The University of Southampton
University of Southampton Institutional Repository

Molecular characterization of neuroendocrinelike bladder cancer

Molecular characterization of neuroendocrinelike bladder cancer
Molecular characterization of neuroendocrinelike bladder cancer

Purpose: neuroendocrine (NE) bladder carcinoma is a rare and aggressive variant. Molecular subtyping studies have found that 5% to 15% of muscle-invasive bladder cancer (MIBC) have transcriptomic patterns consistent with NE bladder cancer in the absence of NE histology. The clinical implications of this NE-like subtype have not been explored in depth. 

Experimental design: transcriptome-wide expression profiles were generated for MIBC collected from 7 institutions and clinical-use of Decipher Bladder. Using unsupervised clustering, we generated a clustering solution on a prospective training cohort (PTC; n = 175), developed single-sample classifiers to predict NE tumors, and evaluated the resultant models on a testing radical cystectomy (RC) cohort (n = 225). A random forest model was finalized and applied to 5 validation cohorts (n = 1302). Uni-and multivariable survival analyses were used to characterize clinical outcomes. 

Results: in the training cohort (PTC), hierarchical clustering using an 84-gene panel showed a cluster of 8 patients (4.6%) with highly heterogeneous expression of NE markers in the absence of basal or luminal marker expression. NE-like tumors were identified in 1% to 6.6% of cases in validation cohorts. Patients with NE-like tumors had significantly worse 1-year progression-free survival (65%NE-like vs. 82%overall; P = 0.046) and, after adjusting for clinical and pathologic factors, had a 6.4-fold increased risk of all-cause mortality (P = 0.001). IHC confirmed the neuronal character of these tumors. 

Conclusions: a single-patient classifier was developed that identifies patients with histologic urothelial cancer harboring a NE transcriptomic profile. These tumors represent a high-risk subgroup of MIBC, which may require different treatment.

1078-0432
3908-3920
Da Costa, José Batista
12337e2f-b0b7-4de9-9c3a-bdc0bf0d161b
Gibb, Ewan A.
0f360aa2-3f90-4f79-9746-00ed593e521e
Bivalacqua, Trinity J.
a4ae160c-fc52-4e5c-8897-7a4083b7e544
Liu, Yang
511575d6-8bac-4803-b678-530e216077d1
Zarni Oo, Htoo
774455d3-722d-475a-9717-ca5165202c1f
Miyamoto, David T.
926b4f68-87bd-4a7e-8a7b-c77731c76bae
Alshalalfa, Mohammed
b27f13ba-1043-477c-b487-06ee3dc76cd4
Davicioni, Elai
8d0ac603-abf4-4d0e-894e-975a2edb318b
Wright, Jonathan
3cd14a67-a9b0-463f-bdd1-095cb1cfa4ce
Dall'Era, Marc A.
6dc348a1-4894-49fa-853d-1998ac44faaa
Douglas, James
113c1170-c37f-46bc-9d1c-38843b080abe
Boormans, Joost L.
4f22065e-656b-4d5e-8e5f-9b5812158c51
Van Der Heijden, Michiel S.
70ee9b04-1371-4eb8-8f9e-4f24b4c9101d
Wu, Chin Lee
f8688945-546b-4952-b3a8-0254ef579d45
Van Rhijn, Bas W.G.
6b157295-1b24-4e59-8d4c-c02b4912311d
Gupta, Shilpa
4efbf7c3-7d3f-48fd-86ca-8a034ade6d77
Grivas, Petros
79e6d8e8-e7d1-4376-b0dd-02c6bfff97de
Mouw, Kent W.
470c0323-f94a-46fc-af34-9bf48965c7c7
Murugan, Paari
671042cc-d334-4932-bbad-2e047a8d92f0
Fazli, Ladan
5e815787-336c-4010-aaa5-4affab24a7b8
Ra, Seong
d1bc06a6-9a12-40ab-9aab-c3af915ab71f
Konety, Badrinath R.
6b6515bc-c1cc-41f2-a656-e9cf51897b4e
Seiler, Roland
dea9a9c3-49d9-438c-b611-f558058de347
Daneshmand, Siamak
cfa2d90c-a422-4b46-9a52-9181be431f16
Mian, Omar Y.
f6c9b93c-b8eb-486c-aaea-1c4ae0f8163e
Efstathiou, Jason A.
a1afa828-a532-4237-acee-c2f9ad701129
Lotan, Yair
31675425-4fe7-429a-9292-eb2bd19dad5a
Black, Peter C.
16f69c4b-5aa2-43b8-b179-a5ca2856bb69
Da Costa, José Batista
12337e2f-b0b7-4de9-9c3a-bdc0bf0d161b
Gibb, Ewan A.
0f360aa2-3f90-4f79-9746-00ed593e521e
Bivalacqua, Trinity J.
a4ae160c-fc52-4e5c-8897-7a4083b7e544
Liu, Yang
511575d6-8bac-4803-b678-530e216077d1
Zarni Oo, Htoo
774455d3-722d-475a-9717-ca5165202c1f
Miyamoto, David T.
926b4f68-87bd-4a7e-8a7b-c77731c76bae
Alshalalfa, Mohammed
b27f13ba-1043-477c-b487-06ee3dc76cd4
Davicioni, Elai
8d0ac603-abf4-4d0e-894e-975a2edb318b
Wright, Jonathan
3cd14a67-a9b0-463f-bdd1-095cb1cfa4ce
Dall'Era, Marc A.
6dc348a1-4894-49fa-853d-1998ac44faaa
Douglas, James
113c1170-c37f-46bc-9d1c-38843b080abe
Boormans, Joost L.
4f22065e-656b-4d5e-8e5f-9b5812158c51
Van Der Heijden, Michiel S.
70ee9b04-1371-4eb8-8f9e-4f24b4c9101d
Wu, Chin Lee
f8688945-546b-4952-b3a8-0254ef579d45
Van Rhijn, Bas W.G.
6b157295-1b24-4e59-8d4c-c02b4912311d
Gupta, Shilpa
4efbf7c3-7d3f-48fd-86ca-8a034ade6d77
Grivas, Petros
79e6d8e8-e7d1-4376-b0dd-02c6bfff97de
Mouw, Kent W.
470c0323-f94a-46fc-af34-9bf48965c7c7
Murugan, Paari
671042cc-d334-4932-bbad-2e047a8d92f0
Fazli, Ladan
5e815787-336c-4010-aaa5-4affab24a7b8
Ra, Seong
d1bc06a6-9a12-40ab-9aab-c3af915ab71f
Konety, Badrinath R.
6b6515bc-c1cc-41f2-a656-e9cf51897b4e
Seiler, Roland
dea9a9c3-49d9-438c-b611-f558058de347
Daneshmand, Siamak
cfa2d90c-a422-4b46-9a52-9181be431f16
Mian, Omar Y.
f6c9b93c-b8eb-486c-aaea-1c4ae0f8163e
Efstathiou, Jason A.
a1afa828-a532-4237-acee-c2f9ad701129
Lotan, Yair
31675425-4fe7-429a-9292-eb2bd19dad5a
Black, Peter C.
16f69c4b-5aa2-43b8-b179-a5ca2856bb69

Da Costa, José Batista, Gibb, Ewan A., Bivalacqua, Trinity J., Liu, Yang, Zarni Oo, Htoo, Miyamoto, David T., Alshalalfa, Mohammed, Davicioni, Elai, Wright, Jonathan, Dall'Era, Marc A., Douglas, James, Boormans, Joost L., Van Der Heijden, Michiel S., Wu, Chin Lee, Van Rhijn, Bas W.G., Gupta, Shilpa, Grivas, Petros, Mouw, Kent W., Murugan, Paari, Fazli, Ladan, Ra, Seong, Konety, Badrinath R., Seiler, Roland, Daneshmand, Siamak, Mian, Omar Y., Efstathiou, Jason A., Lotan, Yair and Black, Peter C. (2019) Molecular characterization of neuroendocrinelike bladder cancer. Clinical Cancer Research, 25 (13), 3908-3920. (doi:10.1158/1078-0432.CCR-18-3558).

Record type: Article

Abstract

Purpose: neuroendocrine (NE) bladder carcinoma is a rare and aggressive variant. Molecular subtyping studies have found that 5% to 15% of muscle-invasive bladder cancer (MIBC) have transcriptomic patterns consistent with NE bladder cancer in the absence of NE histology. The clinical implications of this NE-like subtype have not been explored in depth. 

Experimental design: transcriptome-wide expression profiles were generated for MIBC collected from 7 institutions and clinical-use of Decipher Bladder. Using unsupervised clustering, we generated a clustering solution on a prospective training cohort (PTC; n = 175), developed single-sample classifiers to predict NE tumors, and evaluated the resultant models on a testing radical cystectomy (RC) cohort (n = 225). A random forest model was finalized and applied to 5 validation cohorts (n = 1302). Uni-and multivariable survival analyses were used to characterize clinical outcomes. 

Results: in the training cohort (PTC), hierarchical clustering using an 84-gene panel showed a cluster of 8 patients (4.6%) with highly heterogeneous expression of NE markers in the absence of basal or luminal marker expression. NE-like tumors were identified in 1% to 6.6% of cases in validation cohorts. Patients with NE-like tumors had significantly worse 1-year progression-free survival (65%NE-like vs. 82%overall; P = 0.046) and, after adjusting for clinical and pathologic factors, had a 6.4-fold increased risk of all-cause mortality (P = 0.001). IHC confirmed the neuronal character of these tumors. 

Conclusions: a single-patient classifier was developed that identifies patients with histologic urothelial cancer harboring a NE transcriptomic profile. These tumors represent a high-risk subgroup of MIBC, which may require different treatment.

This record has no associated files available for download.

More information

Accepted/In Press date: 26 March 2019
e-pub ahead of print date: 5 April 2019
Published date: 1 July 2019

Identifiers

Local EPrints ID: 492173
URI: http://eprints.soton.ac.uk/id/eprint/492173
ISSN: 1078-0432
PURE UUID: 4315b7be-9d58-476c-8aa3-3f5be434ba7c

Catalogue record

Date deposited: 18 Jul 2024 17:00
Last modified: 18 Jul 2024 17:00

Export record

Altmetrics

Contributors

Author: José Batista Da Costa
Author: Ewan A. Gibb
Author: Trinity J. Bivalacqua
Author: Yang Liu
Author: Htoo Zarni Oo
Author: David T. Miyamoto
Author: Mohammed Alshalalfa
Author: Elai Davicioni
Author: Jonathan Wright
Author: Marc A. Dall'Era
Author: James Douglas
Author: Joost L. Boormans
Author: Michiel S. Van Der Heijden
Author: Chin Lee Wu
Author: Bas W.G. Van Rhijn
Author: Shilpa Gupta
Author: Petros Grivas
Author: Kent W. Mouw
Author: Paari Murugan
Author: Ladan Fazli
Author: Seong Ra
Author: Badrinath R. Konety
Author: Roland Seiler
Author: Siamak Daneshmand
Author: Omar Y. Mian
Author: Jason A. Efstathiou
Author: Yair Lotan
Author: Peter C. Black

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×