplest form, a neuron receives two inputs (X1, X2), each multiplied

by a corresponding weight (w1, w2). A bias is then added to this weighted sum, passing

the result through an activation function to produce the output (O1). Figure 2.8 can also

FIGURE 2.8: The structure of a neuron in an artificial neural network.

be represented by Eqs. 2.17 [151],

O1 = f (WTX + b) (2.17)

where W denotes the vector of weights, X is the vector of inputs, and b is the bias. A

fully connected neural network is formed by connecting multiple neurons to link each

neuron to all the neurons in the preceding and succeeding layers. Figure 2.9 shows a

simple structure of an ANN.

In addition to weights and biases, a neuron requires an activation function. Two com-

mon activation functions are ReLU (Rectified Linear Unit) and Sigmoid. The plot of

two activation function are shown in Figure 2.10
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FIGURE 2.9: The schematic of ANN structure.

FIGURE 2.10: The plot of (a) ReLU and (b) Sigmoid activation function.

The ReLU function converts values less than 0 to 0, while values greater than 0 remain

unchanged, as shown in Eqs. 2.18 [152]:

ReLU(x) = max(x, 0) (2.18)

The ReLU function simplifies calculations in regression neural networks, especially

during partial derivative computations. This is because the derivative of the ReLU

function becomes one for positive input values, thereby streamlining the calculation

process. The Sigmoid function is shown in Eqs. 2.19 [153],

Sigmoid(x) =
1

1 + e−x
(2.19)

The Sigmoid function is characterized by its ability to map values from the entire do-

main of real numbers to a range between 0 and 1. This feature is highly effective for

classification neural networks, which aim to categorize data into a limited number of

classes. The data compression into the [0, 1] range can effectively represent the proba-

bility of occurrence in a given category, making the Sigmoid function a popular choice

for classification tasks.
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The next step involves determining the neurons’ basic parameters and adjusting the

weights and biases to enable the neural network to fit the results as accurately as pos-

sible. This process necessitates the use of loss functions and gradient descent.

The loss function, dependent on the weights, guides the optimization process in a neu-

ral network. By taking the partial derivative of the loss function concerning these

weights, we can determine the direction in which to adjust the weights and biases in

the subsequent step. A typical loss function is the mean squared error, as shown in Eqs.

2.20 [154],

l(i)(W, b) =
1

2
(Ô(i) − O(i))2 (2.20)

where l(i) denotes the loss function of the ith neuron, Ô denotes the predicted output

value, and O represents the actual output value.

The partial derivative of Eqs. 2.20 indicates how the weights or biases should be ad-

justed. However, knowing the direction of adjustment is insufficient; the step size,

or learning rate, must also be determined. New weights and biases are calculated by

subtracting the partial derivative of the loss function from the current weights. This

process of updating weights and biases to minimize the loss function is known as gra-

dient descent. The weights and biases are updated in each iteration or epoch to bring

the predictions closer to the actual results. After undergoing sufficient epochs, the loss

function will typically oscillate around a small value. This behaviour indicates that the

neural network has reached a local minimum in its optimization process. It generally

is a local minimum rather than a global minimum, as finding the global minimum di-

rectly through gradient descent is challenging. Optimizing the neural network is to

find the most favourable local minimum. The entire process, from the initial gradient

descent to finding the minimum value, constitutes the training phase of a neural net-

work. All adjustments to the weights and biases are computed automatically, which

epitomizes machine learning.

Each neuron in a complex neural network represents a parameter. Theoretically, with

enough parameters, it is possible to fit any function. However, in practice, too com-

plex networks can suffer from overfitting. Overfitting occurs when the neural network

is trained to fit the training dataset perfectly but performs poorly on data outside this

dataset. This situation is undesirable and should be avoided. Additionally, it is essen-

tial to recognize that neural networks with more superficial structures can be prone to

underfitting, where the model is too simplistic to capture the underlying patterns in

the data effectively.
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2.7.2 Iterative training process

As a data-driven approach, the effectiveness of an Artificial Neural Network (ANN)

heavily depends on both the quantity and quality of its training dataset, which is tra-

ditionally generated through a randomized procedure. During the training process,

the network learns by interpolating to fill gaps in the training data. However, this in-

terpolation might not be adequate if the training data contains sharp features or if the

network is designed to model specific features [24]. To address this, introducing a new

generation of ANNs tailored to a specific dataset can theoretically bias the network to-

wards the accuracy of that particular dataset. This approach, known as iterative train-

ing, can be conducted in one or more rounds to enhance accuracy for a specific dataset.

In this thesis, we are especially interested in TEG designs that yield high-power perfor-

mance. However, these high-performance instances might constitute only a tiny frac-

tion of the overall training dataset in a more complex model, such as a segmented TEG

model. If the training data lacks sufficient high-performance instances, the ANN’s ac-

curacy for such cases could be compromised. Therefore, through iterative training and

optimization of network parameters via gradient descent [155], the ANN model can

effectively learn the non-linear relationships between TEG inputs (such as geometri-

cal parameters and operating conditions) and its power performance (including power

density and efficiency) within the dataset parameter space.

Nonetheless, it’s important to note that a large dataset, particularly one generated

by mathematical simulations like Finite Element Analysis (FEA), demands significant

computational resources. This requirement can challenge the practical application of

ANNs in such scenarios.

2.7.3 Genetic algorithm

A Genetic Algorithm (GA) is a computational approach that mimics the mechanisms of

natural selection and genetic processes found in Darwinian biological evolution [156].

It searches for optimal solutions by emulating these natural evolutionary processes. A

distinctive feature of GA is its ability to operate directly on structural objects without

requiring differentiation and continuity of functions. This characteristic endows ge-

netic algorithms with parallelism and enhanced capabilities for global optimization.

Additionally, GA employs a probabilistic approach to optimization, automatically ex-

ploring and guiding the search within an optimized space without predefined rules

and adaptively adjusting the search direction as needed.

Genetic algorithms consider the entire population of individuals, and randomization

techniques are used to search the encoded parameter space efficiently. The core genetic

operations in GA are selection, crossover, and mutation. It is important to note that
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genetic algorithms do not guarantee the optimal result; they often converge to local

minima rather than global minima. Figure 2.11 shows the basic schematic of the genetic

algorithm [157].

FIGURE 2.11: The flow chart of genetic algorithm.

Genetic algorithms primarily focus on evaluating populations, including potential so-

lution sets. These solution sets are typically identified as maximum or minimum val-

ues. Within these populations, each individual is represented by a genetic code analo-

gous to a genome in biological terms, also known as a chromosome. To simulate genetic

coding as it occurs in biology, a common approach is to represent individuals using bi-

nary codes. This representation is achieved by translating the characteristics of each

individual into a binary format through coding.

However, there are various encoding methods, and the choice of encoding can sig-

nificantly influence the effectiveness of genetic algorithms. Once the coding process is

complete, the initial population undergoes evolution based on a meritocratic approach.

This involves selecting individuals according to their fitness levels and then applying

combinations of crossover and mutation to generate new generations. These evolu-

tionary processes enable the population to evolve and potentially improve over time.

The following paragraphs will provide a concise overview of each step involved in the

genetic algorithm process.

Several standard encoding methods are commonly used in genetic algorithms, includ-

ing binary, floating-point, and symbolic encoding. Binary encoding, the simplest method,
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involves converting decimal numbers into binary format. Its advantages include sim-

plicity in encoding and decoding, ease of understanding, and adherence to the prin-

ciple of minimum character encoding. However, binary encoding has a notable dis-

advantage: the exponential growth in the weight of each binary bit can lead to dis-

continuities near the optimal solution, potentially causing significant deviations and

inconsistent results.

On the other hand, floating-point encoding represents each gene value of an individual

as a floating-point number within a specified range. This method is more complex than

binary encoding but is better suited for genetic algorithms that require high precision.

Symbolic coding is a method where the gene values in an individual’s chromosome

are represented by symbols from a set, such as A, B, C, which do not have numerical

meanings. This encoding type is used when the gene values are categorical or symbolic

rather than numerical.

Several standard selection methods are used in genetic algorithms to choose specific

individuals from a parent population, typically based on their fitness levels [158]. In-

dividuals with higher fitness are more likely to be selected and passed on to the next

generation. The selection method essentially translates the results of the fitness func-

tion into selection probabilities. Some typical selection methods include:

1. Roulette Wheel Selection: This is a probabilistic sampling method where the

chance of an individual being selected for the next generation is proportional to

its fitness relative to the total fitness of the population. However, this method can

introduce significant errors due to the possibility of not choosing the large fitness

functions.

2. Stochastic Tournament Selection: In this method, pairs of individuals are chosen

randomly and ’compete’ based on their fitness. The individual with higher fitness

is selected, and this process continues until the desired population size is reached.

3. Remainder Stochastic Sampling with Replacement: In this method, individuals

with above-average fitness are more likely to be passed on to the next generation,

resulting in fewer selection errors.

4. Optimal Individual Conserving Method: The individual with the highest fitness

in the current population is preserved and does not undergo crossover and mu-

tation. Instead, it replaces the individual with the lowest fitness in the population

after these operations.

Crossover is an essential step in genetic algorithms to generate new individuals af-

ter the selection process [158]. Common crossover methods for binary or floating-

point codes include one-point crossovers, two-point crossovers, uniform crossovers,

and arithmetic crossovers.
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1. One-point Crossover: This method involves setting a single random point in an

individual’s coding string. Subsequently, parts of the chromosomes from two

paired individuals are exchanged at this point.

2. Two-point Crossover: Similar to the one-point crossover, but with two random

crossover points set in the coding string. A segment of genes between these points

is then exchanged between two individuals.

3. Uniform Crossover: In this method, the coded genes are exchanged between two

paired individuals at each gene position, with an equal possibility of crossover.

This results in the creation of two new individuals.

4. Arithmetic Crossover: This involves a linear combination of two individuals to

produce two new unique individuals. It is typically applied to individuals repre-

sented by floating-point codes.

Each of these crossover methods has its advantages and is selected based on the specific

requirements and objectives of the genetic algorithm.

After new populations are formed through crossover, mutation is necessary to intro-

duce genetic variation, similar to what occurs in nature [158]. In genetic algorithms,

mutation involves altering the value of a gene at a specific locus in an individual’s chro-

mosomal coding string, resulting in a new individual. Standard mutation methods for

binary and floating-point encoding include Simple Mutation, Uniform Mutation, and

Boundary Mutation:

1. Simple Mutation: This involves mutating a gene value at a randomly chosen

locus in an individual’s coding string with a certain probability of variation.

2. Uniform Mutation: This method replaces the original gene values at each locus

in an individual’s coding string with a random number within a uniform distri-

bution range, albeit with a small probability. It is beneficial in the early stages of

an algorithm.

3. Boundary Mutation: This mutation randomly substitutes one of the two bound-

ary gene values at a locus for the original gene value. It is especially effective

for problems where the optimal solution is likely at or near the boundary of the

feasible solution space.

2.8 Conclusion

This Chapter provided a comprehensive overview of the principles, materials, and

structures relevant to thermoelectric generators. A detailed review of conventional and
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segmented TEG architectures was presented. The chapter also explored the challenges

and limitations of current TEG modelling approaches, including theoretical models,

one-dimensional mathematical models, and three-dimensional finite element analysis.

In addition, hybrid TEG systems, such as those combined with radiative cooling and

photovoltaic technologies, were introduced for their potential to enhance energy har-

vesting capabilities. Then, the application of artificial neural networks in TEG design

and optimization was introduced as a novel approach to address the limitations of tra-

ditional modelling methods. Overall, this chapter established a solid foundation for

the subsequent exploration of ANN-enabled TEG modelling and optimization.
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Chapter 3

Methodology

This chapter will outline the methodologies employed in this thesis, including COM-

SOL simulations, ANN training, and the implementation of a genetic algorithm. The

COMSOL section will discuss the basic simulation process for TEGs. The COMSOL

model serves as the baseline in this project, and the exploration focuses on how an

ANN can be used as an alternative to the COMSOL model. For the ANN segment,

the focus will be on the dataset preparation process and the neural network configu-

ration. Finally, the section on genetic algorithms will explore the specific settings of

hyperparameters for two different TEG scenarios.

3.1 COMSOL simulation

COMSOL Multiphysics@ is a commercial simulation software that has become increas-

ingly valuable as computers grow more powerful. It enables the integration and calcu-

lation of complex physical quantities that are challenging to compute manually. This

software was selected for its robustness and accuracy in calculating parameters associ-

ated with the TEG model[159]. In the TEG COMSOL modelling, the relevant physics,

Heat Transfer in Solids, Electric Currents, and Electrical Circuits are selected.

In COMSOL, a thermoelectric generator (TEG) model is assembled using various ge-

ometric components. These include the ceramic layer on top, the electrodes connect-

ing the legs, the thermoelectric material, and the symmetrical connecting and ceramic

layers at the bottom. Figure 3.1 illustrates the basic structure of the TEG model in

COMSOL. When constructing the TEG model, it is necessary to define the geometric

parameters of each component. These parameters are often represented by variables,

allowing for easy modification in subsequent simulations. Additionally, to make the

simulation more representative of real-world conditions, factors such as the convection
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FIGURE 3.1: COMSOL simulation model

effect and the contact resistance between materials must be accurately configured in

COMSOL.

The COMSOL simulation aims to calculate maximum power density (PDmax) and effi-

ciency (η). The input parameters are Qin and TH. These represent two input scenarios:

a constant heat flux density and a constant temperature. These two input parameters

result in inconsistent output parameters. At a constant heat flow density for the input

parameter, the efficiency equation is as Eqs. 3.1,

η =
PDmax

Qin
(3.1)

where Qin is the input heat flux. Since Qin is a known input parameter, the efficiency

can be directly calculated from the maximum power density (PDmax). Therefore, when

the heat flux is used as the input, the output is characterized solely by the maximum

power density. Furthermore, when the temperature (TH) is used as the input parameter

and the value of heat flux density is unknown, the outputs will simultaneously include

both efficiency and maximum power density.

Since the output value of interest is the maximum power density, scanning through

different load resistance values during the simulation to identify the resistance at which

this maximum value occurs is necessary. The process begins with an initial estimation

of the approximate range of resistance derived from the resistance of the n-type and

p-type materials. Subsequently, the total internal resistance is calculated based on the

geometric parameters used in the modelling, as outlined in Eqs. 3.2,

Rcal = RN + RP + RIC + RC (3.2)
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where Rcal is the estimated internal resistance. RN and RP are the resistances of the

n-type and p-type legs, respectively, RIC is the resistance of the electrodes, and RC

is the contact resistance. The maximum output power density is achieved when the

load resistance equals the internal resistance. However, in COMSOL models with com-

plex parameters, the resistance of the material varies with temperature. This means

the internal resistance changes at different temperatures, making it difficult to directly

estimate the internal resistance to ensure the load matches it exactly. Therefore, theoret-

ically, the load resistance value corresponding to the maximum output power density

should be close to the estimated value of Rcal . By scanning the load resistance as per

Eqs. 3.3, it is possible to determine the location of this maximum value approximately.

RL = Rcal × 10range(log100.01, 1
2 ,log10100) (3.3)

3.2 COMSOL model validation using theoretical model

Once the COMSOL model of the thermoelectric generator is built, a crucial step is to

verify its validity. This is achieved by constructing a theoretical model of the thermo-

electric generator and ensuring that the COMSOL model produces consistent results

when the same parameters are applied. Since the theoretical model is very difficult to

calculate temperature-dependent material parameters, fixed parameter materials were

used to maintain consistency in the COMSOL model. However, in subsequent projects,

temperature-dependent materials were employed in the COMSOL model.

The structure of the TEG model, as shown in Figure 3.1, includes specific geometric pa-

rameters: the n-type and p-type materials are each set to a width and height of 10 mm,

the upper and lower ceramics have an area of 500 mm2, the ceramics have a thickness

of 0.5 mm, and the electrodes are 1 mm thick.

To concentrate on verifying the parameters of the thermoelectric material section, the

thermal resistance and electrical conductance in the ceramic, as well as the thermal re-

sistance and electrical resistance in the electrode, were ignored. Given that the theoret-

ical model is primarily designed to calculate parameters at constant temperatures, the

Seebeck coefficients, thermal conductivities, and electrical conductivities of the ther-

moelectric materials are set to fixed values to accommodate all temperature variations.

The single TE material parameters are Sn = −0.000375V/K, Sp = 0.000375V/K, σn =

σp = 105S/m, kn = kp = 1W/(mK). Cold-side temperature (TC) is fixed at 300K. Con-

tact resistance is ignored in the validation.

In thermoelectric generators, three heat sources are present on both the hot and cold

sides: Peltier heat, Joule heat, and heat conduction. Therefore, the power for the hot
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(QH) and cold (QC) surfaces can be respectively expressed as follows:

QH = SITH − 1

2
I2Ri + K(TH − TC) (3.4)

QC = SITC +
1

2
I2Ri + K(TH − TC) (3.5)

Where I is the current, Ri is the inner resistance, and TH and TC are the hot-side and

cold-side temperatures, respectively. Consider the load resistance of the TEG as RL

and the output power of the TEG as P. Consequently, the expression for P can be

formulated as follows:

P = I2RL (3.6)

According to the law of energy conservation, P can also be expressed as:

P = QH − QC (3.7)

By integrating Eqs. 3.6 and Eqs. 3.7, we can derive an expression for the current (I):

I =
S(TH − TC)

Ri + RL
(3.8)

Therefore, the output power is expressed as:

P =
S2(TH − TC)

2RL

(Ri + RL)2
(3.9)

At the constant temperature condition, Eqs. 3.9 can directly calculate the power of TEG.

When the heat flux is constant, TH is a variable. At this point QH is known and Eqs. 3.4

represents the relation between TH and I. Additionally, combining Eqs. 3.6 and Eqs.

3.7 results in Eqs. 3.10, which is another equation for TH and I. RL is a parameter that

can be given and is therefore considered fixed.

I2RL = QH − (SITC +
1

2
I2Ri + K(TH − TC)) (3.10)

Joining Eqs. 3.4 and 3.10 and substituting TH yields a system of quadratic equations

about I.

As an example, the solution is provided when the load resistance RL is equal to 0.002

Ω, simplifying the calculation by using specific parameters. Bringing in the specific

parameters gives S = Sp − Sn = 7.5e−4V/K, Ri = 0.002Ω, K = Kp + Kn = 0.02W/K.

When QH = 10W, substituting the above parameters, Eqs. 3.4 becomes:

16 = 7.5e−4 ITH − 1e−3 I2 + 2e−2TH (3.11)
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And the Eqs. 3.10 becomes:

2e−3 I2 = 16 − 0.225I − e−3 I2 − 2e−2TH (3.12)

Joining Eqs. 3.11 and 3.12 by replacing the TH, the results are

1.125e−4 I2 + 12.4375e−3 I − 0.375 = 0 (3.13)

Solving Eqs. 3.13, eliminating the negative value, the result is I = 24.653A. Using Eqs.

3.6, the power is calculated as P = 1.2155W, which is very close to the COMSOL result

of 1.216W.

The outcomes of both the theoretical and COMSOL models under the specified condi-

tions are depicted in Figure 3.2. In the first case, when the hot-side temperature (TH) is

FIGURE 3.2: COMSOL simulation model validation via theoretical model

450K, the power corresponding to this condition can be calculated from the load resis-

tance, as demonstrated in Eqs. 3.9 and illustrated in Figure 3.2a. When the input heat

flux (QH) is 10W, the hot-side temperature (TH) is initially calculated using Eqs. 3.4.

Subsequently, this value of TH is incorporated into Eqs. 3.9 to determine the power at

this point, as depicted in Figure 3.2b.

The results reveal that the COMSOL simulation closely aligns with the theoretical model,

demonstrating the effectiveness of the COMSOL modelling approach. However, the

theoretical model has certain limitations due to its fewer parameters. It does not ac-

count for factors such as the temperature-dependent Seebeck coefficient and neglects

contact resistance. Consequently, in this thesis, we utilize a more comprehensive COM-

SOL model and build an artificial neural network model based on it for greater accu-

racy. For the more complex COMSOL model, it is currently difficult to verify its va-

lidity, and experimentation is necessary for accurate validation. However, the focus of

this project is to compare the results between the ANN and COMSOL. The validation

of the complex COMSOL model will be addressed in future research.
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3.3 Artificial neural networks

All work using the ANN has been written using the Python-based PyTorch module.

The code can be found in the appendix. All the training datasets are generated from

the COMSOL model. Thousands of random input parameter sets are generated and

imported into the COMSOL model to obtain the desired output values. These corre-

sponding input and output parameters are then combined to create the final desired

dataset.

Before the training process, it is essential to normalize the generated data. The primary

goal of normalization is to ensure that each set of inputs has an equivalent impact on the

output. This normalization process should be based on the distribution of the datasets,

which typically fall into two main categories: uniform distribution and normal distri-

bution. Therefore, the initial step before normalizing the dataset is ascertaining the

input and output distribution type.

For the ANN, the input data are uniformly distributed. This uniformity arises because

the data is generated in an averaged manner during the dataset creation process. On the

other hand, the output data in this thesis follow a normal or log-normal distribution.

Given that most of the input parameters are uniformly distributed, normalization was

carried out using the following equations [160]:

I′ =
I − min(I)

max(I)− min(I)
(3.14)

I′ is the normalized value, and I is the original input data. This normalization allows

all input data to be between [0, 1]. Similarly, normalization was also performed on

the output data to ensure the weights of back propagation were the same as the two

outputs. However, as the output data have a relatively large range, the logarithmic

scale was adopted for normalization. Eqs 3.15, therefore, performed the normalization

of these data [160]:

O′ =
ln(O)− M

SD
(3.15)

in which O′ and O are the normalized and original output values, respectively. M is

the mean value, and SD is the standard deviation. The normalization process for data

that follows a normal distribution involves omitting the logarithmic calculation from

the Eqs. 3.15. More details of normalization can be found in the Appendix code.

After completing the normalization process, the next step involves determining the

relevant training hyperparameters, as listed in Table 3.1. The ’Epochs’ refers to the

number of times the entire dataset undergoes training, while the ’Batch size’ is the

smallest unit of data processed during training. After processing each batch, gradient

descent is performed to update the weights and biases. A standard batch size of 64 was

chosen.
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The activation function selected is the commonly used ReLU (Rectified Linear Unit),

and the loss function is Mean Square Error (MSE). For the optimizer in ANN training,

the Adam algorithm was chosen [161]. Adam maintains two moving averages: the

mean (first moment) and the uncentered variance (second moment) of the gradients.

The parameters are updated using these moving averages, which helps to stabilize the

training process. The learning rate, which determines the step size for each training

iteration, is a critical parameter. A minimal learning rate can lead to more accurate

minima detection but may also result in convergence to local minima. Conversely,

a more significant learning rate can avoid many local minima but might cause oscil-

lations around the minima. This thesis employed a learning rate of 0.001, which is

normally used in ANN training [161]. The two subsequent reductions at epochs 1800

and 1900, which is called the StepLR, ensure that the final trained network closely ap-

proaches the minimum value.

TABLE 3.1: List of hyperparameters for artificial neuron network training

Hyperparameters Values

Epochs 2000
Batch size 64

Activation function ReLU
Initialization method Weight: Kaiming uniform; bias: zeros

Loss function Mean Square Error (MSE)
Optimizer Adam; learning rate: 0.001

Learning rate scheduler MultiStepLR; Milestones=[1800,1900]

Kaiming Uniform initialization, also known as He initialization, is a method used to

initialize the weights of neural networks, particularly deep learning models [162]. It

is designed to keep the scale of the gradients approximately the same in all layers,

which helps in mitigating the vanishing/exploding gradient problems commonly en-

countered in deep networks. The weights are initialized using a uniform distribution

within the range:

ω ∼ u(−
√

6

in
,

√
6

in
) (3.16)

Where ω is the weight. u is the uniform distribution, and in is the number of input

units. Once the training hyperparameters for the network have been established, a few

more critical decisions regarding the neural network’s architecture need to be made,

precisely the number of layers and the number of neurons in each layer. Determin-

ing the optimal complexity of a network directly from a dataset is challenging before

training begins. Therefore, one typically relies on prior experience to decide on an

approximate number of layers and neurons. In this experiment, different neuron and

layer structures are tested.

The datasets were split into three subsets in the training process: training, validation,

and testing. The training data were utilized to optimize the ANN, with the network’s
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weights and biases being updated through back-propagation. The validation data

served a dual purpose: to evaluate the network’s performance, act as a checkpoint

during training, and detect any overfitting or underfitting that might occur. Finally,

the test data, which were entirely new to the network, were employed to assess the

network’s prediction accuracy after the training was completed. The random seeds in

Python scripts are fixed during training to ensure reliability on each trial. All the codes

can be viewed in the appendix.

3.4 Genetic algorithm

This thesis employs a genetic algorithm (GA) to couple with the ANN or COMSOL

model to optimize geometrical parameters. MOGA optimizes structures for two or

more objectives simultaneously, building on GA. MOGA optimization seeks to find a

set of solutions that offer trade-offs among different objectives. However, for TEG op-

timization, this report focuses on a single objective, so MOGA was not used. The ANN

was trained based on the previous section before the GA was performed. Figure 3.3

presents the flow chart and detailed steps of the genetic algorithm [158]. The specifics

of how the genetic algorithm is implemented in this report will be elaborated in the

subsequent section.

FIGURE 3.3: The flow chart of the GA process for TEG optimization.
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Firstly, the operating conditions can be selected to best match practical scenarios. The

optimization itself is a meticulous iterative process. In each generation, a specific per-

centage of the top-performing geometrical parameter sets is preserved. This approach

allows the samples to undergo genetic evolution until the predetermined generation

time limit is reached.

Before initiating the genetic algorithm, it is essential to determine the size of the pop-

ulation. In this thesis, a population size of 100 candidate designs was chosen. The

reason for choosing this population size is that in later experiments, it was observed

that the results became stable after 50 cycles. Therefore, selecting a population size of

100 ensures that the optimal results are achieved for each optimization. For each gen-

eration within the algorithm, 100 procedures are initially predicted by either the ANN

or COMSOL model to yield 100 values. Once the population size is established, the

next step is to encode the population. Encoding is a critical aspect of designing genetic

algorithms, as it influences the functioning of genetic operators like crossover and mu-

tation and significantly impacts the efficiency of gene evolution. Binary encoding is one

of the commonly used methods. Since a binary code sequence of a certain length can

represent floating-point numbers with limited precision, it is necessary to determine

the resolution of the input parameters.

After determining the encoding method and resolution, the number of bits required

for the binary code can be calculated. For instance, consider the parameter Wn with a

range of [0.5, 5] and a resolution of 0.01. The total number of discrete values within this

range is (5 - 0.5)/0.01 + 1, which equals 451. Since 29 equals 512, greater than 451, the

number of bits required to encode Wn is 9. This method is applied similarly to calculat-

ing the number of bits for the other parameters. The final step involves converting all

parameters into binary form using Eqs. 3.17 and Eqs. 3.18 [157].

(b0b1 . . . bN−1)2 = (ΣN−1
i=0 bi2

i)10 = (BO)10 (3.17)

XO = Lb + BO
Ub − Lb

2N − 1
(3.18)

Eqs. 3.17 is the formula for converting a binary number to a decimal number (BO). Eqs.

3.17 converts the decimal number (BO) to the original interval [Lb, Ub]. Lb and Ub are

the lower and upper bounds for all parameters, respectively. N denotes the number of

binary bits, and BO is the decimal number corresponding to the binary number, XO

denotes the final output.

After coding all the parameters, a fitness function must be introduced to evaluate which

individuals need to be selected. In this thesis, the primary objective of the genetic algo-

rithm is to identify the maximum value, so the fitness function is designed to facilitate

this goal. The essence of the fitness function in this investigation is based on the output

calculated by either ANN or COMSOL. This is where ANN and COMSOL feed into the
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GA process. The output is then processed through the fitness function, as described by

specific equations:

FitV = FO − min(FO) (3.19)

where FitV is the output of the fitness function, and FO is a list of ANN or COMSOL

outputs for all populations in one generation. In the fitness function, each data point is

subtracted from the minimum value to amplify the differences among the data. After

determining the fitness function, the next step is selection. For this thesis, the selection

component of the genetic algorithm employs tournament selection.

Tournament selection starts by deciding the number of individuals to be selected at a

time. In each selection round, three individuals are randomly chosen from the entire

population. Among these, the individual with the highest fitness function is selected.

This process is repeated: three individuals are randomly selected from the whole popu-

lation, and again, the one with the highest fitness value is chosen. This cycle is repeated

until the size of the new population equals that of the original population, which, in this

thesis, consists of 100 individuals.

After the selection process, creating new populations through chromosome crossover,

where binary codes represent chromosomes, is necessary. In a genetic algorithm, crossover

involves exchanging segments of two binary codes at a few points to form new binaries.

In this thesis, the two-point crossover method was utilized, involving the swapping of

segments at two randomly selected points in the chromosome coding strings of the

individuals during the crossover process. By selecting two points for crossover, the al-

gorithm can produce a greater variety of offspring compared to single-point crossover.

This helps maintain genetic diversity within the population, which is crucial for avoid-

ing premature convergence to local optima. Following the crossover and the forma-

tion of new individuals, mutations are introduced to simulate the natural evolutionary

process. In this case, each binary-coded gene in the population has a 1% chance of

undergoing mutation.

After completing this process, a new generation of populations is entirely generated.

This cycle is repeated: new populations are selected based on the fitness function, con-

tinuing until the predetermined number of generations is achieved. In this experiment,

the population size was set at 100, and the total number of generations was fixed at

200. Regardless of whether the ANN or COMSOL model was utilized to calculate the

fitness function, the overall framework of the genetic algorithm remained consistent.

All COMSOL simulation and Python scripts run on the Intel 10980xe CPU platform

with a Radeon RX 6900XT graphic card. All GA codes can be found in the appendix.
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3.5 Conclusion

This section begins with a validation of the COMSOL model and the theoretical model

under the same parameters. It also describes the specific training methods for ANNs

and the specific algorithms for GA. The methods described in this chapter are applied

in later chapters, with only fine-tuning of the parameters. The specific adjustments are

described in more detail in the respective chapters. All code and datasets for this thesis

can be found in the appendix links.
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Chapter 4

Modelling and optimization of

conventional bulk TEG by ANN

This chapter delves into modelling a thermoelectric generator (TEG) using artificial

neural networks (ANNs). It outlines the process of verifying the model’s accuracy and

demonstrates how the model can be applied to various parameters. Additionally, it

explores integrating the model with genetic algorithms to identify the optimal struc-

ture for TEG systems. This approach highlights the potential of combining machine

learning techniques with optimization algorithms to enhance thermoelectric generator

design accuracy and calculation speed. The complete code of this Chapter can be found

in the Appendix.

This chapter has been published as: Yuxiao Zhu, Daniel W. Newbrook, Peng Dai, C.H.

Kees de Groot, Ruomeng Huang, Artificial neural network enabled accurate geomet-

rical design and optimisation of thermoelectric generator, Applied Energy, 2022, doi:

10.1016/j.apenergy.2021.117800. As the first author, my contributions include

building the COMSOL model, generating the dataset, building the ANN model, per-

forming the parameter sweep for ANN/COMSOL, GA coding and writing the paper.

Daniel provided the thermoelectric material parameters. Peng and Kees reviewed the

paper, and Ruomeng reviewed the paper and supervised the project.

4.1 Method

4.1.1 Details of the bulk TEG model

The TEG model investigated in this chapter is shown in Figure 4.1. A 3D model of the

thermoelectric generator was constructed in COMSOL, consisting of three main com-

ponents to initiate the simulation. The top and bottom layers are quartz and designed
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FIGURE 4.1: Conventional single-pair bulk architecture of a thermoelectric generator.

to be insulating yet thermally conductive. The middle section comprises the electrode

layer, which connects the n-type and p-type legs. The thickness of the ceramic is fixed

at 0.5mm. The thermal boundary conditions are set to a constant cold-side tempera-

ture (TC) of 300 K, and conventional heat flux on all open internal surfaces with a heat

transfer coefficient of 1mW/(cm2K) and external temperature of 293.15 K to include

surface heat convection to air [163]. The specific range and resolution of these pa-

rameters are detailed in Table 4.1. For analysis, the parameters have been categorized

into two groups: geometric parameters and operating conditions. Once the model has

TABLE 4.1: Geometrical parameters and operating conditions of TEG.

Geometrical Parameter Value Range Resolution

Height of the TEG leg (HTE) 0.5-5 mm 0.01mm
Height of the interconnect (HIC) 0.5-3 mm 0.01mm

Filling Factor (FF) 0.05-0.95 0.01
Width of the n-type TEG leg (Wn) 0.5-5 mm 0.01mm
Width of the p-type TEG leg (Wp) 0.5-5 mm 0.01mm

Operating Condition Value Range Resolution

Contact resistivity (ρc) 10−9 − 10−7
Ω · m2 10−9

Ω · m2

Heat flux (Qin) 100 − 500mW/cm2 1mW/cm2

Hot-side temperature (TH) 300-500 K 1 K

been built, it is necessary to identify the relevant materials. In this chapter, the n-type

material is Bi2Te2.7Se0.3 (BiTeSe) [164] and the p-type material is Bi0.5Sb1.5Te3 (BiSbTe)

[45]. The COMSOL imports required in the simulation are the Seebeck coefficients, and
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thermal and electrical conductivities of the n-type and p-type legs, shown in Figure 4.2.

In addition to the parameters mentioned earlier, several specific settings are needed

FIGURE 4.2: (a) Electrical conductivity (σ), (b) thermal conductivity (k), (c) Seebeck
coefficient (S) and (d) figure of merit (ZT) of the n-type and p-type semiconductors

used for the thermoelectric generator.[164][45]

within the COMSOL software and can be found in the Appendix. After constructing

the model, the lower two parts of the model must be connected to a voltage and cur-

rent detection device and a load resistor. This configuration enables the formation of a

complete circuit. Using probes, it is possible to measure voltage, current, and power,

which allows for the calculation of efficiency.

FIGURE 4.3: Power density values for a TEG simulated in COMSOL with different
load resistances under constant temperature difference.
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For each parameter set, the electrical terminal was connected directly to load resistance

and swept from 1/100 to 100 times the internal resistance. The maximum output power

was then extracted from a parabolic fit Eqs. 4.1 of the output power against the current

out as shown in Figure 4.3, with the goodness of fit 0.999.

PD = aI2 + bI + c (4.1)

FIGURE 4.4: Power density (blue) and time (red) of the COMSOL simulation per-
formed at different mesh elements.

The impact of mesh sizes on the simulation accuracy was evaluated by simulating the

same parameter set with different meshes as shown in Figure 4.4. The results showed

that the maximum output power obtained from a ªFinerº (6,824 elements) and ªEx-

tremely Finerº (60,236 elements) configurations are almost identical with 0.09% differ-

ence. Finer mesh configuration was therefore employed to simulate all parameter sets

for minimizing computational time while maintaining accuracy. The maximum ele-

ment size is 0.87mm, and the minimum element size is 0.0632mm. And the maximum

element growth rate is 1.4.

4.1.2 ANN configuration and dataset distribution

The configuration of the forward modelling network adopted in this work is shown in

Figure 4.5. The network was constructed by fully connecting the input layer of geo-

metrical parameters (FF, HTE, HIC, Wn, Wp) and operating conditions (ρC, Qin or TH)

with output layer of power performance (PDmax and η) through 2, 3, 4, 5, and 6 hidden

layers.

To train the artificial neural network, randomly generating 5000 distinct sets of input

data is essential, adhering to the resolution and range specified in Table 4.1. This is gen-

erated in a Python script, which saves an Excel file containing 5000 input datasets. As

previously mentioned, this chapter utilizes two types of input parameters: a constant

heat flux density and a constant temperature difference. Therefore, 5000 sets of input
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FIGURE 4.5: Architecture of the forward modelling neural network for predicting
power performance of the TEG model. The input layer contains geometrical param-
eters (FF, HTE, HIC, Wn, Wp) and operating conditions (ρC, Qin or TH). The output

layer contains power performance values (PDmax and η).

FIGURE 4.6: Distribution of the (a) maximum power density PDmax, (b) efficiency η
for the dataset under the operating condition of constant temperature difference

data are generated for the simulation for each type of input parameter. Although the

two data sets will have other distributions, the general type of distribution is similar.

The input Excel file is then imported into COMSOL to simulate the output results. Fi-

nally, the complete dataset of 5000 is obtained. Figure 4.6 and Figure 4.7 show the con-

stant temperature difference and heat flux density datasets. The distribution of PDmax

and efficiency η indicate the reason for normalizing the output dataset in log-normal

distribution. All datasets can be found in the link in the code in Appendix.
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FIGURE 4.7: Distribution of the (a) maximum power density PDmax, (b) efficiency η
for the dataset under the operating condition of constant heat flux

4.1.3 Genetic algorithm

The genetic algorithm is used in this project to optimize the TEG structure under spe-

cific operating conditions. And compare the ANN-GA results with COMSOL-GA re-

sults to show the accuracy of ANN. For the conventional bulk TEG, the genetic al-

gorithm begins by setting the operating conditions, with specific parameter settings

detailed in Figure 4.8. The dataset of operating conditions are randomly generated

by Python script. The algorithm operates with 100 populations in each epoch, and 200

generations are conducted to ensure the population reaches an optimal position. In this

chapter, the fitness function of GA is determined based on the results obtained either

from the ANN or COMSOL simulations.

4.2 ANN performance under constant temperature difference

4.2.1 ANN hyperparameters optimization

The prediction performance of ANN for TEG operating under constant temperature

differences will first be evaluated. A systematic study was first conducted to investi-

gate the impact of the hyperparameters (layer and neuron numbers) for this ANN. Fig-

ure 4.9 shows the validation loss curves over epochs for neural networks with different

neuron numbers per layer and different hidden layers. Figure 4.9 shows the training

process of the neural network. The code of training can be found in the Appendix. The

validation dataset is outside the training dataset, so it can effectively check whether

the network appears to be overfitting. Nevertheless, the final test dataset is needed

to verify the final effect of the neural network. The test dataset is separate from the

training dataset and the validation dataset. It is used to simulate the use of the neural

network after it has been trained. Therefore, the neural network structure derived from

the test dataset is a good representation of the network’s performance. Here, a relative
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FIGURE 4.8: Flow chart of bulk TEG modelling genetic algorithm

FIGURE 4.9: The neural network training for forwarding modelling TEG power per-
formance under the constant temperature difference operation condition. The valida-
tion loss curves of (a) different hidden layers with neurons fixed to 400 and (b) different

neurons with hidden layers fixed to 5.

error between the predicted and actual power performance is defined to compare the

performance of the ANN:

RelativeError =
|Ptrue − Ppredicted|

Ptrue
(4.2)
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Where the Ptrue is output from COMSOL simulation, and Ppredicted is from the ANN

model. The distribution and average of the relative error as a function of layer num-

bers and neuron numbers are plotted in Figure 4.10. Regarding the different layers,

the brown part in Figure 4.10a shows that the percentage of relative error under 0.01 is

larger, while the percentage of relative error over 0.05 is the smallest. This contributes

to improved accuracy. The average relative error in the test dataset decreases signif-

icantly from 0.044 to 0.019 as neurons per layer increase from 20 to 400. The relative

error distribution also suggests that most of the errors are within 3%, indicating the

network’s extremely high prediction accuracy. Therefore, a network of 5 layers and 400

neurons per layer was adopted for this operating condition.

FIGURE 4.10: The test dataset relative error of (a) different hidden layers with neurons
fixed to 400 and (b) different neurons with hidden layers fixed to 5 under constant

temperature difference.

4.2.2 The GA optimization and analysis of the ANN model

Figure 4.11 plots the comparison between the true (simulated) power performance of

PDmax and efficiency values in the test dataset with the ones predicted by the ANN.

It can be observed that the high prediction accuracy of our ANN prevails over three

orders of magnitude, producing a high coefficient of determination value (R2) of over

0.999 for both PDmax and efficiency. This outstanding prediction accuracy over an ex-

tensive range is helpful for its application in TEG optimization.

Once the forward TEG model is established, it can be used to perform analytical studies

to investigate the impact of different parameters on the performance of TEG. As many

parameters can be analyzed, here is one example involving FF and HTE. Comparisons

of other parameters can be done using the code provided in the appendix.

Figure 4.12 presents the PDmax and η values as a function of HTE and FF while the HIC,

Wn and Wp values were fixed at 1.5 mm, 2.5 mm, and 2.5 mm, respectively. Under the
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FIGURE 4.11: Scatter plot of the ANN predicted and the true (simulated) (a) PDmax

and (b) efficiency η under the operating condition of constant temperature difference.

FIGURE 4.12: (a) PDmax and (b) efficiency η obtained from ANN (line) and COMSOL
simulation (dots) as a function of (c, d) HTE and FF. The operating condition chosen
is TH of 400 K and ρC of 10−8

Ω · m2. The HIC, Wn and Wp values were fixed at 1.5 mm,
2.5 mm, and 2.5 mm, respectively.

operating condition of TH=400 K and ρC=10−8
Ω ·m2, larger FF is favourable for achiev-

ing larger PDmax as shown in Figure 4.12a. In our model, changing of FF is achieved

by varying the total area of the model to ensure the Wn and Wp remain unchanged. A

large FF implies a small TEG area increased PDmax. The dependence of HTE is more

complicated. Small HTE limits the power performance with a small temperature gradi-

ent over the TE legs, while large HTE deteriorates the power by increasing the electrical

resistance. It results in an optimized HTE for each FF. On the other hand, the efficiency

η undergoes different trends with varying HTE and FF as shown in Figure 4.12b. Al-

though a large FF is still advantageous, its benefit decreases at larger FF values due to

the concurrently increased Qin. Unlike PDmax, higher η can be achieved with larger HTE

values except for smaller FF (0.1). COMSOL simulations were also conducted for the

same parameter sets. It achieved high consistency with the results generated by ANN,

as shown in Figure 4.12. This trend suggests that our ANN can be used to perform an

analytical investigation of the TEG with high accuracy.

Once the network is trained and verified, it can be used for design optimization. Two
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FIGURE 4.13: Convergence curve of genetic algorithm for (a) PDmax and (b) η under
an operating condition of TH is 400 K and ρC is 10−8

Ω · m2. (c) Colour map of PDmax

and (d) efficiency η obtained from ANN as a function of HTE and FF. The optimized
values are listed in the inset table.

separate optimizations have been conducted to maximize power and efficiency, respec-

tively. The operating condition of TH=400 K and ρC=10−8
Ω · m2 were chosen as an

example. Figure 4.13a and Figure 4.13b plots the GA convergence curves for power

and efficiency optimizations. Both processes converge well after ca. 100 generations. A

maximum power density of 70 mW/cm2 was identified (Figure 4.13a), while the max-

imum efficiency was 3.2% (Figure 4.13b). The designs (shown in Figure 4.13a and b)

reaching those two optimized values are significantly different.

To verify the effectiveness of our GA optimization process, colour maps of both HTE

and FF were conducted as shown in Figure 4.13c and d. Under a constant TH of 400 K,

the optimized HTE is 1.3 mm to achieve the largest PDmax. This is confirmed by sweep-

ing its value from 0.5 mm to 5 mm by ANN and simulation, as shown in Figure 4.13c.

On the other hand, maximum efficiency η requires the optimized HTE to reach the up-

per limit (5 mm) of the preset range (Figure 4.13d). The discrepancy of the optimized

HTE values can be explained by the reducing Qin as HTE increases, leading to higher

η but smaller PDmax. In both cases, results obtained from ANN are highly consistent

with those from COMSOL simulation. The optimization of FF was also investigated.

ANN coupled GA has found the largest FF (0.95) in the preset range for best PDmax. In-

creasing FF results in larger PDmax (shown in Figure 4.13c), which is mainly due to the

reduction of the TEG electrical resistance. Similarly, a considerable FF is also required
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for high efficiency η (shown in Figure 4.13d) as the PDmax increment from larger FF

outweighs the increment of Qin.

FIGURE 4.14: Optimization of (a) PDmax and (b) efficiency η by GA coupled with
ANN (blue dots) and COMSOL simulation (red dots) as a function of TH ; (c)required
optimization time of both methods for different TH conditions; optimization of (d)
PDmax and (e) efficiency η by GA coupled with ANN and COMSOL as a function of

ρC, (f) required optimization time of both methods for different ρC conditions.

The key advantage of the deep learning-aided approach is its high design efficiency.

Here, the developed ANN and the COMSOL simulation are compared by coupling

both processes with GA to execute the same optimization tasks. Figure 4.14a and Fig-

ure 4.14b presents the optimized PDmax and efficiency η for different TH conditions.

Both optimized values increase with larger TH. All optimized values from the two ap-

proaches are almost identical, with similar geometrical parameters obtained (listed in

Table 4.2). However, the average time for COMSOL simulation coupled optimization

was 57,600 s (ca. 16 hrs), while it only took an average of 40 s for ANN to complete

one optimization. Although ANN requires a one-time investment for dataset genera-

tion (125,106 s, ca. 35 hrs) and network training (248 s), it is a much more cost-effective

way if optimizations under multiple TH conditions are required. Figure 4.14c plots the

time required for both methods to perform multiple optimizations. It is clear that the

amount of time saved by using ANN easily recovers the up-front computational time

for the network when more than 2 optimizations are needed.

Similarly, in Figure 4.14d and Figure 4.14e, optimization against different ρC results in

good agreements between the ANN and COMSOL simulation coupled optimizations.

The ANN approach only requires an average of 35 s while the latter demands 40,000 s

(ca. 11 hrs). The amount of time saved by using ANN for optimization quickly recovers

the computational time for the dataset generation (125,106 s, ca. 35 hrs) and the network

training (248 s). Significant time saving can be achieved if more than 3 optimizations

are required as shown in Figure 4.14f. In both cases, an improvement in computational
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efficiency of over 1,000 times was obtained. This superior design efficiency offered by

ANN represents a significant saving of computational time and energy.

However, it can be seen that an increase in error occurs when the PDmax is large, which

may be due to a reduction in the number of datasets near the boundary. Therefore, be-

fore modelling with ANN, the boundaries of the dataset need to be securely defined to

ensure that the required data is primarily in the middle range. Additionally, algorithms

such as the iterative algorithm mentioned later can be effective in reducing this issue.

TABLE 4.2: List of GA optimized geometrical parameters based on COMSOL simu-
lation (left) and ANN (right) at different hot-side temperatures and contact resistivity

values for PDmax optimization

T(K) 325 350 375 400 425 450 475

HTE(mm) 1.56 1.7 1.51 1.33 1.48 1.05 1.45 1.3 1.4 1.34 1.39 1.05 1.38 1
FF 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
HIC (mm) 0.52 0.54 0.57 1.44 0.55 0.5 0.59 0.5 0.51 1.03 0.54 0.55 0.51 0.5
Wn/Wp 1.14 1.02 1.15 1.14 1.15 1.14 1.16 1.07 1.15 1.12 1.15 1.05 1.13 1.1

ρC(Ω · m2) 10−9 10−8 2 ∗ 10−8 4 ∗ 10−8 6 ∗ 10−8 8 ∗ 10−8 10−7

HTE (mm) 0.73 0.73 1.45 1.3 1.91 1.9 2.49 3.31 3.05 3.11 3.46 3.71 3.92 4.1
FF 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
HIC (mm) 0.74 1.75 0.59 0.5 0.53 0.55 0.52 0.5 0.51 1.24 0.5 0.81 0.52 0.5
Wn/Wp 1.27 1.09 1.16 1.07 1.12 1.05 1.08 1.14 1.07 1.04 1.06 1 1.05 1

TABLE 4.3: List of GA optimized geometrical parameters based on COMSOL simu-
lation (left) and ANN (right) at different hot-side temperatures and contact resistivity

values for efficiency.

T(K) 325 350 375 400 425 450 475

HTE (mm) 5 5 5 5 5 5 5 5 5 5 5 5 5 5
FF 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
HIC (mm) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Wn/Wp 1.12 1.1 1.12 1.11 1.12 1.1 1.12 1.09 1.11 1.09 1.1 1 1.09 1

ρC(Ω · m2) 10−9 10−8 2 ∗ 10−8 4 ∗ 10−8 6 ∗ 10−8 8 ∗ 10−8 10−7

HTE (mm) 5 5 5 5 5 5 5 5 5 5 5 5 5 5
FF 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
HIC (mm) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Wn/Wp 1.14 1.09 1.12 1.09 1.08 1.09 1.06 1.05 1 1.03 1.04 1 1.04 1.04

The data are relatively similar in most cases, as seen from the two tables, Table 4.2 and

Table 4.3. However, in many cases, parameters such as HTE are close to the boundary

values. This suggests that those parameters are not necessary for optimization and

can be fixed to a reasonable value in future studies. Different Wn/Wp can also lead to

changes in HTE, and significant data differences can occur occasionally. However, even

with substantial differences in geometrical parameters, the final COMSOL simulation

results obtained similarly, as shown in Table. 4.2 and Table. 4.3.
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4.3 ANN performance under constant heat flux

4.3.1 ANN hyperparameters optimization

The focus now shifts to the operating condition of constant heat flux. The operation is

essentially the same for data sets with constant heat flux. However, since the efficiency

of the constant heat flux can be calculated directly from the power density, the neural

network’s output in this part is only the maximum power density. Again, the number

of layers and neurons of the neural network was scanned to compare the results. The

training results for a validation dataset at constant heat flux are shown in Figure 4.15.

FIGURE 4.15: The validation loss curves of (a) different hidden layers with neurons
fixed to 400 and (b) different neurons with hidden layers fixed to 5.

As shown in Figure 4.15, the stabilized validation loss is minor for the network with

most neurons per layer of 400 and with layers 5. Furthermore, as a test dataset for

comparing the effectiveness of neural networks, Figure 4.16 shows the relative errors

at different numbers of layers and neurons. Like the previous condition, the relative

error decreased from 0.0424 to 0.0177, with neurons per layer increasing from 20 to

400, as shown in Figure 4.16b. This 5-layer and 400 neurons per layer network with a

prediction accuracy of over 98% was adopted for this condition.

Now that the network structure has been optimized, all that remains is to start training

the neural network and analyzing the results.

4.3.2 The GA optimization and analysis of the ANN model

As the efficiency can be directly converted from power output, only PDmax will be

presented and discussed in this section. Similarly, the above analysis has shown the

final chosen neural network structure for the constant heat flux ANN, with five layers

and 400 neurons per layer. Figure 4.17 compares the maximum power output PDmax
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FIGURE 4.16: The test dataset relative error of (a) different hidden layers with neurons
fixed to 400 and (b) different neurons with hidden layers fixed to 5 under constant heat

flux.

from the ANN with the true (COMSOL simulated) values in the test dataset. Again,

high consistency can be observed between the true and ANN predicted values with

a high coefficient of determination (R2) of 0.99943, showing great prediction accuracy

over the entire power range.

FIGURE 4.17: Scatter plot of the ANN predicted and the true (simulated) maximum
power density (PDmax) under the operating condition of constant heat flux.

The analytical study under the constant heat flux condition was also conducted using

this network to investigate the impact of HTE and FF. The operating condition was

chosen to be Qin = 300mW/cm2 and ρC=10−8
Ω · m2 while the HIC, Wn and Wp values

were fixed at 1.5 mm, 2.5 mm, and 2.5 mm, respectively. Figure 4.18 presents the PDmax

and η values as a function of HTE and FF. Both values increase with leg length due

to the more significant temperature gradient created. However, the increment rate de-

creases at higher HTE values due to the adverse impact of more considerable electrical

resistance. On the other hand, smaller FF is preferred to achieve high power perfor-

mance. A smaller FF implies a larger TEG area, leading to an enormous temperature

difference and PDmax. The low efficiency shown in the Figure 4.18 is due to the low
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input power. While increasing the FF increases the input power, it also increases the

area, making it difficult for the TEG to fully utilize the input heat flow over the entire

surface. Meanwhile, the reason for not seeing a curve of slowly decreasing power with

increasing HTE is that the internal resistance is not large enough. This issue arises from

the irrational scope of the dataset selection, making it difficult to obtain data for the

latter part. In all cases, the simulation results show high consistency with the results

generated by ANN.

FIGURE 4.18: PDmax obtained from ANN (line) and COMSOL simulation (dots) as a
function of HTE and FF. The operating condition chosen is Qin of 300 mW/cm2 and
ρC of 10−8

Ω · m2. The HIC, Wn and Wp values were fixed at 1.5 mm, 2.5 mm, and 2.5
mm, respectively.

After establishing the prediction accuracy of the network, the application of the ANN

in TEG optimization will now be evaluated by coupling it with GA. The similar oper-

ating condition of Qin = 300mW/cm2 and ρC=10−8
Ω · m2 was chosen as an example

for optimization. Figure 4.19a shows the convergence curve of GA for PDmax which

converges after 200 generations. The optimized geometrical parameters are listed in

the inset table. Sweepings of HTE and FF were subsequently performed to verify the

optimized values. Figure 4.19b displays the colour map of HTE and FF. A shorter

leg could lead to a beneficially smaller electrical resistance and an adversely decreased

temperature difference under this operating condition. It can be observed that our GA

has correctly identified the optimized value of 4.81 mm. A large FF implies a smaller

TEG area, leading to a smaller temperature difference and maximum power output.

On the other hand, a very small FF could induce significant interconnect resistance

that also deteriorates the power. An optimized FF of 0.11 was identified and verified

by sweeping using both ANN and simulation. In addition, COMSOL simulations were

also conducted using the same parameter sets. The simulated results (dots) match with

the predicted results from ANN (line), further confirming the high accuracy of our

network.
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TABLE 4.4: List of GA optimized geometrical parameters based on COMSOL simula-
tion (left) and ANN (right) at different heat flux density and contact resistivity values

for PDmax optimization.

T(K) 325 350 375 400 425 450 475

Qin(mW/cm2) 150 250 350 450 425 450 475
HTE(mm) 5 5 5 4.87 5 5 5 4.81 5 5 5 5 5 5
FF 0.08 0.11 0.09 0.11 0.09 0.11 0.09 0.11 0.1 0.12 0.1 0.13 0.1 0.12
HIC (mm) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Wn/Wp 1.12 1.19 1.14 1.02 1.11 1.1 1.1 1.01 1.12 0.99 1.1 1.12 1.1 1.01

ρC(Ω · m2) 10−9 10−8 2 ∗ 10−8 4 ∗ 10−8 6 ∗ 10−8 8 ∗ 10−8 10−7

HTE (mm) 3.22 2.99 5 4.81 5 5 5 5 5 5 5 5 5 5
FF 0.06 0.06 0.09 0.11 0.09 0.11 0.09 0.12 0.09 0.11 0.1 0.13 0.09 0.13
HIC (mm) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Wn/Wp 1.14 1.14 1.1 1.01 1.09 1.11 1.04 1.01 1.05 1.07 1.06 1.01 1.05 1.02

FIGURE 4.19: (a) Convergence curve of genetic algorithm for maximum power output
under an operating condition of Qin is 300 mW/cm2 and ρC is 10−8

Ω · m2. (b) Colour
map of PDmax obtained from ANN as a function of HTE and FF. The optimized values

are listed in the inset table and labelled by the red dots.

FIGURE 4.20: PDmax optimized by GA coupled with ANN (blue dots) and COMSOL
simulation (red dots) as a function of (a) Qin and (b) ρC; (c)required optimization time

of both methods for different number of Qin conditions;

An efficiency comparison between the developed ANN and the conventional simula-

tion was conducted under constant heat flux conditions. Figure 4.20a and Figure 4.20b

presents the optimized PDmax under different Qin and ρC values. As expected, larger

Qin and smaller ρC can produce larger optimized PDmax. The ANN and COMSOL

simulation approaches obtained highly consistent, optimized values. The average op-

timization time for ANN-coupled GA is 40 s. 60,000 s (ca. 16 hrs) for COMSOL coupled
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GA, saving computational time and resources over 1,000 times. This indicates signifi-

cant time-savings when more than 2 optimizations are required (shown in Figure 4.20c).

As only the maximum value of PDmax needs to be measured, there is only one table to

present the data. As can be seen from Table. 4.4, the HIC data is as small as possible,

and the HTE is often close to the boundary value. The difference in FF is sometimes

more prominent, but this varies with Wn/Wp. From Figure 4.20, the final PDmax results

from the COMSOL simulation data are similar.

4.4 Conclusion

In this chapter, the first application of deep learning techniques in forward modelling of

the power performance of a TEG is demonstrated. After training using a dataset from 3-

D COMSOL simulations, the ANNs demonstrated extremely high prediction accuracy

of over 98%. They can operate under constant temperature difference and heat flux

conditions while considering the contact electrical resistance, surface heat transfer and

other thermoelectric effects. Analytical studies using the developed networks have

been successfully conducted to investigate the impact of different parameters on the

TEG performance, and the results have shown high consistency with those generated

from COMSOL simulation.

The excellent performance of the networks is further verified by coupling with GA to

perform design optimization. With almost identical optimized values obtained, our

ANNs demonstrated superior optimization efficiencies that are, on average, over 1,000

times better than the COMSOL simulation coupled GA optimization.
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Chapter 5

Modelling and optimization of

segmented TEG by ANN

The preceding chapter introduced the concept of modelling primary bulk thermoelec-

tric generators (TEGs) using artificial neural networks (ANNs). Building on this, the

current chapter extends the exploration to TEGs with more complex structures, focus-

ing specifically on segmented thermoelectric generators. Due to their intricate designs

and materials, these generators present a more significant challenge for ANN mod-

elling, particularly in maintaining high accuracy, given the increased complexity of

input parameters. To address these challenges, this chapter introduces a novel training

approachÐiterative trainingÐfor segmented thermoelectric generators. This method

aims to enhance the accuracy of the neural network model by refining the training pro-

cess to better account for the complexities inherent in segmented TEGs. A comparative

analysis between the traditional and iterative training methods is presented to high-

light the improvements in modelling accuracy.

Furthermore, the chapter explores the application of the model across various parame-

ters, demonstrating its versatility. It also investigates how the model can be integrated

with genetic algorithms to identify the optimal structure for segmented TEGs. This ap-

proach showcases the potential of combining ANN modelling with optimization tech-

niques. It underscores the importance of innovative training methodologies in over-

coming the challenges posed by more complex thermoelectric generator designs.

This chapter has been published by Yuxiao Zhu, Daniel Newbrook, Peng Dai, Jian Liu,

Kees de Groot, and Ruomeng Huang, Segmented thermoelectric generator modelling

and optimisation using artificial neural networks by iterative training, Energy & AI,

vol. 12, no. December 2022, doi: 10.1016/j.egyai.2022.100225. As the first author, I

came up with the idea of the iterative algorithm, built the COMSOL model, generated

the dataset, and wrote the code for the ANN model. I also scanned the trained ANN

for parametric analysis, handled the GA-related work, and wrote the paper. Daniel
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provided the room temperature TE material parameters, Peng discussed the algorithm-

related content, Jian and Kees reviewed the paper, and Ruomeng reviewed the paper

and guided the direction of the project.

5.1 Method

5.1.1 Details of the segmented TEG model

Figure 5.1 shows the segmented thermoelectric generator (STEG) model built in this

chapter. This model was chosen to discuss the case of fixed heat flux mainly because

achieving a fixed temperature difference is difficult in practical situations, and there are

many scenarios involving fixed heat flux. Therefore, heat flux is used as a parameter for

modelling and analysis in this example. The top and bottom brown insulating layers in

Figure 5.1 are aluminium nitride ceramics with high thermal conductivity. Immediately

adjacent to the insulation is the top electrode made of copper. Both thermoelectric legs

are made of a high-temperature thermoelectric material (top) and a low-temperature

thermoelectric material (bottom).

FIGURE 5.1: Schematic of the singe-pair segmented thermoelectric generator modelled
in this study.

Thermoelectric materials developed from past studies are selected, and their associated

ZT values are shown in Figure 5.2. For the n-type leg, PbTe0.998 I0.002 − 3%Sb [165] was

selected as the high-temperature thermoelectric material (dark red), and Bi2Te2.7Se0.3

[164] was selected as low-temperature thermoelectric material (light red). For the p-

type leg, K0.02Pb0.98Te0.15Se0.8 (dark blue) [166] and Bi0.5Sb1.5Te3 (light blue) [45] were se-

lected as high and low-temperature materials, respectively. The temperature-dependent

thermoelectric properties, including the Seebeck coefficient (S) and electrical (σ) and

thermal conductivities (k), are shown in Figure 5.2.
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FIGURE 5.2: Temperature-dependent. (a) Electrical conductivity (σ), (b) thermal con-
ductivity (k), (c) Seebeck coefficient (S), and (d) figure of merit (ZT) of the n-type and

p-type semiconductors used for the thermoelectric generator[45] [165] [164] [166].

The model variables are divided into geometrical parameters and operating conditions.

Geometrical parameters include the height (HTE) and width (WTE) of the n-type and p-

type legs. In this chapter, the widths of the two legs are kept the same and can be

defined by the fill factor (FF), which is the ratio between the cross-sectional areas of the

two legs (W2
n + W2

p) and the entire device (ATEG). For segmented TEG, two additional

geometrical parameters, αN and αP, need to be defined to model the ratio of the n-type

and p-type high-temperature material height to the overall leg height (HTE). The oper-

ating conditions involve the density of heat flux into the thermoelectric generator (Qin)

and the electrical contact resistivities at the interface of the electrode and thermoelectric

materials. Electrical contact resistivities between the top and bottom interfaces (ρct and

ρcb) are also included in the model as the operating conditions. In addition, several

parameters are kept constant in the model. The insulation thickness (Ht) and the elec-

trode thickness (HIC) are both fixed at 0.5 mm. The entire device area (ATEG) is fixed at

1 cm2, and only one thermocouple is investigated. In addition, the cold side tempera-

ture Tc fixed at 293.15K and convectional heat flux on all concave internal surfaces with

a heat transfer coefficient of 1 mW/(cm2 · K) and external temperature of 293.15 K to

include surface heat convection air. The next step is determining the parameters after

deciding on the materials in STEG. The specific parameter ranges and resolutions for

all variables are tabulated in Table 5.1.
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TABLE 5.1: Ranges and resolutions of the parameters used in segmented TEG.

Geometrical Parameter Value Range Resolution

Height of the TEG leg (HTE) 0.5-5 mm 0.01mm
Filling Factor (FF) 0.05-0.95 0.01

High temperature n-type height ratio (αN) 0.05-0.95 0.01
High temperature p-type height ratio (αP) 0.05-0.95 0.01

Operating Condition Value Range Resolution

Top side contact resistivity (ρct) 10−9 − 10−7
Ω · m2 10−9

Ω · m2

Bottom side contact resistivity (ρcb) 10−9 − 10−7
Ω · m2 10−9

Ω · m2

Heat flux (Qin) 100 − 2000mW/cm2 1mW/cm2

The electrical terminal was connected directly to a load resistance for each simulation

and swept from 1/100 to 100 times the estimated internal resistance shown in Fig-

ure 5.3. The output power in all the datasets is the maximum power obtained by fitting

the parabola, referred to as PDmax.

FIGURE 5.3: Power density values from COMSOL simulation (dots) and parabolic
fitting (line) of a typical TEG as a function of currents by varying the load resistance

under constant heat flux.

The impact of mesh sizes in the STEG model on the simulation accuracy was evaluated

by simulating the same parameter set with different meshes, as shown in Figure 5.4.

The ªFineº mesh size with 8012 elements has been employed for all simulations in this

segmented TEG modelling due to its high accuracy and reasonable computation time

shown in Figure 5.4. The maximum element size is 1.13mm, and the minimum element

size is 0.141mm. And the maximum element growth rate is 1.45.

5.1.2 ANN configuration and dataset distribution

The structure of the ANN in this work is shown in Figure 5.5. The network contains an

input layer that includes four design parameters (HTE,FF,αN ,αP) and three operating
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FIGURE 5.4: Power density (blue) and time (red) of the COMSOL simulation per-
formed at different mesh elements

conditions (ρct,ρcb,Qin), as well as an output layer containing the STEG power perfor-

mance (PDmax). There are five hidden layers between the input and output layers, with

200 neurons per layer. Then, a 3000 dataset for STEG is generated.

FIGURE 5.5: The architecture of the forward modelling ANN for predicting the
power density of the STEG model. The input layer contains design parameters
(HTE,FF,αN ,αP) and operating conditions (ρct,ρcb,Qin). The output layer contains

power performance values (PDmax)

5.1.3 Genetic algorithm

After generating the dataset following the process described above, the ANN was

trained. The method for combining the ANN with the GA will be discussed later. The

process of the genetic algorithm is similar to that of conventional bulk TEG. Figure 5.6

shows the flow chart of GA used in this chapter. The operating condition has changed

since the parameter is different. Other settings are kept the same. 100 population with

200 generations to calculate the optimized data. Tournament selection is chosen, and

1% of the mutation rate is adopted in the GA. All codes of ANN training and GA can

be found in the Appendix.
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FIGURE 5.6: Flowchart of segmented TEG modelling genetic algorithm.

5.2 Iterative training

The iterative training process in our work is presented in Figure 5.7. An ANN was

first trained using a dataset containing 3000 uniformly distributed input data, called

Uni3000. The details of the ANN training process are the same as those in the previ-

ous chapter. The traditional ANN modelling approach trains a dataset into an ANN.

In this chapter, an iterative algorithm is employed, complemented by a conventional

algorithm, to serve as a reference for modelling.

The ANN Uni3000 was coupled with a genetic algorithm (GA) to identify the high-

performing STEG designs at different operating conditions. The corresponding STEG

designs with the best performances can be obtained by generating 1000 different oper-

ating conditions based on Table 5.1. The 1000 sets of data were first generated by writ-

ing Python code to randomly create 1000 sets of operating conditions datasets. Then,

Uni3000 was combined with GA, using these 1000 datasets to obtain the optimized 1000

sets of geometrical parameters. This provided a complete set of 1000 input datasets.

These input parameters were then imported into COMSOL, and the final simulation

yielded 1000 output datasets. This set of 1000 datasets is intended to add more opti-

mized results to the overall data.

It is important to note that obtaining the Uni3000 network is essential in this iterative

training process. It enables fast modelling of the STEG power performance, which sig-

nificantly reduces the GA optimization time [34]. For example, an average of 40s is
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required for ANN-assisted GA optimization, while it costs 60000s if COMSOL mod-

elling is used instead as shown in Table 5.2 and Table 5.3.

FIGURE 5.7: Iterative ANN training process flowchart.

The dataset generated by the genetic algorithm was found to have unique characteris-

tics. With comparison, a 1000-uniform dataset was generated by first randomly select-

ing the input parameters (with both operating conditions and geometrical parameters).

Then, the input dataset is simulated in the COMSOL for the output. It was not con-

formed to have a uniform distribution as shown in Figure 5.8 and is therefore referred

to as the biased dataset. This different distribution is mainly due to the fact that many

structural parameters are not needed in the optimization, especially the share of high-

temperature materials in the different material ratios. This is because, even at higher

temperatures, room-temperature materials are needed to increase efficiency when the

lower surface temperature is fixed at 293.15K. This highly non-uniform dataset repre-

sents STEG designs with high power performance. For example, the larger HTE and

smaller FF are favourable for achieving high power outputs (Figure 5.8a and b). This

trend is likely to be linked to the thermal conductance of the TE legs. Longer and

smaller legs can result in a more significant temperature difference across the TE ma-

terials under the constant heat flux condition. Similarly, αN and αP also demonstrate

biased distributions corresponding to the high-power STEG designs. Even though this

dataset will include some high-power performance designs that are unusable, adding

such a biased dataset will still help increase the proportion of these designs in the

dataset.

As mentioned before, the iteration process requires the generation of a biased dataset

based on the previous neural network to train a new ANN. After obtaining the biased

dataset, a new dataset containing the original 3000 uniform data and this 1000 biased

data was produced and used to train the new ANN (referred to as Iter4000). To better
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FIGURE 5.8: Distribution of the design parameters (a) HTE, (b) FF, (c) αN , (d) αP in the
1000 uniform datasets (red) and biased datasets (black).

evaluate the performance of this Iter4000 network, a separate ANN was prepared using

a uniform dataset containing the same number of 4000 data (referred to as Uni4000).

The validation and test datasets in training two ANNs were the same dataset during

the training process.

5.3 Evaluation of two ANN training processes

The prediction performance of the ANNs will first be evaluated using a uniform test

dataset and a biased test dataset. The uniform test dataset contains randomly selected

operating conditions and STEG designs. Furthermore, a biased test dataset is generated

from Iter4000 coupled with GA. The uniform and biased test dataset distribution are

similar to those in Figure 5.8 and are presented in Figure 5.9.

The relative error was defined for comparison to better demonstrate the prediction per-

formance. The relative error is defined as:

RelativeError =
|PCOMSOL − PANN |

PCOMSOL
(5.1)

where PCOMSOL the true maximum power density obtained from COMSOL simulation

while PANN is that predicted by the ANN. On this basis, the prediction accuracy can be
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FIGURE 5.9: Comparison of geometric parameters (a) HTE, (b) FF, (c) αN , (d) αP dis-
tributions for uniform test datasets (red) and bias test datasets (blue).

calculated as:

PredictionAccuracy = (1 − RelativeError)× 100% (5.2)

Figure 5.10 shows the performance of the two ANNs (Uni4000 and Iter4000) with a uni-

form test dataset and biased dataset. Figure 5.10a presents the distribution and average

relative error for the Uni4000 and Iter4000 ANNs on the uniform test dataset. Both net-

works demonstrate a deficient relative error of 0.021 and 0.024, corresponding to a high

prediction accuracy of 97.9% for Uni4000 and 97.6% for Iter4000. It is further confirmed

by plotting the true PDmax (from simulation) in the uniform test set against the pre-

dicted PDmax by Uni4000 and Iter4000, respectively (shown in Figure 5.10b and c). It

can be observed that the high prediction accuracy of our ANN prevails over the entire

power range, producing a high coefficient of determination value (R2) of over 0.999 for

both networks. The slightly higher accuracy for Uni4000 can be explained by the extra

1000 uniform datasets used in its training process. However, such a slight difference

suggests our Iter4000 ANN can also provide accurate predictions for random STEG de-

signs.

The prediction accuracy of the iterative ANN and the uniform ANN in STEG design

optimization will now be evaluated by coupling them with GA. GA optimization with
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FIGURE 5.10: Comparison of COMSOL output PDmax for two different ANNs (a) the
histogram of the probability and average relative errors of two ANNs on the uniform
test dataset, and (b) Uni4000, (c) Iter4000 on the uniform test dataset. Comparison of
COMSOL output PDmax for two different ANNs (d) the histogram of the probability
and average relative errors of two ANNs on the biased test dataset, and (e) Uni4000, (f)

Iter4000 on the biased test dataset.

COMSOL as the alternative forward modeller is conducted to obtain the genuinely op-

timized design and power performance as a reference. Figure 5.11a presents the GA op-

timized PDmax under different heat flux conditions by coupling with COMSOL (black),

Uni4000 (red) and Iter4000 (blue). The optimized design parameters from each approach

are listed in Table 5.2 and Table 5.3. It can be observed that the Iter4000 optimized values

are closer to the COMSOL optimized values than the values optimized by Uni4000. The

relative errors of the two different ANNs (Uni4000, Iter4000 ) were calculated based on

the optimal PDmax from the COMSOL simulation-assisted GA optimization.

Figure 5.11b shows the relative errors of the optimized PDmax for the Uni4000 ANN (red

bar) and Iter4000 ANN (blue bar). The relative error for Uni4000 ANN increases signif-

icantly from 0.02 to over 0.1 when the input heat flux increases from 200mW/cm2 to

1500 mW/cm2. Given that more considerable heat flux is more likely to produce a large

PDmax, the poor performance of Uni4000 ANN is likely due to the limited high-power

performance data in the uniform training dataset. On the contrary, the relative error

for Iter4000 ANN is significantly smaller and remains below 0.02 for all heat flux condi-

tions. Similarly, it also outperforms the Uni4000 ANN under various contact resistivity

conditions, as shown in Figure 5.11c and Figure 5.11d. Overall, the average relative

error for Iter4000 ANN over the ten different operating conditions is 0.01, indicating an

accuracy of over 99%. This accuracy suggests our Iter4000 ANN can sufficiently replace

COMSOL simulation for STEG optimization and further confirms the benefit of our it-

erative ANN approach. However, the average optimization time for ANN-coupled GA

is only ca. 6.3 s while over 35,000 s (ca. 10 hours) for COMSOL-coupled GA under the
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same computational environment. This speed saves computational time and resources

over 5,000 times as shown in Table 5.2 and Table 5.3.

FIGURE 5.11: Genetic algorithm optimized STEG PDmax using ANN Iter4000 (blue),
uniform ANN Uni4000 (red), and COMSOL simulation as forwarding modellers (a),
and the associated relative errors from Iter4000 (blue) and Uni4000 (red) compared with
the COMSOL (b) as a function of different Qin; Genetic algorithm optimized STEG
PDmax using ANN Iter4000 (blue), uniform ANN Uni4000 (red), and COMSOL simula-
tion as forwarding modellers (c), and the associated relative errors from Iter4000 (blue)

and Uni4000 (red) compared with the COMSOL (d) as a function of different ρc.

TABLE 5.2: The optimized design parameters from each approach at a different heat
flux density

Model Time (s) HTE (mm) FF αN αP ρc (Ω · m2) Qin (mW/cm2) PDmax (mW/cm2)

COMSOL 35458.59 5.43 0.05 0.05 0.05 1.00E-08 200 2.86036

Iter4000 6.52 5.55 0.05 0.11 0.05 1.00E-08 200 2.84945

Uni4000 6.7 7.18 0.05 0.05 0.05 1.00E-08 200 2.80587

COMSOL 36392.49 4.81 0.05 0.05 0.05 1.00E-08 500 16.86888

Iter4000 6.43 5.5 0.05 0.05 0.05 1.00E-08 500 16.8742

Uni4000 6.38 5.34 0.05 0.33 0.16 1.00E-08 500 15.94478

COMSOL 39909.52 5.14 0.05 0.37 0.23 1.00E-08 800 37.35331

Iter4000 6.45 5.24 0.05 0.3 0.08 1.00E-08 800 37.57173

Uni4000 6.33 4.79 0.05 0.48 0.15 1.00E-08 800 40.3621

COMSOL 65782.16 5.06 0.05 0.56 0.54 1.00E-08 1200 76.21577

Iter4000 6.36 5.37 0.05 0.56 0.55 1.00E-08 1200 76.64584

Uni4000 6.49 6.33 0.05 0.6 0.62 1.00E-08 1200 83.96727

COMSOL 56433.89 6.33 0.05 0.6 0.62 1.00E-08 1500 112.94648

Iter4000 6.17 5.81 0.05 0.64 0.65 1.00E-08 1500 114.21274

Uni4000 6.62 5.82 0.05 0.61 0.71 1.00E-08 1500 124.953
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TABLE 5.3: The optimized design parameters from each approach at different contact
resistivity

Model Time (s) HTE (mm) FF αN αP ρc (Ω · m2) Qin (mW/cm2) PDmax (mW/cm2)

COMSOL 41179 4.18 0.05 0.46 0.32 1.00E-09 1000 63.7304

Iter4000 6.29 4.34 0.05 0.48 0.33 1.00E-09 1000 63.04789

Uni4000 6.21 5.74 0.05 0.57 0.47 1.00E-09 1000 70.04938

COMSOL 40804.14 4.83 0.05 0.48 0.39 5.00E-09 1000 59.5208

Iter4000 6.23 5.11 0.05 0.52 0.39 5.00E-09 1000 59.29213

Uni4000 6.36 5.85 0.05 0.59 0.46 5.00E-09 1000 64.86143

COMSOL 40882.22 5.35 0.05 0.49 0.42 1.00E-08 1000 55.63124

Iter4000 6.3 6.26 0.05 0.64 0.34 1.00E-08 1000 55.95702

Uni4000 6.29 5.9 0.05 0.58 0.48 1.00E-08 1000 60.20184

COMSOL 61298.28 8.29 0.06 0.46 0.43 5.00E-08 1000 39.85245

Iter4000 6.33 7.6 0.05 0.41 0.49 5.00E-08 1000 39.93462

Uni4000 6.34 9.28 0.05 0.52 0.36 5.00E-08 1000 41.46385

COMSOL 79482.72 10 0.06 0.44 0.43 1.00E-07 1000 31.14841

Iter4000 6.22 10 0.05 0.52 0.57 1.00E-07 1000 30.76607

Uni4000 6.27 9.97 0.05 0.43 0.51 1.00E-07 1000 31.95072

5.4 Segmented TEG analysis using iterative ANN

The advantages of STEG modelling through iterative ANN have been established, where

its high prediction accuracy and speed ensure fast and accurate design optimization.

Such benefits also allow rapid generation of accurate parameter-performance data that

are otherwise difficult to obtain through conventional modelling approaches. This large

amount of data could contribute to the in-depth study of the STEG and unveil relations

that have not been investigated before due to the complexity of the STEG structure. As

an example, Figure 5.12a presents the PDmax values as a function of HTE and FF, where

other parameters and conditions remain constant. The lines are the output of iterative

ANN, and the triangles are the corresponding COMSOL simulation results. The PDmax

increases progressively with increasing HTE and decreasing FF, which could be under-

stood as these leading to the rise of the TE leg thermal resistance and consequently

resulting in a more significant temperature difference across the device. The benefit

of a more substantial temperature difference outweighs the simultaneously increased

electrical resistance, which is likely dominated by the contact resistance.

Figure 5.12b demonstrates the dependence on different heat fluxes. As can be seen in

Figure 5.12b, the output PDmax increases as FF decreases when Qin is relatively tiny.

This is because the temperature difference between the two ends of the STEG is not

very significant. Hence, the benefit of the increase in thermal resistance outweighs

the loss due to the rise in resistance. When Qin=2000 mW/cm2, on the other hand,

the output increases and decreases with decreasing FF. Since the energy from Qin is

so great, the temperature difference between the two ends of the STEG reaches the

optimum operating region for high-temperature materials when the FF is reduced to

around 0.1. The thermal resistance increase caused by continuing to minimize FF does

not exceed the losses caused by the electrical resistance at this point, so the output
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FIGURE 5.12: PDmax obtained from iterative ANN (line) and COMSOL simulation
(triangles) as a function of (a) HTE and FF, (b) Qin, and FF.

PDmax is decreased. The triangles in Figure 5.12 represent the results of the COMSOL

simulation, which indicates that the values predicted by the Iter4000 are very close to

the actual data and further validates the accuracy of the Iter4000 model.

FIGURE 5.13: PDmax of iterative ANN obtained by scanning αN and αP at different
heat flux Qin conditions of (a) 500 mW/cm2, (b) 1000 mW/cm2, (c) 1500 mW/cm2 with
other parameters fixed; PDmax of iterative ANN obtained by scanning αN and αP at
different electrical conductivity (ρct = ρcb) conditions (d) 10−9

Ω · m2, (e)10−8
Ω · m2,

(f)10−7
Ω · m2.

The relationships between the design parameters are complex when multiple parame-

ters (e.g., αN and αP) vary simultaneously. Taking advantage of the ultra-fast comput-

ing speed, the PDmax was thoroughly mapped under different αN and αP combinations.

Figure 5.13 shows the PDmax of the biased ANN obtained by scanning αN and αP. Fig-

ure 5.13a to c present the predicted PDmax mapping under the heat flux of 500, 1000,

and 1500 mW/cm2, respectively. It can be observed that when the Qin is increased, the

peak PDmax will be shifted to larger αN and αP values to include more high-temperature

material in the STEG design. Similarly, under different contact resistivity conditions,
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the impact of αN and αP values on PDmax is similar as shown in Figure 5.13d to f. How-

ever, as the contact resistance increases, the output power decreases significantly. As

seen from the Figure 5.13, the two parameters αN and αP interact with each other, and

this non-linearity is easily represented in the ANN model. Additionally, the impact on

the output power varies with different parameters. A quick calculation using the ANN

makes it easy to compute the bias derivatives of various parameters and to determine

the effect of different parameters on the output power under the present conditions.

Our iterative ANN can generate similar mappings over other design parameters and

operating conditions. Each mapping contains 9216 (96 × 96) modelling results and

could take over 500,000 s ( 6 days) for COMSOL to simulate. Applying our iterative

ANN will only take 3s under the same computational environment, representing over

100,000 times efficiency improvement. Even adding the dataset preparation time it is

also 2 times faster than COMSOL simulation. Moreover, this advantage will increase

with more frequent use of the ANN.

FIGURE 5.14: The required computational time as a function of (a) the number of
modelling and (b) the number of optimization for ANN (blue) and COMSOL (black).

Figure 5.14 shows the time required for both methods to perform multiple modelling

and GA optimizations under the same computation conditions. The training time of

the ANN is considered in this comparison. The amount of time saved by using ANN

easily recovers the up-front computational time for the network when more than 4000

modelling is required (Figure 5.14a) or more than 2 GA optimizations are needed (Fig-

ure 5.14b). This manifests the extremely high computational efficiency of our ANN

approach.

5.5 Conclusion

In this chapter, an artificial neural network is used to report the forward power per-

formance modelling for the segmented thermoelectric generator. After training using a
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dataset from 3-D COMSOL simulations, the neural network can predict the power per-

formance under varying heat flux conditions from different design parameters. More-

over, the electrical contact resistance, surface heat transfer, and other thermoelectric

effects can still be considered. An iterative training strategy was implemented to im-

prove the prediction accuracy of the high-power performance STEG designs without

increasing the training dataset size. This prediction accuracy of the iterative trained

artificial neural network increases from 94% to over 98% without requiring a larger

dataset. This high accuracy is essential to ensure the correct STEG design optimization

results.

In addition to superior accuracy, the neural network demonstrates extremely high ef-

ficiency, which is beneficial for fast design optimization and parameter dependence

analysis. Coupled with a genetic algorithm, the network can achieve one design opti-

mization for 6.3 s, 5000 times faster than COMSOL, but with almost identical optimized

values as shown in Table 5.2 and Table 5.3. Large parameter scans have also revealed

the relationship between the STEG power output and the segment material ratios. Only

3 s is required for the network to conduct a parametric scan containing 9216 data points,

representing over 100,000 times of efficiency improvement.
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Chapter 6

Radiative Cooling Coupled TEG

modelling

While the previous chapters focused on the thermoelectric generator alone, this chap-

ter shifts the focus to the hybrid thermoelectric generator system with radiative cool-

ing. The aim is to investigate the performance of the system when radiative cooling is

used as a cold end for the thermoelectric generator. This chapter presents an in-depth

analysis of the performance of radiative cooling thermoelectric generators (RC-TEG)

utilizing a 3D finite element analysis (FEA) modelling approach. The 3D FEA method

allows for more accurate modelling by incorporating various factors, including RC per-

formance, TEG design, and environmental aspects such as atmospheric emissivity and

air convection. These parameters are systematically examined to provide a compre-

hensive understanding of RC-TEG performance. Additionally, the power generation

capabilities of the RC-TEG are assessed using real-time solar irradiance and ambient

temperature data from different cities, enabling an evaluation of its effectiveness in

various geographic regions.

This chapter has been published as Yuxiao Zhu, Daniel W. Newbrook, C.H. Kees de

Groot, Ruomeng Huang, Comprehensive analysis of radiative cooling enabled thermo-

electric energy harvesting, JPhys Photonics, vol. 5, 2023, doi: 10.1088/2515-7647/ac

cac1. As the first author, my contributions include building the COMSOL model, per-

forming the parameter sweep for COMSOL and writing the paper. Daniel provided the

thermoelectric material parameters. Kees reviewed the paper, and Ruomeng reviewed

the paper and supervised the project.
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FIGURE 6.1: Schematic and temperature-dependent material properties of the n-type
and p-type thermoelectric materials used in our RC-TEG model. (a) schematic, (b)
Electrical conductivity (σ), (c) Thermal conductivity (k), (d) Seebeck coefficient (S),

and (e) figure of merit (ZT)[45] [164].

6.1 Details of the RC-TEG model

Figure 6.1a shows the model of the RC-TEG developed in COMSOL in this work. A

square radiative cooler with a width of WCooler is integrated on the top surface of the

TEG model. It is exposed to the sky directly in the simulation. An insulating layer

(quartz glass) of the same size is sandwiched between the radiative cooler and TEG.

The bulk TEG model contains eight N/P-leg pairs where the width and height of both

legs are kept the same as WTE and HTE, respectively, in this chapter. The N/P legs

are connected in series by copper interconnects. The electrical contact resistance is also

considered in the model by including a 10−8
Ω ·m2 contact resistivity at each copper/TE

leg interface. The top and bottom convection coefficient is defined as ConvT and ConvB,

respectively. The specific modelling files can be found in the Appendix links.

FIGURE 6.2: Power density values from COMSOL simulation (dots) and parabolic
fitting (line) of a typical TEG as a function of currents by varying the load resistance.
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The thermoelectric materials used in this work are Bi2Te2.7Se0.3 for the n-type leg and

Bi0.5Sb1.5Te3 for the p-type leg. The detailed thermoelectric properties, such as the See-

beck coefficient, electrical and thermal conductivities, and ZT values of both materials,

are adopted from past studies [45] [164] and presented in Figure 6.1b-e. The ambient

temperature is set at 293.15K as default in all simulations unless otherwise specified.

During simulation, the TEG is virtually connected with an external load to form a cir-

cuit. The inlet and outlet of the copper interconnect serve as a terminal (variable V) and

the ground (V = 0 V) for the model. The resistance of the external load is swept to reach

the maximum power density (PDmax), as exemplified in Figure 6.2. The specific param-

eters are shown in Table 6.1. The different ranges for the top and bottom surfaces in the

table are based on theoretical analyses. For the cooled top surface, convection needs to

be minimized to lower the temperature. For the bottom surface, the aim is to keep it as

close as possible to the ambient temperature to allow the TEG to achieve the maximum

temperature difference.

TABLE 6.1: Ranges and resolutions of the parameters used in segmented TEG.

TEG Parameter Value Range Resolution

Width of the TEG leg (WTE) 1-10 mm 1 mm
Height of the TEG leg (HTE) 1-30 mm 1 mm

Width of the radiative cooling (WCooler) 20-200 mm 1 mm
Pitch 2-30 mm 1 mm

Top surface convection (ConvT) 0-10 W/(m2K) 1 W/(m2K)
Bottom surface convection (ConvB) 10-100 W/(m2K) 5 W/(m2K)

Radiative Cooling Parameter Value Range Resolution

Average emissivity of 8-13 µm (ε8−13µm) 0-1 0.05
Average emissivity of 0.3-2.5 µm (ε0.3−2.5µm) 0-1 0.05

This chapter will focus mainly on the emissivity in the solar band (0.3− 2.5µm) and the

radiation band (8 − 13µm). The emissivity of the band (2.5 − 8µm) is fixed at 0 unless

otherwise specified. The solar irradiance is set to 1000W/m2 in the simulation unless

otherwise specified. In practice, it is possible to accurately calculate the emissivity of

each band using a multilayer structure to achieve the assumed data.

When exposing the radiative cooler to the sky, the temperature of the top surface will

drop, creating a temperature difference ∆T between the top and bottom surfaces. How-

ever, the temperature is not uniformly distributed on both surfaces due to the direct

contact with the TEG. For example, Figure 6.3 presents the temperature profiles on

both surfaces under one simulation condition. It is clear that the temperature directly

on top of a TEG leg is slightly higher on the top (cold) surface than the surrounding

areas (Figure 6.3a). On the contrary, the temperature directly below a TEG is slightly

colder on the bottom (hot) surface than its surroundings (Figure 6.3b).
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FIGURE 6.3: Temperature profile of the RC-TEG under typical working conditions. (a)
exposed radiative surface (b) shielded counter surface. The dots represent the loca-
tions where the average temperature readings are used to define TC and TH . (c) The

temperature distribution at the cutlines in (a) and (b).

In this chapter, we define the top side (hot) temperature TH as the average temperature

of the 16 points above the TEG legs and the bottom (cold) side temperature TC as the

average temperature of the 16 points below the TEG legs. The temperature difference

is ∆T, defined as ∆T = TH − TC. This provides us with a better understanding of the

actual temperature gradients over the TEG as the distribution of the temperature is not

uniform across the surfaces (Figure 6.3c). The non-uniformity is caused by the limited

thermal conductivity of the insulating layer of quartz glass used between the cooler

and the TEG used in this chapter.

FIGURE 6.4: Temperature difference (∆T) of RC-TEG as a function of the thermal con-
ductivity of insulator.

We have conducted simulations concerning the impact of different thermal conductiv-

ity of the insulating material. Figure 6.4 is obtained by setting the thermal conductivity

of ceramic materials as variables and then performing a parametric sweep. As shown

in Figure 6.4, increasing the thermal conductivity results in higher ∆T. This increment

saturates when the thermal conductivity reaches ca. 500W/(mK). This suggests the

uneven temperature distribution can be mitigated by adopting insulating layers with

higher thermal conductivity, leading to a more uniform temperature profile and higher

∆T. In addition to the thermal conduction, the heat exchange of RC-TEG with the en-

vironment is also considered by defining the convection coefficient for both the top
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surface (ConvT) and bottom surface (ConvB). All simulations are carried out on the

COMSOL platform with the thermal transfer process set as a steady-state condition.

6.2 RC-TEG performance under different convection

An RC-TEG functions when radiative cooling generates a temperature difference be-

tween the top and bottom surfaces. Heat exchange with the atmosphere through con-

vection plays an essential role in the temperature profile of the RC-TEG.

FIGURE 6.5: COMSOL simulation performance of RC-TEG under various top surface
convection (ConvT) and bottom surface convection (ConvB) conditions. (a) Top (TC)
and (b) bottom (TH) surface temperature, (c) The temperature difference between the
top and bottom surface (∆T), (d) the power density (PDmax),. Other simulation pa-
rameters were fixed at WCooler = 80 mm, WTE = 5 mm, HTE = 10 mm, and Pitch = 40

mm.

Figure 6.5a and b illustrate the variation of both TC and TH under different convection

conditions. Both TC and Th increase with increasing convection at both surfaces. This

is unsurprising as the environmental temperature is set as 293.15K in this work. Higher

convection will facilitate the heat exchange between the RC-TEG and the atmosphere,

leading to higher temperatures close to the environment. Achieving a more signifi-

cant ∆T, therefore, requires different convection conditions for each surface, as shown

in Figure 6.5c. Convection at the top surface should be minimised to retain the low
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temperature generated by radiative cooling while the convection at the bottom surface

should be promoted. In this set of simulations, the largest ∆T of 7.3K is obtained when

ConvT is as low as 1 W/(m2K) while ConvB is 100 W/(m2K). It is also evident that the

impact of ConvT is much more significant than ConvB, with ∆T quickly deteriorating

to 3.5 K when ConvT increases to 10 W/(m2K). The associated power performance of

RC-TEG is shown in Figure 6.5d. As expected, the higher power output takes place at

the largest ∆T, reaching over 200 mW/m2. However, such high power output would

be halved if the ConvT increases from 1 W/(m2K) to 4 W/(m2K). At a ConvT of 10

W/(m2K), the output power will drop to below 50 mW/m2. It is, therefore, key for RC-

TEG to keep good thermal insulation to the environment to minimise heat exchange.

Several experimental RC-TEG works to achieve that by enclosing the radiative cooler

within a vacuum chamber [167]. In the following simulations, we will set ConvT and

ConvB to 1 W/(m2K) and 50 W/(m2K), respectively. It should be noted that the con-

vection parameters on the bottom surface require forced convection or more complex

cooling structures in practice to achieve this.

6.3 RC-TEG performance under different atmosphere emissiv-

ity

We will now investigate the impact of atmospheric emissivity on RC-TEG performance.

The atmospheric emissivity depends on the concentration of water vapour, CO2, CO

and other gas in the air [168]. In particular, water vapour absorption dominates the

atmospheric absorption within the atmospheric window; the transparency of the sky is

sensitive to precipitable water vapour concentration, which is correlated with relative

humidity and ground temperature, and thus varies geographically [169].

FIGURE 6.6: Performance of RC-TEG obtained in COMSOL simulation as a function of
atmosphere emissivity (a) Temperature difference (∆T) and (b) Power density (PDmax).
Other simulation parameters were fixed at WCooler = 80 mm, WTE = 5 mm, HTE = 10

mm, and Pitch = 40 mm.
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Higher humidity in the air could lead to high atmosphere emissivity in the 8-13 µm

band, which directly affects RC-TEG performance. Figure 6.6 demonstrates the effect of

atmospheric emissivity on the performance of RC-TEG. As the atmospheric emissivity

increases from 0 to 0.5, the ∆T decreases by about 5 degrees. Such decrement is because

more power is absorbed by the atmosphere rather than radiated to the colder outer

space, leading to inferior power generation from the RC-TEG model. This trend proves

that the RC-TEG performance is strongly dependent on the weather. Under a clear

sky and dry atmosphere where the atmospheric emissivity is low (< 0.3), the RC-TEG

model is capable of producing a continuous power of over 150 mW/m2. However, this

drops very quickly to below 100 mW/m2 when the sky is overcast with high humidity.

In subsequent model simulations, the atmospheric emissivity was maintained at 0.3 for

all 8-13 µm and 1 for the other bands 0.3-8 µm and 13-25 µm.

6.4 RC-TEG performance under different radiative cooler emis-

sivity

As an essential part of the RC-TEG, the emissivity (ε) of the radiative cooler is crucial to

the power performance of the device. In this section, we mainly focused on studying

the impact of emissivity in two bands of 0.3-2.5 µm and 8-13 µm. The former band

decides how much solar energy is absorbed by the radiative cooler. This is especially

important for daytime radiative cooling. The latter band in the atmospheric window

of 8-13 µm determines the cooling power achieved by the radiative cooler.

FIGURE 6.7: Performance of RC-TEG as a function of emissivity in the solar and ther-
mal IR spectrum. (a) Temperature difference (∆T) (b) Power density (PDmax) obtained
from COMSOL simulation as a function of 8-13 µm (ε8−13µm) and 0.3-2.5 µm (ε0.3−2.5µm)
surface emissivity. Other simulation parameters were fixed at WCooler = 80mm, WTE =

5mm, HTE = 10mm, and Pitch = 40mm.

Figure 6.7a presents the effect of surface emissivity on the temperature difference ∆T

of an RC-TEG device in the daytime. A positive ∆T indicates that the top surface is

colder than the bottom surface and that the cooling power dominates the temperature
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profile of our RC-TEG. A cooler with a larger ε8−13µm can generate more cooling power,

leading to larger ∆T. However, positive ∆T only prevails when the ε0.3−2.5µm is main-

tained at a low level. Increasing ε0.3−2.5µm can result in the top surface being heated

up by absorbing solar energy, cancelling out the positive ∆T from radiative cooling.

When the heat absorbed from solar irradiation outweighs the heat dissipated via radia-

tive cooling, the temperature difference ∆T becomes negative, and the radiative cooler

effectively turns into a heat absorber.

The power performance of the RC-TEG under different surface emissivity scenarios is

shown in Figure 6.7b. Under minor ε0.3−2.5µm conditions, the output power increases

with increasing ε8−13µm values as the ∆T increases with more cooling power. However,

in the case of a large ε0.3−2.5µm (e.g. 0.05), RC-TEG can also generate power even when

ε8−13µm is small, except that the device is now operating as a solar-absorber TEG under

such conditions. The amount of power attenuates to zero with increasing ε8−13µm value

as the cooling power slowly cancels out the solar energy and rises again as the ∆T

becomes positive. It is clear that ε0.3−2.5µm of the cooler needs to be as small as possible

to avoid the negative influence of solar energy, while the ε8−13µm must be as large as

possible to ensure a continuous power supply from RC-TEG.

FIGURE 6.8: Performance of RC-TEG obtained in COMSOL simulation as a function of
atmosphere emissivity (a) Temperature difference (∆T) and (b) Power density (PDmax).
Other simulation parameters were fixed at WCooler = 80 mm, WTE = 5 mm, HTE = 10

mm, and Pitch = 40 mm.

We also investigate the impact from the band between 2.5 to 8 µm while keeping the

ε8−13µm to be 1 and ε0.3−2.5µm to be 0 as shown in Figure 6.8. In this chapter, we assume

the temperature of our radiative cooler is always lower than that of the atmosphere.

If the RC emissivity in the 2.5-8 µm band is larger than 0, the atmosphere will always

radiate energy to the RC (as there is no atmospheric window within this band for the

energy to be radiated to the space). This will increase the temperature of the RC and

decrease the temperature difference (shown in Figure 6.8a) as well as the power perfor-

mance of the RC-TEG (shown in Figure 6.8b).
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6.5 RC-TEG performance with different TE parameters

The geometrical parameters of the RC-TEG also play a vital role in the power perfor-

mance. Here we will mainly focus on the impact of the TEG pitch and the width of the

radiative cooler WCooler while keeping the leg width WTE constant.

FIGURE 6.9: (a) Temperature difference (∆T), (b) Power (Pmax), (c) Power density
(PDmax) obtained from COMSOL simulation as a function of pitch and WCooler. (d)
optimized power density of WCooler on different pitches. Other simulation parameters

were fixed at WTE = 5 mm and HTE = 10 mm.

Figure 6.9 depicts the effect on RC-TEG performance when both WCooler and pitch are

varied. It is worth mentioning that the starting point of WCooler is limited by the pitch

size and is, therefore, different in each case. It can be observed in Figure 6.9a that ∆T

firstly increases with increasing WCooler. This is reasonable as larger radiative coolers

can generate more cooling power, leading to a colder top surface.

However, such an increase quickly saturates at a larger WCooler if the TEG pitch remains

unchanged, as the cooling on top of the TEG area is limited by the heat conduction on

the radiative cooler (shown in Figure 6.10). A further increase of the cooling power

from the radiative cooler cannot further reduce the cold side temperature.

On the other hand, enlarging the TEG footprint under the radiative cooler by increas-

ing its pitch facilitates thermal conduction on the radiative cooler at the TEG leg areas

(shown in Figure 6.11), leading to improved ∆T and TEG output power, as shown in
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FIGURE 6.10: Temperature mapping for the case of (a) WCooler=80 mm, (b) WCooler=120
mm, (c) WCooler=160 mm, (d) WCooler=200 mm. ε0.3−2.5µm and ε8−13µm are fixed at 0 and

0.95, respectively. ConvT and ConvB is fixed at 1 W/(m2K) and 50 W/(m2K), respec-
tively. Other simulation parameters were fixed at WTE=5 mm,HTE=10 mm,Pitch=40

mm.

Figure 6.9a and b. It should be noted here that Figure 6.9b only considers the abso-

lute power output, the change of radiative cooler size also affects the power density

(PDmax) of the device, which is plotted in Figure 6.9c. As PDmax is also a function of

the device area, it firstly increases with increasing power and subsequently decreases

as the power saturates. Therefore, we can identify the optimized PDmax and WCooler

for TEG with different pitch sizes, as shown in Figure 6.9d. It can be observed that the

optimized PDmax and WCooler will increase with increasing TEG pitch.

We now focus on the scenario where the size of the radiative cooler is fixed and in-

vestigate the performance of RC-TEG under different TEG parameters. Figure 6.12

shows the effect on the RC-TEG of changing WTE and HTE while keeping the WCooler

unchanged. It can be observed that increasing WTE could lead to a decrease of ∆T

(Figure 6.12a). This is because when the WTE is increasing, the thermal resistance of

TEG will decrease, leading to smaller ∆T across the top and bottom sides. On the

other hand, increasing HTE increases the thermal resistance, resulting in larger ∆T. Fig-

ure 6.12b shows the results of PDmax as a function of WTE and HTE. It can be seen that

when the HTE is relatively small (≤15 mm), the PDmax decreases as the WTE increases.

This is in line with the reduction of ∆T. Whereas at more significant HTE conditions, a
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FIGURE 6.11: Temperature mapping for the case of (a) Pitch=20 mm, (b) Pitch=40
mm, (c) Pitch=50 mm, (d) Pitch=60 mm. ε0.3−2.5µm and ε8−13µm are fixed at 0 and 0.95,

respectively. ConvT and ConvB is fixed at 1 W/(m2K) and 50 W/(m2K), respectively.
Other simulation parameters were fixed at WTE=5mm,HTE=10mm,WCooler=120 mm.

FIGURE 6.12: (a) Temperature difference (∆T), (b) PDmax obtained from COMSOL
simulation as a function of HTE and WTE. Other simulation parameters were fixed at

WCooler = 120 mm and Pitch = 40 mm.

slight increase of PDmax can be noticed before it falls again with increasing WTE. It is

because the negative impact from considerable electrical resistance outweighs the gain

from larger ∆T at small WTE and large HTE. An optimized set of TEG parameters can

therefore be identified to reach the highest PDmax.
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6.6 RC-TEG performance under real-time data

One of the key advantages of RC-TEG is its capability to provide a continuous power

supply. However, the variation of environmental conditions at different times of day,

days of the year, and geographical locations will all affect the power generation of an

RC-TEG. Therefore, evaluating the power performance under real-time environmental

data is essential.

In this section, we selected London and Singapore as two locations and investigated the

full-day RC-TEG performance in summer (July 2021) and winter (January 2021) using

real-time data, obtained from Prediction Of Worldwide Energy Resources. It is worth

mentioning that all chosen days had similar weather (sunny) to minimise the influence

of different atmospheric parameters on the simulation.

FIGURE 6.13: (a) Temperature difference (∆T), (b) PDmax obtained from COMSOL
simulation as a function of HTE and WTE. Other simulation parameters were fixed at
WCooler = 120 mm and Pitch = 40 mm. Data obtained from Prediction Of Worldwide

Energy Resources (POWER NASA).

Figure 6.13a shows the real-time temperature on the two days in London and Singa-

pore, where significant differences between different days and locations can be ob-

served. As a place near the equator, the temperatures of those two days in Singapore

were similar at over 25°C. On the other hand, temperatures in London were much
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lower and featured more considerable differences between summer and winter. Simi-

larly, the solar irradiance in Singapore was also very close in those two days. However,

they were quite different in the UK, both in the maximum irradiation power and dura-

tion.

Figure 6.13c presents the temperature difference ∆T across our RC-TEG under those

real-time environmental conditions. A continuous positive ∆T can be achieved in all

four conditions, indicating that the radiative cooler can provide unintermittent cooling

power to the device throughout the day. The amplitude of the ∆T is strongly related to

the real-time temperature as higher ambient temperature could increase the hot (bot-

tom) side temperature of RC-TEG. The power performance of the RC-TEG under these

conditions is shown in Figure 6.13d. The device can produce a continuous power sup-

ply in all four scenarios. Both days in Singapore feature an average power of over

180 mW/m2. The summer day in London also produces an average power of ca. 130

mW/m2. Even on a cold winter day, an average power of over 90 mW/m2 can be

achieved, sufficient enough to power a wide range of IoT and sensory devices [105].

FIGURE 6.14: (a) Temperature difference (∆T), (b) power density (PDmax) obtained
from real-time data simulation of RC-TE device on July 1st, 2021, London. (c) Tem-
perature difference (∆T), (d) power density (PDmax) obtained from real-time data sim-
ulation of RC-TE device on January 11th, 2021, in London. ε8−13µm is fixed at 0.95.

ConvT and ConvB is fixed at 1 W/(m2K) and 50 W/(m2K), respectively. WCooler=80
mm, WTE=5mm.



92 Chapter 6. Radiative Cooling Coupled TEG modelling

Based on the two sets of data in Figure 6.13, the RC-TE device is simulated for the

whole day while varying the ε0.3−2.5µm from 0 to 0.1 on UK data, the results are shown

in Figure 6.14.

Figure 6.14a and b is the result of a simulation of July 1st, 2021, UK. The black line in

Figure 6.14a is the energy produced by radiative cooling without any solar absorption.

Although the output power density fluctuates somewhat with ambient temperature,

the overall variation is slight, roughly 150 mW/m2. Since the solar radiation energy

is intense on that day and the daytime hours are 16 hours, eight hours longer than the

night. if ε0.3−2.5µm reaches 0.1, the absorbed solar radiation will offset the cooling power

at midday.

On the other hand, things were different on January 11th, 2021, UK. Figure 6.14c and

d shows a simulation of the data for January 11th, 2021, UK. It can be observed that

not only the daytime hours are shorter than on July 1st, but also the reduction in solar

energy during the daytime from ε0.3−2.5µm has a smaller impact on the radiative cooling

power performance compared to Figure 6.14ab.

FIGURE 6.15: (a) Temperature difference (∆T), (b) power density (PDmax) obtained
from real-time data simulation of RC-TE device on July 1st, 2021, Singapore. (c) Tem-
perature difference (∆T), (d) power density (PDmax) obtained from real-time data sim-
ulation of RC-TE device on January 1st, 2021, Singapore. ε8−13µm is fixed at 0.95. ConvT

and ConvB is fixed at 1 W/(m2K) and 50 W/(m2K), respectively. WCooler=80 mm,
WTE=5mm.
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In addition, the results were simulated for the whole day while varying the ε0.3−2.5µm

from 0 to 0.1 on Singapore data based on the two sets of data in Figure 6.13 are shown

in Figure 6.15. Figure 6.15 is the simulation results of real-time data in Singapore. As

shown in Figure 6.15a and c, the temperature difference between winter and summer

is very close. This result is due to the location of Singapore near the equator, which is

hot even in the winter. And from Figure 6.15b and d, when ε0.3−2.5µm=0.1, the power

density reaches 0 at noon.

6.7 Conclusion

This chapter provides a systematic analysis of TEGs driven by radiation cooling. The

impacts from the environmental conditions, radiative cooler properties, as well as the

TEG parameters were investigated to provide a complete picture of the performance

dependence for RC-TEG devices. It was revealed that a thermally insulating top surface

with low convection is crucial for RC-TEG to maintain a decent temperature difference

for power generation. The top surface convection should be as insulating as possi-

ble, while the bottom surface needs to be a strong heat sink to maximize the power

of the RC-TEG. If natural convection is used on the lower surface, it will reduce the

power output by about 25%. The atmosphere emissivity, related to the concentration

of water vapour and other gases in the air, can also significantly affect the power out-

put. From the perspective of the radiative cooler, whilst a high emissivity within the

atmospheric window should be targeted for better power performance, the emissivity

within the solar spectrum should be minimised to avoid heat absorption if continuous

power generation is required. This can be achieved by a carefully designed multi-layer

structure. In addition, we have also revealed that the TEG parameters, including the

area ratio between cooler and TEG, and the width and height of the TE legs, should be

optimised for improved RC-TEG performance. In addition, the capability of RC-TEG

to provide continuous power supply is tested using real-time environmental data from

both Singapore and London on two different days of the year, demonstrating contin-

uous power supply in all four scenarios. The RC-TEG can generate over 150 mW/m2

continuously, providing a long-term power source for some low-power devices such as

remote sensors, wearable electronics, and small IoT devices for extended periods.

The RC-TEG model in this chapter is built on COMSOL simulations and does not utilize

machine learning methods. The analysis in this chapter demonstrates that the cooling

capacity of a radiative cooling device depends exclusively on its parameters and the

surrounding environmental conditions, independent of the thermoelectric generator.

As a result, radiative cooling can be straightforwardly treated as a heat flux input pa-

rameter in the modelling process. This insight simplifies the artificial neural network

(ANN) model for the Radiative Cooling Thermoelectric Generator (RC-TEG), allowing

it to be approached as a standard TEG ANN model. The methodology for establishing
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the standard TEG model is identical to that described in Chapter 4. More research will

be done on ANN modelling of RC-TEG in future studies.
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Chapter 7

Photovoltaic coupled TEG

modelling and optimization

The previous chapters have covered the modelling of a thermoelectric generator using

an artificial neural network and the system analysis of combining a thermoelectric gen-

erator with radiative cooling. This chapter introduces an ANN-based model designed

to predict the performance of hybrid PV-TEG systems. Utilizing a cyclic approach, the

3D ANN model incorporates various factors, including PV coating, morphology, TEG

geometry, temperature-dependent material properties, and environmental conditions

like solar irradiance and convection. The hybrid model allows independent use of

PV and TEG components, enhancing its adaptability and generalizability. The chapter

further demonstrates how the model can be adapted for a wide range of parameters,

showcasing its flexibility and applicability in various scenarios. It also delves into real-

time data simulation, illustrating the model’s capability to handle dynamic inputs and

simulate performance under real-world conditions. This aspect highlights the practical

utility of the model in predicting the behaviour of PV-TEG in actual operational envi-

ronments, making it a valuable tool for researchers and engineers working in the field

of renewable energy technologies.

This chapter has been submitted to the journal as Yuxiao Zhu, Daniel W. Newbrook,

Peng Dai, Jian Liu, Jichao Li, Chunming Wang, Harold Chong, C.H. Kees de Groot,

Ruomeng Huang, Artificial neural network enabled photovoltaic-thermoelectric gen-

erator modelling and analysis. The preprint version doi: 10.2139/ssrn.4834580. As

the first author, my contributions include building the PV and TEG COMSOL model,

generating the PV and TEG dataset, building the PV and TEG ANN model, performing

the parameter sweep for ANN/COMSOL and writing the paper. Daniel provided the

thermoelectric material parameters. Peng, Jian, Jichao, Chunming, Harold and Kees

reviewed the paper, and Ruomeng reviewed the paper and supervised the project.
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7.1 Overview of the hybrid PV-TEG system

Figure 7.1 shows the schematic of the PV-TEG model built in this chapter. The PV cell

(pink) is located at the top of the TEG cell which consists of a pair of n-type and p-type

thermoelectric legs connected thermally in parallel and electrically in series. A fin-

structured heat sink is implemented at the bottom of the TEG cell for heat dissipation.

The ceramic and heat sink are AlN in the research. The thermoelectric materials used in

this work are Bi2Te2.7Se0.3 for the n-type leg and Bi0.5Sb1.5Te3 for the p-type leg. The de-

tailed thermoelectric properties, such as the Seebeck coefficient, electrical and thermal

conductivities, and ZT values of both materials, are adopted from past studies [45] [164]

and presented in Figure 6.1b-e. The hybrid PV-TEG system consists of two standalone

FIGURE 7.1: (a) Schematic of the PV-TEG model (b) Electrical conductivity (σ), (c)
thermal conductivity (k), (d) Seebeck coefficient (S), and (e) figure of merit (ZT) of the

n-type and p-type semiconductors used for the thermoelectric generator.

3D PV and TEG models, which were constructed first using COMSOL Multiphysics®

software for dataset generation and later replaced by ANNs. Both models can work in-

dependently to model PV and TEG performance. They can also be connected to model

the complex PV-TEG system as shown in Figure 7.2. When solar irradiation arrives at

the top surface of the model, the power (Psolar) will be converted directly into electricity

through the PV cell (PPV). The remaining power will be transformed into heat (Prad) or

not absorbed (Pnon−rad), as illustrated in Eqs. 7.1 [124].

Psolar = PPV + Prad + Pnon−rad (7.1)

Here, Pnon−rad is intrinsically linked to the material and can be perceived as a fixed frac-

tion of Psolar. In this chapter, Pnon−rad is fixed as 16% of Psolar unless otherwise specified

[170]. This is the portion of energy in the PV that cannot be converted to heat, includ-

ing energy that is reflected. Consequently, Prad can be calculated by Psolar and PPV and

represents the energy to be harvested by the TEG cell in the hybrid system. It should be

noted that the actual values of all these powers are temperature-dependent [171]. For

a given solar irradiance, a feedback loop needs to be established in the hybrid system
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to update the temperature of the PV and TEG cells as well as the values of PPV , Prad

and Pnon−rad until an equilibrium is reached in the system. This chapter achieves such

a feedback loop by employing a cyclic approach to model the PV-TEG system. Within

this framework, a PV model based on a PV cell was developed to calculate the output

(PPV) based on the PV temperature (TPV) alongside other influential parameters. Simul-

taneously, a TEG model, based on a TEG cell, was developed to determine its output

(PTEG) as well as the temperature of the PV cell (TPV).

The TPV is assumed to be the same across the PV cell as the temperature difference be-

tween the upper and lower surfaces of the PV is very small. As illustrated in Figure 7.2,

the initial PV temperature (TPV) aligns with the ambient temperature (Tamb). Based on

the other operational and geometric parameters (details in the section below), PPV can

be calculated. Then, the heat flux Pin into the TEG model is deduced from Psolar and

PPV . Integrating TEG’s operating conditions and geometric parameters, both PTEG and

TPV (TEG) are ascertained through the TEG model, and the new TPV will feed back to

the PV model to update PPV and Prad, and subsequently update again TPV in the TEG

model. This cyclic process will stop when the difference between the previous TPV and

the updated TPV falls below a predetermined threshold (ε), which is fixed as 0.01 K in

this work. At this time, it is inferred that the PV-TEG system has reached equilibrium,

and the results of PPV , PTEG, and TPV will be recorded.

FIGURE 7.2: Flow chart of cyclic PV-TEG model.
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7.2 Details of the PV model

The PV cell in the model is made of a 200 µm thick crystalline silicon (c-Si) [172] with

the option to include an anti-reflection coating layer which consists of a 65 nm SiNx film

stacking on a 20 nm SiO2 layer [173][174]. In addition, four different PV morphologies

(Planar, Upright pyramids, V grooves, and Spherical caps) were also available in the

model. The analytic doping for the PV cell was set to p-type, with an acceptor con-

centration of 1016 (1/cm3). The donor concentration at the top surface of the PV cell is

1019 (1/cm3). The junction depth is set to be 0.25 µm, and trap-assisted recombination

is adopted in the model. The PV cell is connected to a top metal that serves as inlet

voltage (V), and the bottom metal serves as ground (0V). Both metals are assumed to

be ideal in the model. The performance of the PV cell depends strongly on the specific

spectrum of solar irradiance. The spectrum of different solar irradiance in this work

was assumed to be proportional to the AM1.5 spectrum. The generation rates of these

different PV structures are obtained from the PV lighthouse [175] and shown in Fig.

S1. These obtained generation rates were subsequently imported into the PV model to

simulate the power outputs of the PV cells. All the input parameters for the PV model

are tabulated in Table 7.1.

TABLE 7.1: Ranges and resolutions of parameters used in the PV model.

PV input parameters Range Resolution

Geometrical PV Coating (CPV) [Coating, No Coating]

parameters PV Morphology (MPV)
[Planar, Upright pyramids,
V grooves, Spherical caps]

Operating PV Voltage (V) 0-0.65 V 0.01 V
conditions Solar irradiance (Psolar) 0-1000 W/m2 1 W/m2

PV Temperature (TPV) 263-363 K 0.1 K

FIGURE 7.3: The Generation rate of (a) no coating and (b) with coating PV structures.

The configuration of the neural network for the PV model is shown in Figure 7.4. The

PV-ANN is structured with an input layer of five parameters, leading to a series of

5 hidden layers, each containing 400 neurons. The model ultimately converges to a
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singular output node of the PV output power (PPV). 3D simulations from COMSOL

Multiphysics are used to generate the dataset for neural network training using Semi-

conductor Module, Electric Current Module and Electrical Circuit Module. The dataset

contains 10,000 instances. The input parameters were randomly generated based on

their ranges and resolutions in Table 7.1. The 10.000 sets of parameters were then sim-

ulated in COMSOL to obtain the PPV , which serves as the output of the dataset. For

training purposes, the PV-ANN dataset was grouped into training (8,000 instances),

validation (1,000 cases), and testing (1,000 instances) subsets. The specific dataset can

be found in the Appendix link. The mean square error (MSE) serves as the designated

loss function. Detailed specifications of other ANN-related hyperparameters can be

found in the Supplementary Information. The training subset optimized the network

by iteratively updating its neuron weights and biases via backpropagation. Concur-

rently, the validation subset data served the purpose of monitoring overfitting in the

training process. Once training was complete, the test data subset, previously unseen

by the network, was introduced to assess the network’s predictive accuracy.

FIGURE 7.4: Architecture of the forward modelling neural network for predicting
power performance of the PV model.

Then, the PV model is validated by nominal operating cell temperature (NOCT). The

condition includes the model being in the open space with an ambient temperature

of 293.15 K, environmental wind speed of 1 m/s and solar irradiance of 800 W/m2.

The nominal operating cell temperature for most of the commercially available poly-

crystalline silicon photovoltaic models is 45 ± 2°C according to manufacturers’ data

[176]. In our model, under the same conditions, TPV = 320K (46.85°C), within the NOCT

range.

In the experiments of Zhou et al., a PV temperature of 325.23 K was obtained at the

ambient temperature of 25 °C, environmental wind speed of 1 m/s, and solar irradi-

ance of 1000 W/m2 [177]. The PV temperature obtained in our model under the same
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conditions is 325.56 K, close to Zhou’s results.

For a standalone PV model, Eqs. 7.2 can be established to calculate the temperature of

the PV when the PV is operating independently:

APV(Psolar−Pnon−rad−PPV
) = Ahh(TPV − Tamb) (7.2)

Where APV is the PV surface area, Ah is the area with the convection coefficient. In the

standalone PV model, Ah = 2APV . A comprehensive flowchart detailing the mechan-

ics of the standalone PV model can be found in Figure 7.5. Figure 7.6 illustrates the

FIGURE 7.5: Flow chart of standalone PV ANN model.

power performance of the PV in the time domain. The Pnon−rad in Figure 7.6 is set to

be 0. Figure 7.6a shows the trend of PPV and convection heat flux with time. As ob-

served, PPV experiences a gradual decline over time. This decrease can be attributed to

the PV’s increased heat absorption, leading to a rise in temperature and a correspond-

ing drop in efficiency. Correspondingly, as the gap between the PV temperature and

ambient temperature widens, the convection heat flux increases. Upon reaching the

150-second mark, the system begins to approach equilibrium, with PAll stabilizing at

1000 W/m2, matching the power of the input heat flux. Figure 7.6b illustrates the PV

power and temperature independently, further confirming that the observed reduction

in PV power is directly due to the increased PV temperature. The equilibrium results

in the transient simulation were compared with those from our approach mentioned

above in Figure 7.6b (triangles) and demonstrate a perfect match. This confirms the

fidelity of our PV model.
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FIGURE 7.6: Time-dependent PV-TEG model analysis. (a) PPV , convection heat flux
and total power, (b) PPV and TPV time sweep in COMSOL model.

7.3 Details of the TEG model

The TEG cell has a c-Si layer on the top and a ceramic aluminium nitride layer. The

temperature of the c-Si layer is assumed to be the PV temperature. Copper electrode

under ceramic connecting the n-type Bi2Te2.7Se0.3 [164] and p-type Bi0.5Sb1.5Te3 [45]

thermoelectric materials. Electrical contact resistance [178] and thermal contact resis-

tance [64] have also been suggested as factors for TEG and were therefore included in

the model by introducing electrical contact resistivity (ρec) and thermal contact resistiv-

ity (ρtc) between the four thermoelectric material and the interconnect interfaces. The

height of the ceramic and electrode is 0.5mm. The bottom ceramic is also aluminium

nitride, with an extended section of fins as the heat sink, where each has a width of 1

mm, a height of 5 mm, and a depth of 10 mm. During the simulation, convective heat

flux (h) is applied to the top PV and bottom ceramic surfaces (including the heat sink)

while all other surfaces are thermally insulated. The other surfaces have a convection

coefficient of 0 W/(m2K). The TEG model connects to an external load for electrical

boundary conditions to form a circuit. The inlet and outlet of the metal substrate serve

as a terminal and the ground (0V) for the model.

FIGURE 7.7: TEG Power (blue) and time (red) of the COMSOL simulation performed
at different mesh elements.
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TABLE 7.2: Ranges and resolutions of parameters used in the TEG model.

PV input parameters Range Resolution

Geometrical Width of n-type leg (Wn) 1-9 mm 0.1 mm
parameters Width of p-type leg (Wp) 1-9 mm 0.1 mm

Height of the TEG leg (HTE) 5-30 mm 1 mm

Operating Heat flux (Pin) 0-1000 W/m2 1 W/m2

conditions Convection coefficient (h) 1-25 W/(m2K) 1 W/(m2K)
Electrical contact resistance (ρec) 10−9-10−7

Ωm2 10−9
Ωm2

Thermal contact resistance (ρtc) 10−6 – 10−4 Km2/W 10−6 Km2/W
Ambient temperature (Tamb) 263-363K 0.1 K

The mesh selection is shown in Figure 7.7. The results showed that the maximum

output power obtained from 37323 elements and 111057 elements configurations are

almost identical. 37323 mesh elements configuration was therefore employed to simu-

late all parameter sets for minimizing computational time while maintaining accuracy.

The maximum element size is 2mm, and the minimum element size is 1mm. And the

maximum element growth rate is 1.45.

Table 7.2 lists the input parameters of the TEG model, which consists of 3 geometric pa-

rameters and 5 operating conditions. The geometric parameters include two leg widths

(Wn and Wp) and the leg height (HTE). The operating conditions comprise the heat flux

injected from the PV cell (Pin), surface convection coefficient (h), and ambient temper-

ature (Tamb) Electrical contact resistance [178] and thermal contact resistance [64] have

also been suggested as crucial factors for TEG and were therefore also included in the

model by introducing electrical contact resistivity (ρec) and thermal contact resistivity

(ρtc) between the four thermoelectric material and the interconnect interfaces.

Figure 7.8 shows the configuration of our TEG neural network. All 8 input parameters

are included in the input layer of the network and connect to hidden layers that consist

of 4 layers and 700 neurons in each layer. The outputs of the TEG-ANN are the TEG-

generated power (PTEG) and the top surface temperature, which is also the temperature

of the PV cell (TPV). 5,000 sets of input parameters were randomly generated based on

the resolution range presented in Table 7.2. The dataset can be found in the Appendix

link. The power and temperature outputs of these 5,000 parameter sets were simu-

lated in COMSOL to generate a dataset containing 5,000 input-output relations for the

ANN training process. During the training process, the TEG dataset was partitioned

into three subsets for training (4,000 instances), validation (500 cases), and testing (500

instances). Similar to the PV-ANN training, the loss function was defined as the MSE,

which was used to update the weights and bias for the neurons in the backpropagation

process to improve prediction accuracy.

Two performance factors, TEG power density (PTEG) and PV temperature (TPV), were

extracted from the simulation. The electrical terminal was connected directly to the

load resistance for each parameter set and swept from 1/100 to 100 times the internal
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FIGURE 7.8: Architecture of the forward modelling neural network for predicting
power performance of the TEG model.

resistance. The maximum output power was then extracted from a parabolic fit of

the output power against the current out as shown in Figure 7.9. We determined the

load corresponding to the highest output power by fitting a curve to ten data points

scanned from the TEG power output. Concurrently, we also fitted the corresponding

temperature curve, as illustrated in Figure 7.9b. The load value, calculated from the

power output data, was then input into the fitted temperature curve to estimate the

temperature at that specific load.

FIGURE 7.9: (a) Power density values and (b) PV temperature from COMSOL simu-
lation (dots) and parabolic fitting (line) of a typical TEG as a function of currents by

varying the load resistance.

7.4 PV-TEG ANN model training results

Figure 7.10 shows the test dataset results of PV ANN with fitting curve y=x. The R-

square value of 0.9999, being very close to 1, indicates that the ANN model is close to
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FIGURE 7.10: Scatter plot of the PV ANN predicted PV power density (PPV) and the
ground truth (simulated).

the results from COMSOL simulations. We define accuracy as Eqs. 7.3:

Accuracy = (1 − |Prediction − truth|
truth

)× 100% (7.3)

Where prediction is the result from ANN, truth is the result from COMSOL. Figure 7.10

shows that the PV ANN model predicts PPV with an accuracy of 98.77%. TEG ANN

FIGURE 7.11: Scatter plot of the TEG ANN predicted and the ground truth (simulated)
(a) TEG power density (PTEG) (b) PV temperature (TPV).

test dataset results are shown in Figure 7.11. The R-squares of two fittings are also very

close to 1. From Figure 7.11, the accuracy of PTEG in the TEG ANN model is 97.6%, and

the accuracy of predicting TPV is up to 99%. These results demonstrate that ANN is a

suitable substitute for the COMSOL model. After training the ANN models for TEG

and PV, the PV-TEG model can be built according to the flowchart in Figure 7.2. The

specific code for this process can be found in the Appendix.
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7.5 PV-TEG model validation

We will now evaluate the performance of the two ANNs in the hybrid PV-TEG model

by executing the cyclic approach (approach illustrated in Figure 7.2) to predict the

power performance of the hybrid model. Figure 7.12 shows the PPV , PTEG and TPV

results in the cyclic ANN model with the final steady-state results of the COMSOL

model. Figure 7.12a presents the predicted PPV and PTEG at various stages of the cyclic

process while Figure 7.12b plots the associated change of TPV . In the initial stage (cycle

0), the TPV is set to be equal to the ambient temperature, and the power outputs from

both PV and TEG models remain 0. As the system begins operating, drastic increases

are observed for PPV and PTEG in cycle 1. This is accompanied by the increase in the

cell temperature TPV , which subsequently leads to a slight reduction of PPV (cycle 2).

After about 3 cycles, the hybrid PV-TEG system reaches an equilibrium state, and all

outputs remain stable in the following cycles. The output values from the final 9th

cycle are compared with the results from the COMSOL steady-state simulation (trian-

gle marks), showing a perfect match. These results further validate the fidelity of our

ANN models and cyclic approach. It is worth noting that, given one PV voltage, de-

spite several cycles required in the approach, the total computational time is only 3 ms,

significantly shorter than that required in COMSOL simulation (90 s). From this on,

all further analysis in this work will be based on the results from the final equilibrium

state. Concerning the PV-TEG model, verifying whether the cyclic state results are con-

FIGURE 7.12: (a) PPV and PTEG in cycle sweep of ANN model and the correspond-
ing steady-state COMSOL results (b) TPV in cycle sweep of ANN model and the
corresponding steady-state COMSOL results. (Psolar=1000 W/m2, h=10 W/(m2K),

Wn=Wp=5 mm, HTE=20 mm, Tamb=300K, VPV=0.4 V, Pnon−rad=0 W/m2).

sistent with the COMSOL steady state results is necessary. Figure 7.12 shows the PPV ,

PTEG and TPV results in the cyclic ANN model with the final steady-state results of the

COMSOL model.
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7.6 Comprehensive PV-TEG system analysis

Having established the accuracy and fidelity of our ANNs and cyclic approach, we

now conduct a comprehensive analysis of all parameters and their impact on the per-

formance of the hybrid PV-TEG system.

7.6.1 PV voltage and surface condition

Figure 7.13 illustrates the ANN-predicted performance of the PV-TEG system under

varying PV input voltages while keeping other parameters (e.g. geometries, coatings

and morphologies) constant. In Figure 7.13a, it is observed that the current density of

the PV decreases as the voltage increases. Notably, the rate of decrease becomes signif-

icantly pronounced when the voltage exceeds 0.4V. The power output of the PV cell,

PPV , which is the product of current and voltage, is shown in Figure 7.13b. Figure 7.13c

shows TEG power as a function of the PV voltage. It is observed that PTEG initially

decreases but increases with rising PV voltage. This behaviour is predominantly due

to the influence of the PV temperature at the upper surface, shown in Figure 7.13d as

a function of the PV voltage. This trend is because PPV increases first and decreases

with increasing voltage. According to Eqs. 7.1, an increase in PPV leads to a decrease

in Prad, and consequently, the heat absorbed by the PV-TEG system decreases, resulting

in a lower PV temperature. Subsequently, as PPV decreases, Prad increases, causing

the model to absorb more heat, which leads to an increase in the PV temperature. Fig-

ure 7.13e illustrates the total output power of the hybrid system PAll (comprising PPV

and PTEG) in response to increasing voltage levels. Notably, the PAll trend follows well

with that of PPV . This is not surprising as PPV is still the dominating power contributor

in the PV-TEG system. As seen in Figures 7.14b and 7.14c, there is 160 W/m2 of output

power at the peak of the PPV , while the PTEG has an output of 4.2 W/m2 at this time,

accounting for more than 2.5% of the total power.

For comparison, outputs from the COMSOL simulation are also depicted in the blue

dots in the figures. The close alignment of the ANN results with those from COMSOL

underscores the high accuracy of our ANN model in simulating the performance of

PV-TEG systems under varying voltage inputs. It is also worth noting that a voltage

sweep for one set of parameters only takes 0.15s using our ANN models, compared

with 15 minutes of COMSOL simulation. This lets us quickly identify the maximum

power output point (Pmax) for each parameter set and its associated voltage. From this,

all following analyses will sweep the voltage and present the maximum power output

point (Pmax) instead. Even if utilize faster ways of modelling in COMSOL, such as

decreasing the mesh size to speed up computation, the time required for creating the

ANN training dataset will also be greatly reduced. This will benefit the ANN model as

well.
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FIGURE 7.13: (a) PV current, (b) PV power density (PPV), (c) TEG power den-
sity (PTEG), (d) PV temperature (TPV) and (e) total power density (PAll=PPV+PTEG)
obtained from ANN (line) and COMSOL (dot) as a function of PV voltage.

(Psolar=1000W/m2, h=10W/(m2K), Wn=Wp=5mm, HTE=10mm, Tamb=298.15K).

Figure 7.14 presents the performance of the PV-TEG system under various coatings and

morphologies. The combinations of coatings and morphologies are coded in the figure

for simplicity in representation. The first letter in each code denotes the presence or

absence of coating: ’C’ stands for with coating, and ’N’ for without coating. The second

letter corresponds to the morphology, with ’P’, ’S’, ’U’, and ’V’ representing the four

different morphologies: Planar, Spherical Caps, Upright Pyramid, and V Grooves, re-

spectively. For clear differentiation, these are depicted in various colours in Figure 7.14.

FIGURE 7.14: (a) PV temperature (TPV), (b) Total power density (PAll), (c) TEG power
density (PTEG), (d) PV power density (PPV) obtained from ANN and (e) Accuracy

calculated from COMSOL as a function of coating (CPV) and morphology (MPV).

Figure 7.14a displays the results of TPV under various coatings and morphologies. It is

observable from the figure that the temperature is marginally higher in configurations
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without coating compared to those with coating. This can be explained by the fact that

the absorption rate of PV is higher in the presence of coating, generating more PPV and

leading to lower TPV . The various morphologies exhibit different temperatures, which

can be attributed to their differing absorption rates.

Figure 7.14b shows the distribution of PAll in different morphology and coating. The

specific analysis is based on Figure 7.14c and d. Figure 7.14c illustrates the distinct

behaviour of PTEG. The output of the TEG in this context primarily depends on the

upper surface’s temperature. Therefore, it follows a similar trend to that observed in

Figure 7.14a.

Figure 7.14d depicts the distribution of PPV . The output is significantly higher with

coating, leading to increased light absorption into the PV. The different morphologies

exhibit varying levels of surface roughness, and the more complex morphologies en-

able light to undergo multiple reflections within the coating, thereby enhancing the

absorption rate. In contrast, with its smoother surface, the planar morphology allows

for only a single reflection within the PV, resulting in the lowest absorption rate.

Overall, the accuracy of all output parameters exceeds 98%, as illustrated in Figure 7.14e.

This high accuracy indicates that the PV-TEG cyclic ANN model is very well-fitted. Ad-

ditionally, the models in this study can incorporate various morphologies and coatings

into their parameters. This feature introduces diversity and enhances the generalizabil-

ity of the model.

7.6.2 Environmental condition

Environmental factors like solar irradiance and convection significantly influence the

performance of the PV-TEG system. Figure 7.15 demonstrates how the PV-TEG model

performs under various scenarios of solar irradiance and convection coefficients. This

illustration highlights the system’s responsiveness to changes in these critical environ-

mental conditions.

Figure 7.15 shows the performance of PPV with the solar irradiance across all convec-

tion conditions. However, this increase tends to slow down at higher solar irradiance

levels in conditions of lower convection. The reason for this is that lower convection

hinders the transfer of energy to the environment, resulting in a significant increase in

PV temperature (as depicted in Figure 7.15b), which in turn reduces the efficiency of the

PV cells. This observation underscores the critical role of convection in the operation

of PV cells.

Figure 7.15c illustrates the trend of PTEG under varying solar irradiance and convec-

tion coefficient conditions. Overall, PTEG increases with solar radiation. However, as
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FIGURE 7.15: (a) PV power density (PPV), (b) PV temperature (TPV) (c) TEG power
density (PTEG), and (d) total power density (PAll) obtained from ANN (line) and COM-
SOL (dot) as a function of solar irradiance and convection coefficient. Other parame-

ters are fixed with Wn=Wp=5mm, HTE=10mm, and Tamb=298.15K.

convection intensifies, PTEG gradually decreases. This trend occurs because higher con-

vection dissipates more energy into the environment, resulting in less energy being

available to enter and be converted by the TEG.

Figure 7.15d displays the variation in the total output power (PAll) of the PV-TEG sys-

tem. The overall trend observed in this figure aligns with that seen in Fig. 10a, primar-

ily because the contribution of PTEG to the total output is relatively small. Figure 7.15b,

on the other hand, highlights that the rate of increase in PV temperature is significantly

steeper when the convection coefficient is minimal.

The line and point further corroborate the accuracy of the ANN model in comparison

to the COMSOL simulations fits shown in Figure 7.15. These fit showcase the ANN

model’s ability to closely replicate results from the more complex COMSOL simula-

tions, highlighting its effectiveness and reliability in modelling the PV-TEG system un-

der diverse environmental conditions.

Figure 7.16 demonstrates the performance of the PV-TEG model for different ambi-

ent temperatures (Tamb) and convection coefficients. Figure 7.16a shows that the PPV

decreases with increasing ambient temperature, which is mainly on account of the in-

crease in TPV with ambient temperature as shown in Figure 7.16b. At the same ambient

temperature, the greater the convection, the higher the PPV . This correlation can be
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FIGURE 7.16: (a) PV power density (PPV), (b) PV temperature (TPV), (c) TEG power
density (PTEG), and (d) total power density (PAll) obtained from ANN (line) and COM-
SOL (dot) as a function of ambient temperature (Tamb) and convection coefficient.
Other parameters are fixed with Wn=Wp=5mm, HTE=10mm, and Psolar=1000W/m2.

attributed to the reduced TPV observed with increasing convection, as shown in Fig-

ure 7.16b.

Figure 7.16c shows that under lower convection conditions (e.g., 1 W/(m2K)), PTEG

decreases slightly with an increase in ambient temperature. Conversely, in scenarios

with higher convection rates, PTEG exhibits a slight increase with rising ambient tem-

perature. This behaviour can be attributed to the ZT (thermoelectric figure of merit)

maxima for the two materials used in this study, which are between 350K and 400K,

as illustrated in Figure 7.1. Therefore, the efficiency of the TEG improves when its

temperature approaches this optimal range.

As depicted in Figure 7.16b, for convection coefficients ranging from 5 W/(m2K) to

25 W/(m2K), an increase in ambient temperature gradually brings the TPV closer to

this optimal temperature range. In contrast, at a convection coefficient of 1 W/(m2K),

the temperature tends to move away from the 400K mark. The trend observed in Fig-

ure 7.16d aligns with that in Figure 7.16a. This consistency further highlights the impact

of ambient temperature and convection conditions on the overall performance of the

PV-TEG system, especially in terms of their effect on the efficiency and output of the

TEG component
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The data presented in Figure 7.15 and Figure 7.16 demonstrate that the model used

in this work successfully integrates several crucial environmental parameters. By ac-

counting for factors such as solar irradiance, convection coefficients, and ambient tem-

perature, the model offers a comprehensive and adaptable framework for understand-

ing and predicting the performance of the PV-TEG system in diverse real-world sce-

narios.

7.6.3 TEG geometry

Figure 7.17 demonstrates the performance of PV-TEG at different TEG leg widths (Wn,

Wp) and heights (HTE), setting Wn=Wp. Figure 7.17a clearly shows that PPV experiences

a gradual increase as the width of the TEG leg expands. However, this increment rate

slows down as the leg width becomes larger. Notably, under comparable leg width

conditions, PPV gradually declines with an increase in HTE. This phenomenon can be

explained by understanding that a greater leg width, associated with lower electrical

resistance in the TEG, results in a decreased temperature of the PV. This reduction in

temperature, in turn, leads to an increase in the PV power output. This relationship

highlights the intricate balance between the physical dimensions of the TEG and its

impact on the overall efficiency and performance of the PV-TEG system.

FIGURE 7.17: (a) PV power density (PPV), (b) PV temperature (TPV), (c) TEG power
density (PTEG), and (d) total power density (PAll) obtained from ANN (line) and
COMSOL (dot) as a function of Wn, Wp and HTE. Other parameters are fixed with,

Psolar=1000W/m2, Tamb=298.15K, Convection coefficient = 10 W/(m2K).
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Figure 7.17c, a distinct trend is observed where PTEG initially increases and then de-

creases as the width of the TEG leg (Wn) changes. This behaviour can be explained by

examining the dynamics of electrical resistance in the system. When Wn is small, the

system experiences higher electrical resistance, constraining the PTEG output. As Wn

increases, the electrical resistance decreases, facilitating an increase in PTEG. However,

beyond a certain point, as Wn becomes significantly oversized, the thermal resistance

also decreases. This reduction in thermal resistance leads to a smaller temperature gra-

dient across the TEG, resulting in a decrease in PTEG. This pattern shows the complex

interplay between electrical and thermal resistances in the TEG and their combined

effect on its power output.

As the value of HTE increased, a noticeable shift in the peak of PTEG towards a higher

Wn was observed. This shift can be rationalized by considering the impact of increased

HTE on the system’s resistance. A higher HTE implies greater resistance for a given

Wn. To achieve a balance between thermal and electrical resistances, an increase in Wn

becomes necessary. This increase in Wn effectively reduces the total resistance in the

system. Figure 7.17d displays the variation in the total output power (PAll) of the PV-

TEG system. Figure 7.17 verifies the effectiveness of this model for incorporating TEG

structure parameters. Different TEG structures can be selected according to different

parameters to increase the generalization of the model.

Figure 7.17 verifies the effectiveness of this model for incorporating TEG structure pa-

rameters. Different TEG structures can be selected according to various parameters to

increase the generalization of the model.

7.7 PV-TEG system real-time data analysis

A primary advantage of our ANN model is its exceptional efficiency. Once the initial

training phase is completed, the model can predict the performance of the PV-TEG sys-

tem much more rapidly than traditional simulation tools like COMSOL. The simulation

time has been dramatically reduced from 15 minutes to a mere 0.15 seconds. This sig-

nificant acceleration in processing speed allows for real-time data integration into the

simulation, enhancing the model’s applicability and relevance in practical scenarios.

As a demonstration, we applied our ANN models to predict the potential power per-

formance of the hybrid PV-TEG system as well as a standalone PV system with and

without heat sink under real-time weather conditions in London on June 20th, 2022,

for over 24 hours shown in Figure 7.18. The heat sink of the standalone PV is kept the

same in the PV-TEG system. Weather conditions are based on Prediction of Worldwide

Energy Resources (POWER NASA) data. The real-time data includes solar irradiance,

ambient temperature, and wind speed and are presented in Figure 7.18a.
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FIGURE 7.18: Real-time data of (a) Solar irradiance (Psolar), ambient temperature (Tamb)
and wind speed. (b)The power performance and (c)the ambient temperature compar-
ing TPV in PV-TEG, standalone PV no heat sink and standalone PV with heat sink
model. (d) PV maximum power point (MPP) voltage was obtained from ANN dur-
ing the solar-powered period. The geometric parameters of the TEG remain constant,

Wn=Wp=5mm, HTE=10mm.

Figure 7.18b plots the total power output of the two systems over 24 hours. The find-

ings indicate that, before 8 a.m., the variance in output between the PV-TEG and the

standalone PV is negligible. By noon, this disparity amplifies, registering a maximum

PV-TEG system power output of 160 W/m2, compared to the 145 W/m2 of the stan-

dalone PV without a heat sink and 162 W/m2 with a heat sink. This suggests that this

current structure in the PV-TEG will reduce the overall power generation.

Figure 7.18c compares the TPV values of the two systems together with ambient tem-

perature. It can be inferred that a key factor contributing to the higher power output of

the PV-TEG system is the reduction in TPV . The PV temperature suggests that combin-

ing TEG with PV increases the temperature of the PV when using the same heat sink.

This increase in temperature causes the overall PV-TEG efficiency to decrease, as the

TEGs are currently not very efficient.

Figure 7.18d showcases the PV voltage results at the highest power point under differ-

ent solar irradiance levels. Leveraging the rapid computational abilities of the ANN,

our model facilitates swift calculation of the voltage at the Maximum Power Point

(MPP) in 0.15s, thousands of times faster than COMSOL simulation. This function-

ality is particularly valuable. By quickly determining the optimal operating voltage for
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maximum power output under varying solar conditions, the model can be instrumen-

tal in optimizing the performance of PV-TEG and standalone PV systems, leading to

more energy production.

FIGURE 7.19: 365 days Real-time data simulation of (a) the integration of all output
power. (b)Average PV temperature in operating times, (c) the average month output
power, and (d) the average month operating temperature. Singapore from Jan 1, 2022,
to Dec 31, 2022. The geometric parameters of the TEG remain constant, Wn=Wp=5mm,

HTE=10mm.

The real-time data simulation is now extended by introducing comprehensive weather

data from Singapore, spanning the entire year of 2022 for 363 days (real-time data for

the 7th and 8th of January are missing in the database). This set of data registers a total

number of 8,712 entries of hourly data points.

After feeding this set of data into our ANN-based PV-TEG and PV models, both power

output and operating temperature can be simulated and are presented in Figure 7.19a

and Figure 7.19b. Figure 7.19c calculates the monthly average power output of the

systems. It can be observed that the average output power of the PV-TEG system is

higher than that of the standalone PV without heat sink system but lower than the PV

with heat sink. In comparing the PV temperature with a heat sink, it is evident that the

combination with the TEG causes a temperature rise. Therefore, the current PV-TEG

system has limitations due to the inefficiency of the TEG in the sub-experimental TEG

structure. In the future, with further development of TE materials to increase efficiency,

PV-TEG systems will have more development. Additionally, other PV-TEG structures

exist, such as spectrum beam splitting PV-TEG, which reflects the spectrum below the

band gap to the TEG for collection [179]. This not only reduces the temperature of the
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PV but also allows the TEG to recycle part of the separated heat. This structure can also

be applied to the separation models studied in this chapter.

A key highlight of this study is the computational efficiency of our ANN model. It

completed the power output simulation of the entire dataset in 18 minutes. In contrast,

a similar number of computations based on COMSOL will necessitate a minimum of

46 days. This duration is impractical for most real-world applications, further empha-

sising the significant advantage of the ANN model in terms of speed and efficiency for

extensive and time-sensitive simulations.

7.8 Conclusion

In this chapter, an ANN-based model has been developed to predict the performance

of the hybrid PV-TEG system by employing a cyclic approach. The 3D model takes

into account a wide variety of parameters, including the PV coating, morphology, TEG

geometry, and temperature-dependent material properties, as well as different envi-

ronmental conditions such as solar irradiance and convection. Owing to its integrated

nature, the PV and TEG components in the model can also be decoupled and used inde-

pendently. This adaptability significantly amplifies the versatility and generalizability

of the PV-TEG model.

When benchmarked against the COMSOL simulation, this ANN model boasts an im-

pressive accuracy of over 98%. A noteworthy enhancement in computational efficiency

is achieved with a single simulation cost of only 0.15 s, representing a 6,000-fold ac-

celeration compared with COMSOL. The swift computational abilities of the PV-TEG

ANN model were fully leveraged in this study to perform extensive parameter sweeps

across PV, environment, and TEG parameters. This thorough analysis facilitated a de-

tailed exploration of how various parameters impact the performance of the PV-TEG

model. The rapid processing capability of the model is especially important for large-

scale simulations and real-world applications, where timely and accurate predictions

are essential.
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Chapter 8

Conclusions and future work

8.1 Conclusions

This project demonstrates the application of machine learning techniques in the for-

ward modelling of TEG power performance, achieving over 98% prediction accuracy

with ANNs trained on 3D COMSOL simulation data. The ANN models effectively han-

dle constant temperature differences and heat flux conditions, incorporating complex

thermoelectric effects like electrical contact resistance and surface heat transfer. An-

alytical studies using these networks align closely with COMSOL simulation results,

validating the networks’ performance.

Integrating ANNs with GAs for design optimization has shown superior efficiency,

outperforming COMSOL simulations and GA optimization on average by over 1,000

times. This improvement shows the potential of machine learning in modelling and

optimizing TEGs of various architectures and other energy harvesting technologies.

Further extending our work to more complex TEG structures, segmented TEG, an it-

erative training strategy improved the prediction accuracy for high-power STEG de-

signs. It achieved over 4,000 times faster optimization than the conventional finite

element method. This approach significantly enhances design optimization and pa-

rameter analysis efficiency, enabling rapid parametric sweep and revealing critical re-

lationships between STEG power output and segment material ratios.

A systematic analysis of RC-TEG devices highlighted the importance of environmen-

tal conditions and TEG parameters on performance. Real-time environmental data

analysis demonstrated RC-TEG’s capability for continuous power supply around 160

mW/m2, suitable for IoT devices.

Additionally, a PV-TEG model developed using ANNs showcased impressive accuracy

(98%) and computational efficiency (6000 times faster), drastically reducing simulation
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time compared to COMSOL simulations. This model’s flexibility and rapid compu-

tational abilities facilitate extensive parameter sweeps, offering deep insights into the

performance impacts of various parameters. The current PV-TEG model is not as effec-

tive as expected due to the low efficiency of TEGs. However, with the development of

more efficient TEGs in the future, the PV-TEG model will become more feasible. Mean-

while, other structures of PV-TEG systems are also being studied by many researchers,

indicating that PV-TEG still has a high development potential.

Overall, the application of ANNs in this research not only achieves high accuracy and

computational efficiency in modelling and optimization but also opens new avenues

for designing and optimizing complex energy harvesting technologies, demonstrating

the practical utility and effectiveness of machine learning in renewable energy technol-

ogy. The current limitation of ANN is the acquisition of datasets. Generating datasets

takes a lot of time for models that run very slowly. For many models, spending sig-

nificant time training a fast ANN may not be cost-effective. Therefore, there is still a

trade-off in deciding whether an ANN is needed to replace the original model. In the

future, more research is needed to improve the efficiency of dataset generation.

8.2 Future work

In this project, the modelling of TEGs primarily focused on structural and environ-

mental parameters. Future works could broaden these parameters to incorporate a

variety of TE materials. Some thermoelectric studies have been based on phase change

materials. Therefore, it will be interesting to see how more complex materials can be

combined into artificial neural networks.

Furthermore, developing a parameter that encapsulates the properties of these diverse

TE materials could further enhance the versatility of the TEG model, enabling it to

cover a wider array of scenarios. In addition, exploring TEGs with alternative struc-

tures presents another promising direction for future modelling efforts. This could ex-

tend to incorporating parameters for curved structures, thereby broadening the utility

of TEG models in practical scenarios, such as in water pipes.

Similarly, beyond the segmented thermoelectric generator, of which I’ve only modelled

two segments here, incorporating more layers is theoretically feasible. With different

material choices, one could model and optimize a layered thermoelectric generator

with more layers. This multilayered STEG theoretically has better efficiency, allowing

for the exploration of various combinations and variations of materials.

Additionally, the modelling of thermoelectric coolers represents a promising avenue

for future research. Utilizing the same principles as TEGs, the modelling process for

thermoelectric coolers is expected to be quite similar. Such modelling could facilitate
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the exploration of how varying the current affects the cooling capabilities of thermo-

electric coolers. By modelling thermoelectric coolers, it becomes possible to control the

current in real-time, thereby adjusting the temperature of the cold end. This capability

opens up numerous practical applications for thermoelectric coolers, including on-chip

cooling, car refrigerators, etc.
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Appendix A

Code of the project

A.1 Conventional Bulk TEG Python code

Code related to ANN training and GA has been added here. Other code and specific

datasets can be downloaded from the GitHub links https://github.com/Lorewalke

rZYX/Bulk-TEG-project.git.

A.1.1 ANN training python script

# TEG Constant TH experiment

# Available on https://github.com/LorewalkerZYX/Bulk-TEG-project.git

import pandas as pd

import numpy as np

import random

import torch

import torch.nn as nn

import torch.utils.data as Data

import xlsxwriter

# Set the random seed manually for reproducibility.

def seed_torch(seed=1029):

torch.manual_seed(seed)

torch.cuda.manual_seed(seed)

torch.cuda.manual_seed_all(seed) # if you are using multi-GPU.

torch.backends.cudnn.benchmark = False
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torch.backends.cudnn.deterministic = True

random.seed(seed)

np.random.seed(seed)

seed_torch(10)

device = torch.device(’cuda:0’)

def LoadData():

# preparing data

data_X = pd.read_excel(’input2.xlsx’)

data_Y = pd.read_excel(’Output4.2.xlsx’)

dataX = data_X.iloc[:, :]

dataY = data_Y.iloc[:, 0:3:2]

X_train = dataX.to_numpy()

Y_train = dataY.to_numpy()

return X_train, Y_train

# const = 100000

# normalization

def normalize_x(x, input=True):

temp = x

if input:

wn = 4.5 # wn = [0.5-5]

wp = 4.5 # wp = [0.5-5]

h = 4.5 # h = [0.5-5]

h_ic = 2.5 # h_ic = [0.5-3]

ff = 0.9 # ff = [0.05-0.95]

t_h = 200 # T_H = [300-500]

rho_c = 9.9E-8 # rho_c = [1E-9-1E-7]

for i in range(len(temp)):

temp[i, 0] = (temp[i, 0] - 0.5) / wn

temp[i, 1] = (temp[i, 1] - 0.5) / wp

temp[i, 2] = (temp[i, 2] - 0.5) / h
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temp[i, 3] = (temp[i, 3] - 0.5) / h_ic

temp[i, 4] = (temp[i, 4] - 0.05) / ff

temp[i, 5] = (temp[i, 5] - 300) / t_h

temp[i, 6] = (temp[i, 6] - 1E-9) / rho_c

else:

for k in range(len(temp)):

temp[k][0] = np.log(temp[k][0])

temp[k][0] = (temp[k][0] - Mp) / Sp

temp[k][1] = np.log(temp[k][1])

temp[k][1] = (temp[k][1] - Me) / Se

return temp

def recover_y(y):

# y /= const

for i in range(len(y)):

y[i, 0] = y[i, 0] * Sp + Mp

y[i, 1] = y[i, 1] * Se + Me

outy = np.exp(y)

return outy

def train_dev_split(X, Y, dev_ratio=0.25):

size = int(len(X) * (1 - dev_ratio))

label = np.array(range(len(X)))

SelectT = random.sample(range(len(X)), size) # np.random.randint(0, len(X) - 1, size)

train_x = X[SelectT]

train_y = Y[SelectT]

SelectV = np.delete(label, SelectT)

valid_x = X[SelectV]

valid_y = Y[SelectV]

# print(len(label), len(SelectT), len(SelectV))

# return X[:size], Y[:size], X[size:], Y[size:]

return train_x, train_y, valid_x, valid_y

[X_train, Y_train] = LoadData()

# Preparing the data

dev_ratio = 0.1
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Train_x, Train_y, test_x, test_y = train_dev_split(X_train, Y_train, dev_ratio)

trainx, trainy, validx, validy = train_dev_split(Train_x, Train_y, dev_ratio)

testing_x = test_x.copy()

testing_y = test_y.copy()

Mp = -2.543717849328878 # -3.236864469716249

Sp = 1.956137781915298

Mq = 8.401629926494419

Sq = 1.050063542837697

Me = -4.730739701517070

Se = 1.175501917388629

trainx = normalize_x(trainx)

validx = normalize_x(validx)

testx = normalize_x(test_x)

trainy = normalize_x(trainy, False)

validy = normalize_x(validy, False)

Y_test = normalize_x(test_y, False)

# dataset

train_size = trainx.shape[0]

valid_size = validx.shape[0]

Batch_size = 64

epoch = 2000

learning_rate = 0.001

hidden_layers = 5

hidden_feature = 20

n = 0

step = 1

# print(train_size, valid_size)

# trainsfer numpy to torch

x = torch.from_numpy(trainx)

x = x.type(torch.FloatTensor)

y = torch.from_numpy(trainy)

y = y.type(torch.FloatTensor)
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X_dev = torch.from_numpy(validx)

X_dev = X_dev.type(torch.FloatTensor)

Y_dev = torch.from_numpy(validy)

Y_dev = Y_dev.type(torch.FloatTensor)

train_data = Data.TensorDataset(x, y)

val_data = Data.TensorDataset(X_dev, Y_dev)

X_test = torch.from_numpy(testx)

X_test = X_test.type(torch.FloatTensor)

’’’Y_test = torch.from_numpy(Y_test)

Y_test = Y_test.type(torch.FloatTensor)’’’

loader = Data.DataLoader(

dataset=train_data,

batch_size=Batch_size,

shuffle=True,

)

val_loader = Data.DataLoader(

dataset=val_data,

batch_size=Batch_size,

shuffle=False

)

# create net

class Net(torch.nn.Module):

def __init__(self, n_feature, n_hidden, n_output, n_layer):

super(Net, self).__init__()

self.input = nn.Linear(n_feature, n_hidden)

self.relu = nn.ReLU()

self.hidden = nn.Linear(n_hidden, n_hidden)

self.dropout = nn.Dropout(p=0.5)

self.out = nn.Linear(n_hidden, n_output)

self.layernum = n_layer

def forward(self, x):
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out = self.input(x)

out = self.relu(out)

for i in range(self.layernum):

out = self.hidden(out)

out = self.relu(out)

out = self.out(out)

return out

seed_torch(58) # 58

Loss_Function = nn.MSELoss()

net = Net(7, hidden_feature, 2, hidden_layers)

net = net.to(device)

optimzer = torch.optim.Adam(

net.parameters(),

lr=learning_rate

# weight_decay=0.001

)

stepsize = [1800, 1900]

scheduler = torch.optim.lr_scheduler.MultiStepLR(

optimizer=optimzer,

milestones=stepsize,

gamma=0.1

)

# save in excel

workbook = xlsxwriter.Workbook(’train_result_error_N%dL%dSeed=58.xlsx’ %

(hidden_feature, hidden_layers))

worksheet = workbook.add_worksheet()

# worksheet2 = workbook.add_worksheet()

worksheet.write(’A1’, ’epoch’)

worksheet.write(’B1’, ’training loss’)

worksheet.write(’C1’, ’validation loss’)

worksheet.write(’D1’, ’Test Power Data’)

worksheet.write(’E1’, ’Test Efficiency Data’)

worksheet.write(’F1’, ’Predict Power Data’)
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worksheet.write(’G1’, ’Predict Efficiency Data’)

worksheet.write(’H1’, ’Power Relative error’)

worksheet.write(’I1’, ’Efficiency Relative error’)

worksheet.write(’J1’, ’Power Average Relative error’)

worksheet.write(’K1’, ’Efficiency Average Relative error’)

def TrainGA(epoch):

# seed_torch(sd)

for i in range(epoch):

train_loss = 0.0

# val_loss = 0.0

temp_loss = 0.0

temp_val = 0.0

net.train()

for num, (batch_x, batch_y) in enumerate(loader):

optimzer.zero_grad()

out = net(batch_x.to(device))

loss = Loss_Function(out, batch_y.to(device))

loss.backward()

optimzer.step()

temp_loss += loss.item()

scheduler.step()

train_loss = temp_loss / (train_size / Batch_size)

net.eval()

with torch.no_grad():

for epnum, (val_x, val_y) in enumerate(val_loader):

val_out = net(val_x.to(device))

dev_loss = Loss_Function(val_out, val_y.to(device))

temp_val += dev_loss.cpu().data.numpy()

val_loss = temp_val / (valid_size / Batch_size)

print(’epoch: %d’ % i, ’training loss:’, train_loss, ’|’,

’validation loss:’, val_loss)

worksheet.write(i + 1, 0, i + 1)

worksheet.write(i + 1, 1, train_loss)

worksheet.write(i + 1, 2, val_loss)

return train_loss
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# start training

TrainGA(epoch)

# test data

test_out = net(X_test.to(device))

t_out = test_out.cpu().data.numpy()

Predict_y = recover_y(t_out)

lengthT = len(t_out)

Ap = 0

Aq = 0

for j in range(lengthT):

worksheet.write(j + 1, 3, testing_y[j, 0])

worksheet.write(j + 1, 4, testing_y[j, 1])

worksheet.write(j + 1, 5, Predict_y[j, 0])

worksheet.write(j + 1, 6, Predict_y[j, 1])

RelativeE_P = np.abs(Predict_y[j, 0] - testing_y[j, 0]) / testing_y[j, 0]

RelativeE_Q = np.abs(Predict_y[j, 1] - testing_y[j, 1]) / testing_y[j, 1]

worksheet.write(j + 1, 7, RelativeE_P)

worksheet.write(j + 1, 8, RelativeE_Q)

Ap += RelativeE_P

Aq += RelativeE_Q

Aq /= lengthT

Ap /= lengthT

worksheet.write(1, 9, Ap)

worksheet.write(1, 10, Aq)

# print(temp1)

workbook.close()

# torch.save(net.state_dict(), ’TEGNetP4_V2.pkl’)

A.1.2 ANN GA script

# TEG Constant TH GA experiment

# Available on https://github.com/LorewalkerZYX/Bulk-TEG-project.git

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

import torch
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import torch.nn as nn

from sko.GA import GA

import xlsxwriter

Batch_size = 64

epoch = 2000

learning_rate = 0.001

hidden_feature = 400

Mp = -2.543717849328878

Sp = 1.956137781915298

Mq = 8.401629926494419

Sq = 1.050063542837697

Me = -4.730739701517070

Se = 1.175501917388629

# Set the random seed manually for reproducibility.

def seed_torch(seed=1029):

torch.manual_seed(seed)

torch.cuda.manual_seed(seed)

torch.cuda.manual_seed_all(seed) # if you are using multi-GPU.

torch.backends.cudnn.benchmark = False

torch.backends.cudnn.deterministic = True

# random.seed(seed)

np.random.seed(seed)

seed_torch(0) # 30,

def recover_y(y):

y[0] = y[0] * Sp + Mp

y[1] = y[1] * Se + Me

outy = np.exp(y)

return outy

def selection_tournament(self, tourn_size=4):

’’’

Select the best individual among *tournsize* randomly chosen

individuals,
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:param self:

:param tourn_size:

:return:

’’’

FitV = self.FitV

sel_index = []

for i in range(self.size_pop):

aspirants_index = np.random.choice(range(self.size_pop), size=tourn_size)

# aspirants_index = np.random.randint(self.size_pop, size=tourn_size)

sel_index.append(max(aspirants_index, key=lambda i: FitV[i]))

self.Chrom = self.Chrom[sel_index, :] # next generation

return self.Chrom

def ranking(self):

# GA select the biggest one, but we want to minimize func, so we put a negative here

self.FitV = (self.Y - np.argmin(self.Y)) # self.Y # [np.argsort(1 - self.Y)]

return self.FitV

# create net

class Net(torch.nn.Module):

def __init__(self, n_feature, n_hidden, n_output, n_layer):

super(Net, self).__init__()

self.input = nn.Linear(n_feature, n_hidden)

self.relu = nn.ReLU()

self.hidden = nn.Linear(n_hidden, n_hidden)

self.dropout = nn.Dropout(p=0.5)

self.out = nn.Linear(n_hidden, n_output)

self.layernum = n_layer

def forward(self, x):

out = self.input(x)

out = self.relu(out)

for i in range(self.layernum):

out = self.hidden(out)

out = self.relu(out)

out = self.out(out)

return out
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TEG_NET = Net(7, hidden_feature, 2, 5)

TEG_NET.load_state_dict(torch.load(’TEGNetP4_V2.pkl’))

# normalization

def normalize_x(x, input=True):

temp = x

if input:

wn = 4.5 # wn = [0.5-5]

wp = 4.5 # wp = [0.5-5]

h = 4.5 # h = [0.5-5]

h_ic = 2.5 # h_ic = [0.5-3]

ff = 0.9 # ff = [0.05-0.95]

t_h = 200 # T_H = [300-500]

rho_c = 9.9E-8 # rho_c = [1E-9-1E-7]

for i in range(len(temp)):

temp[i, 0] = (temp[i, 0] - 0.5) / wn

temp[i, 1] = (temp[i, 1] - 0.5) / wp

temp[i, 2] = (temp[i, 2] - 0.5) / h

temp[i, 3] = (temp[i, 3] - 0.5) / h_ic

temp[i, 4] = (temp[i, 4] - 0.05) / ff

temp[i, 5] = (temp[i, 5] - 300) / t_h

temp[i, 6] = (temp[i, 6] - 1E-9) / rho_c

else:

for k in range(len(temp)):

temp[k][0] = np.log(temp[k][0])

temp[k][0] = (temp[k][0] - Mp) / Sp

temp[k][1] = np.log(temp[k][1])

temp[k][1] = (temp[k][1] - Me) / Se

return temp

def normalize_new(x, input=True):

temp = x

wn = 4.5 # wn = [0.5-5]

wp = 4.5 # wp = [0.5-5]

h = 4.5 # h = [0.5-5]

h_ic = 2.5 # h_ic = [0.5-3]
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ff = 0.9 # ff = [0.05-0.95]

t_h = 200 # T_H = [300-500]

rho_c = 9.9E-8 # rho_c = [1E-9-1E-7]

temp[0] = (temp[0] - 0.5) / wn

temp[1] = (temp[1] - 0.5) / wp

temp[2] = (temp[2] - 0.5) / h

temp[3] = (temp[3] - 0.5) / h_ic

temp[4] = (temp[4] - 0.05) / ff

temp[5] = (temp[5] - 300) / t_h

temp[6] = (temp[6] - 1E-9) / rho_c

return temp

# denormalization

def denormalize_x(x):

temp = x.copy()

wn = 4.5 # wn = [0.5-5]

wp = 4.5 # wp = [0.5-5]

h = 4.5 # h = [0.5-5]

h_ic = 2.5 # h_ic = [0.5-3]

ff = 0.9 # ff = [0.05-0.95]

# q_in = 4000 # q_in = [1000-5000]

# rho_c = 9.9E-8 # rho_c = [1E-9-1E-7]

temp[0] = temp[0] * wn + 0.5

temp[1] = temp[1] * wp + 0.5

temp[2] = temp[2] * h + 0.5

temp[3] = temp[3] * h_ic + 0.5

temp[4] = temp[4] * ff + 0.05

# temp[5] = temp[5] * q_in + 1000

# temp[6] = temp[6] * rho_c + 1E-9

return temp

Th = 0.5 # Th = 400

R_c = 1/11 # Rho_c = 1E-8

T_H = 400

Rhoc = 1E-8
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def demo_func(x):

# print(x[0, :])

# x.reshape(4, 300)

# temp = normalize_x(x)

y = x / 100

In = np.append(y, T_H)

InputX = np.append(In, Rhoc)

InputX = normalize_new(InputX)

temp = torch.Tensor(InputX)

# x1, x2, x3, x4 = temp

# InX = normalize_new(temp)

# print(InX)

result = TEG_NET(temp)

tempy = result.cpu().data.numpy()

outy = recover_y(tempy)[1]

return outy

all_history_X = []

def maxrun(self, max_iter=None):

self.max_iter = max_iter or self.max_iter

for i in range(self.max_iter):

self.X = self.chrom2x(self.Chrom)

self.Y = self.x2y()

self.ranking()

self.selection()

self.crossover()

self.mutation()

# record the best ones

generation_best_index = self.FitV.argmax()

self.generation_best_X.append(self.X[generation_best_index, :])

self.generation_best_Y.append(self.Y[generation_best_index])

self.all_history_Y.append(self.Y)

self.all_history_FitV.append(self.FitV)

all_history_X.append(self.X)

global_best_index = np.array(self.generation_best_Y).argmax()
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self.best_x = self.generation_best_X[global_best_index]

self.best_y = self.func(np.array([self.best_x]))

return self.best_x, self.best_y

leastB = [0, 0, 0, 0, 0]

MostB = [1, 1, 1, 1, 1]

leastB1 = [50, 50, 50, 50, 5]

MostB1 = [500, 500, 500, 300, 95]

# wn, wp, H, hic, ff

#

ga = GA(

func=demo_func,

n_dim=5, size_pop=100,

max_iter=200,

lb=leastB1,

ub=MostB1,

precision=1

)

# ga.register(operator_name=’selection’, operator=selection_tournament)

ga.register(operator_name=’ranking’, operator=ranking)

GA.run = maxrun

best_x, best_y = ga.run()

# origin_x = denormalize_x(best_x)

# print(origin_x)

print(best_x)

print(best_x/100)

print(best_y)

Y_history = pd.DataFrame(ga.all_history_Y)

# X_history = pd.DataFrame(all_history_X[199])

# print(History_values[:, 0])

# save in excel

workbook = xlsxwriter.Workbook(’MaxGA_200G_Eff_All_X.xlsx’)

worksheet = workbook.add_worksheet()
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worksheet.write(’A1’, ’Numbers’)

worksheet.write(’B1’, ’Wn’)

worksheet.write(’C1’, ’Wp’)

worksheet.write(’D1’, ’H’)

worksheet.write(’E1’, ’Hic’)

worksheet.write(’F1’, ’FF’)

# length = len(History_values)

for i in range(200):

X_history = pd.DataFrame(all_history_X[i])

History_index = X_history.index

History_values = X_history.values

# worksheet.write(i+1, 1, np.max(History_values[i]))

for j in range(100):

worksheet.write(100*i+j+1, 0, 100*i+j+1)

worksheet.write(100*i+j+1, 1, History_values[j, 0]/100)

worksheet.write(100*i+j+1, 2, History_values[j, 1]/100)

worksheet.write(100*i+j+1, 3, History_values[j, 2]/100)

worksheet.write(100*i+j+1, 4, History_values[j, 3]/100)

worksheet.write(100*i+j+1, 5, History_values[j, 4]/100)

workbook.close()

A.2 Segmented TEG Python script

Code of entire project with dataset can be downloaded from the GitHub links https:

//github.com/LorewalkerZYX/Segmented-TEG-Project.git.

A.3 PV-TEG Python script

Code of entire project with dataset can be downloaded from the GitHub links https:

//github.com/LorewalkerZYX/Photovoltaic-TEG-Project.git.
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