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1. Statement of the problem

In a recent paper [1], the open superstring disk amplitude of n−1 massless states and one

massive state n was decomposed in a similar fashion as the massless amplitudes of [2].

Namely, the full string amplitude is written as products of (n−3)! worldsheet integrals FP
Q

independent of polarizations and partial subamplitudes A(1, P, n−1|n):

A(1, Q, n−1, n) =
∑

P∈Sn−3

FP
QA(1, P, n−1|n) . (1.1)

The words P and Q encode the labels of the strings being scattered while the integrals FP
Q

have the same functional form as in the massless string scattering amplitude [2,3,4,5].

Since the amplitudes A(1, P |n) play an analogous role as the massless field-theory

amplitudes AYM in the massless string disk amplitude counterpart of (1.1) given in [2],

they will be called massive field-theory amplitudes. The same terminology will be used to

expected generalizations of (1.1) with higher number of massive legs and/or higher mass

levels [6] and should not be understood as taking the α′ → 0 limit.

The focus of this paper will be to derive the pure spinor superspace expression for

A(1, P |n) whose component expansion following [7,8] reproduces the supersymmetric com-

ponents found in [1]. The pure spinor superspace expression achieving this,

A(1, 2, . . . , n−1|n) =
i

2α′
〈Cm

1|2...n−1(λH
m
n )〉 , (1.2)

will be derived in section 2 in two different ways:

1. Finding a BRST closed expression with the correct kinematic pole structure

2. Inverting the factorization of the massless amplitudes on their first massive pole
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The first derivation uses the same BRST cohomology ideas [9] that were successfully used

to obtain the pure spinor superspace expression of the massless SYM tree-level amplitudes

[10]. The second derivation exploits the relation found in [11] between the massive field-

theory amplitudes A(1, P |n) and the α′2 correction of the disk massless amplitudes. Both

derivations rely on BRST cohomology manipulations in pure spinor superspace.

Similarly to the massless case in [9], we conjecture that the BRST cohomology struc-

ture of pure spinor superspace fixes the field-theory massive amplitudes for higher mass

levels and higher number of massive legs. The derivation of (1.2) here is the first step in

this quest.

1.1. Preliminaries

For a review of the pure spinor formalism, we refer the reader to [12,13].

Equations of motion. The massless superfields
[
Aα, Am,W

α, Fmn
]
[14] and the massive

superfields [15]

λαBαβ = (λB)β, λαHm
α = (λHm) , Cβ

αλ
α = (Cλ)β , λαFαmn = (λF )mn , (1.3)

satisfy the following equations of motion [14,15,16] (with A[mBn] = AmBn − AnBm)

QAβ +DβV = (γmλ)βAm ,

QAm = λγmW + ∂mV ,

Q(λB)α = (λγm)α(λH)m ,

Q(λHm) = (λγmCλ) ,

QWα =
1

4
(λγmn)αFmn,

QFmn = ∂m(λγnW )− ∂n(λγmW ) ,

Q(Cλ)α =
1

4
(λγmn)α(λF )mn ,

Q(λF )mn =
1

2
∂[m(λγn]Cλ)−

1

16
∂p(λγ[mCγn]pλ) ,

(1.4)

where Q = λαDα is the pure spinor BRST operator acting on 10D superfields, and Dα =
∂

∂θa + 1
2 (γ

mθ)α∂m is the supersymmetric derivative satisfying {Dα, Dβ} = γmαβ∂m. As

factors of α′ are being kept in all formulas, we find it convenient to list the length dimension

of various quantities:

[α′] = 2, [λα] = [θα] =
1

2
, [∂m] = −1, [Q] = 0, (1.5)

[Aα] =
1

2
, [Am] = 0 , [Wα] = −

1

2
, [Fmn] = −1 ,

[Bαβ] = 1, [Hmα] =
1

2
, [Cβ

α] = 0 , [Fαmn] = −
1

2
.
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Berends-Giele form of the massive field-theory amplitudes. Using the perturbiner approach,

the supersymmetric partial amplitudes A(P |n) with |P | = n−1 massless states represented

by gluons em and gluinos χα and one first-level massive state represented by the bosons

gmn, bmnp and fermions ψm
α (see appendix A) were found to be [1],

A(P |n) = φmn
P gnmn + φmnp

P bnmnp + φmα
P ψm

nα , (1.6)

where the massless SYM states (em, χα) are encoded in the deconcatenations

φmn
P =

∑

P=XY

α′
[
fma
X fnaY + (XXγ

mXY )k
n
Y

]
−

∑

P=XY Z

2α′(XXγ
mXZ)e

n
Y + cyc(P ) , (1.7)

φmnp
P =

∑

P=XY

[
emXenY k

p
Y −

1

12
(XXγ

mnpXY )
]
+

∑

P=XY Z

2

3
emXenY e

p
Z + cyc(P ) ,

φmα
P =

2

9
α′knP

∑

P=XY

f
mp
X (γnγpXY )

α + cyc(P ) ,

whose coefficients are adapted to the conventions of this paper and differ1 from [1]. The

currents emP , fmn
P and Xα

P are the Berends-Giele multiparticle polarizations of [17],

emP =
1

k2P

∑

P=XY

[
emY (kY · eX) + fmn

X enY + (XXγ
mXY )− (X ↔ Y )

]
, (1.8)

fmn
P = kmP enP − knP e

m
P −

∑

XY =P

(
emXenY − enXemY

)
,

Xα
P =

1

k2P

∑

P=XY

knP
[
emX(γnγmXY )

α − emY (γnγmXX)α
]
,

starting with the single-letter gluon and gluino polarizations emi = emi , Xα
i = χα

i and field

strength fmn
i = kmi e

n
i − kni e

m
i .

The notation +cyc(P ) instructs to add the cyclic permutations of the letters in P and

XY=P denotes the deconcatenations of P into non-empty words X and Y . In addition,

the momentum kmP for a non-empty word P = iQ is defined recursively by kmiQ = kmi + kmQ

with km∅ = 0, where letters are indicated by lower case and words by upper case.

Massless representation of massive superfields. There are two distinct ways in which the

massive superfields (labelled by k) appearing in the unintegrated pure spinor vertex op-

erator can be represented [11,16,18] in terms of massless SYM superfields (labelled by i

1 I thank Oliver Schlotterer for pointing out the relation ψmα = knγαβ
n ψm

β between the Weyl

fermions ψmα of [1] and the anti-Weyl fermions ψm
α from [15].
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and j): in the OPE or Berkovits-Chandia gauge [16]. This rewriting is denoted by k → i, j.

More precisely,

1. k → i, j in the OPE gauge:

(λB)α = −2α′
(
ikmj (γmWi)αVj + ikmi (λγm)α(WiAj)

−
1

4
Fmn
i (λγpγmn)αA

p
j −

1

4
Q
(
F 1
mn(γ

mnAj)α
))

(1.9)

(λHm) = −2iα′
(
knj F

mn
i Vj + kmi (λγnWi)A

n
j + kmi Q(WiAj)

)
,

(Cλ)α = Wα
i Vj ,

(λF )mn = Fmn
i Vj , 2α′ki · kj = −1 .

2. k → i, j in the Berkovits-Chandia gauge:

(λB)α = (γmnpλ)αBmnp , (1.10)

(λHm) =
3

7
(λγnpD)Bmnp ,

(Cλ)α =
1

4
ikq(γ

qmnpλ)αBmnp ,

(λF )mn =
1

16

(
7ik[m(λHn]) + ikq(λγq[mHn])

)
,

with 2α′ki · kj = −1 and

Bmnp =
1

18
α′2

[
(WiγabmnpWj)k

a
i k

b
j + ikqjF

i
q[mF

j

np] + (i↔ j)
]
. (1.11)

It was shown in [11,16] that k → k, k+1 implies a relation between massive and massless

amplitudes given by

A(1, P |k)
∣∣
k→k,k+1

= −〈C1|P,k,k+1〉 , 2α′kk · kk+1 = −1 , (1.12)

where the superfields C1|P,Q,R are the scalar BRST invariants encoding the α′2 terms of

the massless string disk amplitudes, see (1.18).

Scalar BRST invariants. The superfield expansions of the scalar BRST invariants in terms

of Berends-Giele currents follow from the recursion [19]

Ci|j,k,l =MiMj,k,l , (1.13)

Ci|P,Q,R =MiMP,Q,R +Mi ⊗
[
Cp1|p2...p|P|,Q,R − Cp|P||p1...p|P|−1,Q,R + (P ↔ Q,R)

]
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where Mi ⊗MA := MiA, MP is the Berends-Giele current associated to the unintegrated

massless vertex operator and

MA,B,C ≡
1

3
(λγmWA)(λγnWB)F

mn
C + cyc(A,B,C) , (1.14)

where Wα
P and Fmn

P are Berends-Giele currents of the gluino and gluon field strengths, for

more details see the review [13].

The first few outputs of the recursion (1.13) are given by

C1|2,3,4 =M1M2,3,4 , (1.15)

C1|23,4,5 =M1M23,4,5 +M12M3,4,5 −M13M2,4,5 ,

C1|234,5,6 =M1M234,5,6 +M12M34,5,6 +M123M4,5,6 −M124M3,5,6

−M14M23,5,6 −M142M3,5,6 +M143M2,5,6 ,

and can be checked to be BRST closed using [19]

QMP =
∑

P=XY

MXMY , (1.16)

QMA,B,C =
∑

XY =A

[
MXMY,B,C − (X ↔ Y )

]
+ (A↔ B,C) .

The relation between the scalar BRST invariants and the α′2 correction to the massless

disk amplitudes was discovered in [20]: writing the string disk amplitude as

A(P ) = AYM(P ) + ζ2α
′2AF 4

(P ) +O(α′3) (1.17)

it follows that AF 4

can be expanded as

AF 4

(1, P ) =
∑

XY Z=P

〈C1|X,Y,Z〉, (1.18)

while the precise permutations in the inverse relation 〈C1|P,Q,R〉 =
∑

S A
F 4

(S) can be

found in the algorithm of [21]. Note that these BRST invariants also capture parts of

genus-one open-string amplitudes [22,23].
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2. Massive field-theory amplitudes in superspace

Cohomology derivation of SYM amplitudes. When all external states are massless, the

field-theory SYM amplitudes could be determined using the experimental observation that

two BRST-closed expressions with the same mass dimension and featuring the

same kinematic poles have proportional component expansions.

Since BRST closed expressions are gauge invariant and supersymmetric under the appli-

cation of the pure spinor bracket [7], and the SYM tree amplitudes can be obtained from

the α′ → 0 limit of the tree-level open superstring amplitudes, SYM tree amplitudes must

be represented by a BRST closed expression in pure spinor superspace. Using the obser-

vation above, any BRST closed expression of the same mass dimension and with the same

kinematic poles must yield the components of the SYM tree amplitudes.

This observation led to the idea that SYM tree amplitudes could be fixed by the

cohomology of pure spinor superspace [9], which eventually came into fruition with [10].

We now conjecture that the same idea applies equally well to the determination of massive

field-theory amplitudes.

In this programme, there is an implicit assumption used to propose a pure spinor

superspace expression reproducing the field-theory amplitude: as the starting point one uses

superfields which are featured in the string amplitude prescription of [7]. This reasoning

led to the development of the multiparticle SYM superfields inspired by OPEs [24], and to

the Berends-Giele interpretation [17] of the cohomology method of [10]. We expect similar

developments for the massive superfields.

We are now going to showcase these ideas to determine the pure spinor superspace

expression for the massive field-theory amplitudes A(P |n) involving one first-level massive

and an arbitrary number of massless states.

2.1. From pure spinor superspace cohomology

We know that a single massive string state does not induce any kinematic poles, therefore

we will start with the pure spinor superspace expression for the massive field-theory tree

amplitudes with a single massive state, denoted A(1, P |n). Fortunately, the component

expansion of these amplitudes was determined in [1] as reviewed in section 1.1.

To find the pure spinor superspace expression that produces the Berends-Giele recur-

sions of [1], the first step is to understand their kinematic pole structure.
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The four-point amplitude A(1, 2, 3|4) has the poles 1/s12, 1/s23 and 1/s13 – the same

poles present in the scalar BRST invariant C1|23,4,5 at multiplicity five [20]. The pat-

tern repeats at higher multiplicities: the poles of A(1, P |n) are the same as the poles in

C1|P,n,n+1 due to their dependence on Berends-Giele currents. Note that A(1, P |k) and

C1|P,k,k+1 have been recently related in a different context [11,16].

The second step in deriving a pure spinor superspace expression is the proposal of a

BRST-closed expression containing the same kinematic poles as outlined above. The disk

amplitude computed in [25] between two massless and one first-level massive state was

simplified in [16] using BRST cohomology manipulations to

A(1, 2|3) =
i

2α′
〈V1(λγmW2)(λH

m
3 )〉 . (2.1)

The three-point disk amplitude (2.1) turns out to be, under the definition in section 1,

proportional to the massive field-theory amplitude A(1, 2|3). Note that the expression in

the right-hand side is BRST closed2, as expected. To see this, one uses the equations of

motion (1.4) together with the pure spinor constraint (λγm)α(λγm)β = 0. Therefore, the

simple pure spinor superspace expression (2.1) yields our starting BRST-closed expression

and, by analogy with the massless case reviewed above, we expect the higher multiplicity

expressions to closely follow the superspace structure of (2.1). To generalize the three-

point expression to a BRST-closed expression of arbitrary multiplicity containing the same

kinematic poles as the scalar BRST invariants, it will be convenient to define the following

recursion:

Definition. Pure spinor superfields Cm
1|P for any non-empty word P are given by the

following recursion

Cm
i|j =Mi(λγ

mWj) , (2.2)

Cm
i|jk =Mi(λγ

mWjk) +Mi ⊗
[
Cm

j|k − Cm
k|j

]

Cm
i|jPk =Mi(λγ

mWjPk) +Mi ⊗
[
Cm

j|Pk − Cm
k|jP

]

where Mi ⊗MP =MiP .

The first few cases of the recursion (2.2) are given by

Cm
1|2 =M1(λγ

mW2) , (2.3)

Cm
1|23 =M12(λγ

mW3) +M1(λγ
mW23)−M13(λγ

mW2)

Cm
1|234 =M1(λγ

mW234) +M12(λγ
mW34) +M123(λγ

mW4)−M124(λγ
mW3)

−M14(λγ
mW23)−M142(λγ

mW3) +M143(λγ
mW2)

2 By abuse of terminology, 〈S〉 is said to be BRST closed when QS = 0.
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with similar expressions at higher multiplicities. Notice the similarity with the correspond-

ing expansions of the scalar BRST invariants in (1.15); in fact Cm
1,P can be obtained from

those expansions by using the rule MQ,k,k+1 → (λγmWQ). By analogy with the definition

of the word recursion in [26], one infers that Cm
1|P is annihilated by proper shuffles

Cm
1|R�S = 0, R, S 6= ∅, (2.4)

where the shuffle product is recursively defined by iA�jB = i(A�jB) + j(B�iA) and

∅�A = A�∅ = A. Moreover, it is easy to see that the recursion (2.2) generates BRST

closed superfields containing two pure spinors.

Using the BRST closed expressions Cm
1|P given above, the massive amplitude A(1, P |k)

of arbitrary multiplicity is proposed to be

A(1, P |k) =
i

2α′
〈Cm

1|P (λH
m
k )〉 . (2.5)

Note that the shuffle symmetry (2.4) of Cm
1|P implies, via the formula (2.5) that the massive

amplitudes A(1, P |k) satisfy the Kleiss-Kuijf [27] relations, in accordance with [1].

By construction, the right-hand side of (2.5) has the same kinematic poles as the

left-hand side. In addition, one can easily show that (2.5) is BRST closed using the equa-

tion of motion Q(λHm
k ) = (λγmCkλ) and the pure spinor constraint (λγm)α(λγ

m)β = 0.

Therefore we conclude that (2.5) must yield component expansions in terms of polariza-

tions and momenta proportional to the known components given by (1.6). Indeed, using

the θ expansion of (λHm) from the appendix A and the identities to extract component

expansions automated in [28], we have explicitly verified (2.5) up to k = 5.

Therefore, the massive amplitudes (2.5) have been derived from the same pure spinor

cohomology arguments as the SYM amplitudes of [9,10].

2.2. From massless α′2 amplitudes

The factorization of the massless n+1 amplitude on its first massive residue was shown to

be equivalent to the statement [16]

A(1, P |k)
∣∣
k→k,k+1

= −〈C1|P,k,k+1〉 , (2.6)

relating the massive amplitudes to the α′2 sector of the massless amplitudes, in agreement

with the earlier observation in [11]. Equation (2.6) can be viewed as a consistency check due

to unitarity, albeit written in a slightly unconventional form. This statement was explicitly
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verified [11] in terms of polarizations and momenta using the Berends-Giele construction of

A(1, P |k) given in (1.6) on the left-hand side, and the component expansion of the scalar

BRST invariants available in [29]. In this case, the map k → k, k+1 is the component

counterpart of the superfield prescription (1.10), see [16] for the precise details.

If one has the n-point massive amplitude, then the map k → k, k+1 relates it to the

kinematic expression governing the α′2 expansion of the massless amplitude at n+1 points.

The more interesting direction would be to derive the massive field-theory tree amplitudes

starting from the massless string disk amplitudes; that is, to invert the factorization con-

dition (2.6). We will demonstrate below that the cohomology structure of the pure spinor

superspace allows us to do precisely that.

Inverting the factorization condition. Since the pure spinor superspace expressions for

both sides of the factorization condition (2.6) as well as the superspace prescription of the

map k → k, k+1 are known, we can exploit the simplicity of superspace to invert (2.6):

That is, we want to arrive at the expression (2.5) by inverting the massless representation

prescription k → k, k+1 given in (1.9) and (1.10), starting from the right-hand side given

in (1.13).

In order to do this, it will be convenient to rewrite the scalar BRST invariants in

an asymmetric manner. One can show using a combination of equations of motion, pure

spinor constraint and gamma matrix identities that

C1|P,k,k+1 = Cm
1|P (λγ

nWk)F
mn
k+1 −QM̂1|P,k,k+1 , (2.7)

where the labels k and k+1 are singled out to appear in different superfields. In this equa-

tion, M̂1|P,k,k+1 is given by the ghost-number two expression obtained from the expansion

of C1|P,k,k+1 of (1.13) and replacing

MA,B,C → (λγmWA)(WBγmWC) + (λγmWB)(WAγmWC) . (2.8)

For example,

M̂1|2,3,4 =M1(λγ
mW2)(W3γmW4) +M1(λγ

mW3)(W2γmW4) , (2.9)

M̂1|23,4,5 =M1(λγ
mW23)(W4γmW5) +M1(λγ

mW4)(W23γmW5)

+M12(λγ
mW3)(W4γmW5) +M12(λγ

mW4)(W3γmW5)

+M31(λγ
mW2)(W4γmW5) +M31(λγ

mW4)(W2γmW5) .
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Since the pure spinor bracket annihilates BRST exact expressions we get

〈C1|P,k,k+1〉 = 〈Cm
1|P (λγ

nWk)F
mn
k+1〉 = 〈Cm

1|P (λγ
nWk+1)F

mn
k 〉 , (2.10)

where the second equality follows from the BRST cohomology identity

0 = 〈Q
(
Cm

1,P (Wkγ
mWk+1)

)
〉 = 〈Cm

1,P (λγ
nWk)F

mn
k+1〉 − 〈Cm

1,P (λγ
nWk+1)F

mn
k 〉 . (2.11)

The first equality represents the vanishing of BRST-exact expressions under the pure spinor

bracket [7]. For the second equality, one uses QCm
1|P = 0, the equation of motion for Wα

and the constraint (λγm)α(λγ
m)β = 0.

In the OPE gauge, the prescription k → k, k+1 for the massless representation of the

massive superfield (λHm
k ) is given by (1.9)

(λHm
k ) = −2α′

(
iknk+1F

mn
k Vk+1 + ikmk (λγnWk)A

n
k+1 + ikmk Q(WkAk+1)

)
(2.12)

= −2iα′
(
(λγmWk)(kk ·Ak+1)− Fmn

k (λγnWk+1) +Q(Fmn
k An

k+1) + kmk Q(WkAk+1)
)
,

where the second line follows from Q(Fmn
k An

k+1) = iknk+1F
mn
k Vk+1 + ikmk (λγnWk)A

n
k+1 −

iknk (λγ
mWk)A

n
k+1 + Fmn

k (λγnWk+1).

From (2.12), we can formally rewrite the factorization k → k, k+1 in the reverse

direction to obtain

2iα′Fmn
k (λγnWk+1) = (λHm

k )+2iα′(λγmWk)(kk ·Ak+1)+Q
(
(Fmn

k An
k+1)+k

m
k (WkAk+1)

)
,

(2.13)

Finally, plugging (2.13) into the BRST-equivalent expression (2.7) of the scalar BRST

invariant and using and that Cm
1,P is BRST closed leads to

2iα′〈C1|P,k,k+1〉 = 2iα′〈Cm
1|PF

mn
k (λγnWk+1)〉 (2.14)

= 〈Cm
1,P (λH

m
k )〉+ 2iα′〈Cm

1|P (λγ
mWk)(kk ·Ak+1)〉+ 〈Cm

1|PQ(. . .)〉

= 〈Cm
1|P (λH

m
k )〉

= −2iα′A(1, P |k) ,

where in the second line we used that Cm
1|P (λγm)α = 0, integrated the BRST charge by

parts and used that Cm
1|P is BRST closed to obtain 〈Cm

1|PQ(. . .)〉 = −〈
(
QCm

1|P

)
(. . .)〉 = 0.

Therefore, inverting the massless representation map k → k, k+1 (which is equivalent

to the factorization of the massless string amplitudes on their first massive pole [16]) yields

the superspace expression of the massive field-theory amplitude:

〈C1|P,k,k+1〉 → −A(1, P |k) (2.15)

This completes the (formal) derivation of the massive field-theory amplitude A(1, P |k) from

the kinematics 〈C1|P,k,k+1〉 of the α
′2 correction to massless open-string disk amplitudes.
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3. Conclusions

In this paper we derived, using BRST cohomology considerations, a compact pure spinor

superspace expression for the massive field-theory amplitudes A(1, 2, . . . |n). Furthermore,

the same expression was also derived from the α′2 correction to massless string amplitudes,

as anticipated in [11]. The successful application, in the massive case, of the central idea in

[9] for massless field-theory amplitudes leads us to conjecture that all massive field-theory

amplitudes (as defined in section 1) can be obtained by BRST cohomology considerations.

Furthermore, BRST cohomology manipulations in pure spinor superspace are powerful

enough to lead one to hope [11] that the expressions of massive field-theory amplitudes with

higher number of massive legs and/or higher mass levels can be systematically obtained

from the known massless disk amplitudes at higher α′ orders. This paper gives evidence

for the first step of this ladder, climbing the rest of the way is left for future work.

Acknowledgements: CRM thanks Oliver Schlotterer for useful comments on the draft,

and Sitender Kashyap, Mritunjay Verma and Luis Ypanaqué for collaboration on related

topics.

Appendix A. Theta expansion of massive superfields

The θ expansions of the massive superfields of the first massive level of the open superstring

have been determined in [30]. In order to avoid problems due to different conventions –

especially due to the convention ∂m → km used in the component expansions via [28,31] –

we will rederive the expansions here in a streamlined manner.

Equations of motion and recursion. With the definition

Gmn = −
1

144

[
(DγmHn) + (DγnHm)

]
, (A.1)

one can show that the massive superfields satisfy [30]

DαG
mn = −

1

18
∂p(γ

pmHn)α −
1

18
∂p(γ

pnHm)α , (A.2)

DαBmnp = −
1

18
(γmnHp)α +

α′

18
∂a∂m

(
(γanHp)α − (γapHn)α

)
+ cyc(mnp) ,

DαH
m
β = −

9

2
Gmnγ

n
αβ −

3

2
∂aBbcmγ

abc
αβ +

1

4
∂aBbcdγ

mabcd
αβ .
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Denoting by [K]n the component of the superfield K of order (θ)n, the Euler operator

(θD) satisfies (θD)[K]n = n[K]n. Therefore multiplying (A.2) by θα from the left gives

rise to a recursion (note ∂m → km)

[Gmn]k = −
1

18k

[
kp(θγ

pm[Hn]k−1) + kp(θγ
pn[Hm]k−1)

]
(A.3)

[Bmnp]k = −
1

18k

[
(θγmn[Hp]k−1)− α′kakm

(
(θγan[Hp]k−1)− (θγap[Hn]k−1)

)
+ cyc(mnp)

]

[Hm
β ]k =

1

k

[
−

9

2
[Gmn]k−1(θγ

n)β −
3

2
ka[Bbcm]k−1(θγ

abc)β +
1

4
ka[Bbcd]k−1(θγ

mabcd)β

]
.

starting with

[Gmn]0 = gmn [Bmnp]0 = bmnp , [Hm
α ]0 = ψm

α (A.4)

of length dimensions [gmn] = 0, [bmnp] = 1 and [ψm
α ] = 1

2
. Using the recursion (A.3) yields

the following θ expansion for λαHm
α in the Berkovits-Chandia gauge:

(λHm) = (A.5)

(λψm)−
1

4
(λγkmpqrθ)bpqr +

3

2
(λγkpqθ)bmpq −

9

2
(λγnθ)gmn

+
1

48

[
(λγmnpqrθ)(θγnpψq)kri − 4(λγnpqθ)(θγmnψp)kqi − 2(λγnpqθ)(θγnpψm)kqi

]

−
1

12

[
(λγnpqθ)(θγnrψp)kmi k

q
i k

r
iα

′ +
3

2
(λγnθ)(θγmpψn)kpi +

3

2
(λγnθ)(θγnpψm)kpi

]

−
1

576
(λγkmpqrθ)(θγpqrtuvkθ)btuv −

1

32
(λγkmpqrθ)(θγptkθ)bqrt

+
1

96

[
(λγkpqθ)(θγmpqstukθ)bstu + 6(λγkpqθ)(θγmskθ)bpqs − 12(λγkpqθ)(θγpskθ)bmqs

]

−
1

48

[
(λγkθ)(θγpqrθ)bpqrk

m −
9

2
(λγkθ)(θγqrkθ)bmqr −

9

2
(λγnθ)(θγqrkθ)bnqrk

m
]

+
1

48α′

[
(λγmθ)(θγnpqθ)bnpq −

9

2
(λγnθ)(θγmpqθ)bnpq −

9

2
(λγnθ)(θγnpqθ)bmpq

]

−
1

32

[
(λγkmpqrθ)(θγpqsθ)grs − 4(λγkpqθ)(θγmprθ)gqr + 4(λγkpqθ)(θγpskθ)gqsk

mα′
]

+
1

16

[
(λγkpqθ)(θγpqrθ)gmr − 3(λγnθ)(θγmqkθ)gnq − 3(λγnθ)(θγnqkθ)gmq

]
+O(θ4)

where a vector k is written as an index if it is contracted with a gamma matrix: for example

(λγkθ) means kn(λγ
nθ). The θ4 components are commented out in the TEX file. The θ

expansion of the other superfields are not needed in this paper but can be easily generated

from (A.3).
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tion of massive superfields and tree amplitudes with the pure spinor formalism,”

[arXiv:2407.02436 [hep-th]].

[17] C.R. Mafra and O. Schlotterer, “Berends-Giele recursions and the BCJ duality in

superspace and components,” JHEP 1603, 097 (2016). [arXiv:1510.08846 [hep-th]].

13

http://arxiv.org/abs/2104.03314
http://arxiv.org/abs/1106.2645
http://arxiv.org/abs/1106.2646
http://arxiv.org/abs/1304.7304
http://arxiv.org/abs/1609.07078
http://repo.or.cz/BGap.git
http://arxiv.org/abs/hep-th/0001035
http://arxiv.org/abs/hep-th/0612021
http://arxiv.org/abs/1007.3639
http://arxiv.org/abs/1012.3981
http://arxiv.org/abs/2311.12100
http://arxiv.org/abs/hep-th/0209059
http://arxiv.org/abs/hep-th/0209059
http://arxiv.org/abs/2210.14241
http://arxiv.org/abs/hep-th/0204121
http://arxiv.org/abs/2407.02436
http://arxiv.org/abs/1510.08846


[18] B. R. Soares, “Constructing massive superstring vertex operators from massless ver-

tex operators using the pure spinor formalism,” Phys. Lett. B 852, 138611 (2024)

[arXiv:2401.03208 [hep-th]].

[19] C.R. Mafra and O. Schlotterer, “Cohomology foundations of one-loop amplitudes in

pure spinor superspace,” [arXiv:1408.3605 [hep-th]].

[20] C.R. Mafra and O. Schlotterer, “The Structure of n-Point One-Loop Open Superstring

Amplitudes,” JHEP 08, 099 (2014) [arXiv:1203.6215 [hep-th]].

[21] C.R. Mafra, “KK-like relations of α’ corrections to disk amplitudes,” JHEP 03, 012

(2022) [arXiv:2108.01081 [hep-th]].

[22] N. Berkovits, “Multiloop amplitudes and vanishing theorems using the pure spinor

formalism for the superstring,” JHEP 0409, 047 (2004). [hep-th/0406055].

[23] C.R. Mafra and O. Schlotterer, “Towards the n-point one-loop superstring am-

plitude. Part I. Pure spinors and superfield kinematics,” JHEP 08, 090 (2019)

[arXiv:1812.10969 [hep-th]].

[24] C.R. Mafra and O. Schlotterer, “Multiparticle SYM equations of motion and pure

spinor BRST blocks,” JHEP 1407, 153 (2014). [arXiv:1404.4986 [hep-th]].

[25] S. Chakrabarti, S. P. Kashyap and M. Verma, “Amplitudes Involving Massive States

Using Pure Spinor Formalism,” JHEP 12, 071 (2018) [arXiv:1808.08735 [hep-th]].

[26] R. Ree, “Lie elements and an algebra associated with shuffles”, Ann. Math. 62, No.

2 (1958), 210–220.

[27] R. Kleiss and H. Kuijf, “Multi - Gluon Cross-sections and Five Jet Production at

Hadron Colliders,” Nucl. Phys. B 312, 616 (1989).. ;

V. Del Duca, L.J. Dixon and F. Maltoni, “New color decompositions for gauge ampli-

tudes at tree and loop level,” Nucl. Phys. B 571, 51 (2000). [hep-ph/9910563].

[28] C.R. Mafra, “PSS: A FORM Program to Evaluate Pure Spinor Superspace Expres-

sions,” [arXiv:1007.4999 [hep-th]].

[29] http://www.southampton.ac.uk/˜crm1n16/pss.html

[30] S. Chakrabarti, S. P. Kashyap and M. Verma, “Theta Expansion of First Massive

Vertex Operator in Pure Spinor,” JHEP 01, 019 (2018) [arXiv:1706.01196 [hep-th]].

[31] J.A.M. Vermaseren, “New features of FORM,” arXiv:math-ph/0010025. ;

M. Tentyukov and J.A.M. Vermaseren, “The multithreaded version of FORM,”

arXiv:hep-ph/0702279.

14

http://arxiv.org/abs/2401.03208
http://arxiv.org/abs/1408.3605
http://arxiv.org/abs/1203.6215
http://arxiv.org/abs/2108.01081
http://arxiv.org/abs/hep-th/0406055
http://arxiv.org/abs/1812.10969
http://arxiv.org/abs/1404.4986
http://arxiv.org/abs/1808.08735
http://arxiv.org/abs/hep-ph/9910563
http://arxiv.org/abs/1007.4999
http://www.southampton.ac.uk/~crm1n16/pss.html
http://arxiv.org/abs/1706.01196
http://arxiv.org/abs/math-ph/0010025
http://arxiv.org/abs/hep-ph/0702279

