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Abstract

The impedance spectra of perovskite solar cells frequently exhibit multiple features which are
typically modelled by complex equivalent circuits. This approach can lead to the inclusion of
circuit elements without a sensible physical interpretation and create confusion where different
circuits are adopted to describe similar cells. Spectra showing two distinct features have already
been well explained by a drift-diffusion model incorporating a single mobile ionic species but spec-
tra with three features have yet to receive the same treatment and have even been dismissed as
anomalous. This omission is rectified here by showing that a third (mid-frequency) impedance
feature is a natural consequence of the drift-diffusion model in certain scenarios. Our comprehen-
sive framework explains the shapes of all previously published spectra, which are classified into six
generic types, each named for an animal resembling the Nyquist plot, and approximate solutions
to the drift-diffusion equations are obtained in order to illustrate the specific conditions required
for each of these types of spectra to be observed. Importantly, we show that the shape of each
Nyquist plot can be linked to specific processes occurring within a cell, allowing useful information
to be extracted by a visual examination of the impedance spectra.

1 Background

Perovskite solar cells Since perovskites were first employed in photovoltaic applications as sensi-
tisers in dye-sensitised solar cells [1,2], they have gained enormous interest in the search for cheap and
efficient photovoltaics. The template for perovskite solar cells (PSCs) was set by Ball et al. [3], with a
conventional ‘n-i-p’ thin film architecture, in which the perovskite absorber layer (PAL) is sandwiched
between the n-type electron transport layer (ETL) and the p-type hole transport layer (HTL).

The following decade saw a rapid increase in the record power conversion efficiency (PCE) of these
devices. At time of writing, this record is 26.1%, matching the current record for monocrystalline silicon
solar cells [4], the main commercial technology. Furthermore, the tunable band gap of perovskites
makes them an excellent candidate for use in multijunction tandem cells. The current efficiency record
for silicon-perovskite tandem cells is 33.7%, surpassing the record for either technology individually
and approaching that of the far more expensive GaAs solar cells [4].
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Despite the impressive advances in PSCs over the last decade, several challenges still remain in
the path to large-scale commercial manufacture. The most pressing of these include long-term sta-
bility [5–16] and reliance on toxic materials [17–20]. In order to tackle these challenges, a deeper
understanding of the physical processes occurring within the perovskite is required. Standard pho-
tovoltaic characterisation techniques are complicated in the case of PSCs by the large densities of
slow-moving mobile ion vacancies predicted by atomistic modelling of the perovskite [21]. These mo-
bile ions have been shown to impact device behaviour by modulating the carrier recombination rate [22]
and introducing transients on timescales of seconds to hours [23, 24]. Recent work, however, has re-
vealed that the ionic signatures in measured data can provide tell-tale indications of bottlenecks in
device efficiency, when analysed using sophisticated modelling [25,26].

Electrochemical impedance spectroscopy Electrochemical impedance spectroscopy (EIS) is a
cheap, easily-conducted and non-destructive technique that is widely used to gather information on
recombination losses, ion activation energies and capacitance in PSCs. A small oscillating voltage is
used to perturb the cell from a fixed DC voltage (VDC) at a range of frequencies,

V = VDC + Vp sin(ωt), (1)

where Vp is the voltage amplitude (usually ≈ 10mV) and ω is the frequency of the AC voltage com-
ponent. At each frequency the magnitude (Jp) and phase delay (θ) of the AC current response is
recorded and used to construct a complex impedance

Z(ω) =
Vp

Jp(ω)
e−iθ(ω). (2)

The real and imaginary parts of this impedance are termed the resistance and reactance, respectively.
The impedance response of a device is typically visualised in a Nyquist plot, as illustrated in Figure 1,
in which a scan in the frequency ω, is represented by a curve in the resistance-reactance plane (with
resistance along the x-axis and reactance along the y-axis). Note that throughout this paper we use
units of Ω cm2 for simulated impedance due to the planar nature of the model. The information gained
from performing impedance spectroscopy is sometimes displayed in the form of a capacitance plot,
where the capacitance, C = 1

ω Im
(
1
Z

)
, is plotted against frequency. We note that any conclusions drawn

from a Nyquist plot with labelled time constants are therefore naturally extended to the corresponding
capacitance plot. Simulated impedance spectra in the main text are displayed as Nyquist plots for
easier shape recognition but all corresponding capacitance plots can be found in the SI.

These impedance measurements can reveal much about the internal physics of the device by sepa-
rating the timescales on which processes occur. Furthermore, they can be performed across a range of
DC voltages [27, 28], illumination levels [29, 30], and temperatures [31] to add an extra dimension to
the data.

Equivalent circuits A common method of interpreting IS measurements is in terms of equivalent
circuits (ECs): hypothetical circuits comprising standard electronic components used to replicate the
current-voltage characteristics of a full device [32]. For example, a single semicircle in the Nyquist
plot can be replicated by a resistor and capacitor in parallel, which is referred to as an ‘RC circuit’.
This circuit has an associated time constant, τ = RC, where R and C are the resistance and capac-
itance of the resistor and capacitor, respectively. Through parameter-fitting, therefore, a semicircle
in a measured Nyquist plot can be ascribed an associated resistance, capacitance, and time constant.
Multiple arcs (e.g. a low- and high-frequency arc) in Nyquist plots can be reproduced by placing two
RC elements in series, e.g. [33,34] or, equivalently, two nested RC circuits, e.g. [32]. In addition, such
ECs can also be used to reproduce other experimental data, such as current-voltage curves [35].

The fitting of ECs to IS data is computationally cheap and has therefore been widely used as
a method of extracting useful information about the internal physics of the cell, but extreme care
needs to be taken when ascribing individual circuit elements to physical processes within the cell.
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Figure 1: An example impedance spectrum simulated in IonMonger (parameter set A in Table S1)
showing the projection onto a Nyquist plot (blue). Projections onto the complex impedance versus
frequency plot (red) and the real impedance versus frequency plot (green) are also shown.

Figure 2: (Left) a basic RC equivalent circuit. (Right) the resulting Nyquist plot when R = 10Ω and
C = 10 µF.

Equivalent circuit fitting is useful where each RC component can be ascribed a well-defined physical
origin. This simple correlation between circuit element and physical process breaks down in the
impedance response of perovskite solar cells at low frequencies. The shape of the low frequency
impedance response can be well described by a combination of capacitors, resistors and inductors but
the values of the capacitance or inductance extracted may not be related to any actual physical
capacitances or inductances inside the solar cell. Furthermore, ECs of perovskite solar cells
can quickly grow over-complex in the search to more realistically capture the data (see Table 1).
In this paper we describe the physical origin of the full family of possible impedance spectra using
the standard drift diffusion model. In doing so we avoid the need to invoke ‘giant capacitances’,
‘negative capacitances’ or ‘chemical inductances’ which are too often misunderstood as actual physical
capacitances and inductances present in the solar cell [28].

Drift-diffusion models Drift-diffusion (DD) models simulate the internal state of a device by con-
sidering the densities of charged species and their response to gradients in electric potential (drift) and
number density (diffusion). When applied to PSCs, these models are made significantly more complex
by the addition of slow-moving mobile ion vacancies in the perovskite [52], meaning the interpretation
used for other photovoltaic technologies can not be directly applied to PSCs [53]. In contrast to ECs,
the parameter inputs for drift-diffusion models each have a clear and well-defined physical meaning.
These models are, however, computationally expensive to solve numerically [54] and the large number
of material input parameters makes data fitting a costly process. Nevertheless, drift-diffusion models
have been fitted to IS data from PSCs (see [55–57]).
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Circuit Reference Circuit Reference

[36–38] [39]

[40] [41,42]

[43–46] [43]

[47] [48]

[49] [50]

[22] [28]

[51]

Table 1: Equivalent circuits utilised to model impedance spectra of PSCs.

Figure 3: Depiction of the charge distribution in a PSC. Large circles represent ionic charge and small
circles electronic charge.

This fitting process has been expedited by utilising a hybrid approach in which initial fitting
is performed using a simplified model and results can be tweaked and validated by performing full
numerical simulations. Moia et al. construct an EC model in order to perform quick parameter-
fitting but, crucially, one inspired by the drift-diffusion model and in which each component has a
clear physical interpretation. For example, they model material interfaces as transistors coupling ion
distribution to electronic injection and recombination [22].

Alternatively, Bennett et al. [53] derive approximate analytic solutions to the drift-diffusion model
by considering small perturbations to a reduced order model (the surface polarisation model [58, 59])
that has been systematically derived from the underlying drift-diffusion model [58]. In this reduced
order model, each layer is divided into a large bulk region and very thin space charge layers (on
the order of one Debye length) near material interfaces (see Figure 3). These space charge layers
comprise mobile ions in the perovskite and electrons/holes in the ETL/HTL. All three bulk regions
are found to be electrically neutral at leading order. Each space charge layer adheres to a nonlinear
capacitance relation and the dynamic behaviour of the cell is governed by the slow migration of mobile
ion vacancies into/out of the thin Debye layer at one side of the PAL and the depletion region at the
opposite side, responding to the applied potential. The advantages of this approach are (i) that the
parameter inputs of the simplified model are directly taken from the drift-diffusion model, and (ii) that
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the approximate solutions isolate the dominant physical processes and therefore provide insight that is
not easily obtained from numerical solutions. However, this approach is based on a set of assumptions
regarding the material parameters and is therefore not applicable to all measured data. Specifically, the
Bennett approach yields only two semicircles in the Nyquist plot, and is thus not applicable to spectra
that show three or more features. The purpose of this work is to extend the insight and understanding
provided by Bennett et al. [53] to a wider range of PSC designs, and specifically to show that a third
impedance feature is a natural consequence of ionic-electronic drift-diffusion in a PSC and not a result
of exotic physics. This insight reveals that useful information can be extracted from the shape of
the Nyquist plot and the number of features without the need for sophisticated fitting. In Section 2,
we identify six categories of Nyquist plot that are commonly obtained from impedance measurements
made on PSCs and show that each can be reproduced by a standard drift-diffusion model without the
need to invoke exotic physics. In Section 3, we explain the conditions that cause a third impedance
feature to appear from the ionic-electronic drift-diffusion model and show how this gives rise to the
four archetypical three-feature spectra observed in the experimental literature and examined here in
Section 2. This analysis is used in Section 4 to create a framework for diagnosing performance losses
in cells which exhibit a third arc in their impedance spectra, alongside discussion of best practices
when performing impedance measurements in order to aid meaningful analysis and testing of physical
theories. Finally, in Section 5, we draw our conclusions.

2 Classification of spectra found in the literature

The impedance spectrum of a PSC typically exhibits two or more distinct semicircular features, when
viewed as a Nyquist plot. Motivated by observed PSC impedance spectra we classify PSC Nyquist
plots into one of six categories: two labelled ‘two-feature’ and comprising only two semicircles, and four
labelled ‘three-feature’ and comprising three semicircles (as illustrated in Figure 4). For each category
of Nyquist plot, we discuss the experimental conditions under which they have been observed and the
proposed interpretations found in the literature. We then show that each of these categories of plot
can be replicated by a standard ionic-electronic drift-diffusion simulation, without the need to invoke
any exotic physics, by providing representative plots obtained using the open-source PSC simulator
IonMonger [60,61]. Detailed explanation of how such spectra appear from the standard drift-diffusion
model is left until Section 3.

Figure 4: The ‘zoo’ of PSC impedance spectra. From top left to bottom right: the ladybird, the
elephant, the hippo, the manatee, the rabbit, and the tortoise.
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2.1 Two-feature impedance spectra

We first consider the two-feature Nyquist plots, in which two distinct semicircular features are observed:
one at high frequencies (typically on the order of kHz) and one at low frequencies (on the order of
mHz-Hz). The high frequency (HF) semicircle is always positive, here meaning lying above the x-axis
in the Nyquist plot (i.e. Im(Z) < 0). The low frequency (LF) feature, however, can appear as either
positive [27, 29, 51, 62] or negative [51, 63, 64], as depicted in Figure 5, and this difference leads us to
subdivide such Nyquist plots into two classes: the ladybird ( ) and the elephant ( ), named for
the animals they resemble.

Figure 5: Two-feature Nyquist plots: the ladybird (left) and the elephant (right). The impedance has
been normalised such that the radius of the HF arc is 1. These plots were generated using the analytic
model of impedance presented by Bennett et al. [53].

In the following, we discuss the origin of the HF feature, scenarios in which positive and negative
LF features have been observed experimentally, and review the various explanations put forward in
the literature and the corresponding modelling.

2.1.1 The high-frequency arc

Figure 6: The ”RC-RC” equivalent circuit (left) often used to model two-feature PSC impedance
spectra and (right) the corresponding Nyquist plot for RLF = 40Ω, RHF = 100Ω, CLF = 10 mF, and
CHF = 100 nF.

Impedance spectra showing two distinct semicircles are commonly modelled by an ‘RC-RC’ equiv-
alent circuit, comprising two nested RC circuits, corresponding to the high and low frequency arcs,
respectively. This EC is shown in Figure 6, along with the resulting Nyquist plot.

The high frequency capacitance was found by Pockett et al. [62,65] to be consistent with a geometric
capacitance,

CHF =
εA

d
, (3)

due to being independent of applied bias and illumination intensity. This was subsequently confirmed
by Guerrero et al. via measurements of the dependence of HF capacitance on the width of the perovskite
layer [39] and by Bennett et al. from theoretical consideration of the drift-diffusion model [53]. The
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Figure 7: Examples of two-feature impedance spectra of perovskite solar cells exhibiting the la-
dybird shape. Left panel is reproduced from [65] (under CC BY 3.0) and was measured from a
TiO2/MAPbI3−xClx/Spiro cell under 73 mW cm−2 illumination and at VDC = VOC. Right panel
is obtained from simulation of the drift-diffusion model (S1-S17) performed in IonMonger between 1
mHz and 1 MHz, under 1 Sun illumination and at VDC = 0.70V. Material parameter values for the
simulated spectrum can be found under ‘Cell A’, in Table S1. Note that Z ′ and Z ′′ are used to denote
Im(Z) and Re(Z), respectively.

parallel resistance at high frequencies is usually attributed to a recombination resistance [53,55,62]. It
has been suggested that RHF contains a transport resistance [32,66] but this usually only amounts to a
small distortion under carefully pre-selected conditions. This shows the drawbacks of using equivalent
circuits to model impedance data, namely that the meaning of the components is ambiguous and that,
in an attempt to more realistically capture the data, circuits can quickly become over-complex.

The HF semicircle also always appears in the ionic-electronic drift-diffusion model (see Figures 7b,
8b, 11b, 12b, 13b, 14b). While the origin can be difficult to uncover from numerical simulations alone,
due to the complexity of the model, an analytic model of impedance was recently derived systematically
from the drift-diffusion equations by Bennett et al. [53]. This approach avoids the pitfalls of ECs
since it is derived from well-established physics, and its simplicity also gives better physical intuition,
and much reduced computational cost, when compared to direct numerical DD simulations. It is
concluded that the HF resistance in the DD model is consistent with a recombination resistance, and
the HF capacitance is purely a geometric capacitance, caused by the out-of-phase contribution of the
displacement current to the total current due to polarisation of the perovskite layer. In this work
however, we show that there are circumstances in which the DD model predicts a high frequency
capacitance not solely resulting from the geometric capacitance. This is detailed in Section 3.3.5.

2.1.2 Positive LF feature: the ladybird

Spectra with a positive LF feature (the ladybird ) are frequently observed in PSCs (see, e.g.
[27, 29, 62, 67, 68]). This feature has been observed at DC voltages ranging from short-circuit [69–71]
to open-circuit [51,62,72] and at illumination intensities from darkness [29,73,74] to 1 Sun equivalent
[29, 51, 67]. An example of an experimental Nyquist plot, taken from [65], that displays this feature
is shown in Figure 7a. Here the LF arc is significantly larger than the HF arc, corresponding to
HF resistance that is larger than the LF resistance (in the RC-RC equivalent circuit). However,
this condition does not always hold (see, for example, [75]). While these two-feature spectra are
well-replicated by the RC-RC circuit, the origin of the LF resistance and apparent capacitance has
been widely debated. Proposed explanations in the literature include the impedance of trap states [76],
carrier accumulation near interfaces [39,77], a ‘giant dielectric effect’ [27,78], and ionic diffusion [79,80].

An example of a ladybird impedance spectrum , obtained through drift-diffusion simulations,
is shown in Figure 7b. Numerical simulations of the ionic-electronic drift-diffusion model suggest
that the LF feature is associated with the migration of mobile ion vacancies [56]. The apparent
LF capacitance is therefore interpreted as ionic modulation of the recombination rate due to the
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Figure 8: Examples of two-feature impedance spectra of perovskite solar cells showing a positive low
frequency feature (the elephant). Left panel is reproduced from [35] (under CC BY-NC-ND 4.0) and
was measured from a TiO2/MAPbBr3/Spiro cell in the dark and at VDC = 1.3 V. Right panel is
obtained from simulation of the drift-diffusion model (S1-S17) performed in IonMonger between 10
mHz and 10 MHz, under 1 Sun illumination and at VDC = 0.89V. Material parameter values for the
simulated spectrum can be found under ‘Cell B’, in Table S1. Note that Z ′ and Z ′′ are used to denote
Re(Z) and Im(Z), respectively, contrary to Figure 7.

polarisation of the ionic charge in the perovskite layer, but the source of the LF resistance is less clear.
Proposed explanations include a transport resistance of the ions themselves and a recombination
resistance modulated by the ionic distribution [22].

Once again, the approximate solutions to the drift-diffusion equations obtained by Bennett et al.
clarify the underlying mechanism [53]. At low frequencies, the migrating ions can only partially screen
the electric field in the perovskite bulk, and the flow of ionic charge across the layer lags behind the
oscillating voltage. The lagging space charge layers then modulate the recombination current, creating
an impedance response at frequencies associated with ion migration in the perovskite layer, i.e. the flux
of vacancies entering/leaving the thin charge layers at the edges of the perovskite (see Figure 3). The
LF capacitance is therefore dependent on the properties of the mobile ions and the associated resistance
depends on the dominant source of recombination. It is important to note that the LF capacitance is
an apparent capacitance and not a true physical capacitance [22,57,65]. Bennett et al. determine that
no LF arc appears when the dominant energy loss is bimolecular bulk recombination in the perovskite,
but may appear where the dominant energy loss is Shockley-Read-Hall (SRH) recombination in either
the bulk or on the perovskite interfaces. For this reason, bimolecular recombination is neglected in the
simulations presented here since it is a requirement that SRH is the dominant form of recombination
where two or more impedance features are present. Notably, reintroducing a small amount of bi-
molecular recombination changes the observed resistances of the spectrum but not its qualitative
shape or time constant. Simulated spectra with the inclusion of bi-molecular recombination can be
found in the supplementary information. Furthermore, analytic expressions are derived in [53] for the
LF resistance and capacitance in terms of the material parameters used as input for the DD model.

2.1.3 Negative LF feature: the elephant

The LF impedance feature may also appear below the x-axis, corresponding to the imaginary part of
the impedance being positive, and denoted here as ‘the elephant’ (see Figure 4). An example of such
a spectrum, taken from experiment, is shown in Figure 8a. This has been modelled in the literature
by an RC-RC equivalent circuit with negative low-frequency resistance and capacitance [33, 34], i.e.
RLF, CLF < 0. Once again, this highlights the non-physical nature of EC models, and the difficulty in
interpreting them in terms of real cell properties. The negative LF apparent capacitance has also been
modelled by the addition of a ‘chemical inductor’ to the EC [28], the physical origin of which has been
linked to ion-controlled surface recombination [81]. As outlined earlier, the values of the inductance
extracted from equivalent circuit fitting does not relate directly to any physical inductance within the
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solar cell.
However, as shown in Figure 8b, the drift-diffusion model can replicate the apparent negative LF

capacitance without recourse to exotic or unexplained physics. The parameter set that gives rise to an
impedance response with apparent negative capacitance in Figure 8b (i.e. Cell B in Table S1) differs
from the set used to generate a response with positive capacitance in Figure 7b (Cell A in Table S1)
by only a few parameters. The most significant difference between the two parameter sets is in the
recombination rate; in particular, the bulk SRH recombination in Cell A is electron-limited whilst that
in Cell B is hole-limited. As explained by Bennett et al. [53], the switching between electron-limited
and hole-limited bulk recombination causes a change in the sign of the LF feature when the cell is
otherwise unchanged. Furthermore, Bennett and coworkers show that negative LF features result only
from bulk SRH recombination and not from recombination on the perovskite interfaces.

We emphasise again that the LF feature is not a consequence of a true capacitance, i.e. a current
flow resulting from a dipolar charge accumulation. While the thin space charge layers in which ionic
vacancies build up or deplete do indeed charge and discharge on these timescales, the current associated
with accumulation and depletion of vacancies in these layers is negligible. Instead, the variations
in the measured current result from a modulation of electronic current caused by changes to the
ionic distribution. The apparent capacitance is is thus a consequence of ionic modulation of the
recombination rates [22,65].

2.2 Three-feature impedance spectra

Figure 9: The four classifications of spectra exhibiting a third mid-frequency feature. (Top left) hippo,
(top right) manatee, (bottom left) rabbit, and (bottom right) tortoise. These plots were generated
using the analytic model of impedance based on the modified surface polarisation model (17).

Whilst many PSCs exhibit the two-feature EIS spectra (ladybird and elephant ), which
are well-explained by the analytic model developed in [53], there are many reported instances of
PSCs exhibiting EIS spectra with three features. Here we review the literature associated with three-
feature spectra and classify such spectra into four categories, based on the features observed in their
Nyquist plots (as illustrated in Figures 4 and 9). In all four cases, we observe the presence of a third
mid-frequency (MF) semicircular feature that links the standard LF and HF arcs. Furthermore, we
demonstrate that each of these four types of three-feature spectra can be replicated by standard drift-
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diffusion simulations, without recourse to additional physics, and are well reproduced by our reduced
order model (17), detailed in Section 3. As illustrated in Figure 10, the three-feature spectra computed
from standard drift-diffusion simulations divide into four archetypes, depending on whether the mid-
and low-frequency arcs appear above or below the axis in the Nyquist plot. In Section 3 the processes
that give rise to these MF features are explained with reference to the standard PSC drift-diffusion
model.

Figure 10: The four three-feature impedance spectra shown in Figure 9, replicated in both numerical
solutions of the full drift-diffusion model (S1-S17) using IonMonger (blue circles) and the reduced order
model (17) detailed in Section 3 (red lines). For details of the simulation parameters, see Figures 11-14,
in which these simulations are reproduced and compared with experimentally measured spectra.

2.2.1 Positive MF and LF features: the hippo

The most straightforward and easily recognisable of the three-feature PSC spectra is the hippo, as
depicted in Figure 9a, in which a third, positive, MF semicircle joins the positive LF and HF features
(corresponding examples of experimentally observed and simulated Nyquist plots are shown in Figure
11). As shown in Figure 11a, there is often an overlap between the LF and MF semicircles, meaning it
can be difficult to distinguish between two-feature and three-feature spectra. Hippo spectra are almost
always reported for large DC voltages, in the neighbourhood of (or above) the maximum power point
(MPP) and under illumination [31, 43, 65, 82–84]. An exception to this was reported by Aeineh et al.
using a DC voltage of 0.2V [42] but there the MF feature was far smaller than either the HF or LF
features, suggesting that the MF feature becomes more prominent at large voltages. There appears to
be no correlation with architecture or material choice.

While hippo spectra ( ) have been widely observed [31,42–44,65,82–84], no consensus has been
reached on their physical origin. Numerous equivalent circuits have been utilised to model the extra
feature [32, 85] but a physical interpretation of the additional circuit elements is rarely offered. Over
three separate studies, Cameron and coworkers studied the appearance of hippo spectra at different
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Figure 11: Examples of three-feature impedance spectra of perovskite solar cells showing positive LF
and MF features (the hippo shape). Left panel is reproduced from [31] (under CC BY 3.0) and was
measured from a NiO/MAPbI3/PCBM cell under illumination and at VDC = VOC. Right panel is
obtained from simulation of the drift-diffusion model (S1-S17) performed in IonMonger between 1
mHz and 10 MHz, under 1 Sun illumination and at VDC = 1 V. Material parameter values for the
simulated spectrum can be found under ‘Cell C’, in Table S1.

temperatures and for different perovskite compositions [31,65,82]. They concluded that the MF feature
was due to a thermally-activated process and was consistent with the migration of iodide vacancies
throughout the crystal, despite occurring on timescales roughly three orders of magnitude faster than
the iodide-induced LF feature.

Despite the suggestion of exotic ECs, it is possible to obtain hippo Nyquist plots from numerical
simulations of the standard mixed ionic-electronic PSC drift-diffusion model. One such spectrum,
which is computed using IonMonger from the Cell C parameter set in Table S1, is shown in Figure
11b. In this case both the MF (approx. 6 Hz) and LF (approx. 150 mHz) features are smaller
than the HF one (approx. 130 kHz) but a wide range of variations on this shape can be obtained by
altering material parameters. The key differences between this parameter set and those used to obtain
standard, two-feature spectra (Cells A and B ) are (i) an increase in the perovskite valence
band maximum from -5.4 eV to -5.3 eV and (ii) a swapping of the ETL and HTL permittivities to
reflect the use of an organic ETL and inorganic HTL in Figure 11a. The decreased band offset between
the perovskite and the HTL causes an increase of hole leakage from the transport layer back into the
perovskite, increasing the typical hole densities in this region. At room temperature, a change in
band edge energy of 0.1 eV corresponds to an increase in carrier density by a factor of roughly 50.
The change in transport layer permittivities, however, alters the steady state ionic distribution in the
perovskite layer [59]. The process by which these parameter changes induce an additional impedance
feature is explained in detail in Section 3. It is worth noting that there is some overlap between
impedance features in both experiment and simulation [86]. In fact, simulations show the two features
are only well-distinguished in a relatively narrow region of the DC voltage. In this work we restrict
our analysis to this region, in which they are distinct, but future work will address the evolution and
merging of the two features across a broader range of voltages.

2.2.2 Negative MF and LF features: the manatee

The negative analogue of the hippo ( ) is the manatee ( ), depicted in Figure 9b (experimental
observation and simulation shown in Figure 12), in which both the MF and LF arcs lie below the
axis. To the authors’ knowledge there are only three reports of such spectra in the literature, all
occurring at DC voltages of at least 0.5V and for illumination intensities ranging from 0.05 to 1
Sun equivalent [28, 33, 40]. Naturally, no conclusions can be drawn about the correlation between
architecture and material choices with the appearance of this feature from such a small sample size.

An impedance spectrum obtained from a triple-cation PSC in [33] appears to have two negative
features that overlap very closely, meaning a separate MF feature was not identified and therefore
no explanation was made of possible origins. Similarly, a spectrum was measured by Hernández-
Balaguera and Bisquert [28] that appears to show the beginning of a second negative feature but the
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Figure 12: Examples of the manatee Nyquist shape, showing negative LF and MF features. Left panel
is reprinted (adapted) with permission from [40] (Copyright 2017 American Chemical Society) and was
measured from a TiO2/CsPbBr3/PTAA cell under 1 Sun illumination and at VDC = 0.7 V. Right panel
is obtained from simulation of the drift-diffusion model (S1-S17) performed in IonMonger between 10
mHz and 5 MHz, under 0.5 Sun illumination and at VDC = 0.87 V. Material parameter values for the
simulated spectrum can be found under ‘Cell D’, in Table S1.

lack of measurements below 1 Hz prohibits resolution of this possible feature. Given the frequency
range of the experiment, we posit that the feature identified by the authors as a LF response is
in fact a MF response and the Nyquist plot shows only the beginning of a third, true LF feature.
Apparent negative capacitance at mid-frequencies was also reported by Fabregat-Santiago et al. [40],
who modelled the effect using an inductor in an equivalent circuit. Notably, however, a different EC
was adopted depending on whether ‘negative capacitance’ was observed, precluding the model from
providing a unified theory of the devices. The inductor fits the observed response, but once again its
physical origin is less clear.

The Nyquist plot showing a manatee ( ) shape taken from the literature in Figure 12a is replicated
using numerical simulations of the standard ionic-electronic PSC drift-diffusion model in Figure 12b.
A small MF arc appears at approximately 2.5 Hz, followed by a slightly larger LF arc at approximately
100 mHz. This simulation is consistent with our explanation of the spectrum reported by Hernández-
Balaguera and Bisquert [28], as a cutoff at 1 Hz would show the entire MF feature but almost none of
the LF feature. The parameter set used to generate this Nyquist plot (Cell D in Table S1) is similar
to Cell C (hippo ) apart from two key changes: (i) the transport layer permittivities have been
swapped to be consistent with an inorganic ETL and an organic HTL, and (ii) the SRH recombination
pseudo-lifetimes have been swapped, changing the bulk SRH recombination from electron-limited to
hole-limited.

2.2.3 Negative MF and positive LF features: the rabbit

The rabbit Nyquist shape ( ), as illustrated in Figure 4, is one of the most commonly observed
three-feature spectra. Created by the joining of a positive LF arc to a negative MF arc, they are easily
identified by a small region of the Nyquist plot being completely enclosed by the curve. If the MF arc
is large and the LF arc small, however, the loop may no longer close and the Nyquist plot takes the
form of a spiral ( ). No distinction between the two is made here. Once again this exotic feature
is usually observed for large DC voltages and under illumination [45, 46, 48, 82, 87, 88]. Experiments
conducted by Wang et al. show that loops in the EIS spectra become larger as the DC voltage is
increased and are also affected by ETL material choice [47].

The so-called ‘inductive loop’ was modelled by Muscarella et al. via the addition of a third resistor-
capacitor element to the RC-RC circuit with the LF and MF RC elements attributed to ‘slow elec-
trochemical’ processes in the cell [46]. We note, however, that the resistance and capacitance of the
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Figure 13: Examples of three-feature impedance spectra of perovskite solar cells showing the rabbit
Nyquist shape, i.e. a negative MF arc and a positive LF arc. Left panel is reprinted (adapted) with
permission from [48] (Copyright 2017 American Chemical Society) and was measured from a cell
under illumination and at VDC = 0.7 V. Right panel is obtained from simulation of the drift-diffusion
model (S1-S17) performed in IonMonger between 1 mHz and 1 MHz, under 1 Sun illumination and at
VDC = 1.0 V. Material parameter values for the simulated spectrum can be found under ‘Cell E’, in
Table S1.

added RC components were both negative, and cannot therefore be linked to a true resistance and
capacitance. More studies have modelled the loop by adding an inductor in parallel with the third
(MF) R-C element [39,47,48,50]. Once again, however, the physical origins of this inductance are not
clear.

The Nyquist plot showing a loop feature taken from the literature in Figure 13a is replicated
using numerical drift-diffusion simulations in Figure 13. The negative MF arc (2.04 Hz) bridges the
HF arc (25.8 kHz) and the LF arc (52.6 mHz). Whereas Cells C ( ) and D ( ) feature a
reduced perovskite-HTL valence band offset, Cell E ( ) instead features a reduced perovskite-ETL
conduction band offset. The effect is to increase the typical densities of electrons in the perovskite layer
by a factor of approximately 200. Similarly, the HTL has a lower effective doping density, resulting in
fewer holes leaking into the perovskite. Energy loss occurs via electron-limited SRH recombination in
the perovskite bulk, as in Cell A ( ) and Cell C ( ).

2.2.4 Positive MF and negative LF features: the tortoise

The final class of three-feature spectra is the tortoise ( ), in which a positive MF feature joins a
negative LF feature to the standard (positve) HF feature, as illustrated in Figures 4 and 9d. Examples
of an experimental and computationally generated plot of this kind are shown in Figures 14a and
14b, respectively. The LF arc can be larger than the MF, reaching underneath the HF arc [32], or
smaller than the MF [89]. Once again this type of spectrum has only been reported for large DC
voltages [37, 38, 66] and never near short-circuit. Illumination intensities under which inverted spirals
have been observed range from total darkness [89] to 1 Sun equivalent [32].

The intermediate feature has been modelled by an additional R-C element in the equivalent circuit
model but once again without a valid explanation of its physical origin [32]. In pursuit of modelling
these three-feature spectra, ECs can quickly grow to exceed 10 electronic components [66], meaning
both physical interpretation and parameter fitting become much more difficult than for the simple
RC-RC circuit, used to model a spectrum with only two arcs.

The (experimental) tortoise Nyquist plot shown in Figure 14a is replicated in Figure 14b with a
simulation of the standard ionic-electronic PSC drift-diffusion model using the parameter set for Cell
F in Table S1. The positive MF peak appears at approximately 6 Hz, and the negative LF peak at
approximately 220 mHz. Cell F ( ) has a smaller perovskite-ETL conduction band offset than Cells
A ( ) and B ( ), which both produced two-feature impedance spectra.
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Figure 14: Examples of three-feature impedance spectra of perovskite solar cells showing the tortoise
Nyquist shape, i.e. a positive MF arc and a negative LF arc. Left panel is reprinted (adapted)
with permission from [32] (Copyright 2017 American Chemical Society) and was measured from a
TiO2/MAPbI3/Spiro cell under 1 Sun illumination and at VDC = 1.1 V. Right panel is obtained from
simulation of the drift-diffusion model (S1-S17) performed in IonMonger between 1 mHz and 1 MHz,
in the dark and at VDC = 1.1 V. Material parameter values for the simulated spectrum can be found
under ‘Cell F’, in Table S1.

2.2.5 Summary

The four classes of three-feature impedance spectra observed in PSCs have all been reproduced using
complex equivalent circuit models that do little to reveal their physical origins. However, as shown
here, all four classes of spectra can be reproduced using the standard, well-validated [52, 56, 59, 90]
ionic-electronic PSC drift-diffusion model, given appropriate parameter sets. Crucially, this drift-
diffusion model is based on well-understood physics and so allows us to draw conclusions about the
physical origins of these spectra. In particular, it is observed that the parameter sets used to generate
three-feature impedance spectra all use physically reasonable values and only differ from those that
give rise to two-feature spectra in one key aspect: one of the perovskite-transport layer band offsets is
reduced, allowing charge carriers to leak into the perovskite from the transport layer at relatively high
densities. It is worth remarking that which particular three-feature spectrum is observed depends on
the limiting recombination type (i.e. whether it is electron-limited or hole-limited). Notably, one of the
key assumptions made in deriving the analytic impedance model presented by Bennett et al. [53] is that
carrier densities in the perovskite are small enough that they do not significantly influence the electric
potential. The link between three-feature spectra and high leakage of carriers into the perovskite
therefore explains why Bennett’s analytic impedance model is not applicable to the parameter sets
used here to generate three-feature impedance spectra.

3 Predictions of the drift-diffusion model

Having identified the link between a reduced transport layer band offset and the impedance spectra
with three arcs, it is important to explain how these solutions arise from the standard PSC drift-
diffusion model. In scenarios where the impedance spectra consist of only two arcs, Bennett et al. [53]
were able to obtain analytic expressions which relate the low- and high-frequency resistances and
capacitances to parameters in the drift-diffusion model by looking for the linear response of a reduced
order model (termed the Surface Polarisation Model, or SPM) to a small oscillating voltage. The
SPM has in turn been derived, in a certain asymptotic limit [58,59], from the standard drift-diffusion
model. In particular, it is assumed that the Debye lengths of the carriers are much greater than
the width of the perovskite layer b, so that carriers are unable to screen the electric field from the
perovskite layer. In the regimes in which three-feature impedance spectra are observed, at least one
of the carrier densities is sufficiently high to at least partially screen the field from the perovskite
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layer. This explains why the analysis of Bennett et al. is incapable of predicting three-feature spectra.
We have already extended their results, in Section 2, by showing that spectra with a third, mid-
frequency, feature can be reproduced by the standard ionic-electronic PSC drift-diffusion model, with
an appropriate parameter set in which one of the perovskite-transport layer band offsets is reduced
sufficiently to produce a relatively high density of one of the charge carriers in the perovskite. This
leads us to conclude that the physics required to reproduce three-feature spectra is already present
in the standard PSC drift-diffusion model, even if it is absent in the scenarios considered in [53]. In
order to generalise the results of [53] to scenarios in which three Nyquist features are observed it is first
necessary to derive a reduced order model from the standard drift-diffusion model in the appropriate
parameter regime. This model was recently derived in order to investigate the phenomenon known as
inverted hysteresis in PSCs [25], where it is termed the modified Surface Polarisation Model, or
mSPM. The impedance solutions to the SPM of a PSC that have been derived by Bennett et al. [53]
can thus be re-derived with appropriate changes to the assumptions in order to capture this region of
the parameter space.

3.1 The standard PSC drift-diffusion model

Our analysis is based on the standard PSC drift-diffusion model, which considers the transport and
electrostatic interactions of both ion vacancies and electronic charge carriers. This model is reformu-
lated in the supplementary information (S1-S17). and it, or minor variations of it, have been shown
to accurately approximate the behaviour of real devices across a wide range of conditions, and for a
variety of characterisation techniques [52,55,56,58–60,91–94].

The model is based on a common PSC architecture, in which the PAL is sandwiched between
the ETL and the HTL, which are, in turn, abutted by metal contacts. In addition to the standard
conduction band electrons and valence band holes, conduction in the PAL occurs via migration of
positively charged ion vacancies [21]. It is assumed that these vacancies are balanced by an immobile
background density of negative ion vacancies such that the net ionic charge across the entire PAL
is zero. While some studies have suggested that a second (negative) mobile ion species is present in
the perovskite, Bertoluzzi et al. conclude that this can only be the case if the diffusion coefficient is
even smaller than that of the anion vacancies [95]. The second ionic species is therefore assumed to
be immobile in the present study under the assumption that its motion would not be visible on the
timescales considered. It is further assumed that the transport layers are sufficiently highly doped that
the minority carrier densities in these layers are negligible, as are the effects of charge recombination.
The full charge transport model results in a complex system of partial differential equations coupled
across the three layers, which exhibit severe numerical stiffness due to the disparity in timescales
between electronic and ionic motion and the small Debye length of the mobile ion vacancies [54, 58].
As a result, obtaining accurate solutions is challenging.

Many groups opt for a suitably tailored numerical approach to solving the model, which is capable
of overcoming the stiffness of the problem [56, 60, 61, 90, 92]. However, the complexity of the model
means that the results produced by such an approach offer limited physical insight. In particular,
underlying trends are difficult to recognise and it is hard to attribute a behaviour to a single dominant
physical mechanism.

3.2 The surface polarisation model: a reduced order model of charge trans-
port in a PSC

An alternative approach to solving the standard PSC drift-diffusion model is by using an asymptotic
method (based on matched expansions) to approximate the DD model by a much simpler, and more
tractable, reduced order model (see [52, 58, 59]). This model consists of a single nonlinear ordinary
differential equation (in time) for the surface charge density Q(t) stored in the space charge layers
at the perovskite/transport layer interfaces and, once Q(t) has been computed, allows the electric
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potential distribution across the cell, ϕ(x, t), to be uniquely determined. The derivation of the SPM
is based on four key assumptions:

(i) the Debye lengths of mobile vacancies in the PAL, and of the majority carriers in the transport
layers, are much smaller than the layer thicknesses;

(ii) the electron and hole Debye lengths in the PAL are much larger than the PAL thickness;

(iii) the electronic carriers move much faster than ion vacancies across all three layers; and

(iv) the carriers in the transport layers are highly mobile.

In the appropriate parameter regime the potential ϕ(x, t) determined by the SPM has been shown to
be a very good approximation to that determined by the standard PSC drift-diffusion model [53,58,59].
In this work we assume a mobile ion density (≈ 1019 cm−3) that is arguably at the higher end of the
range commonly attributed to this parameter, but is in line with the atomistic modelling undertaken
in [96]. We note, however, that the Nyquist shapes reproduced by our simulation can also be obtained
with lower values of the mobile ion density, as calculated by some groups [97] and that assuming lower
mobile ion density thus does not qualitatively change our conclusions.

Furthermore, the algebraic expressions for the ideality factor (nel) and the low and high frequency
apparent capacitances and resistances (CLF, RLF, CHF and RHF), measured in an impedance spec-
troscopy experiment, that are given in [53] are derived directly from the (approximate) SPM. Never-
theless, in the appropriate parameter regime, they agree very closely with the values of these quantities
computed directly from simulations of the much more complex PSC drift-diffusion model.

3.3 The modified surface polarisation model

Whilst the SPM performs very well as an approximation to the standard PSC drift-diffusion model
over a wide range of realistic parameter values, a theoretical investigation of inverted hysteresis by
Clarke et al. [25] has shown that some real devices are not well-described by the SPM, even though
simulations based on the standard PSC drift-diffusion model still accurately capture their behaviour.
In turn, this implies that for these devices, at least one of the asymptotic assumptions used to derive
the SPM is invalid. In this instance it is shown that relatively high electronic carrier densities in the
PAL invalidate assumption (v), leading to a carrier Debye length comparable to (or shorter than) b,
the PAL width, and resulting in partial screening of the electric field from the interior of the PAL. In
order to account for such scenarios, Clarke et al. [25] derive a modification to the surface polarisation
model, termed the modified surface polarisation model (mSPM), which accounts for the partial
screening by charge carriers and which is restated in the Appendix (12-15). This model pertains to
scenarios in which the band offsets between the PAL and the highly-doped transport layers are small
enough to allow significant leakage of carriers into the perovskite from the adjacent transport layers.
These are exactly the same conditions for which simulations of the standard PSC drift-diffusion model
display three-feature impedance spectra (as described in Section 2). Following the same approach as
Bennett et al. [53], this reduced order model can be linearised in terms of a small voltage perturbation
to obtain an analytic solution for impedance (Eq. 17; for derivation, see ESI). In Figure 10, the
analytic solution for impedance from the mSPM is validated against numerical solutions to the full
PSC drift-diffusion model for an example of each of the four classes of three-feature impedance spectra
discussed in Section 2.

In [25] it is shown that the mSPM extends the accuracy of the SPM to parameter sets which give
rise to inverted hysteresis. As shown in Figure 15, the principle change in moving from the SPM to
the mSPM is that the electric field in the PAL bulk is no longer spatially uniform, because it is now
partially screened by large densities of charge carriers. Here the evolution of the electric potential in
the PAL is still determined by the flow of slow-moving ions into (and out of) the space-charge layers
at transport layer interfaces, which is driven by the electric fields local to the interfaces. However, the
field is instantaneously, and at least partially, screened by the presence of large numbers of electronic
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Figure 15: Illustration of electric potential in the modified surface polarisation model (mSPM) and
the standard surface polarisation model (SPM). The electric potential is always linear in the PAL bulk
under the SPM but this restriction does not apply to the mSPM.

carriers, which in turn affects the flow of ions into (and out of) the space-charge layers. The derivation
of an impedance model using leading order solutions under a sinusoidal voltage perturbation is included
in the supplementary information but the qualitative behaviour of solutions to the model and some
useful results are described in the following sections. We note that the standard SPM is a special case
of the mSPM, which means that the impedance model that we derive from the mSPM is still valid for
any spectrum for which the SPM is appropriate.

3.3.1 Timescales of ionic motion

Despite having only one mobile ionic species, in certain circumstances two characteristic timescales of
ionic motion in the perovskite can be observed. These arise if the transport layer bands are misaligned,
as in the three-feature spectra modelled in Section 2.2, and the density of one of the charge carrier
species becomes sufficiently high to lead to a carrier Debye length (Λn for electrons and Λp for holes)
that is comparable to (or smaller than) b, the width of the PAL. The carrier Debye lengths are defined
as

Λn =

√
VT εp
qdEkE

, Λp =

√
VT εp
qdHkH

, (4)

where VT is the thermal voltage, εp is the permittivity of the PAL, q is the elementary charge, d
is the effective doping density of the respective transport layer and k is a constant associated with
the transport layer-PAL band offset defined in (S17) In such circumstances, the carriers can partially
screen the field from the interior of the PAL and a small excess of ions flows into the PAL bulk in
response to the relatively large carrier densities in an attempt to re-establish charge neutrality. The
timescale τ2 for the motion of this small excess of ions turns out to be a key timescale of the problem,
the other key timescale being τ1, which is that for ions to migrate into and out of the Debye layer on
the edge of the PAL. The latter (as described in [52]) is given by

τ1 =
ΛP b

DP
, (5)

where ΛP is the ionic Debye length, defined as

ΛP =

√
VT εp
qN0

, (6)

N0 is the average density of mobile ions, and DP is the ionic diffusion coefficient. In order to estimate
τ2 we note that the excess ions flow into the bulk from one of the boundary layers (to re-establish charge

17



neutrality) through a drift-dominated ion flux FP of the order of DPN0

b . Assuming that electrons, with
a typical density n0, are the dominant charge-carrier species, the size of the ionic excess in the bulk
(P − N0) is also n0 and, given the estimate of the ion flux FP above, we can estimate the timescale
τ2, for the motion of the excess ions across the PAL as

τ2 =
n0b

2

N0DP
. (7)

As has been noted by Bennett et al. [53], the slow τ1 timescale is associated with the low-frequency
feature in the impedance spectrum. The newly identified timescale τ2 is associated with any mid-
frequency feature that appears. The high frequency feature, as discussed in [53], is independent of ion
motion, being a consequence of the interplay of displacement currents and charge carrier recombination
currents. The ratio of the frequencies at which LF and MF features appear is therefore

fMF

fLF
≈ N0ΛP

n0b
(8)

where fLF = 1/τ1 and fMF = 1/τ2. For a third impedance feature to appear, the ionic Debye length
must be much smaller than the perovskite layer (ΛP /b ≪ 1) and the ratio of n0

N0
must be approximately

(ΛP /b)
2 under the assumptions of the mSPM. For an ionic Debye length of ΛP = 1.5 nm [52] and a

PAL thickness of b = 300 nm, the reduced order model predicts the MF feature to appear at frequencies
approximately 200 times larger than that of the LF, in excellent agreement with the full drift-diffusion
simulations. Note that this argument is easily generalised to the case where holes are the dominant
electronic carrier species rather than electrons.

3.3.2 Ultra-low frequencies

At the very lowest frequencies, the drift-diffusion model predicts that the entire system remains in
equilibrium with the AC voltage. Ion vacancies migrate into/out of the thin layers at each side of
the PAL, fully screening the electric field in the bulk, as shown in Figure 16a. At the peaks of the
AC voltage, additional electronic carriers enter the PAL from the transport layers but the electronic
charge is much smaller than the ion vacancy density in the bulk, meaning it is easily neutralised by
a small density of excess mobile ions, supplied by the thin boundary layers. As the entire system has
time to equilibrate with the AC voltage, there is no phase delay and thus no imaginary component to
the impedance.

3.3.3 Low frequencies

The low frequency (LF) regime refers here to frequencies of f ≈ 1/τ1 where τ1 is the characteristic
timescale for ion migration into/out of the space charge layers (5). As shown in Figure 16b, the AC
voltage begins to oscillate fast enough that the ions cannot charge/discharge the space charge layers
quickly enough to screen the bulk from the electric field. The charge/discharge of the thin space charge
layers on either side of the PAL begins to lag behind the AC voltage, introducing a phase delay to the
system. This phase delay in the bulk electric field modulates the electronic carrier densities, which
in turn affect the recombination rate, and leads to a phase delay in the current flowing through the
device. This manifests itself as an imaginary component of the impedance.

Whilst the ions residing in the space charge layers near the transport layer interfaces cannot respond
quickly enough to the LF voltage oscillations driving the system that they remain in phase with them,
the small density of excess ions in the PAL bulk can re-establish charge neutrality there on a timescale
approximately 200 times faster than the ions in the space charge layers. The electric potential in the
PAL bulk thus remains linear and the LF behaviour does not differ from that observed in the standard
SPM [53].
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Figure 16: Electric potential in each frequency regime. Impedance features occur when the black
dashed line does not coincide with the black solid line, i.e. the electric potential has a phase delay.
Note that oscillations are greatly exaggerated in these illustrative plots. In this example, the ETL-
perovskite band offset is small. Corresponding plots for the densities of electrons, holes and mobile
ions can be found in Section 4 of the supplementary information.

3.3.4 Mid frequencies

In the mid frequency (MF) regime (f ≈ 1/τ2), the behaviour of the mSPM diverges significantly from
that of the standard SPM. At mid frequencies, the space charge layers on either side of the PAL are
‘frozen in’, no longer able to respond to the AC voltage. As discussed above, the small population of
excess ions in the PAL can equilibrate on a much faster timescale than that of the ions in the thin
boundary layers. Thus it is only at mid frequencies that these excess ions begin to lag behind the AC
voltage. Whilst the electronic carriers equilibrate with the electric potential almost instantaneously,
the excess ions move too slowly to fully screen the charge within the bulk, as shown in Figure 16c.
There exists a range of frequencies at which the excess ions can respond partially but not fully to
the AC voltage, causing the electric potential to exhibit wavelike behaviour in the bulk (see video in
Supplementary Information). In this scenario, the bulk electrical potential, and thus carrier densities
and recombination, experience a phase delay relative to the AC voltage, resulting in an imaginary
component of impedance and a mid frequency feature on the Nyquist plot.

3.3.5 High frequencies

The excess ions are finally ‘frozen in’ in the high frequency (HF) regime, f ≫ 1/τ2 where the frequency
of the forcing voltage is so high that the ions are unable to respond to it. With mobile ions ‘frozen in’
across all layers, the only charge transport occurring on these timescales is the injection/extraction of
electronic carriers from the transport layers into the PAL bulk. The bulk therefore oscillates between
being net positively charged and net negatively charged. At all practical experimental frequencies,
electronic carrier motion can be assumed to occur instantaneously such that, while the electric potential
in the bulk is nonlinear, it is in phase with the AC voltage (as depicted in Figure 16d).

As briefly mentioned above, the high-frequency limit of the capacitance in the mSPM is not solely
from the geometric capacitance. In scenarios where carrier densities in the PAL are very large (devices
with high carrier leakage), their Debye length becomes similar to the layer thickness, allowing them
to partially screen the field. When this happens, an electronic capacitance is present as well as the
geometric. The measured capacitance at high frequencies (typically MHz) is

CHF =
εp
Λ

e2b/Λ + 1

e2b/Λ − 1
(9)

where Λ is the Debye length of the dominant carrier in the PAL. As shown in the supplementary

19



information (Section 1.8), this reduces to the geometric capacitance when both carrier Debye lengths
are much greater than the layer width Λ ≫ b.

3.3.6 Sign of the LF and MF impedance features

As seen in the numerical simulations presented in Section 2, the four classes of three-feature spectra
are created by the signs of the LF and MF feature, where each can be either positive or negative. Here
we explain the necessary conditions for both of these features to be positive or negative, beginning
with the low frequency feature.

It was found by Bennett et al. that the sign of the low frequency feature under SRH bulk recom-
bination is determined by the potential differences between the perovskite and the transport layers
at the DC voltage [53]. The LF feature is negative if |ϕHTL − ϕPAL| > |ϕETL − ϕPAL| and recom-
bination is hole-limited, or if |ϕETL − ϕPAL| > |ϕHTL − ϕPAL| and recombination is electron-limited,
and positive otherwise. At low frequencies, the excess ions in the mSPM fully screen the bulk charge,
meaning the LF feature is still described by this behaviour. We also note that, for DC voltages near
the built-in voltage (within approximately 5 thermal voltages), this amounts to a negative LF fea-
ture if εHdH < εEdE and recombination is hole-limited or if εHdH > εEdE and recombination is
electron-limited, and positive otherwise; here ε and d are the permittivity and effective doping density,
respectively, of the transport layers. The conditions in which the LF feature is positive or negative are
summarised in Table 2.

electric potential condition
bulk recombination type

electron-limited hole-limited

|ϕHTL − ϕPAL| > |ϕETL − ϕPAL| positive LF feature negative LF feature
|ϕETL − ϕPAL| > |ϕHTL − ϕPAL| negative LF feature positive LF feature

Table 2: Summary of the conditions that produce a positive or negative low-frequency impedance
feature.

The sign of the mid frequency feature depends only on the majority carrier in the PAL (caused
by a low band offset and/or higher doping density) and the recombination type. If recombination is
limited by the majority carrier the MF feature is negative (Figures 12 and 13), otherwise it is positive
(Figures 11 and 14). It is worth remarking that the signs of neither the LF nor the MF features
are directly dependent on device architecture (i.e. direction of incident light). However, the different
material choices required for p-i-n and n-i-p cells may well affect the signs of the LF and MF features
through indirect means such as permittivity and band offset.

4 Discussion

4.1 Diagnostic capabilities of the model

It has often been remarked that three-feature spectra are more commonly found in lower efficiency
cells. The mSPM not only explains the reason for this correlation but also provides a diagnostic
pathway that can help to identify the source of efficiency losses and the material changes that may
increase performance in future. Table 3 lists the six classes of PSC impedance spectra discussed in
this work, alongside the conditions required to produce them, provided by the mSPM. In addition to
the conclusions drawn regarding two-feature spectra by Bennett et al. [53], the appearance of a third
feature indicates that the density of either electrons or holes is large in the perovskite at the DC voltage,
such that the mobile ion density in the bulk is displaced from its equilibrium value. Furthermore, the
recombination rate is likely dominated by bulk SRH, as a third feature can only be induced under
surface recombination when electronic carrier densities in the perovskite are unrealistically large. The
sign of the MF feature is determined by the recombination-limiting carrier and the large-density carrier
in the bulk.
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Name Shape
Cell information

if dHεH > dEεE if dEεE > dHεH

ladybird
• Either recombination is bulk SRH dominated and
electron and hole densities are very small OR recom-
bination is surface SRH dominated

elephant

• Electron and hole densi-
ties in the perovskite are
very small
• Recombination domi-
nated by hole-limited bulk
SRH

• Electron and hole densi-
ties in the perovskite are
very small
• Recombination domi-
nated by electron-limited
bulk SRH

hippo

• Hole density in the per-
ovskite is large
• Recombination domi-
nated by electron-limited
bulk SRH

• Electron density in the
perovskite is large
• Recombination domi-
nated by hole-limited bulk
SRH

manatee

• Hole density in the per-
ovskite is large
• Recombination domi-
nated by hole-limited bulk
SRH

• Electron density in the
perovskite is large
• Recombination domi-
nated by electron-limited
bulk SRH

rabbit

• Electron density in the
perovskite is large
• Recombination domi-
nated by electron-limited
bulk SRH

• Hole density in the per-
ovskite is large
• Recombination domi-
nated by hole-limited bulk
SRH

tortoise

• Electron density in the
perovskite is large
• Recombination domi-
nated by hole-limited bulk
SRH

• Hole density in the per-
ovskite is large
• Recombination domi-
nated by electron-limited
bulk SRH

Table 3: Summary of the necessary conditions for the drift-diffusion model to recreate each of the
six categories of two- or three-feature spectra. Here d denotes the effective doping density (i.e. the
equilibrium carrier density) and ε the permittivity. A subscript E or H corresponds to the ETL or
HTL, respectively.
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Three-feature impedance spectra are an indication that a significant density of one of the carrier
species accumulates in the perovskite bulk at the DC voltage of the experiment and, consequently,
that one of the charge transport layers performs poorly at this voltage; that is it does not efficiently
extract carriers from the perovskite layer before they recombine. We hypothesise that the most likely
cause of this poor carrier extraction efficiency is an insufficient band offset between the perovskite and
transport layers, and suggest searching for an alternative transport material.

4.2 Comparison with experiment

As discussed in Section 2, all four classes of three-feature spectra are usually observed at large DC
voltages, at or near maximum power point (MPP) and open-circuit, when the cell is illuminated. This
is consistent with the predictions of the mSPM which suggest that a large voltage is necessary in order
to induce a mid-frequency feature. The electron (hole) density in the perovskite bulk at the DC voltage
is exponentially dependent on the potential difference between the perovskite bulk and the centre of
the ETL (HTL). At a DC voltage much smaller than the built-in voltage, carrier densities in the
perovskite bulk become very small, meaning that ion vacancies are not displaced from the perovskite
bulk in significant numbers and the behaviour of the standard SPM is recovered. Conversely, at
voltages much larger than the built-in voltage, carrier densities in the bulk can become large and,
depending on other material parameters such as band offsets, may displace ion vacancies from the
bulk in sufficient numbers to result in a significant ion vacancy excess (or defecit) and hence induce a
mid frequency feature. This suggests that mid-frequency features are unlikely to be observed at small
DC voltages, approaching short-circuit.

In an effort to gather more information about the LF and MF features, Pering and Cameron per-
formed impedance spectroscopy experiments across a range of temperatures [31,65]. The temperature
dependence of the characteristic timescale associated with each arc can be used to fit an activation
energy and an attempt frequency. It was concluded that the activation energies of the LF and MF
features were similar and both consistent with iodide ion vacancy migration. Conversely, the attempt
frequency was typically found to be 1-2 orders of magnitude higher for the MF feature (1010-1011 s−1)
than the LF (109-1010 s−1). Based on this observation they concluded that the features were caused
by iodide ions in two different environments (e.g. at the grain boundary and in the bulk) that were
responding to the applied field on two different timescales. Here we show that the features can be
explained by a single ionic species in two different environments, namely within the space charge layers
or in the perovskite bulk.

Figure 17: Activation energies and attempt frequencies for the six parameter sets listed in Table S1.
Values calculated from impedance spectra obtained through the reduced order model (17) described
in Section 3.3.

The drift-diffusion model accounts for temperature changes by scaling the thermal voltage and
modifying the ion vacancy diffusion coefficient according to

DP = D∞ exp

(
−Ea

kBT

)
(10)
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where D∞ and Ea are the high-temperature diffusion coefficient and activation energy, respectively.
In line with [21] we set the ionic activation energy in all simulations to be

Ea = 0.58 eV in all simulations (11)

and selected D∞ in each parameter set to be such that the room-temperature diffusion coefficients
listed in Table S1 were attained at 298 K. Once again, we note that some groups have suggested the
vacancy activation energy should be lower than this value [98], but reducing the activation energy
does not affect the proposed mechanism underlying the MF features and our conclusions are thus
unchanged. The activation energies and attempt frequencies of the LF and MF features, computed
from simulations using the mSPM across a range of temperatures, are shown in Figure 17. We find
that, with one exception in each case, both sets of results show the following similarities with the
experimental data reported by Pering and Cameron [31]. Activation energies for the two impedance
features are similar, with that of the MF appearing slightly lower than the LF, and attempt frequencies
are typically 1-2 orders of magnitude higher for the MF feature than the LF. The exact process by
which the activation energies in the impedance spectrum are modified from Ea in the DD model is still
unclear and deserves further investigation, as do the reason for the difference between the LF and MF
activation energies and the material parameters that determine the measured attempt frequencies in the
DD model. Despite this, it is encouraging that this detailed analysis shows strong similarities between
the temperature dependence of the modelled results and the experimentally observed temperature
dependence. The measurement of impedance spectra at different temperatures remains an important
method for extracting activation energies and diffusion coefficients for the mobile ionic species in
perovskite devices.

4.3 Possible future experiments

Whilst the drift and diffusion of a single mobile ionic species, coupled to that of two charge carrier
species, can explain many of the three-feature spectra reported in the literature, it is not the only
candidate hypothesis, although it is probably the simplest. Other hypotheses, such as faster ionic
migration along grain boundaries [31], have been proposed as the cause of MF impedance features.
Here we discuss potential future experiments that may be used to distinguish between alternative
hypotheses.

As discussed briefly in Section 4.2, measuring the effect of changes in temperature on the impedance
response offers additional information. Specifically the activation energy and attempt frequency that
can be extracted from each impedance feature can be tested against the predictions of competing
theories. While this characterisation technique has not been widely adopted, it can be performed
relatively easily and adds a new dimension to the reported data.

Alternatively, this theory could be tested by using different materials to alter the band structure of
the device. We predict that the large accumulation of holes or electrons in the perovskite bulk is due
to an insufficient band offset between the perovskite and the relevant transport layer. Thus, selecting
materials such that the band offset is increased should cause the MF feature to disappear from the
spectrum. One route to achieving this is to use a series of different (or differently doped) transport
layers in order to vary the band offset. This does however impact other aspects of the cell, such as the
built-in voltage, meaning other changes to the spectrum may be observed as well. Alternatively, ion
substitutions could be used to vary the band gap of the perovskite. The results from simulating this
experiment are shown in Figure 18, in which the increased band gap shows the complete removal of
the MF impedance feature. This may prove difficult in practice as the ionic substitutions are likely to
alter other material properties, such as recombination sites and it is not obvious which band (or indeed
both) the increased band gap will shift. While some studies [39, 83, 99] have looked at the effect of
altering band offsets in the device, through material substitution, the impedance response is a function
of the band picture throughout the entire device and thus depends on other variables, such as built-in
voltage.
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Figure 18: A proposed experiment to test the theory of bulk excess ion movement as a cause of
three-feature spectra. Left panel shows device band structures, with the corresponding simulated
Nyquist plots shown in the right panels, obtained from simulation of the drift-diffusion model (S1-S17)
in IonMonger. As the perovskite band gap is increased from 1.5eV to 1.8eV (for example, by ion
substitution) so are the band offsets, reducing the carrier densities in the perovskite and thus the
density of the compensating excess ions.

4.4 Best practices for reporting PSC impedance spectroscopy

The modelling presented here highlights some potential pitfalls when interpreting impedance data from
PSCs. Here we discuss strategies to avoid these and suggested practices for minimising confusion in
the reporting of these data.

Many impedance spectra in the literature are only measured at frequencies above 1 Hz, partly
due to the long time required for low frequency measurements, but also because of the poor stability
of some perovskite devices during long term measurements. Ideally all impedance spectra would be
measured to 0.1mHz or lower to allow the clearest interpretation of the results. As discussed in Section
3, the ion-induced mid- and low-frequency features bear many similarities when viewed in isolation.
The large range in reported values of the ion vacancy diffusion coefficient means it is likely that one
cell may well exhibit a LF feature at frequencies where another cell is in the MF regime. By only
measuring frequencies above 1 Hz, it can be difficult to distinguish whether the second arc is a true
LF feature or a MF feature with an unseen impedance response lying at lower frequencies. In order
to successfully measure EIS data below 1Hz it it is necessary to ensure that the cell is stable over
these timescales, since anomalous features may be observed if the cell parameters start drifting as a
result of degradation occurring on the timescale of the measurement. 1 It is usually helpful to carry
out a Kramers-Kronig analysis of the low frequency data to ensure that the results are reliable. To
illustrate the problems incomplete data can pose when modelling the data, we consider the example
of the Nyquist plot shown in Figure 19a, reported by Hernandez et al. [28]. The Nyquist plot appears
to show a single ‘LF’ feature but it is not fully resolved before the 1 Hz cut-off. There are thus two
possible ways to reconstruct this shape from the DD model. The first is to treat this as a true LF
feature, appearing above 1 Hz (as depicted in Figure 19, center panel) and the second is to assume
that this is actually a MF feature, caused by bulk excess ion motion, and that the true LF feature
lies below 1 Hz (as depicted in Figure 19, right panel). While both approaches successfully recreate
the Nyquist plot, the ambiguity in the data leads to significant differences in parameter fits (most
notably the band edges and ion diffusion coefficient) and therefore also in the overall interpretation of
cell performance.

This point is emphasised in Figure 20, in which the approximate boundaries between the frequency
regimes are plotted for different values of the vacancy diffusion coefficient (DP ). With a 1 Hz cut-off,
the mid frequency regime is only fully resolved if DP ≥ 10−16 m2 s−1. Similarly, the low frequency

1While cell degradation during measurement is often cited as a possible cause of unusual PSC spectra, here we
focus on the wide variety of shapes that can be obtained from stable cells that do not degrade during measurements.
Preliminary work suggests that the shapes of the Nyquist plots can be affected by degradation. This is something that
we will address fully in future work.
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Figure 19: The difficulties of modelling incomplete spectra. The left panel shows a measured impedance
spectrum reported by Hernandez et al. [28] (reproduced under CC-BY 4.0). The negative region could
be interpreted as either a true LF feature (modelled in centre panel) or a MF feature with an unseen LF
feature lying below the cut-off frequency (modelled in right panel). Centre and right panels obtained
from simulation of the drift-diffusion model (S1-S17) in IonMonger, using parameter sets G1 and G2,
respectively, listed in Table S1.

regime is likely only well-resolved if DP ≥ 10−14 m2 s−1. Given an estimated diffusion coefficient of
DP = 10−16 m2 s−1 for iodide vacancies in MAPI [21], we expect these experiments to capture only
the MF feature, and not the LF.

Figure 20: Approximate boundaries between frequency regimes as a function of ion vacancy diffusion
coefficient. Based on assumptions of perovskite permittivity 24.1ε0, PAL width 400nm, temperature
298K and mean ion vacancy density 1026m−3.

In efforts to minimise the confusion resulting from these measurements, it is crucial that reported
Nyquist plots include labelled frequencies (see, for example, Figure 11b) and clearly communicate
the frequency range present in the data. Furthermore, authors should comment on the possibility of
unresolved lower frequency features and limitations of the characterisation process where appropriate.

5 Conclusions

It has previously been speculated that impedance spectra of PSCs showing more than two features are
anomalous and are perhaps caused by non-steady state measurement conditions or cell degradation
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during measurement. We have shown here, however, that a third impedance feature is a natural con-
sequence of the standard ionic-electronic drift-diffusion model of a PSC in certain parameter regimes.
Furthermore, we have employed a reduced order model, which accurately approximates solutions to
the DD model, that is capable of isolating the exact conditions in which this third feature can appear.
When large densities of electrons or holes are present in the perovskite at the DC voltage, the mobile
ions are displaced slightly such that their density is not equal to that of the static background ionic
charge in the bulk. This effectively creates a small population of ‘excess ions’ which act to neutralise
small electronic charges in the perovskite layer over timescales approximately 200 times faster than the
ion migration into and out of the thin space charge layers at the perovskite/transport layer interfaces.
At mid frequencies, the excess ions can only partially respond to the electronic charge, which results in
a phase delay. An ion-modulated recombination rate in the perovskite bulk therefore induces the mid
frequency feature. Furthermore, we have shown that these large densities of carriers in the perovskite
can increase the observed capacitance relative to the geometric capacitance, contrary to previous in-
terpretation of the high-frequency impedance feature. As briefly discussed in Section 2.2.1, we have
only shown each spectrum at a single DC voltage, chosen to replicate the experimental conditions in
which each shape was observed and give the best resolution of the impedance features. In reality,
the shape of the Nyquist plot for a cell depends on several factors, including the DC voltage and
illumination intensity. Work on modelling and understanding PSC impedance spectra throughout the
voltage-illumination plane is underway.

Unlike the phenomenological equivalent circuit models used elsewhere to interpret the impedance
response of a PSC, the drift-diffusion model that we employ here is a physics-based model with the
advantage that all input parameters have a clear, well-defined physical interpretation. Solutions to
the modified Surface Polarisation Model (mSPM), which accurately approximate those to the drift-
diffusion model, allow us to predict the band offsets and dominant types of recombination from the
observed shape of the impedance spectrum of a PSC.

Finally, we have discussed best practices for performing and reporting impedance measurements in
order to aid meaningful interpretation of data and avoid potential pitfalls. In particular, it is important
that, where possible, low frequency measurements are made and, if not, that the cut-off frequency is
clearly stated.

The analysis presented here leads to a diagnostic framework that may be used to locate performance
losses in cells that exhibit three-feature spectra (summarised in Table 3). The qualitative shape of
the Nyquist plot is sufficient to provide information about both densities of electrons and holes in the
perovskite layer and the dominant source of recombination, offering valuable insights into future device
optimisation.
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Appendix: The reduced order model

The reduced order model, referred to as the modified surface polarisation model (mSPM) is system-
atically derived from the full drift-diffusion model (S1-S17) by Clarke et al. [25] and stated as follows.

2https://github.com/PerovskiteSCModelling/IonMonger
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Symbol Definition
DP ion vacancy diffusion coefficient
Vbi built-in voltage
V (t) applied voltage
VT thermal voltage
q the elementary charge
N0 average ion vacancy density

εE/p/H permittivity of ETL/PAL/HTL
dE/H effective doping density of ETL/HTL

Table 4: Symbols employed in the modified surface polarisation model (12).

The electric potential in the PAL bulk ϕ(x, t) is governed by a partial differential equation

Λ2
P

DP

∂

∂t

[
1

Λ2
n

exp

(
ϕ− Vbi−V

2

VT

)
− 1

Λ2
p

exp

(
−ϕ− Vbi−V

2

VT

)
− 1

VT

∂2ϕ

∂x2

]
=

1

VT

∂2ϕ

∂x2
, (12a)

coupled to two ordinary differential equations governing the ionic charge density in the thin layers
either side of the bulk (QL(t) and QR(t)),

dQL

dt
=

qDPN0

VT

∂ϕ

∂x
|x=0,

dQR

dt
= −qDPN0

VT

∂ϕ

∂x
|x=b, (12b)

via boundary conditions

ϕ|x=0 =
Vbi − V (t)

2
− V1 − V2, ϕ|x=b = −Vbi − V (t)

2
+ V3 + V4. (12c)

The four boundary layer potentials V1,...,4 are functions of QL and QR:

V1 =− VTV
(

QL√
qεEdEVT

)
, V2 =− VTV

(
QL√

qεpN0VT

)
, (12d)

V3 =VTV

(
QR√

qεpN0VT

)
, V4 =− VTV

(
− QR√

qεHdHVT

)
, (12e)

using a nonlinear capacitance relation V(Q), being the inverse of

Q(V) = sign(V)
√

2 (eV − V − 1). (13)

Material parameters used in this model are listed in Table 4 and ΛP,n,p are the Debye lengths
defined in (4) and (6). The current density can be calculated on this background electric potential by
solving the following boundary value problem for the electron and hole current densities (jn and jp):

djn

dx
= −q(G−R), jn|x=b = −qRr, (14)

djp

dx
= q(G−R), jp|x=0 = −qRl. (15)

In order to obtain the impedance, this model is linearised in terms of a small perturbation to the
voltage with frequency ω:

V (t) = VDC + Vp sin(ωt). (16)
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The leading order current response to this perturbation under various recombination pathways is
derived in the electronic supplementary information, arriving at an analytic expression Z(ω) for the
impedance response as a function of frequency:

Z(ω) =
−VT

JR + Jd
, (17)

where JR and Jd are complex functions of ω arising from the AC recombination current (S63) and
displacement current (S64), respectively.
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Electronic supplementary information

1 Derivation of the approximate solutions to the drift-diffusion
model

Figure S1: Schematic of the drift-diffusion model, showing the mobile charged species modelled in each
layer.

1.1 Drift-diffusion model

The full three-layer drift-diffusion model, adopting the notation of Courtier et al. [60].
Perovskite layer (0 ≤ x ≤ b)
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+
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Electron transport layer (−bE < x < 0)
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Hole transport layer (b < x < b+ bH)
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Boundary conditions
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FP |x=0 = 0, FP |x=b = 0, (S7)

jp|x=0+ = −qRl(n|x=0− , p|x=0+), jn|x=b− = −qRr(n|x=b− , p|x=b+), (S8)

n|x=−bE = dE , p|x=b+bH = dH , (S9)

ϕ|x=−bE =
Vbi − V (t)

2
, ϕ|x=b+bH = −Vbi − V (t)

2
. (S10)

Continuity conditions

n|x=0+ = kEn|x=0− , (S11)

p|x=b− = kHp|x=b+ , (S12)

ϕ|x=0− = ϕ|x=0+ , ϕ|x=b− = ϕ|x=b+ , (S13)
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1.2 The modified surface polarisation model

The modified surface polarisation model (mSPM) is an asymptotic simplification of the full DD model,
derived by Clarke et al. [25], based on the assumptions of the surface polarisation model (SPM) [59]
tweaked to allow large carrier densities in the perovskite bulk to impact the ionic distribution. The
electric potential is determined by a PDE in the perovskite bulk coupled to two ODEs for ionic
boundary layer charge density:

1
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(S18a)

dQL

dt
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qDPN0

VT

∂ϕ

∂x
|x=0, (S18b)

dQR

dt
= −qDPN0

VT

∂ϕ

∂x
|x=b, (S18c)

where ΛP , Λn and Λp are the Debye lengths of ion vacancies, electrons and holes, respectively, in the
perovskite, defined in (4) and (6). The appropriate boundary conditions for this model are

ϕ|x=0 = −V (t)− Vbi

2
− V1 − V2, ϕ|x=b =

V (t)− Vbi

2
+ V3 + V4, (S18d)

where the four boundary layer potentials (V1,...,4, see Figure S2) are determined by the two ionic
charge densities (QL and QR) via the following nonlinear capacitance relations:

V1 =− VTV
(

QL√
qεEdEVT

)
, V2 =− VTV

(
QL√

qεpN0VT

)
, (S18e)

V3 =VTV

(
QR√

qεpN0VT

)
, V4 =− VTV

(
− QR√

qεHdHVT

)
, (S18f)
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Figure S2: Illustration of electric potential in the modified surface polarisation model (S18).

and the function V(Q), being the inverse of (12). Appropriate initial conditions are imposed on ϕ,
QL and QR.

In order to obtain information about the current flow in the device from the results of the mSPM,
stated above in (S18), a supplementary boundary value problem for the electronic currents in the
perovskite bulk must be solved. This takes the electric potential ϕ(x, t) determined from the solution
of the mSPM as an input function and reads

djn

dx
= −q(G−R), jn|x=b = −qRr, (S19)

djp

dx
= q(G−R), jp|x=0 = −qRl. (S20)

We assume the generation (G), bulk recombination (R) and surface recombination rates (Rl and Rr)
to be Beer-Lambert and Shockley-Read-Hall, respectively and adopt the forms used by Courtier et
al. [60]. Here the electron and hole densities in the perovskite are assumed to be large and distributed
according to the electric potential:

n(x, t) = dEkE exp

(
ϕ(x, t)− Vbi−V (t)

2

VT

)
, p(x, t) = dHkH exp

(
−ϕ(x, t)− Vbi−V (t)

2

VT

)
, (S21)

where kE and kH are constants, defined in (S17). The recombination rates thus become functions of
x and t.

1.3 The DC electric potential solution

In order to compute the impedance response of the device, we begin by computing the DC solution,
i.e. the steady state about which the system is perturbed. We look for a static solution, at an applied
voltage V DC, to (S18a)-(S18c). In particular, we seek to determine the 7 constants ϕDC, V DC

1 , V DC
2 ,

V DC
3 , V DC

4 , QDC
L and QDC

R , where the superscript ‘DC’ is used to denote a quantity pertaining to the
static DC solution. Notably, the electric potential is uniform throughout the bulk, i.e. ϕ(x) = ϕDC.
The boundary conditions (S18) imply that

ϕDC =
Vbi − V DC

2
− V DC

1 − V DC
2 , Vbi − V DC = V DC

1 + V DC
2 + V DC

3 + V DC
4 , (S22)
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where the DC boundary layer voltages are given in terms of the DC surface charge densities by

V DC
1 =− VTV

(
QDC

L√
qεEdEVT

)
, V DC

2 =− VTV

(
QDC

L√
qεpN0VT

)
, (S23)

V DC
3 =VTV

(
QDC

R√
qεpN0VT

)
, V DC

4 =− VTV
(
− QDC

R√
qεHdHVT

)
. (S24)

The final condition needed to solve the DC problem is a statement of ionic conservation:
∫ b

0
Pdx = N0b.

In the formalism of the mSPM, this becomes

QDC
L +QDC

R = qb

[
dHkHe

−V DC
3 −V DC

4
VT − dEkEe

−V DC
1 −V DC

2
VT

]
, (S25)

where the right hand terms represent the density of excess ions that enter/leave the PAL bulk in
response to the electronic charge. Note that in most circumstances (when the DC voltage is near Vbi)
the RHS will be approximately zero. In equations (S22)-(S25) we have seven equations with which to
determine the seven unknowns ϕDC, V DC

1 , V DC
2 , V DC

3 , V DC
4 , QDC

L and QDC
R in terms of V DC.

1.4 Linearising the electric potential problem

The DC solution is perturbed by an oscillating voltage:

V (t) = V DC + δVT e
iωt (S26)

where δ (the magnitude of the perturbation in units of thermal voltages) is small and ω is the angu-
lar frequency of the perturbation. The three variables present in the electric potential problem are
linearised in terms of the magnitude of the perturbation:

ϕ(x, t) = ϕDC + δϕAC, QL(t) = QDC
L + δQAC

L , QR(t) = QDC
R + δQAC

R . (S27)

After substituting these expansions into the mSPM (S18), the zeroth order terms (in δ) recover the
DC steady state problem and the first order terms determine the AC problem:

DP
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, (S29)
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VT
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, (S30)

with boundary conditions

ϕAC|x=0 =
−VT

2
eiωt − V AC

1 − V AC
2 ϕAC|x=b =

VT

2
eiωt + V AC

3 + V AC
4 . (S31)

Here we have expanded the boundary layer potentials as Vi = V DC
i +δV AC

i and linearised the boundary
layer capacitance relations to obtain

V AC
1 = −χ1Q
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L , V AC

2 = −χ2Q
AC
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R , (S32)
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χ1 =

√
VT

qεEdE

dV
dQ

∣∣∣
Q=

QDC
L√

qεEdEVT

, χ2 =

√
VT

qεpN0

dV
dQ

∣∣∣
Q=

QDC
L√

qεpN0VT

, (S33)
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are constants determined by the DC steady state.
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1.5 Periodic solutions for electric potential

Impedance measurements rely on the assumption that the system has reached a periodic quasi-
equilibrium with angular frequency ω. We therefore restrict solutions to be of the form

ϕAC = f(x)eiωt, QAC
L = Aeiωt, QAC

R = Beiωt. (S35)

Substituting these solutions into the electric potential PDE (S18a) gives an ordinary differental equa-
tion for f :
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P )
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1

2
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(S36)

which is generally solved by
f(x) = Cezx +Dez(b−x) + VTF (S37)
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and C and D are unknown. Note that

F ≈

{
1
2 if pDC ≫ nDC,

− 1
2 if pDC ≪ nDC.

(S39)

Applying the boundary conditions (S18) to ϕ gives
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VT

2
= Cezb +D + VTF, (S40)

and the boundary layer ODEs (S29)-(S30) give
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We therefore have four constraints on A,B,C, and D:
χ1 + χ2 0 −1 −ezb
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with solutions

A =
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C = VT
(F + 1/2)(XR − 1) + (F − 1/2)(XL + 1)ezb

(XL − 1)(XR − 1)− (XR + 1)(XL + 1)e2zb
(S45)

D = VT
(F − 1/2)(XL − 1) + (F + 1/2)(XR + 1)ezb

(XL − 1)(XR − 1)− (XR + 1)(XL + 1)e2zb
(S46)

where

XL =
(χ1 + χ2)zqDPN0

iωVT
, XR =

(χ3 + χ4)zqDPN0

iωVT
. (S47)

We have thus obtained analytic approximate solutions for ϕ(x, t), QL(t), and QR(t).
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1.6 The DC current problem

Calculation of the current density through the device requires solution of (S19)-(S21) on the back-
ground electric potential solution. While in the DC steady state, the carrier densities are determined
by ϕDC:

nDC = dEkEe
−V DC

1 −V DC
2

VT , pDC = dHkHe
−V DC

3 −V DC
4

VT . (S48)

The DC bulk and surface recombination rates can be chosen are, to good approximation,

RDC =


nDC

tn
if electron-limited

pDC

tp
if hole-limited

(S49)

RDC
l = νEp e−V DC

2 /VT pDC, (S50)

RDC
r = νHn e−V DC

3 /VT nDC. (S51)

The current density ODEs (S19)-(S20) can then be integrated to obtain

jnDC(x) = q

[∫ b

x

G(x)dx− (b− x)RDC −RDC
r

]
, jpDC(x) = q

[∫ x

0

G(x)dx− xRDC −RDC
l

]
,

(S52)

and a total DC current density (J = jn + jp) of

JDC = q

[∫ b

0

G(x)dx− bRDC −RDC
l −RDC

r

]
. (S53)

1.7 Linearising the current problem

It remains to determine the AC component of the current density. The recombination rates are
linearised (in terms of the perturbation amplitude δ) as

R = RDC + δRAC, Rl = RDC
l + δRAC

l , Rr = RDC
r + δRAC

r , (S54)

and carrier densities as

n = nDC + δnAC, p = pDC + δpAC. (S55)

The AC recombination rates can be calculated as

RAC =

{
nAC

τn
if electron-limited (τp ≪ τn)

pAC

τp
if hole limited (τp ≫ τn)

(S56)

RAC
l = νEp e−V DC

2 /VT

(
pAC|x=0 −

pDC

VT
V AC
2

)
, (S57)

RAC
r = νHn e−V DC

3 /VT

(
nAC|x=b −

nDC

VT
V AC
3

)
, (S58)

and the AC current densities are functions of ϕAC (see Eq. S21):

nAC = nDC

(
ϕAC

VT
+

1

2
eiωt

)
, pAC = pDC

(
−ϕAC

VT
+

1

2
eiωt

)
. (S59)
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The current density ODEs (S19)-(S20) are linearised (in δ) and integrated to obtain electron and hole
current densities

jnAC = −q

∫ b

x

RACdx− qRAC
r , jpAC = −q

∫ x

0

RACdx− qRAC
l , (S60)

with a total current density

JAC = −q

[∫ b

0

RACdx+RAC
l +RAC

r

]
− εp

∂

∂t

∂ϕAC

∂x
(S61)

where the last term arises from the displacement current density. The total current density is param-
eterised as

JAC = (JR + Jd)e
iωt (S62)

where JR results from the recombination current and can take one of four forms to isolate a single
recombination pathway that dominates at the DC voltage:

JR =



− qnDC

τn

[
b
(
1
2 + F

)
+ C+D

zVT

(
ezb − 1

)]
electron-limited bulk SRH

− qpDC

τp

[
b
(
1
2 − F

)
− C+D

zVT

(
ezb − 1

)]
hole-limited bulk SRH

− qpDCνE
p

VT
e

−V DC
2

VT

[(
1
2 − F

)
VT − C −Dezb + χ2A

]
ETL-PAL surface SRH

− qnDCνH
n

VT
e

−V DC
3

VT

[(
1
2 + F

)
VT + Cezb +D − χ3B

]
HTL-PAL surface SRH

(S63)

and
Jd = −εpiωz

(
Cezx −Dez(b−x)

)
(S64)

arises from the displacement current. Note that the displacement current here is x-dependent but
comparison with numerical solutions shows that it should be sampled at x = 0 if nDC < pDC and x = b
otherwise. The total impedance measured can be calculated as

Z(ω) =
−VT

JR + Jd
. (S65)

Note that we adopt a negative sign to account for our definition of voltage such that an increase in
voltage results in a decrease in current density.

1.8 Capacitance

The capacitance of the device is defined as

C =
1

ω
Im

(
1

Z

)
. (S66)

The general capacitance, as a function of (angular) frequency, in the mSPM is therefore

C(ω) = −1

ω
Im

(
JR + Jd

VT

)
. (S67)

In the high-frequency limit (ω → ∞) the displacement current dominates this expression. The high
frequency limit of capacitance can therefore be calculated as

CHF =
εp
b

ẑ
(
e2ẑ + 1

)
e2ẑ − 1

(S68)
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Figure S3: Enhancement of the high frequency capacitance beyond the geometric capacitance (Π = 1)
as carrier Debye length (Λ) becomes small relative to the PAL width (b).

where ẑ = b/Λ is the ratio of the perovskite layer thickness and the dominant carrier Debye length. This
corresponds to an enhancement of the high-frequency capacitance relative to the geometric capacitance
by some factor

Π(ẑ) =
ẑ
(
e2ẑ + 1

)
e2ẑ − 1

. (S69)

This factor is plotted against carrier Debye length in Figure S3. If both carrier densities are small,
such that both Debye lengths are much greater than the PAL thickness, the geometric capacitance,
CHF = ε/b is recovered.
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Table S1: Parameter sets used in numerical drift-diffusion simulations performed using IonMonger
[60,61].
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2 Simulated capacitance plots

As discussed in the main text, the capacitance plots corresponding to each of the simulated Nyquist
plots are included here for completeness.

Figure S4: Capacitance plots from simulated impedance spectra of Cells A-F as shown in Figures
7,8,11-14. Blue circles are obtained from simulation of the full DD model in IonMonger and red lines
the mSPM. Black lines show the theoretical geometric capacitance of the perovskite layer. Nyquist
plots are shown in the insets.
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3 Spectra simulated with bi-molecular recombination

As discussed in the main text, simulated Nyquist plots including bi-molecular recombination (with
rate constant 10−10 cm3s−1) are included here for completeness.

Figure S5: Simulated Nyquist plots from Cells A-F as shown in Figures 7,8,11-14 with the addition of
bi-molecular recombination.

4 Particle densities in each frequency regime
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Figure S6: Ion vacancy density in each frequency regime. Impedance features occur when the black
dashed line does not coincide with the black solid line, i.e. the system has a phase delay. Note that
oscillations are greatly exaggerated in these illustrative plots. In this example, the ETL-perovskite
band offset is small.

Figure S7: Electron density in each frequency regime. Impedance features occur when the black dashed
line does not coincide with the black solid line, i.e. the system has a phase delay. Note that oscillations
are greatly exaggerated in these illustrative plots. In this example, the ETL-perovskite band offset is
small.
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Figure S8: Hole density in each frequency regime. Impedance features occur when the black dashed
line does not coincide with the black solid line, i.e. the system has a phase delay. Note that oscillations
are greatly exaggerated in these illustrative plots. In this example, the ETL-perovskite band offset is
small.
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