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1. Introduction

The successful calculation of the general massless open string tree amplitudes [1,2] with

the pure spinor formalism [3] still does not have a counterpart involving massive states.

One of the reasons for this situation is the added complexity in the description of massive

superfields in ten dimensions and their use in constructing massive vertex operators.

However, the pure spinor formalism comes equipped with a powerful notion of a co-

homological pure spinor superspace [4]. At the massless level, BRST cohomology ma-

nipulations give rise to many simplifications that have been exploited in several papers

[5–9] culminating in the n-point tree amplitude of [1], see the review [10]. We wish to

transfer some of the techniques and knowledge accumulated with pure spinor superspace

expressions involving massless SYM superfields into the manipulation and simplification
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of massive amplitudes, with the hopes of advancing the knowledge of massive amplitudes

beyond its current limited state. The unintegrated vertex operator at the first massive

level and its superfield description was found in 2002 by Berkovits and Chandia [11], but

it took many years until it was used in the calculation of the three point amplitude with

two massless and one massive state [12].

In this paper, two major advantages of the pure spinor formalism in calculating mass-

less tree amplitudes will start to be transferred to the study of massive amplitudes: the

simplicity of the SYM superfield massless description and the BRST cohomology manipu-

lations in pure spinor superspace. To accomplish the first goal we will construct the massive

superfields for the unintegrated vertex operator using the OPEs between massless vertex

operators1. This will then give rise to a massless representation of the massive superfields.

We will make progress towards the second goal on a case by case basis, starting with the

three point amplitude with one massive state computed in [12]. Firstly, it will be simplified

using BRST cohomology manipulations in terms of the massive superfields. Subsequently,

the massless SYM representation of the massive superfields will be plugged in, allowing

several further BRST cohomology identities for massless expressions to be used. The end

result expresses the three-point amplitude with one massive state in terms of the massless

four-point pure spinor superspace expression capturing the α′2 correction to the massless

four-point open string tree amplitude. This result will be generalized using the component

expression of the massive partial tree amplitudes found in [15] to linear combinations of α′2

tree amplitudes. Finally, the generalization of this relation will be shown to follow from (or

be compatible with) the factorization of the massless tree amplitudes on its first massive

residue. Our analysis of factorization is slightly unusual as the sum over intermediate

polarizations – which usually require two amplitudes connected via a propagator – will be

used in a single amplitude with the rule k → i, j defined in (3.25) and (3.51). This allows

us to directly relate massive and massless string amplitudes.

Throughout this paper, repeated vector indices are summed irrespective of their down-

stairs/upstairs placement and we use the convention where the symmetrization or antisym-

metrization over n indices does not contain the normalization 1
n! .

1 This construction with pure spinors was firstly announced in the companion of this paper

[13] and later confirmed by similar calculations in [14].
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2. Vertex operators

Physical states in the pure spinor formalism at the mass level n are defined as ghost number

one vertex operators in the cohomology of the pure spinor BRST charge with conformal

weight n at zero momentum [16].

2.1. Massless vertices

The unintegrated and integrated vertex operators describing the massless open string states

are given by [3]

V = λαAα , U = ∂θαAα +ΠmAm + 2α′dαW
α + α′NmnFmn . (2.1)

The superfields Aα, Am,Wα and Fmn = ∂[mAn] satisfy [17,10]

QAβ +DβV = (γmλ)βAm ,

QAm = λγmW + ∂mV ,

QW β = −
1

4
(γmnλ)βFmn,

QFmn = ∂m(λγnW )− ∂n(λγmW ) ,
(2.2)

where Q = λαDα is the pure spinor BRST operator acting on 10D superfields. The length

dimensions are chosen such that

[α′] = 2, [V ] = [U ] = 1, [Aα] =
1

2
, [Am] = 0 , [Wα] = −

1

2
, [Fmn] = −1 (2.3)

[λα] = [θα] =
1

2
, [∂m] = −1, [dα] = −

1

2
, [Πm] = 1, [J ] = 0, [Nmn] = 0 .

By stripping off λα from (2.2), one obtains the equations of motion written in terms of the

covariant derivative Dα. We will use below both forms of these equations interchangeably.

For convenience, when referring to a generic SYM superfield labelled by i we use the

collective notation

Ki ∈ {Ai
α, A

i
m,Wα

i , F
mn
i } . (2.4)

2.2. Massive unintegrated vertex

The unintegrated vertex operator V (z) containing the open-string massive states with

(mass)2 = 1/α′ was found in [11],

V (z) = [λα[∂θβBαβ]0]0+[λα[ΠmHm
α ]0]0+2α′[λα[dβC

β
α]0]0+α′[λα[NmnFαmn]0]0 , (2.5)
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where the normal-ordering bracket [AB]0 is defined in (A.2). It was also shown in [11] that

this vertex is BRST closed QV = 0 when the superfields obey the equations of motion

Q(λB)α = (λγm)α(λH)m , Q(λHm) = (λγmCλ) , Q(Cλ)α =
1

4
(λγmn)α(λF )mn ,

(2.6)

where we used the definitions (2.19) and omitted the slightly more complicated equation

for λαFαmn. The length dimension of the massive superfields in (2.5) is chosen to be

[V ] = 2, [Bαβ] = 1, [Hmα] =
1

2
, [Cβ

α] = 0 , [Fαmn] = −
1

2
. (2.7)

2.3. Massive vertex from the OPE of massless vertices

Massive vertex operators appear in the regular terms of OPEs of massless vertices [18].

This will allow us to construct the first-level massive unintegrated vertex operator in terms

of the massless superfields [19,20] as

V (z) =

∮

z

dwU1(w)V2(z), 2α′(k1 · k2) = −1 , (2.8)

where the condition

2α′(k1 · k2) = −1 , (2.9)

ensures the correct conformal weight one for the vertex V (z).

OPE of massless vertices. It is easy to see from the OPE expansion (A.1) that

V (w) =

∮

dzU1(z)V2(w) = [U1V2]1, (2.10)

where the bracketed notation for the OPEs and normal ordering is reviewed in the ap-

pendix A. Using the normal ordered massless vertex operators2

U1(z) = [∂θαA1
α]0(z) + [ΠmA1

m]0(z) + 2α′[dαW
α
1 ]0(z) + α′[NmnFmn

1 ]0(z) , (2.11)

V2(w) = [λαA2
α]0(w) , (2.12)

2 Note that there is no normal ordering ambiguity in the massless vertices due to the SYM

equations of motion in the Lorenz gauge. Nevertheless, we write the normal ordering brackets in

order to use the OPE formulas from the vertex operator algebra axioms of the appendix A.
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we get (we write [AB]0 = [AB] when convenient to avoid cluttering)

V (w) = [λβ [∂θα(A1
αA

2
β)]](w) + [λβ [Πm(A1

mA2
β)]](w)− 2α′ikn2 [λ

β(∂A1
nA

2
β)](w)

+ [λβ [dα(W
α
1 A2

β)]](w)− [λβ(∂Wα
1 DαA

2
β)](w)

+ [Nmn[λβ(Fmn
1 A2

β)]](w) +
1

2
(γmn)βδ[λ

δ(∂Fmn
1 A2

β)](w) (2.13)

The appendix A.3 contains more details of this calculation.

Note that the factors of (K1K2)(w) on the right-hand side are considered a single

operator. For example, the term [dα(W
α
1 A2

β)]0(w) is of the form [AB]0(w) with A = dα(w)

and B = (Wα
1 A2

β)(w) = Wα
1 (θ)eik1·X(w)A2

β(θ)e
ik2·X(w) = Wα

1 (θ)A
2
β(θ)e

ik·X(w), with k =

k1 + k2.

2.4. Massive superfields in the OPE gauge

After expanding ∂K1 = ∂θαDαK1 + Πmikm1 K1 to rewrite factors like (∂An
1A

2
β) as

[Πmikm1 (An
1A

2
β)]0 + [∂θα(DαA

n
1A

2
β)]0 and using (2.9) together with the SYM equations

of motion we get (omitting the worldsheet position w from the right-hand side)

V (w) = [λα[∂θβBαβ]] + [λα[ΠmHm
α ]] + 2α′[λα[dβC

β
α]] + α′[Nmn[λαFαmn]] (2.14)

where the massive superfields can be read off to be

Bαβ = −2α′ikm2 (γmW1)βA
2
α − α′ikm1 (γnW1)β(γ

mnA2)α −
α′

2
Fmn
1 (γmnD)βA

2
α , (2.15)

Hm
α = A1

mA2
α + 2α′k1m(k2 ·A1)A2

α − 2α′ik1mW β
1 DβA

2
α −

α′

2
ik1mF 1

np(γ
npA2)α , (2.16)

Cβ
α = W β

1 A
2
α , (2.17)

Fαmn = F 1
mnA

2
α . (2.18)

For reasons to become clear in section 2.5, this representation of the massive superfields in

terms of massless SYM superfields will be called the OPE gauge. Their length dimensions

are easily found to agree with (2.7).

Massive equations of motion. Defining the contraction of the massive superfields with a

pure spinor

λαBαβ = (λB)β, λαHm
α = (λHm) , Cβ

αλ
α = (Cλ)β , λαFαmn = (λF )mn , (2.19)
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and using the linearized SYM equations of motion (2.2) one readily finds the equations of

motion of the massive superfields in terms of the BRST charge Q = λαDα,

Q(λB)α = (λγm)α(λH)m (2.20)

Q(λHm) = (λγmCλ) (2.21)

Q(Cλ)α =
1

4
(λγmn)α(λF )mn (2.22)

Q(λF )mn = ikm1 (λγnW1)V2 − ikn1 (λγ
mW1)V2 (2.23)

More details can be found in the appendix B.

2.4.1. BRST invariance of massive vertex

Recall that the BRST charge is

Q =

∮

dzj(z) (2.24)

where j(z) = λα(z)dα(z) = [λαdα]0(z) is the BRST current. We will evaluate the BRST

variation of the massive unintegrated vertex in two different ways: directly from the defi-

nition (2.10) and using its explicit realization (2.14).

BRST variation from the definition. The massless vertices satisfy [3,10]

QU1(w) =

∮

dzj(z)U1(w) = [jU1]1(w) = ∂V1(w) , (2.25)

QV2(w) =

∮

dzj(z)V2(w) = [jV2]1(w) = 0 .

Therefore, the BRST variation of the first massive unintegrated vertex operator (2.10)

yields

QV (w) = [jV ]1(w) = [j[U1V2]1]1 (2.26)

= [U1[jV2]1]1 + [[jU1]1V2]1 = [∂V1V2]1 = 0,

where the second line follows from (A.15) and we used (A.11) in the last equality. So the

massive unintegrated vertex (2.10) is BRST closed.

Evaluation using superfields. The explicit computation of [jV ]1 with V given by (2.14) is

a bit tedious but straightforward. Using the identities (A.5) and (A.4) gives

QV = [jV ]1 = [∂λα[λβBβα]]− [∂θβ[λγ [λαDαBγβ]]] + [[λα∂θγ][λβHm
β ]]γm

αγ

− [[λαΠm][λβCγ
β ]]γ

m
αγ + [Πm[λβ [λαDαH

m
β ]]]

−
α′

2
[λβ[[dαλ

γ ]Fβmn]](γ
mn)αγ − 2α′[dγ [λ

β[λαDαC
γ
β]]]

+ α′[Nmn[λα[λβDβFαmn]]] . (2.27)
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In order to compare terms we need to rewrite all nested brackets in a canonical order, say

from right to left as in [A[B[CD]]]. After some work using the identities (A.10) to (A.12)

one obtains

[λβ [[dαλ
γ ]Fβmn]] = [dα[λ

β[λγFβmn]]] + [∂λγ[λβ(DαFβmn)]] , (2.28)

[[λα∂θγ][λβHm
β ]] = [∂θγ[λα[λβHm

β ]]] ,

[[λαΠm][λβCγ
β]] = [Πm[λα[λβCγ

β ]]]− 2α′[∂λα[λβ∂mCγ
β]] .

Plugging (2.28) into (2.27) and noticing that there are no normal ordering ambiguities

among λα, ∂θα and the massive superfields leads to

QV = [∂λαλβS1
αβ ]− [∂θα[λβλγS2

αβγ ]] + [Πm[λαλβS3
mαβ]] (2.29)

+ 2α′[dα[λ
βλγS4α

βγ ]] + α′[Nmn[λαλβS5
αβmn]] ,

where

∂λαλβS1
αβ = (λB∂λ) + 2α′(∂λγm∂mCλ) +

α′

2
(∂λγmnD)(λF )mn (2.30)

= −α′ikm1 (λγnW1)(∂λγ
mnA2) ,

λβλγS2
αβγ = Q(λB)α − (λHm)(λγm)α = 0 , (2.31)

λαλβS3
mαβ = Q(λHm)− (λγmCλ) = 0 , (2.32)

λβλγS4α
βγ = Q(Cλ)α −

1

4
(λγmn)α(λF )mn = 0 , (2.33)

λαλβS5
αβmn = Q(λF )mn = ikm1 (λγnW1)V2 − ikn1 (λγ

mW1)V2 . (2.34)

The simplification in (2.30) follows from the linearized SYM equations of motion and the

Dirac equation after plugging in the expression (2.15). The vanishing of the middle three

lines follows from the BRST equations of motion (2.20), (2.21) and (2.22). Therefore,

QV = −α′ikm1 (λγnW1)(∂λγ
mnA2)− 2α′i[Nmn[λαλβ ]]γm

βγk
n
1W

γ
1 A

2
α , (2.35)

where we pulled the superfields out of the normal ordering bracket as they do not have

worldsheet singularities with the operators in [Nmn[λαλβ ]]. The identity from [11]

[Nmn[λαλβ ]]γm
βγ =

1

2
[J [λαλβ ]]γn

βγ +
5

2
λα(γn∂λ)γ +

1

2
(λγmn)α(γm∂λ)γ , (2.36)

rederived in (A.29), implies that

QV = −α′ikm1 (λγnW1)(∂λγ
mnA2)− α′ikn1 (∂λγ

mW1)(λγ
mnA2) = 0 , (2.37)

where the Dirac equation eliminates the first two terms on the right-hand side of (2.36)

when plugged into (2.35) and we used (λγm)α(∂λγ
m)β + (λγm)β(∂λγ

m)α = 0. Therefore

the unintegrated massive vertex (2.14) is BRST closed, QV = 0.
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2.5. Massive superfields in the Berkovits-Chandia gauge

We have seen above that the OPE calculation leads to an unintegrated massive vertex

operator of the form

V (w) = [λα[∂θβBαβ]] + [λα[ΠmHm
α ]] + 2α′[λα[dβC

β
α]] + α′[Nmn[λαFαmn]] , (2.38)

with coefficients given in (2.15) to (2.18). It does not contain the fields ∂λα and J that

would otherwise be present in the most general form of V of conformal weight one and

ghost-number one. This parameterization in (2.15) to (2.18) was called the OPE gauge.

Berkovits-Chandia gauge. As shown in [11], the gauge invariance δV = QΩ can be exploited

to obtain a new parameterization for the superfields such that

Bαβ = γmnp
αβ Bmnp , ∂mBmnp = 0 , γmαβHmβ = 0 , ∂mHmα = 0, (2.39)

Cα
β =

1

4
(γmpnq)αβ∂mBnpq , γmαβFαmn = 0 ,

which we will call the Berkovits-Chandia gauge. As a side note, the normal ordering identity

(A.6) yields [Nmn[λαFαmn]0]0 = [λα[NmnFαmn]0]0 + 1
2
[(γmn∂λ)αFαmn]0 and therefore

constraint γmαβFαmn = 0 implies that

[Nmn[λαFαmn]0]0 = [λα[NmnFαmn]0]0 , (2.40)

a relation that will be exploited later in (2.78).

This same gauge fixing will now be done starting from the vertex in the OPE gauge.

Gauge-fixed massive superfields. The gauge invariance of the massive vertex δV = QΩ with

the most general superfield Ω of conformal weight one and ghost number zero,

Ω = [∂θαΩ1α]0 + [dαΩ
α
2 ]0 + [ΠmΩ3m]0 + [JΩ4]0 + [NmnΩ5mn]0 , (2.41)

will now be exploited to go from massive superfields in the OPE gauge (2.15)-(2.18) to

massive superfields in the Berkovits-Chandia gauge satisfying (2.39).

The BRST variation QΩ = [jΩ]1, where j = [λαdα]0 is the BRST current, reads

QΩ = [∂θβλα]0

(

−DαΩ1β + γm
αβΩ3m

)

+[Πmλα]0

(

DαΩ3m −
1

2α′
γm
αβΩ

β
2

)

(2.42)

+ [dβλ
α]0

(

−DαΩ
β
2 −

1

2
(γmn)βαΩ5mn − δβαΩ4

)

+[Jλα]0DαΩ4

+ [Nmnλα]0DαΩ5mn + ∂λα
(

Ω1α + γm
αβ∂mΩβ

2 −DαΩ4 −
1

2
(γmn)βαDβΩ5mn

)

.
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However, the gauge variations of the massive superfields following from (2.42) need to be

modified by a vector-spinor parameter Λβ
n to account for the constraint [11]

[Nmnλα]0γmαβ −
1

2
[Jλα]0γ

n
αβ = 2∂λαγn

αβ . (2.43)

The resulting gauge transformations are given by

δBαβ = −DαΩ1β + γm
αβΩ3m , (2.44)

δHmα = DαΩ3m −
1

2α′
γm
αβΩ

β
2 ,

δCβ
α = −

1

2α′
DαΩ

β
2 −

1

4α′
(γmn)βαΩ5mn −

1

2α′
δβαΩ4 ,

δFαmn =
1

α′
DαΩ5mn + γmαβΛ

β
n − γnαβΛ

β
m ,

and it is easy to determine the length dimensions of the gauge parameters

[Ω1
α] =

3

2
, [Ω2

α] =
5

2
, [Ωm

3 ] = 1, [Ω4] = 2, [Ωmn
5 ] = 2, [Λα

m] = −
1

2
. (2.45)

Since there are no massive superfields proportional to J and ∂λα in the massive vertex V

in the OPE gauge (2.38), the following constraints need to be satisfied as well

0 = DαΩ4 − α′γm
αβΛ

β
m (2.46)

0 = Ω1α + γm
αβ∂mΩβ

2 −DαΩ4 −
1

2
(γmn)βαDβΩ5mn − 4α′γm

αβΛ
β
m .

Note that we can eliminate the term involving Λα
m from the above two equations to arrive

at a single condition

Ω1α + γm
αβ∂mΩβ

2 − 5DαΩ4 −
1

2
(γmn)βαDβΩ5mn = 0 . (2.47)

2.5.1. Bαβ in the Berkovits-Chandia gauge

After the gauge transformation, the superfield Bαβ takes the form

B′
αβ = Bαβ −DαΩ1β + γm

αβΩ3m (2.48)

Now, the bispinor B′
αβ decomposes into a one-, three- and five-form parts

B′
αβ =

1

16
γm
αβγ

στ
m

(

Bστ −DσΩ1τ

)

+ γm
αβΩ3m (2.49)

+
1

96
γmnp
αβ γστ

mnp

(

Bστ −DσΩ1τ

)

+
1

3840
γmnpqr
αβ γστ

mnpqr

(

Bστ −DσΩ1τ

)
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However, the five-form part is BRST exact λαλβ
(

Bαβ − DαΛβ

)

= 0 as shown in (B.9).

So if we choose the gauge parameter Ω1τ = Λτ , where Λτ is defined in (B.10), we can

eliminate the 5-form piece from (2.49). Further, choosing

Ω3m = −
1

16
γστ
m

(

Bστ −DσΛτ

)

(2.50)

eliminates the 1-form and B′
αβ becomes

B′
αβ =

1

96
γmnp
αβ γστ

mnp

(

Bστ −DσΛτ

)

(2.51)

Simplifying the above expression using (B.10), we arrive at the result

B′
αβ = γmnp

αβ B′
mnp (2.52)

where,

96B′
mnp =

[

(A1γmnpA2) + 8α′A1
[mF 2

np] − 4α′(W1γ
mnpW2)

+ 2iα′k1[m(A1γnp]W2) + 4iα′k1q(A1γmnpqW2) + (1 ↔ 2)
]

(2.53)

Note that the above expression of B′
mnp is invariant under the exchange of massless-particle

labels. However, this is still not in the Berkovits-Chandia gauge since it does not satisfy the

condition kmB′
mnp = 0, where km = km1 + km2 . To satisfy this condition, we note that we

are still allowed to change Ω1α = Λα by shifting with any Φα which satisfies Q(λαΦα) = 0.

One can show that the following expressions are BRST closed (and also BRST exact)

λαΦ1α = ik2mA1
mV2 + ik1mV1A

2
m + A1

m(λγmW2) + (λγmW1)A
2
m = Q(A1 ·A2) (2.54)

λαΦ2α = ik1n(λγ
mW1)F

2
mn + ik2nF

1
mn(λγ

mW2) = −
1

2
Q(Fmn

1 Fmn
2 ) .

Since the above expressions are BRST closed, we can modify the gauge parameters Ω1α

and Ω3m by terms involving Φ1α and Φ2α. Choosing

Ω1α = Λα + 2α′Φ1α +
4

3
α′2Φ2α , (2.55)

Ω3m = −
1

16
γστ
m

(

Bστ −Dσ

(

Λτ + 2α′Φ1τ +
4

3
α′2Φ2τ

)

)

,

we arrive at the following expression of B′
mnp

B′
mnp =

1

18
α′(W1γmnpW2) +

1

9
α′2k1[mk2n(W1γp]W2) +

1

18
iα′2

[

k2qF 1
q[mF 2

np] + (1 ↔ 2)
]

=
1

9
α′2(W1γ

k1k2mnpW2) +
1

18
α′2
[

ik2qF 1
q[mF 2

np] + (1 ↔ 2)
]

, (2.56)
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where we used the shorthand (W1γ
k1k2mnpW2) = k1ak

2
b (W1γ

abmnpW2) in the second line.

The equivalence between the first and second lines of (2.56) follows from the Dirac equation

and 2α′k1 ·k2 = −1. It is straightforward to show that (2.56) indeed satisfies kmB′
mnp = 0.

The explicit form of the gauge parameters defined in (2.55) in terms of the massless

superfields is given by

Ω1α =
1

2
α′Fmn

1 (γmnA2)α + 2α′(γmW1)αA
m
2 (2.57)

+
4

3
iα′2k1n(γmW1)αF

mn
2 +

4

3
iα′2k2n(γmW2)αF

mn
1 ,

Ω3m = 2iα′k1m(W1A2) + α′(W1γmW2) + 2α′F 1
mnA

n
2

+
2

3
iα′2k1pF

1
mnF

np
2 +

2

3
iα′2k2pF

2
mnF

np
1 .

2.5.2. Hmα in the Berkovits-Chandia gauge

We next consider the superfield Hmα. After the gauge transformation, it becomes

H ′
mα = Hmα +DαΩ3m −

1

2α′
γm
αβΩ

β
2 . (2.58)

It is easy to see that the condition γmαβH ′
mα = 0 is satisfied provided we choose

Ωα
2 =

α′

5
γmαβ

(

Hmβ +DβΩ3m

)

= −4iα′2k1mWα
1 Am

2 −
4

3
iα′2k1nA

1
m(γmnW2)

α +
2

3
iα′2k2n(γ

mnW1)
αA2

m , (2.59)

which implies (km12 = km1 + km2 )

H
′m
α =

iα′

6

(

−5iFmn
1 (γnW2)α − 2km12A

1
n(γ

nW2)α + k1pA
1
n(γ

mnpW2)α

− 4α′km12(k
2 ·A1)k1n(γ

nW2)α + (1 ↔ 2)
)

. (2.60)

It is straightforward to prove that (2.60) satisfies the transversality condition kmH ′
mα = 0

where km = km1 +km2 . In addition, a long calculation using the massless equations of motion

(2.2) (stripping off the pure spinor) and the constraint 2α′k1 · k2 = −1 reveals that

H ′
mα =

3

7
(γnp)α

βDβB
′
mnp . (2.61)

2.5.3. Cβ
α in the Berkovits-Chandia gauge

Next, we consider the superfield Cβ
α. Its gauge transformation implies

C′β
α = Cβ

α −
1

2α′
DαΩ

β
2 −

1

4α′
(γmn)βαΩ5mn −

1

2α′
δβαΩ4 . (2.62)
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After applying the Fierz identity with respect to the indices α and β one can eliminate the

zero- and two-form parts by choosing

Ω4 =
α′

8

(

Cα
α −

1

2α′
DαΩ

α
2

)

, (2.63)

Ω5mn =
α′

8
(γmn)

α
β

(

− Cβ
α +

1

2α′
DαΩ

β
2

)

.

In terms of the massless superfields, their explicit expressions are given by

Ω4 = −
α′2

6
Fmn
1 F 2

mn , (2.64)

Ω5mn = α′2
(

F 1
a[mF 2

n]a − 2F 1
mn(ik

1 ·A2) +
3

2
ik1[m(W1γn]W2) +

1

2
ik2[m(W1γn]W2)

)

,

with 2α′k1 · k2 = −1. Plugging these into (2.62), we find (km12 = km1 + km2 ),

C′β
α =

α′

6
(γmnpq)βα

(

1

12
ik12m (W1γnpqW2) + k1mk2nA

1
pA

2
q

)

. (2.65)

It is easy to see that the above expression is equivalent to (km = km12)

C′β
α =

1

4
ikm(γmnpq)βαB

′
npq , (2.66)

with B′
mnp given in equation (2.56).

As a consistency check, we find that the gauge superfield parameters Ω1α, Ω
α
2 , Ω4 and

Ω5mn fixed in (2.55), (2.59) and (2.64) satisfy the constraint (2.47).

2.5.4. Fαmn in the Berkovits-Chandia gauge

Finally, we consider the superfield Fαmn. After the gauge transformation, it takes the form

F ′
αmn = Fαmn +

1

α′
DαΩ5mn + γmαβΛ

β
n − γnαβΛ

β
m . (2.67)

Requiring the constraint γαβ
m F ′

βmn = 0 and using (2.46) and {γm, γn} = 2ηmn implies that

Λα
n = −

1

8α′

(

α′γαβ
m Fβmn + (γmD)αΩ5

mn + (γnD)αΩ4

)

. (2.68)

Using the expressions of Fαmn from (2.18) and Ω4 and Ω5mn from (2.64), we get

Λα
m = −

43

96
A1

mWα
2 +

53

96
Wα

1 A
2
m −

1

96
A1

n(γ
mnW2)

α −
1

96
(γmnW1)

αA2
n (2.69)

−
43

48
α′k1m(k2 ·A1)Wα

2 + 2α′k1mWα
1 (k1 ·A2) +

53

48
α′k2mWα

1 (k1 ·A2)

−
13

16
α′k1mk1nA

1
p(γ

npW2)
α +

3

16
α′k2m(γnpW1)

αk2nA
2
p −

3

8
α′k2mk1nA

1
p(γ

npW2)
α

+
5

8
α′k1m(γnpW1)

αk2nA
2
p −

1

48
α′(k2 ·A1)k1n(γ

mnW2)
α −

1

48
α′k2n(γ

mnW1)
α(k1 ·A2) ,
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which indeed satisfies the first equation in (2.46). Finally, we find F ′
αmn in the Berkovits-

Chandia gauge as

F ′
αmn = −

1

24
A1

[m(γ
n]
W2)α −

1

48
A1

p(γ
mnpW2)α +

3

8
α′k1[mk2n]A

1
p(γ

pW2)α (2.70)

+
7

16
α′k1[mA1

n]k
1
p(γ

pW2)α −
1

12
α′(k2 ·A1)k1[m(γn]W2)α

+
3

8
α′k2[mA1

n]k
1
p(γ

pW2)α +
1

16
α′k1pA

1
qk

1
[m(γn]pqW2)α

+
1

8
α′k1pA

1
qk

2
[m(γn]pqW2)α −

1

24
α′(k2 ·A1)k1p(γ

mnpW2)α

+ (1 ↔ 2) ,

which satisfies ([mn] = mn − nm, km = km1 + km2 )

F ′
αmn =

1

16

(

7ik[mH ′
n]α + ikq(γq[m) β

α H ′
n]β

)

. (2.71)

Furthermore, using the equation of motion for H ′m
α [21],

DαH
′m
β = −

9

4
G′

mnγ
n
αβ −

3

2
∂aB

′
bcmγabc

αβ +
1

4
∂aB

′
bcdγ

mabcd
αβ , (2.72)

several gamma matrix identities and

∂pC
′α

δγ
δβ
p = −

1

4α′
(γmnp)αβB′

mnp , (2.73)

(λγmnabcλ)B′
abc = 2α′

(

∂p(λγ
mC′γnγpλ)− ∂p(λγ

nC′γmγpλ)
)

,

we obtain

Q(λF ′)mn =
1

2
∂[m(λγn]C

′λ)−
1

16
∂p(λγ[mC′γn]pλ) , (2.74)

where (λγmC′γnpλ) = (λγm)αC
′α

β(γ
npλ)β .

2.5.5. Massive superfields in the BC gauge: summary

In summary, the massive superfields in the Berkovits-Chandia gauge written in terms of

massless superfields3 are given by the equations B′
αβ = γmnp

αβ B′
mnp with B′

mnp in (2.56),

H ′
mα from (2.60), C

′β
α from (2.65) and F ′

αmn from (2.70). Dropping the ′ superscript from

3 These results were firstly announced in November 2023 [13] and later confirmed with inde-

pendent calculations by [14].
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the notation and using km = km1 + km2 , one can show using the SYM equations of motion

(2.2) that the above expression satisfies

Bαβ = γmnp
αβ Bmnp , (2.75)

Hmα =
3

7
(γnp)α

βDβBmnp ,

Cβ
α =

1

4
ikm(γmnpq)βαBnpq ,

Fαmn =
1

16

(

7ik[mHn]α + ikq(γq[m) β
α Hn]β

)

,

where ([mn] = mn − nm)

Bmnp =
1

9
α′2(W1γ

k1k2mnpW2) +
1

18
α′2
[

ik2qF 1
q[mF 2

np] + (1 ↔ 2)
]

, 2α′k1 · k2 = −1 ,

(2.76)

in agreement with [11]. Moreover, the equations of motion of the superfields in the combi-

nation (2.19) are given by

Q(λB)α = (λγm)α(λH)m , (2.77)

Q(λHm) = (λγmCλ) ,

Q(Cλ)α =
1

4
(λγmn)α(λF )mn ,

Q(λF ′)mn =
1

2
∂[m(λγn]C

′λ)−
1

16
∂p(λγ[mC′γn]pλ) ,

and resemble the massless SYM equations of motion (2.2). Note that the gauge transfor-

mations (2.44) preserve the first three equations but not the last. Finally, in the Berkovits-

Chandia gauge the unintegrated vertex operator at mass level one becomes

V = [λα[∂θβBαβ]0]0 + [λα[ΠmHm
α ]0]0 + 2α′[λα[dβC

β
α]0]0 + α′[λα[NmnFαmn]0]0 , (2.78)

where the normal-ordering bracket [AB]0 is defined in (A.2), and we used (2.40). Alterna-

tively, it can also be suggestively rewritten in terms of the definition (2.19) as

V = [∂θα(Bλ)α]0 + [Πm(λHm)]0 + 2α′[dα(Cλ)α]0 + α′[Nmn(λF )mn]0 , (2.79)

resembling the massless integrated vertex operator (2.11).

In the context of scattering amplitudes, the massless representation of massive super-

fields can be viewed as swapping a string label, say k for the massive string, by a pair

of massless string labels, say i, j (i=1 and j=2 in the example of (2.76)). At the level of

superfields (both in the OPE or Berkovits-Chandia gauge), this swap will be denoted by

k → i, j , 2α′(ki · kj) = −1 , (2.80)

where the constraint on the momenta must accompany the change of the superfields.
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3. Relation between massive and massless string amplitudes

In this section we will show that using the massless parameterization of the massive su-

perfields gives rise to an explicit relation between massive and massless amplitudes of the

open string. The combinatorics of which can be described by an algorithm [22] closely

related to the descent algebra [23,24]. To see this relation, we reinterpret the factorization

condition to perform the equivalent of the sum over intermediate polarizations on a single

amplitude rather than a quadratic expression connected via a propagator.

3.1. 3-point massive amplitude revisited

The tree-level scattering amplitude of two massless and one massive state was firstly com-

puted using the pure spinor formalism in [12]. The result, despite correct, was obtained

in a rather convoluted way using the OPEs of the pure spinor formalism after performing

the θ expansions of the massive superfields obtained in [21]. Consequently, the simplicity

of the result was lost. However, one can exploit the cohomological structure of the pure

spinor formalism together with the equations of motion (2.20) to (2.23) to obtain a simple

answer written in pure spinor superspace.

We start with the three-point amplitude prescription for massless strings labelled by

1 and 2 and one first-level massive string labelled by 3

4iα′2A(1, 2|3) = 〈V
(0)
1 V

(0)
2 V

(1)
3 〉 (3.1)

where V (0) and V (1) denote the massless and first-level massive unintegrated vertices

(2.12) and (2.78) (the superscript indicates the mass and has been added for clarity).

The normalization on the left-hand side was chosen to make the amplitude dimensionless,

[A(1, 2|3)] = 0.

We will use the techniques of [5,6,1] in which the OPEs among the vertices are evalu-

ated up to the plane-wave factors. This results in a chiral CFT correlator multiplying an

overall Koba-Nielsen factor [12]

I = |z12|
2α′k1·k2 |z13|

2α′k1·k3 |z23|
2α′k2·k3 =

z13z23
z12

(3.2)

which follows from momentum conservation and k21 = k22 = 0, k23 = −1/α′. In addition,

the CFT correlator is evaluated up to BRST exact terms and this will be indicated by

A ∼ B. Defining

L31 ∼ [V
(1)
3 V

(0)
1 ]1 (3.3)
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we get

4iα′2A(1, 2|3) =
( 1

z31
〈L31V2〉 −

1

z32
〈V1L32〉

)

I = −
z23
z12

〈L31V2〉+
z13
z12

〈V1L32〉 . (3.4)

A straightforward OPE calculation yields

L31 = −2α′(λHm
3 )∂mV1 + 2α′(C3λ)

βDβV1 −
α′

2
(λF3)mn(λγ

mnA1) . (3.5)

The equation of motion (2.2) can be used to rewrite the second term of (3.5) as

2α′(C3λ)
βDβV1 = −2α′(C3λ)

βQA1
β + 2α′(λγmC3λ)A

m
1 (3.6)

= −2α′Q(A1C3λ) +
α′

2
(λF3)mn(λγ

mnA1) + 2α′(λγmC3λ)A
m
1 ,

leading to cancellations in (3.5). Furthermore, dropping the BRST exact term we arrive at

L31 ∼ −2α′(λHm
3 )∂mV1 + 2α′(λγmC3λ)A

m
1

∼ −2α′(λHm
3 )QA1

m + 2α′(λHm
3 )(λγmW1) + 2α′(λγmC3λ)A

m
1

∼ 2α′Q
(

(λHm
3 )A1

m

)

+ 2α′(λHm
3 )(λγmW1)

∼ 2α′(λHm
3 )(λγmW1) , (3.7)

where we used the equations of motion (2.21) and QA1
m = ∂mV1 + (λγmW1). It is easy

to see that QL31 = 0, as expected from the definition (3.3) and the identities (2.25) and

(2.26). After plugging in Lij from (3.3) into (3.4) the three-point amplitude becomes

4iα′2A(1, 2|3) = −2α′ z23
z12

〈(λγmW1)V2(λH
m
3 )〉 − 2α′ z13

z12
〈V1(λγmW2)(λH

m
3 )〉 (3.8)

To simplify this answer further we will need the following:

Lemma. In pure spinor superspace, the following is true:

〈V2(λγmW1)(λH
m
3 )〉 = 〈V1(λγmW2)(λH

m
3 )〉 . (3.9)

Proof. Note that

Q(λγmW12) = V1(λγ
mW2)− V2(λγ

mW1) , (3.10)

where W12 is the Berends-Giele current defined in [25]. Therefore,

〈V1(λγmW2)(λH
m
3 )〉 = 〈Q(λγmW12)(λH

m
3 )〉+ 〈V2(λγmW1)(λH

m
3 )〉 (3.11)

= 〈(λγmW12)Q(λHm
3 )〉+ 〈V2(λγmW1)(λH

m
3 )〉

= 〈(λγmW12)(λγ
mC3λ)〉+ 〈V2(λγmW1)(λH

m
3 )〉

= 〈V2(λγmW1)(λH
m
3 )〉
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where we used BRST integration by parts to arrive at the second line followed by the

equation of motion (2.21) and the identity (λγm)α(λγ
m)β = 0 in the last line, finishing

the proof.

Finally, using the Lemma (3.9) in (3.8), the three-point amplitude of two massless

states and one first-level massive state becomes

A(1, 2|3) =
i

2α′
〈V1(λγmW2)(λH

m
3 )〉 . (3.12)

This is independent of worldsheet positions as expected from Möbius invariance. Moreover,

it is easy to show that the amplitude is BRST invariant.

3.2. Massless representation of the massive 3-point amplitude

Plugging in the massless representation of the massive superfield (λHm
3 ) in the OPE gauge4

given in (B.2) (with the relabeling 1 → 3, 2 → 4) into (3.12) one gets

A(1, 2|3)
∣

∣

3→3,4
= 〈V1(λγmW2)

(

Fmn
3 kn4 V4 + km3 (λγnW3)A

n
4

)

〉 , (3.13)

where 3 → 3, 4 defined in (2.80) represents the change to the massless representation

of the massive superfield (λHm
3 ), and we dropped the BRST exact term km3 Q(W3A4) in

(λHm
3 ) from (B.2) because V1(λγ

mW2) is BRST closed. Using the equation of motion

kn4V4 = QAn
4 − (λγnW4) one rewrites the first term inside the parenthesis in (3.13) as

Fmn
3 kn4V4 = Q(Fmn

3 An
4 )− Fmn

3 (λγnW4)− k
[m
3 (λγn]W3)A

n
4 . (3.14)

Therefore, discarding the BRST exact term from (3.14), one obtains

Fmn
3 kn4V4 + km3 (λγnW3)A

n
4 ∼ −Fmn

3 (λγnW4) + (λγmW3)(k3 ·A4) . (3.15)

Plugging (3.15) into (3.13) and using (λγm)α(λγ
m)β = 0 to drop the second term from

(3.15) one finally arrives at

A(1, 2|3)
∣

∣

3→3,4
= −〈V1(λγmW2)F

mn
3 (λγnW4)〉 . (3.16)

4 Using BRST cohomology manipulations, one can show that the pure spinor superspace ex-

pression (3.13) is also obtained if (λHm
3 ) in the Berkovits-Chandia gauge is used instead.

17



The superspace expression in the right-hand side of (3.16) is easily identified as the kine-

matic factor of the massless four-point open-string amplitude at one loop [26,5]

A(1, 2, |3)
∣

∣

3→3,4
= −〈C1|2,3,4〉 , 2α′k3 · k4 = −1 , (3.17)

where C1|2,3,4 is the four-point BRST invariant defined in [27,28] whose explicit compo-

nent expansion [29] can be downloaded from [30]. When all states are bosonic, 〈C1|2,3,4〉

is proportional to the famous t8F
4 combination, where the t8 tensor can be found in [31].

The constraint in the momenta is written explicitly for emphasis (as it is already implic-

itly required by (2.80)). Alternatively, the four-point BRST invariant was shown to be

proportional to the α′2 string correction of the massless four-point amplitude, denoted by

AF 4

(1, 2, 3, 4) [27]

A(1, 2|3)
∣

∣

3→3,4
= −AF 4

(1, 2, 3, 4) , 2α′k3 · k4 = −1 . (3.18)

Since the pure spinor superspace expression (3.16) contains four superfields and it is BRST

invariant, one can expand it in components using regular four-point kinematics and apply

the massive kinematics constraint 2α′(k3 · k4) = −1 at the end of the calculations. Using

the normalization 〈(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)〉 = 2880α′2 of the pure spinor bracket

[3] we get

A(1, 2|3)
∣

∣

3→3,4
= −α′2(k1 · k2)(k2 · k3)A

SYM(1, 2, 3, 4) , 2α′k3 · k4 = −1 , (3.19)

where ASYM(1, 2, 3, 4) represents the four-point SYM field-theory amplitude.

Component expansion. On the one hand, the component expansion of the amplitude (3.12)

when all external states are bosonic can be computed using the theta expansion of Hm
α

found in [21],

A(1, 2|3) = α′fmp
1 fpn

2 g3mn + 2iem1 kn2 e
p
2b3mnp + (1 ↔ 2) , (3.20)

where gmn is the symmetric traceless and bmnp is the 3-form polarization subject to

kmgmn = kmbmnp = 0. The length dimensions of the quantities in (3.20) are

[A(1, 2|3)] = 0, [gmn] = 0, [bmnp] = 1 . (3.21)

In addition, fmn
1 = km1 en1 − kn1 e

m
1 is the component field-strength and we rescalled the

overall normalization of the amplitude given in [21] for convenience.
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As shown in [21], the massive polarizations of the open string can be extracted from

the massive superfields in the Berkovits-Chandia gauge as

gmn =
1

64
(Dγ(mHn))

∣

∣

θ=0
, bmnp =

9

8
Bmnp

∣

∣

θ=0
, (3.22)

where the overall normalizations were chosen for convenience. Using the massless repre-

sentations of the massive superfields Hm
α and Bmnp from (2.75) in the Berkovits-Chandia

gauge with labels 1 and 2 as in (2.76) yields [13]

gmn(1, 2) =
1

8

(

em1 en2 + en1 e
m
2 −

1

3
δmn(e1 · e2)

)

(3.23)

+
1

24
α′
(

2(km1 kn1 − 2km1 kn2 )(e1 · e2)

+ 6(km2 en1 + kn2 e
m
1 )(k1 · e2)− δmn(k1 · e2)(k2 · e1) + (1 ↔ 2)

)

+
1

6
α′2km12k

n
12(k1 · e2)(k2 · e1)

bmnp(1, 2) =
i

16
α′
(

k
[m
1 en1 e

p]
2 + k

[m
2 en2 e

p]
1

)

+
i

8
α′2
(

k
[m
1 kn2 e

p]
2 (k2 · e1) + k

[m
2 kn1 e

p]
1 (k1 · e2)

)

, 2α′(k1 · k2) = −1 ,

where the notation gmn(1, 2) emphasizes the labels 1 and 2 of the massless polarizations

on the right-hand side. Using the transversality (ki · ei) = 0 and that the states 1 and 2

are massless, k21 = k22 = 0, together with the constraint 2α′(k1 · k2) = −1, one can easily

check that they are transverse, km12gmn(1, 2) = 0 and km12bmnp(1, 2) = 0 as well as traceless

symmetric (gmn) and antisymmetric (bmnp) in their vectorial indices.

Finally, it follows from the above discussion that the two expressions (3.20) and (3.19)

of the three-point amplitude with one massive and two massless states are related by

g3mn = gmn(3, 4) , b3mnp = bmnp(3, 4) , 2α′(k3 · k4) = −1 . (3.24)

More generally, we define in analogy with (2.80) the same notation k → i, j to represent

the swap to massless polarizations in place of the massive polarizations:

k → i, j : gkmn = gmn(i, j) , bkmnp = bmnp(i, j) , 2α′(ki · kj) = −1 , (3.25)

where gmn(i, j) and bmnp(i, j) are given by (3.23).
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3.3. Massive amplitudes as linear combinations of massless amplitudes

The observation (3.17) generalizes to higher multiplicities. To see this, we use the per-

turbiner construction of A(P |n) recently found in [15]. In that paper, the superstring

amplitude involving n−1 massless states and one massive state n was packaged in terms

of (n−3)! worldsheet integrals FP
Q and partial subamplitudes A(1, P, n−1|n) as

A(1, Q, n−1, n) =
∑

P∈Sn−3

FP
QA(1, P, n−1|n) , (3.26)

where P and Q are words comprised of particle labels (letters) and FP
Q have the same

functional form as the string disk integrals in the massless string scattering amplitude

[1,2,32,33]; the only difference stems from the massive constraint k2n = −1/α′ affecting the

relations among Mandelstam variables. When all external states are bosonic, the partial

amplitudes A(1, P |n) with |P | = n−1 massless states and one massive state at the first

massive level are given by [15],

A(P |n) = φmn
P gnmn + φmnp

P bnmnp , (3.27)

where the |P | massless states are encoded in

φmn
P = α′

∑

XY =P

fma
X fan

Y + cyc(P ) , (3.28)

φmnp
P = 2i

∑

XY=P

emXknY e
p
Y −

4i

3

∑

XY Z=P

emXenY e
p
Z + cyc(P ) ,

where emX and fmn
X are the Berends-Giele multiparticle polarizations of [34],

emP =
1

k2P

∑

XY =P

emY (kY · eX) + fmn
X enY , (3.29)

fmn
P = kmP enP − knP e

m
P −

∑

XY =P

(

emXenY − enXemY
)

.

In addition, the notation +cyc(P ) instructs to add the cyclic permutations of the letters

in P , XY=P denote the deconcatenations of P into non-empty words X and Y , and

kmij...p = kmi + kmj + · · ·+ kmp .
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Upon plugging the massless representations (3.23) of the massive polarizations into

the amplitude (3.27), replacing the massive state n by two massless states labelled n and

n+1, straightforward but tedious calculations5 show that:

A(1, 2|3)
∣

∣

3→3,4
= −〈C1|2,3,4〉 , 2α′k3 · k4 = −1 , (3.30)

A(1, 2, 3|4)
∣

∣

4→4,5
= −〈C1|23,4,5〉 , 2α′k4 · k5 = −1 ,

A(1, 2, 3, 4|5)
∣

∣

5→5,6
= −〈C1|234,5,6〉 , 2α′k5 · k6 = −1 ,

where the substitution rule in the left-hand side is given by (3.25), and the constraint in

the momenta is written down for emphasis (in addition to featuring in (3.25)). The explicit

components of the scalar BRST invariants are available to download from [30] and can be

used to check the relations above. These results suggest the following generalization,

A(1, P |n)
∣

∣

n→n,n+1
= −〈C1|P,n,n+1〉 , 2α′kn · kn+1 = −1 , (3.31)

relating the massive string amplitude with one massive external state to the α′2 sector of

the massless tree-level string amplitudes.

Massless string amplitudes at α′2 order. To make the connection to the α′2 correction of

massless string tree amplitudes even clearer, we can explicitly rewrite (3.31) in terms of

AF 4

, the α′2 corrections to massless string amplitudes defined by [27]

A(1, 2, . . . , n) = AYM(1, 2, . . . , n) + α′2ζ2A
F 4

(1, 2, . . . , n) +O(α′3) . (3.32)

To see this, we note that the BRST invariants 〈C1|X,Y,Z〉 can be expanded in terms of

permutations of AF 4

, as argued in [27]. The precise permutations in this expansion turns

out to be related to the Solomon descent algebra, as described in [22]. In particular, for

each n-point BRST invariant C1|X,Y,Z characterized by words X, Y and Z, one can define

precise permutations γ1|X,Y,Z of n labels (from the letters in 1, X, Y, Z) dubbed BRST-

invariant permutations. For example,

γ1|2,3,4 = W1234 +W1243 +W1324 +W1342 +W1423 +W1432 , (3.33)

where a permutation σ is written as Wσ for typographical reasons.

5 We acknowledge the use of FORM [35].
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The relation found in [22] expands the BRST invariants as permutations of AF 4

,

〈C1|X,Y,Z〉 =
1

6
AF 4

(γ1|X,Y,Z) ≡
1

6

∑

σ∈γ1|X,Y,Z

AF 4

(σ) . (3.34)

For instance, using the permutations in (3.33) one gets

〈C1|2,3,4〉 =
1

6
AF 4

(γ1|2,3,4) (3.35)

=
1

6

(

AF 4

(1234) +AF 4

(1243) + AF 4

(1324)

+ AF 4

(1342) +AF 4

(1423) +AF 4

(1432)
)

= AF 4

(1234) ,

where in the last line we used the total symmetry of AF 4

(1234).

In view of the identity (3.34), the general observation (3.31) yields a expansion in

permutations of AF 4

A(1, P |n)
∣

∣

n→n,n+1
= −

1

6
AF 4

(γ1|P,n,n+1), 2α′kn · kn+1 = −1 . (3.36)

For example, one gets

−6A(1, 2, 3|4)
∣

∣

4→4,5
= AF 4

12345 −AF 4

12354 −AF 4

12435 +AF 4

12453 +AF 4

12534 −AF 4

12543 (3.37)

+AF 4

13245 −AF 4

13254 +AF 4

13425 −AF 4

13524 −AF 4

14235 −AF 4

14325 ,

where the explicit permutations in γ1|23,4,5 and the algorithm to generate them can be

found in [22]. Note that we used the parity and cyclicity in the form of AF 4

(1, 2, . . . , n) =

(−1)nAF 4

(1, n, n− 1, . . . , 2) to reduce the number of terms in (3.37).

3.4. Relating massive and massless string amplitudes via unitarity

In this section we will show that the result (3.31) can be explained from the factorization

of the massless string amplitude in its first massive pole6 . To see this, one computes the

residue of the massless n-point tree-level amplitude when sn−1,n = −1 (setting α′ = 1
2
).

6 See [36] for similar considerations with the RNS formalism.
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3.4.1. 4-point factorization

The massless 4-point tree amplitude is given by

A4 = A(1, 2, 3, 4) = 〈C1|2,3,4〉
Γ(s34)Γ(s23)

Γ(1 + s34 + s23)
. (3.38)

Using the well known result that Resx=−n(Γ(x)) = (−1)n/n! we get [37]

Res
s34=−1

(A4) = −〈C1|2,3,4〉 , s34 = −1 , (3.39)

which explains the first line of (3.30).

3.4.2. 5-point factorization

The five-point analysis proceeds similarly. But note that the Möbius symmetry gauge fixing

(z1, z4, z5) → (0, 1,∞) in the usual formula [1,2]

A5 = A(1, 2, 3, 4, 5) = AYM(12345)F23 +AYM(13245)F32 (3.40)

with

F23 =

∫ 1

0

dz3

∫ z3

0

dz2
s12s34
z12z34

I5, F32 =

∫ 1

0

dz3

∫ z3

0

dz2
s13s24
z13z24

I5 (3.41)

is not well suited to obtain the residues with respect to s45, since z5 → ∞ and the cor-

responding factor of zs4554 is absent in the Koba-Nielsen factor I5 = zs1221 zs1331 zs2332 zs2442 zs3443 .

However, one can exploit the cyclicity of A5 to compute the residue as s12 = −1 and then

apply three cyclic rotations in succession s12 → s23 → s34 → s45 to obtain the residue as

s45 = −1. The calculations done in [38] show that

Res
s12=−1

(A5) = s34B(s13+s23, s34)
(

AYM(12345)
(

s23−
s24(s13 + s23)

s35

)

−AYM(13245)
s13s24
s35

)

(3.42)

where B(x, y) = Γ(x)Γ(y)
Γ(x+y)

is the Beta function. After noticing that

−
1

s12
〈C5|43,2,1〉 = AYM(12345)

(

s23 −
s24(s13 + s23)

s35

)

− AYM(13245)
s13s24
s35

, (3.43)

which can be shown using the algorithm of [28] to rewrite

〈C5|43,2,1〉 = AYM(52134)s12s13 − AYM(52143)s12s14 (3.44)
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and expressing the result in the basis of AYM(12345) and AYM(13245), one gets

Res
s12=−1

(

A5

)

= s34B(s13 + s23, s34)〈C5|43,2,1〉 , s12 = −1 . (3.45)

The cyclic rotations of (3.45) give rise to

Res
s45=−1

(

A5

)

= s12B(s14 + s15, s12)〈C3|21,5,4〉 , s45 = −1

= −s12B(−s12 − s13, s12)〈C1|23,4,5〉 , s45 = −1 , (3.46)

where in the last line we used the canonicalization identity [25] 〈C3|21,5,4〉 = −〈C1|23,4,5〉

and momentum conservation. This is compatible with the factorization

Res
s45=−1

(

A5

)

=
∑

x

A(1, 2, 3|x)A(4, 5|x) , (3.47)

where
∑

x denotes a sum over the massive polarizations at the first mass level. To see this,

note that the three- and four-point string amplitudes with one massive state x are [15]

(1 + s23 = −s12 − s23)

A(1, 2, 3|x) = s12B(−s12 − s13, s12)A(1, 2, 3|x) , (3.48)

A(4, 5|x) = A(4, 5|x) ,

where A(P |x) is given by (3.27) (see also [39,40]). Compatibility of (3.46), (3.47) and (3.48)

requires that
∑

x

A(1, 2, 3|x)A(x|4, 5) = −〈C1|23,4,5〉, s45 = −1 , (3.49)

which can be explicitly checked using (3.52) below.

3.4.3. Sum over intermediate massive polarizations

The justification given above for the first two lines of (3.30) was obtained by computing

the first massive residue of the massless amplitudes. A more direct derivation follows from

the interpretation that the left-hand sides of (3.30) are given by an sum over intermediate

massive polarizations

A(1, 2, . . . , n− 1|n)
∣

∣

n→n,n+1
=
∑

x

A(1, 2, . . . , n− 1|x)A(n, n+ 1|x) . (3.50)
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To see this, note that the massless representation rules of (3.23) encapsulated in (3.25)

follow from the factorization relations

∑

x

gmn(k)gpq(−k)φpq
12 = gmn(1, 2),

∑

x

bmnp(k)bqrs(−k)φqrs
12 = bmnp(1, 2) , (3.51)

where φpq...
P was defined in (3.28), and the momenta is k = k1 + k2. Moreover, the sum

over the massive states x is performed by the completeness relations [41],

∑

x

gmn(k)gpq(−k) =
1

64

(

(kmkp + 2ηmp)(knkq + 2ηnq) (3.52)

−
1

9
(kmkn + 2ηmn)(kpkq + 2ηpq) + (m ↔ n)

)

∑

x

bmnp(k)bqrs(−k) =
1

256
(kmkq + 2ηmq)(knkr + 2ηnr)(kpks + 2ηps) + [mnp] ,

where [mnp] instructs to antisymmetrize over the indices mnp and we set α′ = 1
2 .

With this interpretation, the relations (3.30) can be written as

∑

x

A(1, 2|x)A(3, 4|x) = −〈C1|2,3,4〉 , 2α′(k3 · k4) = −1 , (3.53)

∑

x

A(1, 2, 3|x)A(4, 5|x) = −〈C1|23,4,5〉 , 2α′(k4 · k5) = −1 ,

∑

x

A(1, 2, 3, 4|x)A(5, 6|x) = −〈C1|234,5,6〉 , 2α′(k5 · k6) = −1 ,

and have been explicitly verified. They suggest the generalization

∑

x

A(1, P |x)A(n, n+ 1|x) = −〈C1|P,n,n+1〉, 2α′(kn · kn+1) = −1 , (3.54)

as the equivalent statement to (3.31). However, note the interpretation difference in how

unitarity is actually implemented to arrive at the equivalent results (3.54) and (3.31).

4. Conclusions

In this paper we found an explicit realization of the massive superfields describing the open

string states at the first mass level in terms of massless SYM fields. This was achieved

through the calculation of OPEs between massless vertices, giving rise to a massless rep-

resentation in the so-called OPE gauge (2.15)-(2.18). Additional manipulations were used
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to fix the gauge invariance of the unintegrated vertex operator due to BRST-exact pieces,

with the end result being the massless representation in the Berkovits-Chandia gauge (2.75)

and (2.76).

After simplifying the three-point amplitude of two massless and one massive state

obtained in [12] to a single pure spinor superspace expression,

A(1, 2|3) =
i

2α′
〈V1(λγmW2)(λH

m
3 )〉 , (4.1)

the massless representation of the massive superfield Hm
α was then used through the su-

perspace substitution (2.80). The resulting expression (3.16) related, at the superspace

level, the massive amplitude (4.1) to the α′2 correction of the massless four-point open

string amplitude as captured by the scalar BRST invariants [25]. The generalization of

this relation was proposed as

A(1, P |n)
∣

∣

n→n,n+1
= −〈C1|P,n,n+1〉 , 2α′kn · kn+1 = −1 , (4.2)

where the restriction n → n, n+1 on the left-hand side was defined in (3.25) from superfield

considerations and later justified via factorization in (3.51). The proposal (4.2) was then

explicitly checked in terms of polarizations and momenta up to n = 6 and shown to be

compatible with unitarity via the residue of the massless amplitudes at their first massive

pole. The translation from the right-hand side of (4.2) to linear combinations of α′2 massless

amplitudes AF 4

(defined in [27]) follows from the descent algebra algorithm described in

[22].

It would be interesting to invert the relation (4.2) to find the pure spinor superspace

expression of the partial massive amplitudes (3.27). In addition, it may be possible to turn

the observations in this paper into a constructive algorithm to compute massive amplitudes

starting from the known expressions of the α′2 massless open string amplitudes.
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Appendix A. OPEs of non-free fields

As explained in [42], a free field is defined as a field whose OPE with itself or its derivatives

contain a single constant term. In the pure spinor formalism, the fields are not in general free

as can be seen from the OPE of dα(z)dβ(w) or N
mn(z)Npq(w). In this case, the definition

of normal ordering of operators and the calculation of OPEs with normal ordered operators

is done following a generalization of the conventional Wick theorem rules, see e.g. [43,42].

Let us briefly review the calculation of OPEs involving composite operators following the

exposition of [44,45] (see also [46,47]).

A.1. Operator product expansion of composite operators

The OPE of A and B is defined as (N is a finite positive integer)

A(z)B(w) =

N
∑

n=−∞

[AB]n(w)

(z − w)n
(A.1)

and the normal-ordered product of A and B, denoted (AB)(w), is given by

(AB)(w) =

∮

dz

z − w
A(z)B(w) = [AB]0(w). (A.2)

Generalized Wick theorem. The calculation of nested OPEs of non-free fields can be done

entirely at the level of the OPE brackets introduced above. The underlying techniques

follow from the Borcherds identity

∞
∑

j=0

(

p

j

)

[[AB]r+j+1C]p+q+1−j = (A.3)

∞
∑

j=0

(−1)j
(

r

j

)

(

[A[BC]q+1+j]p+r+1−j − (−1)r+ab[B[AC]p+1+j]q+r+1−j

)

, p, q, r ∈ Z

which plays a major role in vertex operator algebra [48]. In the above, a, b denote the

Grassman parities of A and B, respectively. The two special cases of the Borcherds identity

that are frequently used follow from (p+1=m, q+1=n, r=0) and (p=0, q+1=n, r+1=m);

they give rise to identities for [A[BC]n]m and [[AB]mC]n [44,45]:

[A[BC]n]m = (−1)ab[B[AC]m]n +
m−1
∑

j=0

(

m− 1

j

)

[[AB]m−jC]n+j , m ≥ 1 (A.4)

[[AB]mC]n =

∞
∑

j=0

(−1)j
(

m− 1

j

)

(

[A[BC]n+j]m−j + (−1)m+ab[B[AC]j+1]m+n−j−1

)

(A.5)
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where we used
(

m−1
j

)

=
(

m−1
m−1−j

)

and relabeled m−1− j → j in (A.4). In particular, when

the composite operators are normal ordered we get7 [43,47]

[A[BC]0]n = (−1)ab[B[AC]n]0 + [[AB]nC]0 +
n−1
∑

i=1

(

n− 1

i

)

[[AB]n−iC]i (A.6)

= (−1)ab
(

[B[AC]n]0 +

∞
∑

j=0

(−1)j+n

j!
[∂j[BA]j+nC]0 +

n−1
∑

i=1

(−1)i[[BA]iC]n−i

)

,

[[AB]0C]n =
∞
∑

j=0

(

[A[BC]n+j ]−j + (−1)ab[B[AC]j+1]n−j−1

)

(A.7)

= (−1)ab
n−1
∑

i=1

[B[AC]n−i]i +
∑

j=0

1

j!

(

[∂jA[BC]n+j]0 + (−1)ab[∂jB[AC]n+j]0

)

Repeated application of these rules allow the computation of OPE brackets with arbitrary

nesting. Some useful relations obeyed by the brackets are

[A[BC]0]0 = (−1)ab[B[AC]0]0 +
∞
∑

i=1

(−1)1+i 1

i!
[∂i[AB]iC]0 (A.8)

[[AB]0C]0 = [A[BC]0]0 +
∑

i=1

1

i!

(

[∂iA[BC]i]0 + (−1)ab[∂iB[AC]i]0
)

(A.9)

and (with n a non-negative integer):

[BA]n = (−1)n+ab
(

[AB]n +

∞
∑

i=1

(−1)i
1

i!
∂i[AB]n+i

)

(A.10)

[∂AB]n = (1− n)[AB]n−1 (A.11)

[A∂B]n = ∂[AB]n + (n− 1)[AB]n−1 (A.12)

[AB]−n =
1

n!
[∂nAB]0 (A.13)

[AB]n−i =
(−1)i
(

n−1
i

)

1

i!
[∂iAB]n (A.14)

Note that ∂[AB]n = [∂AB]n + [A∂B]n. In addition, [A, ]1 is a graded derivation over all

other brackets. This means that

[A[BC]n]1 = [[AB]1C]n + (−1)ab[B[AC]1]n . (A.15)

Furthermore, if the conformal weights of A and B are hA and hB then [AB]n has conformal

weight hA + hB − n, i.e., the bracket [ ]n has conformal weight −n.

7 Note
(

n

m

)

= (−1)m
(

−n+m−1

m

)

when n < 0 implies
(

−1

j

)

= (−1)j .
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A.1.1. OPEs of superfields in a plane-wave basis

A superfield Ki ∈ [Aα, Am,Wα, Fmn] in a plane wave basis is expanded as

Ki(z) = Ki(θ,X) = Ki(θ(z))e
iki·X(z) , (A.16)

for example A1
m(z) = A1

m(θ(z))eik1·X(z). We are interested in the OPE of two such super-

fields. The definition of the OPE given in (A.1) needs to be generalized when the operators

involve plane-wave factors eik·X as the behavior

:eik1X(z)::eik2X(w): = (z − w)2α
′k1·k2

[

1 + (z − w)ik1 · ∂X(z) +O((z − w)2)
]

:eik3·X(w):

where k3 = k1 + k2 is not of the form (A.1) unless 2α′k1 · k2 is an integer. However, when

2α′k1 · k2 = −1 the OPE can be written as

K1(z)K2(w) =
N
∑

n=−∞

[K1K2]n
(z − w)n

, 2α′k1 · k2 = −1 (A.17)

with

[K1K2]0(w) = ∂K1(w)K2(w) , (A.18)

[K1K2]1(w) = K1(w)K2(w) ,

[K1K2]n≥2(w) = 0 .

To see this, note that there is no worldsheet singularity between the factors Ki(θ); the

OPE singularity comes entirely from the plane waves using 2α′k1 · k2 = −1,

:eik1X(z)::eik2X(w): =
eik1·X(w)eik2·X(w)

(z − w)

[

1 + (z − w)ik1 · ∂X(z) +O((z − w)2)
]

(A.19)

The factors Ki(θ) contribute via the Taylor expansion

K1(θ(z))K2(θ(w)) = K1(θ(w))K2(θ(w))+ (z−w)∂θα∂αK1(θ(w))K2(θ(w))+O((z−w)2).

(A.20)

From (A.19) and (A.20) it follows that

[K1K2]0(w) = (ik1 · ∂XK1(θ(w)) + ∂θα∂αK1(θ(w))
)

eik1·X(w)K2(θ(w))e
ik2·X(w)

= ∂K1(w)K2(w) . (A.21)

Similarly, [K1K2]1(w) = K1(w)K2(w) and [K1K2]n≥2 = 0.
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A.2. OPEs in the pure spinor formalism

Using conventions for the open string, some of the basic OPEs of the pure spinor formalism

used in this work are listed below (for brevity, the dependence on w is omitted on the right-

hand side):

∂θα(z)
{

∂θβ(w),Πm(w), Nmn(w)
}

∼ regular, dα(z)∂θ
β(w) →

δβα
(z − w)2

, (A.22)

dα(z)K(w) →
DαK

z − w
, Πm(z)K(w) → −2α′ ∂

mK

z − w
, dα(z)Π

m(w) →
(γm∂θ)α
z − w

dα(z)dβ(w) → −
1

2α′

γm
αβΠm

z − w
, Πm(z)Πn(w) → −2α′ ηmn

(z − w)2
, dα(z)θ

β(w) →
δβα

z − w

J(z)J(w) → −
4

(z − w)2
, J(z)λα(w) →

λα

z − w
, Nmn(z)λα(w) →

1

2

(γmnλ)α

z − w

Nmn(z)Npq(w) →
δp[mNn]q − δq[mNn]p

z − w
− 3

δm[qδp]n

(z − w)2

where K(w) is a generic 10D superfield that does not depend on derivatives ∂kXm and

∂kθα with k ≥ 1.

A.3. Rearranging normal ordered brackets

The direct evaluation of the bracket I4 ≡ α′[[NmnFmn
1 ]0[λ

βA2
β ]0]1 using the rules in (A.5)

and (A.4) gives

I4 = α′[λβ[Nmn(Fmn
1 A2

β)]0]0 +
α′

2
(γmn)βγ [[F

mn
1 λγ ]0A

2
β ]0 , (A.23)

which is not the result displayed in (the last line of) (2.13). We need to do further processing

to obtain the last line in (2.13).

Notice that in the second term the SYM superfields Fmn
1 and A2

β appear in different

normal ordered brackets. Therefore an expression for a massive superfield cannot be iden-

tified as the singularity between Fmn
1 and A2

β has not been taken into account. However,

using the identity (A.9) followed by (A.8), the normal ordered bracket from (A.18) builds

up and we get

[[Fmn
1 λγ ]0A

2
β]0 = [Fmn

1 [λγA2
β]0]0 + [∂λγ[Fmn

1 A2
β ]1]0 (A.24)

= [λγ [Fmn
1 A2

β]0]0 + [∂λγ(Fmn
1 A2

β)]0

= [λγ(∂Fmn
1 A2

β)]0 + [∂λγ(Fmn
1 A2

β)]0 ,
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and the result is proportional to the massive plane wave eik3·X . Similarly, the first term in

(A.23) can be rewritten using (A.8) and [λβNmn]1 = −1
2(γ

mn)βγλ
γ as follows

α′[λβ[Nmn(Fmn
1 A2

β)]0]0 = α′[Nmn[λβ(Fmn
1 A2

β)]0]0 −
α′

2
(γmn)βγ [∂λ

γ(Fmn
1 A2

β)]0 . (A.25)

This leads to

I4 = α′[λβ [Nmn(Fmn
1 A2

β)]0]0 +
α′

2
(γmn)βγ

(

[λγ(∂Fmn
1 A2

β)]0 + [∂λγ(Fmn
1 A2

β)]0

)

= α′[Nmn[λβ(Fmn
1 A2

β)]0]0 +
α′

2
(γmn)βγ [λ

γ(∂Fmn
1 A2

β)]0 , (A.26)

which is the result we used in the last line of (2.13).

A.3.1. Normal ordering identity

Using the pure spinor OPEs

[Nmnλα]1 =
1

2
(γmnλ)α ,

[λαJ ]1 = −λα

[Nmnλα]n≥2 = 0 ,

[λαJ ]n≥2 = 0 ,
(A.27)

and the identities from the appendix A we can show a normal-ordering identity given in

[11]

[Nmn[λαλβ ]0]0γ
m
βγ =

1

2
[J [λαλβ ]0]0γ

n
βγ +

5

2
λα(γn∂λ)γ +

1

2
(λγmn)α(γm∂λ)γ (A.28)

and used in the proof of QV = 0 in section 2. To see this note that (A.8) implies

[Nmn[λαλβ ]0]0γ
m
βγ = [λα[Nmnλβ ]0]0γ

m
βγ + [∂[Nmnλα]1λ

β ]0γ
m
βγ

=
1

2
[λα[Jλβ]0]0γ

n
βγ + 2λα(γn∂λ)γ +

1

2
(γmn∂λ)α(λγm)γ

=
1

2
[J [λαλβ ]0]0γ

n
βγ −

1

2
∂λα(γnλ)γ + 2λα(γn∂λ)γ +

1

2
(γmn∂λ)α(λγm)γ

=
1

2
[J [λαλβ ]0]0γ

n
βγ +

5

2
λα(γn∂λ)γ +

1

2
(λγmn)α(γm∂λ)γ (A.29)

where we used [11] (to show it, apply [J,−]2 to both sides)

[Nmnλβ]0γ
m
βγ =

1

2
[Jλβ]0γ

n
βγ + 2(γn∂λ)γ (A.30)

to arrive at the second line while (A.8) has been used to arrive at the third line with

[λα[Jλβ]0]0 = [J [λαλβ]0]0 − ∂λαλβ . Finally, (∂λγm)α(λγ
m)β + (∂λγm)β(λγ

m)α = 0 leads

to the fourth line and the identity (A.28) is demonstrated.
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Appendix B. Equations of motion of massive superfields

From massless SYM in the OPE gauge. We will check that the equations of motion for the

first-level massive superfields in our representation given in (2.20) to (2.23) are implied by

the linearized SYM superfield equations of motion (2.2).

The massive equations of motion in a BRST language involve the combinations (λB)α,

(λHm), (Cλ)α and (λF )mn defined in (2.19). Therefore it will be convenient to list these

superfields after contracting the definitions (2.15) to (2.18) with the pure spinor λ:

(λB)α = −2iα′k2m(γmW1)αV2 − iα′k1m(γnW1)α(λγ
mnA2)−

α′

2
F 1
mn(γ

mnD)αV2

= −2iα′k2m(γmW1)αV2 + iα′km1 (γnW1)α(λγ
nγmA2) + iα′km1 (λγnW1)(γ

nγmA2)α

+
α′

2
Fmn
1 (λγpγmn)αA

p
2 +

α′

2
Q
(

F 1
mn(γ

mnA2)α
)

(B.1)

(λH)m = A1
mV2 + 2α′k1m(k2 ·A1)V2 − 2iα′k1mW β

1 DβV2 −
iα′

2
k1mF 1

np(λγ
npA2)

= Am
1 V2 + 2α′k1m(k2 ·A1)V2 − 2iα′k1m(λγnW1)A

2
n − 2iα′k1mQ(W1A2) ,

= −2iα′
(

kn2F
mn
1 V2 + km1 (λγnW1)A

n
2 + km1 Q(W1A2)

)

, (B.2)

(Cλ)α = Wα
1 V2 (B.3)

(λF )mn = Fmn
1 V2 (B.4)

In order to derive the above representations one uses the gamma matrix identity γm
α(βγ

m
γδ) =

0, the Dirac equation, the linearized SYM equations of motion (2.2) as well as the pure

spinor constraint. In particular,

−Fmn
1 (λγmnD)V2 = Q

(

Fmn
1 (λγmnA2)

)

. (B.5)

In addition, the first massive state condition −2α′(k1 · k2) = 1 implies that

−2iα′kn2F
mn
1 V2 = Am

1 V2 + 2α′(k2 ·A1)k
m
1 V2 (B.6)

as easily seen after expanding the linearized field-strength Fmn
1 = ikm1 An

1 − ikn1A
m
1 .

A straightforward calculation using the usual set of identities leads to

Q(λB)α = (λγm)α
[

−2iα′kn2F
mn
1 V2 − 2iα′km1 (λγnW1)A

n
2 − iα′kn1Q(W1γ

mγnA2)
]

= (λγm)α(λHm) + (λγm)α
[

2iα′km1 Q(W1A2)− iα′kn1Q(W1γ
mγnA2)

]

= (λγm)α(λHm) . (B.7)
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To arrive at the last line, note that the two BRST-exact terms vanish after using γmγn =

−γnγm + 2ηnm and the Dirac equation.

Now, taking into account that λγmW is BRST closed and using the SYM equations

of motion (2.2), the rewritten expression (B.2) leads to

Q(λH)m = −2α′(k1 · k2)(λγ
mW1)V2 = (λγmCλ) (B.8)

where we used the first massive state condition −2α′(k1 · k2) = 1 from (2.9) and the

definition (B.3). This proves the equation of motion (2.21).

The equation of motions (2.22) and (2.23) follow immediately from the linearized

equations (2.2) and the definitions (B.3) and (B.4).

B.1. (λBλ) is BRST exact

It is easy to see from (B.7) and the pure spinor constraint that (λBλ) is BRST closed. We

will now show that it is also BRST exact.

From (B.1) and the identities (λγm)α(λγ
m)β = 0 and (λγmnpλ) = 0 it follows that

(λBλ) = −2iα′k2m(λγmW1)V2 +
α′

2
Q
(

F 1
mn(λγ

mnA2)
)

(B.9)

= −2α′Q
(

i(k1 ·A2)V1 + Am
1 (λγmW2) + i(k2 ·A1)V2 −

1

4
F 1
mn(λγ

mnA2)
)

,

where we used the linearized equations (2.2). Therefore λαλβ(Bαβ −DαΛβ) = 0 with

Λβ = −2α′
(

i(k1 ·A2)A
1
β + Am

1 (γmW2)β + i(k2 ·A1)A
2
β −

1

4
F 1
mn(γ

mnA2)β

)

. (B.10)
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