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1 Introduction

Pure Yang-Mills theory in two spacetime dimensions (2dYM) is one of only a handful of
examples of exactly solvable interacting gauge theories, another being the closely related
Chern-Simons theory in three dimensions. Solvability can be traced back to any number
of properties: the lack of propagating degrees of freedom; the existence of a subdivision
invariant lattice model [1]; invariance under area preserving diffeomorphisms [2]; a type of
hidden supersymmetry [3]; the existence of a gauge which allows one to explicitly evaluate
the path integral [4]; and possibly others.

Despite this simplicity, 2dYM resembles its higher dimensional cousins in some respects.
In the large-N limit, for instance, the theory exhibits behaviors that are expected to hold
true also in higher dimensions: it can be reformulated exactly as a string theory [5, 6], and
experiences phase transitions at critical values of the coupling [7, 8].

At finite gauge coupling, 2dYM displays a number of interesting mathematical phenomena
whose detailed study may be relevant for more physical models. These phenomena include
an asymptotic, but not generally convergent, formal perturbation series. Additionally, a
plethora of results connecting 2dYM on the two-sphere, limited to the zero instanton sector,
with perturbative computations in 2 + ϵ dimensions [9, 10], and with exact results for
N = 4 Super Yang-Mills in four dimensions [11–15]. We also have detailed knowledge of
non-perturbative phenomena: generically unstable instantons — non-trivial solutions of the
Yang-Mills equation — contribute to both the partition function [3], and the expectation
value of other observables [16, 17].
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The limit where the gauge coupling vanishes is also interesting, because 2dYM becomes
a topological quantum field theory (TQFT). In [2], Witten related the partition function of
topological 2dYM on a closed Euclidean manifold to the symplectic volume of the moduli
space of flat connections for the gauge group. The followup [3] further demonstrated that
the intersection numbers of this moduli space can be conveniently computed by recasting
topological 2dYM as a twisted supersymmetric gauge theory. In this supersymmetric setup,
a number of observables in 2dYM turn out to be protected, that is to preserve some or all of
the supersymmetry. These include the partition function on closed Euclidean manifolds, and
some operators, both local and extended. Curiously, the Wilson loop is not included in the
list of protected operators, despite being fully calculable in other approaches [18].

The computation in the topological theory relies on a relationship between observables
in the topological theory and those in a supersymmetric version of 2dYM at finite coupling
(the “physical theory”). Unstable configurations, which contribute to observables in this
theory, do not usually make contributions to protected observables. In the present context,
their appearance in the localization computation was explained in [3], in the process of
introducing non-abelian localization.

The existence of a non-trivial perturbation series could also seem in tension with generic
expectations for protected observables. The vacuum expectation value of a protected ob-
servable would be expected to depend on the coupling constant only to some finite order,
usually to one loop. Loops around non-perturbative BPS instanton contributions, which can
be shown to arise in supersymmetric localization [19], are similarly limited. However, as is
the case with 2dYM, the field theoretic coupling constant does not always coincide with the
deformation parameter used in localization, leading to interesting results.

The nature of the weak-coupling expansions in supersymmetric theories have been studied
in a number of papers, mainly in connection with the resurgence program [20]. They exhibit
a variety of behaviors that depend on the theory and the space-time dimension, including
truncation at a finite order [21–23]; a finite radius of convergence [24]; and asymptoticity
associated with Borel [24–26] and non-Borel summability [27].

In all the known cases, supersymmetric localization yields a non-trivial perturbative
expansion by expanding the one-loop determinants around small values of the moduli. In
this sense the computation is still one-loop exact, being determined by the semiclassical
approximation induced by the localizing term. The perturbative series appearing in 2dYM
seems, in this respect, somewhat different: the perturbative expansion being induced by
a dual expansion in the moduli.

In this paper, we will investigate the appearance of a non-trivial perturbation series in
2dYM. Our explanation will come from a combination of two different strategies for extracting
the series, whose results match up to some plausible assumptions regarding localization.

First, following [3], we will use Poisson summation to convert the well-known form of the
partition function, in terms of irreducible representations, into a form where the perturbation
series around each instanton is manifest. For genus greater than 1, this requires the use
of a recent generalization of the ordinary Poisson summation formula, which applies to
distributions rather than functions. We will then reverse engineer the result in order to
extract the elements of a localization computation. Specifically, we will extract an effective
action — or one-loop determinant — for the constant mode of the scalar field in the basic
multiplet described by Witten in [3].
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The second strategy will be to perform a somewhat non-standard localization computation
of 2dYM, involving oscillatory rather than exponentially suppressed path integrals. Among
the moduli arising from this computation will be the same scalar field mode referenced
above. We will argue that the asymptotic expansion of these integrals, which is all that
contributes to the localization result, yields an effective action for this mode in the form of
a tempered distribution. Integration over the moduli will then lead to a result compatible
with Poisson summation.

We will briefly review Witten’s results for the partition function, using both the lattice
formulation [2] and non-abelian localization [3], in section 2. In section 3, by means of
a generalization of the conventional Poisson summation formula, we will extract the full
perturbative expansion associated with each instanton sector for the SU(2) partition function.
In section 4, we will argue that the same result can be obtained through a localization
computation in which the contribution of an arbitrary instanton sector is associated with
the integral over the fluctuations around higher critical points of the localizing action. At
the beginning of this section, we review Witten’s argument and apply it to a toy model in
finite dimensions. Section 5 contains our conclusions and possible further developments of
our investigations. Some technical aspects of the paper are contained in two appendices.

2 Two-dimensional Yang-Mills theory

In this section, we provide a brief introduction to the relevant aspects of two-dimensional
Yang-Mills theory (2dYM), following [2]. The section includes no new results. We will also
use facts about the space of connections on a principle G-bundle over a Riemann surface Σ,
which were derived by Atiyah and Bott in [28, 29]. Additional results specific to Yang-Mills
connections are given in appendix B.

The space of connections. Let G be a compact simple connected Lie group. We denote
its Lie algebra by g, and follow the mathematics conventions whereby g is represented
by anti-Hermitian matrices. Moreover, g admits a G-invariant inner product ⟨·, ·⟩ which
is unique up to rescaling. For SU(N), this inner product coincides with the trace in the
fundamental representation:

⟨a, b⟩ ≡ − tr(ab) . (2.1)

Let Σ be an oriented Riemannian manifold of dimension 2, and let A be a connection on
a principle G-bundle over Σ. A can be represented locally by and adjoint-valued one-form.
The curvature of A, given by

F = dA+A ∧A , (2.2)

is an adjoint-valued two-form. The set A of all connections on a fixed principle bundle over Σ
is an infinite-dimensional affine space. Let δA denote a tangent vector at some point in this
space. δA is a globally-defined adjoint-valued one-form on Σ. The Atiyah-Bott symplectic
form on A is defined as follows [28, 29]:

ωAB(δA, δB) ≡ 1
4π2

∫
Σ
tr(δA ∧ δB) . (2.3)

Note that ωAB is constant, i.e. independent of the connection, and thus formally closed.
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Using the metric on Σ, and the associated Hodge star operator ⋆, one can also define
on A an integrable complex structure J and an inner product (·, ·) as

J δA ≡ − ⋆ δA , (2.4)

(δA, δB) ≡ − 1
4π2

∫
Σ
tr(δA ∧ ⋆ δB) . (2.5)

ωAB, J and the metric associated to (·, ·) form a compatible triple

(δA, δB) = ωAB(δA, J δB) , (2.6)

and formally endow A with a Kähler structure.
The group of gauge transformations G, automorphisms of a fixed principle bundle, acts

symplectically on the space of connections, with a moment map given by

µ(A) = − F

4π2 . (2.7)

The moduli space of flat connections is formally given by the infinite-dimensional symplectic
reduction (at level 0) of the space of connections by the action of the gauge group

Mflat ≡ A//G = {A ∈ A |µ(A) = 0}/G . (2.8)

The theory. The action of 2dYM reads

SYM[A] = − 1
8ϵ

∫
Σ
tr(F ∧ ⋆F ) , (2.9)

where ϵ is a coupling constant with dimensions of a mass squared,1 and tr is the trace in
the fundamental representation of SU(N). The equations of motion stemming from (2.9)
are the Yang-Mills equations

dA ⋆ F = 0 , (2.10)

where dA = d + A is the gauge-covariant extension of the exterior derivative.
The partition function of quantum 2dYM is defined as

Z ≡ 1
|Z(G)|

∫
DA e−SYM[A] , (2.11)

in terms of an appropriately gauge-fixed version of the path integral. |Z(G)| is the volume
of the center of G. We will consider only examples in which Z(G) is finite, in which case
|Z(G)| is the order of Z(G). The action SYM is super-renormalizable and does not require
field-dependent counterterms. Z is defined up to scheme-dependent finite counterterms with
parameters u0, v0, which multiply Z by a factor

eu0ϵρ(Σ)+v0χ(Σ) , (2.12)

where χ(Σ) ≡ 2− 2g is the Euler characteristics of Σ, and ρ(Σ) is the total area.
1Our coupling constant ϵ is related to the one used by Witten in [3] as ϵ = π2ϵWitten.
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The theory can be re-written in an equivalent form by introducing an adjoint-valued
scalar ϕ, and using the action

SBF[A, ϕ] = − i
4π2

∫
Σ
tr(ϕF )− ϵ

8π4
∫
Σ
dvolΣ tr(ϕ2) , (2.13)

where with dvolΣ we denote the metric volume form on Σ.
This formulation makes manifest an important feature of the theory: the action (2.13)

depends on the geometry of Σ only through dvolΣ. As a consequence, the resulting theory
is only sensitive to the area

ρ(Σ) ≡
∫
Σ
dvolΣ , (2.14)

the unique invariant of such a measure in dimension 2. Moreover, the Yang-Mills coupling
and the volume form appear only through the combination ϵ dvolΣ. This implies that the
theory depends on the coupling only through the dimensionless combination ϵ ρ(Σ).

The limit ϵ→ 0, or equivalently ρ(Σ) → 0, defines a BF type TQFT. Witten showed in [2]
that the partition function in this limit is proportional to the symplectic volume of the moduli
space Mflat of flat G connections on Σ, relative to the Atiyah-Bott symplectic form [29].2

The lattice gauge theory approach. 2dYM admits a discretized lattice gauge theory
model with the standard degrees of freedom: an element U ∈ G living on every edge [30]. The
lattice Yang-Mills action in two dimensions takes a particularly simple form [1]. Let R denote
the set of irreducible representations of G, dimα the dimension of α ∈ R, and c2(α) the value
of the second Casimir. Let UP be the holonomy around an elementary lattice plaquette P of
area ρ(P ), i.e. the ordered product of the U ’s, and χα(UP ) its character in the representation
α. The lattice Yang-Mills partition function can be obtained by combining with

Zlattice =
∫ ∏

e∈{edges}
dUe

∏
P∈{plaquettes}

ΓP (2.15)

the contribution

ΓP =
∑
α∈R

dimα e−ϵ ρ(P ) c2(α) χα(UP ) (2.16)

associated with each plaquette P . With the measure (2.16), the lattice gauge theory is
invariant under subdivisions of the lattice. The partition function on a discretized surface
can therefore be computed using a single plaquette, and the continuum limit is trivial [1, 2].
The partition function on a genus g surface can be shown using this approach to be [2]

Zlattice =
∑
α∈R

(dimα)2−2g e−ϵ ρ(Σ) c2(α) . (2.17)

For convenience and without loss of generality, in the rest of this paper we will adimensionalize
the Yang-Mills coupling ϵ by working in units where ρ(Σ) = 1.

2The proportionality constant consists of the number of elements in the center of G, a normalization factor
coming from the relationship between the symplectic form and the path integral measure, and a standard
renormalization of the form ev0 χ(Σ) (cf. eq. 4.72 of [2]).
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The supersymmetric theory and localization. 2dYM admits an equivalent formulation
with a fermionic symmetry. Let ψ be a Grassmann-valued and adjoint-valued one-form
field. The action

SSUSY[A,ψ, ϕ] = − 1
4π2

∫
tr
(
iϕF + 1

2 ψ ∧ ψ
)
− ϵ

8π4
∫

dvolΣ tr(ϕ2) (2.18)

yields a theory which is equivalent to 2dYM after integrating out ϕ and ψ, and hence yields
the same partition function. SSUSY is also invariant under the following odd symmetry
transformation:

δA = iψ , δψ = −dAϕ , δϕ = 0 . (2.19)

The transformation δ squares to an infinitesimal gauge transformation with parameter ϕ

δ2 = −i δϕ . (2.20)

In [3], it was shown that the action (2.18) admits a δ-exact deformation which can be
used to localize the theory. The specific deformation used by Witten, which requires the
introduction of two additional supermultiplets, was shown to localize the theory to the moduli
space of solutions to the Yang-Mills equations on Σ. The connected components of this
moduli space, which deserve the name instanton sectors, are labeled by Γ, the magnetic
weight lattice of G, which is dual to Γ∗, the usual weight lattice of G, modulo the action of
the Weyl group W [29, 31].3 The localization procedure used by Witten, which differs from
standard localization computations, was given the name “non-abelian localization”.4

The value of the Yang-Mills partition function derived using non-abelian localization
is, schematically,

Z =
∑

m∈Γ/W
qg(m, ϵ) e−S(m) , (2.21)

where

S(m) ∝ ⟨m,m⟩
ϵ

(2.22)

is the value of the action (2.9) on any solution of the Yang-Mills equations in the component
labeled by m, and qg(m, ϵ) is a function which, for g ≥ 2, was not explicitly computed in [3].
When Mflat is smooth, the part of (2.21) which is not exponentially suppressed in the limit
ϵ→ 0 is in fact a polynomial in ϵ, which we call pg(ϵ). Witten argued that pg(ϵ) contains all
the information required in order to compute the intersection theory on Mflat.

Recall that the set of irreducible representations of G, denoted by R, is equivalent to
the weight lattice of G, which we denoted by Γ∗, modulo the action of the Weyl group.
For G = SU(2), Γ and Γ∗ are one dimensional, and the value of the partition function as
given in (2.17) can be written simply as5

Z =
∞∑
ℓ=1

ℓ2−2g e−ϵℓ
2
, (2.23)

3For a nice introduction, see the appendix of [32].
4The difference is visible, for instance, in the fact that standard localization computations yield a moduli

space which consists of solutions to first order BPS equations.
5Precisely, (2.23) is obtained from (2.17) by adding a customary constant term to the Hamiltonian (cf.

eq. (4.39) in [3]).

– 6 –



J
H
E
P
0
6
(
2
0
2
4
)
1
8
8

while the version in (2.21) can be written as

Z =
∞∑

m=0
qg(m, ϵ) e−π

2m2/ϵ . (2.24)

Witten argued in [3] that the expressions (2.23) and (2.24) are equal for all values of ϵ
and g. However, the precise matching is only studied in the sector where m vanishes. We
will, instead, investigate the functions qg(m, ϵ) for all values of m and demonstrate explicitly
the equality of these expressions up to an overall factor. Furthermore, we will show that
these functions admit asymptotic expansions in ϵ, which can be interpreted as determining
the formal perturbation series around each instanton.

3 The SU(2) partition function

3.1 From Poisson summation

In this section, we will use a generalized version of the Poisson summation formula to recast the
SU(2) partition function (2.23), expressed as a sum over representations of the gauge group,
into a sum over the critical points of the Yang-Mills action, as in (2.24).6 For non-negative
Euler characteristics we can regard the argument of the sum in (2.23) as the even function

f(x) = x2−2g e−ϵx
2 (3.1)

belonging to the Schwarz space S(R). Now, denoting with

f̂(p) =
∫ +∞

−∞
dx e−2πipx f(x) (3.2)

its Fourier transform, one can employ the standard Poisson summation to write7

∑
ℓ≥1

f(ℓ) = −1
2 f(0) +

1
2
∑
x∈Z

f(x)

= −1
2 f(0) +

1
2
∑
p∈Z

f̂(p)

= −1
2 f(0) +

1
2 f̂(0) +

∑
m≥1

f̂(m) . (3.3)

This gives the genus-zero and genus-one partition functions

Z
∣∣
g=0 =

√
π

4 ϵ−3/2 +
∞∑

m=1
e−π

2m2/ϵ
(√

π

2 ϵ−3/2 − π5/2ϵ−5/2m2
)
, (3.4)

Z
∣∣
g=1 =

√
π

2 ϵ−1/2 − 1
2 +

∞∑
m=1

e−π
2m2/ϵ

(√
π ϵ−1/2

)
. (3.5)

6In [23], the sum over instantons is studied through resurgence. However, the results therein, although
similar in form, differ from the ones presented here and fail to fully reproduce the vacuum sector computed
in [3, 33].

7In the last step of (3.3) we used the fact that the Fourier transform of an even function is itself an
even function.
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As mentioned in the previous section, from (3.4) and (3.5) one can observe exponentially
suppressed terms controlled by the classical action evaluated on the critical points of the
action (2.9). In fact, for the gauge group SU(2), a covariantly constant F reduces the
structure group to U(1), splitting the SU(2) bundle into the sum of two line bundles. A
representative of the conjugacy class of F is given by

⋆F = 2πimσ3 , (3.6)

where σ3 denotes the third Pauli matrix. Configurations with opposite signs of m are gauge
equivalent, as they are connected by a Weyl reflection. In labelling Yang-Mills solutions
modulo gauge transformation, we restrict m to non-negative values. The value of the action
on the critical point (3.6) is exactly S = π2m2/ϵ. Moreover, from (3.4) and (3.5) one can
directly read off the q0(m, ϵ) and q1(m, ϵ) polynomials in (2.24).

When g ≥ 2, the standard Poisson summation formula fails due to the fact that f(x)
diverges at x = 0, and its Fourier transform does not exist in the usual sense. To proceed,
we have to resort to a distributional extension of the Poisson summation formula proven
in [34], where the singular points are excluded from the sum. Since f(x) has a power-like
divergence at x = 0, and it is of rapid decay, it can be viewed as an element of the space
S ′(R) of tempered distribution. According to [34], we can rewrite the identity (3.3) as

∑
x∈Z\{0}

f(x) = Clim
Λ→∞

( ∑
|p|≤Λ

f̂(p)−
∫
|p|≤Λ

dp f̂(p)
)
, (3.7)

where the limit is taken in the Cesàro sense.8

In our case, f(x) can be regarded as the tempered distribution9

f(x) = − e−ϵx
2

(2g − 3)!
d2g−3

dx2g−3

(
pv 1

x

)
, where g ≥ 2 . (3.8)

8Let a ∈ R \ {−1,−2,−3, . . . }. We say that f(x) = o(xa) in the Cesàro sense for x → ∞ if there exists
n ∈ N, a primitive F (x) of order n of f(x), and a polynomial p(x) of degree n − 1 such that F (x) is locally
integrable for large x and

F (x) = p(x) + o(xn+a)

as x → ∞. Then, we say that
Clim
x→∞

f(x) = L

if f(x) − L = o(1) in the Cesàro sense for x → ∞. Obviously, if something converges or has a definite limit in
the usual sense, it also converges or possesses a well-definite limit in the Cesàro sense, and the two coincide.

For a more detailed definition and discussion, we refer to [34] and references therein.
9To be more precise, in Theorem 1 of [34], (3.7) is shown to hold in a subset of S ′(R) to which (3.8) belongs.

This is the space K + K̂, where K is the space of smooth function for which there exist a q ∈ R such that

∂k

∂xk
f(x) = O(|x|q−k)

as |x| → ∞, while K̂ is the space of their Fourier transforms, which exist in the Cesàro sense. The elements of
K̂ are smooth functions in R \ {0} rapidly decaying at infinity. On the other hand, because of the singular
behavior in the origin, a generic f ∈ K + K̂ is a tempered distribution rather than a function.

For a version of the formula that applies to any distribution in S ′(R), see Theorem 2 of [34].
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Its Fourier transform has been computed in the distributional sense in appendix A and can
be written as the sum of two contributions,

f̂(p) = Q′(p) +H(p) , (3.9)

where10

H(p) = e−π
2p2/ϵ P (p)− erfc(πp/

√
ϵ)Q′(p) . (3.10)

The two coefficients P (p) and Q(p) are even polynomials whose definition can be found
in (A.7) and (A.8). Since f̂ is an even function, we can also write

f̂(p) = Q′(|p|) +H(|p|) . (3.11)

The benefit of having split f̂ as in (3.11) is that we can apply the limiting procedure to the
two terms separately. Since H(|p|) is exponentially suppressed11 for p→ ±∞, the associated
sum and integral converge separately as Λ → ∞. In other words, the only nontrivial Cesàro
limits originate from the Q′(|p|) term. We can then rewrite the partition function as the sum

Z = 1
2 (R+ I + S) (3.12)

of the three finite terms

R = Clim
Λ→∞

( ∑
|p|≤Λ

Q′(|p|)−
∫
|p|≤Λ

dp Q′(|p|)
)
, (3.13)

I = −
∫ +∞

−∞
dp H(|p|) , (3.14)

S =
∑
p∈Z

H(|p|) . (3.15)

Let us now deal with them one by one.
We start by considering R. One can avoid performing computations at finite Λ by simply

applying again the extended Poisson summation, but this time in the opposite direction.
Exploiting the Fourier transform computed in appendix A, we get

Clim
Λ→∞

( ∑
|p|≤Λ

|p|2n+1 −
∫
|p|≤Λ

dp |p|2n+1
)

= (2n+ 1)!
22n+1 (−π2)n+1

∑
ℓ∈Z\{0}

1
ℓ2n+2

= (2n+ 1)!
22n (−π2)n+1 ζ(2n+ 2) . (3.16)

By linearity, we can simply apply the above to each monomial in Q′ to find

R = 2
g−2∑
j=0

(−1)j

j! ζ(2g − 2− 2j) ϵj . (3.17)

Since the coefficients depend only on the Riemann zeta function evaluated on even integers,
we can alternatively express them in terms of Bernoulli numbers (see e.g. [3]).

10The complementary error function is defined as

erfc(x) = 1 − erf(x) .

11We have, in particular, that erfc(z) ∼ e−z2
for z → ∞.
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The next step is to compute I. Plugging (3.10) into (3.14) and integrating the second
term in (3.10) by parts, we find

I = 2
[
erfc(πp/

√
ϵ)Q(p)

]∞
0

− 2
∫ ∞

0
dp e−π2p2/ϵ

(
P (p)− 2

√
π√
ϵ
Q(p)

)
. (3.18)

The residual integral in (3.18) can be directly computed and shown to vanish identically.
The boundary contribution, instead, yields

I = −2Q(0)

= −(−1)g−1 ϵg−1

(g − 1)! . (3.19)

This contribution amounts to the term with j = g − 1 missing from the summation range
in R, as given in (3.17).

Lastly, we need to compute S. Let us rewrite (3.15) as

S = P (0) + 2
∞∑

m=1
H(m) . (3.20)

One can easily compute

P (0) = (−1)g−1√π 2g−1

(2g − 3)!! ϵg−3/2 (3.21)

by taking only the k = g − 2 term in (A.7) and performing the sum over m. To rewrite the
remaining term as a sum over the critical points with a non-vanishing magnetic flux, we use
the asymptotic expansion of the complementary error function

erfc(1/z) = e−1/z2 z√
π

∞∑
m=0

(−z2/2)m (2m− 1)!! , (3.22)

valid for | arg(z)| < 3
4 . This gives

H(|p|) = e−π
2p2/ϵ

∞∑
k=0

√
π (2g − 2)2k

22k (−π2p2)g−1+k k! ϵ
2g−5/2+k , (3.23)

where (x)n = x(x − 1) · · · (x − n + 1) denotes the Pochhammer symbol.
We can now add up all the different contributions as in (3.12) to obtain the complete

partition function of SU(2) Yang-Mills theory at genus g ≥ 2:

Z =
g−1∑
j=0

(−1)j

j! ζ(2g − 2− 2j) ϵj + (−1)g−1√π 2g−2

(2g − 3)!! ϵg−3/2

+
∞∑

m=1
e−π

2m2/ϵ
∞∑
k=0

√
π (2g − 2)2k

22k (−π2m2)g−1+k k! ϵ
2g−5/2+k . (3.24)

The terms in the first line stem from flat connections wrapping the 2g non-trivial cycles of Σ.
The polynomial part evaluates the intersection numbers of the moduli space of flat connections
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(once the partition function has been properly normalized), while the non-analytic part with
its exponent g − 3

2 originates from the singular nature of the moduli space of flat SU(2)
connections. This, in turn, is a consequence of the that fact that SU(2) has a nontrivial center
and thus the action of the SU(2) gauge group on the space of flat connections is not free. The
terms in the second line of (3.24) are governed once again by the exponential of the classical
action evaluated at the critical points. At variance with the g ≤ 1 case, the fluctuations around
the instanton solutions become (infinite) asymptotic series rather than polynomials in 1/

√
ϵ.

3.2 From an effective action

In (3.24), we have isolated the contribution to the partition function associated with each
instanton sector. Later in this paper, we will deal with the problem of deriving the same
result from a localization computation. Before closing this section, however, we want to
illustrate how the analysis performed so far already contains some insight on the form of
the effective action that should arise from the localization procedure.

As mentioned, we can recognize in H(|m|) the contribution of a single instanton with
flux number m. From the perspective of a localization computation, we expect this to arise
from the integral over a bosonic moduli (i.e. the localizing saddle) corresponding to some
supersymmetric field configurations, the theory being formulated in terms of an action with
a fermionic symmetry. The minimal supersymmetric extension for 2dYM comprises the
degrees of freedom that appear in the classical action (2.18). The associated supersymmetric
variations (2.19) indicate that a putative effective action should depend, not just on m, but
also on a constant mode for the scalar ϕ in the Cartan subalgebra of SU(2). For simplicity,
for the rest of this section, we will denote this single real degree of freedom with ϕ0, where
ϕ = 2π2iϕ0 σ3.

From the discussion above, we expect the function H to be generated by an integral
of the type

H(|m|) =
∫ +∞

−∞
dϕ0 e−Scl.(ϕ0,m) ∆g(ϕ0,m) , (3.25)

where

Scl.(ϕ0,m) = ϵϕ0
2 + 2πimϕ0 (3.26)

is the bosonic part of the supersymmetric action (2.18) evaluated on the bosonic moduli,
while ∆g is the one-loop determinant obtained by integrating quantum fluctuations about
each point in the moduli.

Interestingly, the results of this section hint at a distributional nature for ∆g. In
fact, the integral (3.25) closely resembles the Fourier transform computed in appendix A.
Specifically, (3.9) suggests that we should write

∆g(ϕ0,m) = eϵϕ02
f(ϕ0) + ∆res

g (ϕ0,m) , (3.27)

where ∫ +∞

−∞
dϕ0 e−2πimϕ0−ϵϕ02 ∆res

g (ϕ0,m) = −Q′(|m|) . (3.28)
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From the representation (A.10) of Q′ in terms of a Hermite polynomial, we obtain12

−Q′(m) = iπ
(2g − 3)!

d2g−3

dϕ02g−3 e
−2πimϕ0−ϵϕ02

∣∣∣
ϕ0=0

= iπ
(2g − 3)!

∫ +∞

−∞
dϕ0 δ(ϕ0)

d2g−3

dϕ02g−3 e
−2πimϕ0−ϵϕ02

= − iπ
(2g − 3)!

∫ +∞

−∞
dϕ0 e−2πimϕ0−ϵϕ02 d2g−3

dϕ02g−3 δ(ϕ0) . (3.29)

By comparing (3.28) with (3.29), we can fix ∆res
g . Interestingly, the dependence of ∆g on m

turns out to be very mild. In particular, it takes the suggestive form

∆g(ϕ0,m) = − 1
(2g − 3)!

d2g−3

dϕ02g−3

(
pv 1

ϕ0
+ iπ sign(m) δ(ϕ0)

)
. (3.30)

In the next section, we will explain the origin of the one-loop determinant (3.30) in
terms of a localization computation. For the moment, we just want to point out that a
one-loop determinant given by a tempered distribution is somewhat unusual in the context
of supersymmetric localization. However, in section 4.2 we will show through a finite-
dimensional toy model that this occurs naturally when adopting the particular localization
scheme employed in the present paper.

4 Localization

In this section, we compute the contribution to the partition function of 2dYM on a closed
surface from each instanton sector using a stationary phase version of supersymmetric
localization. We will follow the approach of Witten [3], but work only with the basic
multiplet, comprising A, ψ and ϕ. We will not introduce the additional fields forming the
N = (2, 2) vector multiplet which were used to localize more general A-twisted models in
e.g. [35]. Our primary contribution will be a careful reexamination of the effective action for
the bosonic moduli, which will yield a reasonable result for the perturbation series of 2dYM.

We begin with a brief review of non-abelian localization, following [3]. We then carry
out stationary phase localization in the toy example of non-abelian localization presented
in [3]. Finally, we carry out the complete computation for 2dYM with gauge group SU(2).
The computation uses results for Yang-Mills connections collected in appendix B. The
contributions to the partition function match the all-orders perturbative expansion presented
in section 3, up to a factor which is independent of the coupling constant.

4.1 Non-abelian localization

In [3], a localization formula is introduced, which is a non-abelian generalization of the
Duistermaat-Heckman localization formula in symplectic geometry.

12In the first line of (3.29), we have made use of the expression for the generating function of the Hermite
polynomials

e2xt−t2
=

∞∑
n=0

Hn(x) tn

n! .
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Let G be a Lie group acting on a manifold M . We denote with g its Lie algebra and with
V (ϕ) the fundamental vector field generated by ϕ ∈ g. The equivariant de Rahm complex
(Ω•

G(M ),D) is the sequence of smooth G-equivariant differential forms13 on M , together
with the nilpotent twisted differential D : Ω•

G(M ) → Ω•
G(M ) defined as

(Dα)(ϕ) = dα(ϕ)− i iV (ϕ)α(ϕ) , (4.1)

for α ∈ Ω•
G(M ). The equivariant de Rahm complex induces the equivariant cohomology

group H•
G(M ).

The localization formula of [3] deals with the equivariant integral∮
: Ω•

G(M ) −→ C (4.2)

defined as ∮
α = 1

volG

∫
g
dϕ e−ϵ⟨ϕ,ϕ⟩

∫
M
α(ϕ) , (4.3)

where dϕ is the volume form induced by the Killing form ⟨·, ·⟩ on g. The exponential term
with ϵ > 0 ensures the convergence of the integral. Since the equivariant integral of an
equivariantly exact form vanishes, (4.2) descends to a map H•

G(M ) → C.
The localization scheme presented in [3] relies on the introduction of the localizing term

e−tDλ, where λ ∈ Ω1
G(M ).14 In fact, if α is equivariantly closed,∮

α =
∮
α e−tDλ , (4.4)

since both integrands belong to the same cohomology class in H•
G(M ). Now the exponential

brings a eitK factor, with K = iV (ϕ)λ(ϕ). In the limit where t → ∞, one can use the
method of the stationary phase to prove that the integral can be expressed as a set of
local contributions with ∮

α =
∑
σ

Zσ , (4.5)

where σ labels the critical sets Mσ, i.e. the components of the subspace of M where dK = 0.
This localization scheme is applied to the context of symplectic geometry: suppose

M is a symplectic manifold with symplectic form ω while G acts as a symplectomorphism
with momentum map µ, i.e. µ : M → g∗ is such that iV (ϕ)ω = −dµ(ϕ). Let us denote
I = ⟨µ, µ⟩. We choose

λ = 1
2(dI)J , (4.6)

13A smooth G-equivariant differential form is a smooth map α : g → Ω•(M ) such that the following diagram
commutes for any g ∈ G:

g Ω•(M )

g Ω•(M )

α

Adg g

α

14To ensure convergence, it is sufficient to choose a G-invariant λ.
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where J is an almost complex structure J compatible with ω, namely

g(·, ·) = ω(·, J(·)) . (4.7)

Because, as shown in [3], the critical points of K coincide with the critical points of I, in
this localization scheme, the integral localizes on the stationary points of ⟨µ, µ⟩. Clearly, the
subspace µ−1(0) is the absolute minimum of such a function.

We still have to specify which form we wish to integrate: this is the unique equivariant
extension of the symplectic form that is equivariantly closed, namely

ξ(ϕ) = ω − iµ(ϕ) . (4.8)

In [3] it is shown that, when restricted to a tubular neighborhood Nσ of Mσ, the equivariant
integral of eξ is proportional to ∫

Nσ

eω+tdλ+W/(2ϵ) . (4.9)

Here, W is a scalar that has a local minimum at Mσ, where W = Iσ, the constant value of
I over Mσ. As a consequence, in the large-t limit, we find that each localized contribution
to the equivariant integral is exponentially suppressed as

Zσ ∼ e−Iσ/(2ϵ) , (4.10)

with the only exception being the global minimum µ−1(0) where I vanishes. The same
conclusions apply straightforwardly to more general integrals of the form∮

β eξ , (4.11)

where β has at most a polynomial dependence on ϕ.

4.2 An abelian toy model

In the appendix of [3], the following example is considered. Let M ≃ S2 with the usual
symplectic volume form ω = sin θ dθ ∧ dψ, where 0 ≤ θ ≤ π and 0 ≤ ψ < 2π are the
conventional spherical coordinates. We then consider the U(1) group action generating
azimuthal translations. By endowing the Lie algebra u(1) with the standard metric such that
vol U(1) = 2π, we identify u(1)∗ ≃ u(1) ≃ R, the unit generator on u(1) being associated with
the fundamental vector field V = ∂ψ. Such a group action on (S2, ω) is a symplectomorphism
and the associated moment map reads µ = − cos θ, up to constant terms. In this setup, the
equivariant integral amenable to localization reads

Z = 1
2π

∫ ∞

−∞

dϕ
2π

∫
S2
eω−iϕµ−ϵϕ2/2 . (4.12)

We now want to revisit this example and show in detail how to explicitly compute
the contributions of each critical point of I to the integral. We start by computing the
localizing term

η(ϕ) = e−tDλ

= e−t dλ+itϕ iVλ , (4.13)
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where

λ = sin2θ cos θ dψ (4.14)

is induced by the almost complex structure on S2,

J = 1
sin θ ∂ψ ⊗ dθ − sin θ ∂θ ⊗ dψ , (4.15)

as in (4.6). For convenience, we rewrite it as η = eη0+η2 , where

η0 = itϕ sin2θ cos θ ,
η2 = −t ∂θ(sin2θ cos θ) dθ ∧ dψ . (4.16)

The integral

1
2π

∫
S2
η(ϕ) eω+iϕ cos θ−ϵϕ2/2 (4.17)

should receive contributions from the critical points of I = cos2 θ, i.e. from the minimum
at θ = π/2 and from the two maxima at θ = 0 and θ = π.

In a tubular neighborhood of the circle at θ = π/2,

η0
∣∣
θ∼π/2 ∼ −itϕ z , (4.18)

η2
∣∣
θ∼π/2 ∼ t dz ∧ dψ , (4.19)

where z = θ − π/2. As the integral (4.17) localizes for t → ∞, the contribution of the
fluctuations about the minimum at θ = π/2 is captured by an integral over the normal bundle,
where we have expanded at the leading order as above:

∆π
2
(ϕ) = t

∫ 2π

0

dψ
2π

∫ ∞

−∞
dz e−itϕz . (4.20)

We interpret the integral over z as the Fourier transform of a constant tempered distribution
and write

∆π
2
(ϕ) = 2π δ(ϕ) . (4.21)

We are left with the contribution coming from the higher critical points. The chart
(θ, ψ) is singular on the maxima, so in a neighborhood of θ = 0 we define x = θ cosψ and
y = θ sinψ, in terms of which

η0
∣∣
θ∼0 ∼ itϕ (x2 + y2) , (4.22)

η2
∣∣
θ∼0 ∼ −2t dx ∧ dy . (4.23)

The fluctuation integral over the tangent space at θ = 0 reads

∆0(ϕ) = − t

π

∫
R2

dx dy eitϕ (x2+y2) . (4.24)
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This converges to −i/ϕ in the half-plane Imϕ > 0 (given t > 0). In order to obtain a sensible
result for real ϕ we must interpret again the integral in a distributional sense. This is achieved
by taking the limit for Imϕ → 0+ and using the distributional identity

lim
ε→0+

1
x± iε = pv 1

x
∓ iπ δ(x) . (4.25)

In fact, upon switching to polar coordinates one recognizes the expression for the Fourier
transform of the Heaviside step function.15 The result is the tempered distribution

∆0(ϕ) = −i pv 1
ϕ
− π δ(ϕ) . (4.26)

We will not repeat the analysis for the other maximum at θ = π as it is completely analogous
and simply amounts to replacing ϕ 7→ −ϕ. This gives

∆π(ϕ) = +i pv 1
ϕ
− π δ(ϕ) . (4.27)

According to (4.5), we can write the integral (4.12) as

Z = Z0 + Zπ
2
+ Zπ , (4.28)

where

Zθ =
∫ ∞

−∞

dϕ
2π ∆θ(ϕ) e+iϕ cos θ−ϵϕ2/2 . (4.29)

A direct computation gives

Z 0 = −1
2 erfc

( 1√
2ϵ

)
, (4.30)

Zπ
2
= 1 , (4.31)

Zπ = −1
2 erfc

( 1√
2ϵ

)
. (4.32)

As expected, the contributions associated with the two maxima are exponentially suppressed
as ϵ → 0+. In fact, we find

Z0,π ∼ e−1/(2ϵ) , (4.33)

consistently with (4.10). Combining the three terms produces the correct result

Z = erf
( 1√

2ϵ

)
. (4.34)

15In a distributional sense, ∫ ∞

0
dx e∓2πipx = ± 1

2πi pv 1
p

+ δ(p)
2 .

The above goes also under the name of Heitler function.
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Symplectic Geometry Supersymmetric 2d Yang-Mills
the Lie group G the gauge group: the automorphism group of a

fixed principal G-bundle over Σ
the smooth G-manifold X the space of connections A on a fixed principal

G-bundle over Σ
the action of G on X gauge transformations acting on A

coordinates on the Lie algebra of G the field ϕ as an adjoint-valued scalar on Σ
coordinates {x} on X connections A ∈ A

∂x as an element of the tangent space
TX

δA as an adjoint-valued one-form on Σ

a one-form dual to δA (as an element
of the exterior algebra)

an adjoint-valued fermion ψ which is also a
one-form on Σ

an equivariant differential form (in
local coordinates)

a gauge invariant superfield Φ(A,ψ, ϕ)

the exterior product the product of superfields
equivariant integration of equivariant

differential forms
supersymmetric path integral

the equivariant differential D the supersymmetry variation δ

the symplectic form ω the Atiyah-Bott symplectic form ωAB
equivariantly closed forms δ closed superfields

equivariant cohomology of X the δ cohomology
the equivariant extension ω − iµ the superfield 1

2ψ ∧ ψ + iϕF

Table 1. The dictionary for translating non-abelian localization in symplectic geometry into super-
symmetric gauge theory.

4.3 The Yang-Mills effective action

We will now show that a supersymmetric localization computation of the partition function
of 2d Yang-Mills yields results for the perturbation series which are in line with those derived
in previous section 3. To begin, we provide in table 1 a dictionary for translating the main
components of non-abelian localization, as reviewed in section 4.1, to the language of 2d
supersymmetric gauge theory. In this section we use the notation and results from appendix B.
We will implicitly work only with g ≥ 2. The localization computation for g = 0 and g = 1
can be performed with standard methods.

Localization of 2dYM. As explained in section 2, 2dYM has a completely equivalent
formulation in terms of fields A,ψ, ϕ, and the supersymmetric action (2.18) that we reproduce
here for convenience:

SSUSY[A,ψ, ϕ] = − 1
4π2

∫
tr
(
iϕF + 1

2 ψ ∧ ψ
)
− ϵ

8π4
∫

dvolΣ tr(ϕ2) . (4.35)

The supersymmetry acting on the fields is generated by

δA = iψ , δψ = −dAϕ , δϕ = 0 . (4.36)
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Note that

δF = i dAψ . (4.37)

We would like to compute the partition function for this theory on a closed genus g
surface Σ of unit area, using localization. To begin, we deform the 2dYM action using a
δ-exact term. Our choice of δ-exact term appears in [3] at a certain stage in the computation
(cf. eq. (3.30) of [3]):16

Sloc. = t δ

( 1
32π4

∫
Σ
tr
(
iψ ∧ d†AF

))
= t

32π4
∫
Σ
tr
(
iϕ ∧ dAd

†
AF + ψ ∧

(1
2∆A + F̂

)
ψ

)
. (4.38)

By a standard argument, the δ-exact deformation does not change the expectation value
of the partition function and of δ-closed observables. The precise coefficient used here was
chosen for later convenience.

The bosonic part of the action (4.38) is purely imaginary, and the localization we have
in mind is an exact stationary phase approximation.17 This should be contrasted with the
usual setup for supersymmetric localization, as expounded for instance in [36], whereby a
real positive-semi-definite localizing action is used and the result is an exact saddle point
approximation. Our first assumption is that such a localization is still well defined, an
assumption which is borne out by the results in [3], albeit without a derivation of the finite
dimensional model. Note also that this type of localizing term is the direct analogue of the
one used in the toy example, namely (4.13).

According to [3], the localizing action (4.38) also brings in configurations from infinity,
for any finite value of t, resulting in expressions for the expectation values of δ-closed
observables at finite ϵ which are different from what one could have obtained via a standard
localizing term leading to a cohomological TQFT. The additional configurations are unstable
instantons, exponentially suppressed at small ϵ, allowing them to be neatly separated from
the topological data at ϵ→ 0. This latter fact, which was central to the arguments leading
to the computation of the intersection numbers on the moduli space of flat connections
performed in [3], is not relevant for our purposes. We define the trans-series type expansion
in ϵ which we wish to compute as the one arising from our 2dYM action at any value of
t. Indeed, for the purpose of computing the partition function, the theory we consider is
equivalent to physical 2dYM at any value of t.

The equations of motion arising from (4.38) imply that the stationary phase config-
urations satisfy

dAd
†
AF = 0 . (4.39)

Using the inner product, one sees that this equation is equivalent to the Yang-Mills equation

d†AF = 0 . (4.40)
16See B for the precise definitions of dA and F̂ .
17Note that this reality of the bosonic action would not be true in the N = (2, 2) version of this theory,

where ϕ is a complex scalar.
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Treating the fermions as perturbations, the equations of motion for A are equivalent to

∆AdAϕ = 0 , (4.41)

which implies that dAϕ is harmonic and therefore d†AdAϕ vanishes leading to

dAϕ = 0 . (4.42)

Solutions to this equation parameterize the Lie algebra of the isotropy group of A, i.e.
continuous families of gauge transformations left unbroken by A. This is a finite dimensional
Lie algebra. The connection A is called irreducible if (4.42) has no non-trivial solutions.

In order to perform the path integral, we will also need a BRST gauge fixing multiplet
with the standard fields c, c̄ and B, and a BRST transformation δBRST acting as

δBRSTc = cc , δBRSTc̄ = iB , δBRSTB = 0 . (4.43)

The action of δBRST on the rest of the fields is equivalent to a gauge transformation with
parameter c, for instance18

δBRSTa = −dAc . (4.44)

Localization in the presence of BRST symmetry requires consideration of the combined
complex with a transformation δ + δBRST, however the localizing term we used is δBRST
invariant.

We can impose background gauge by taking

Sg.f. = (δ + δBRST)
∫
Σ
dvolΣ tr

(
c̄ d†Aa

)
=
∫
Σ
dvolΣ tr

(
iB d†Aa+ c̄∆Ac− ic̄ d†Aψ

)
. (4.45)

In these expressions, A denotes a fixed background connection satisfying the Yang-Mills
equation, while a denotes the fluctuations in the connection orthogonal to A under the
standard inner product. Both a and ψ are thus adjoint-valued one-forms.

In order to simplify matters, we begin the calculation of the partition function by
integrating out the BRST auxiliary field B. This imposes background gauge on a. We
implicitly use this condition to simplify various expressions involving a in what follows.
Integration over B yields a functional delta function setting all modes of a which do not
satisfy background gauge to zero, and in addition gives the following functional determinant:

NBRST = (det d†A)
−1 . (4.46)

The bosonic moduli space. At this point, we specialize to G = SU(2). We will comment
later regarding the challenges involved for higher rank groups. We will use a basis for
su(2) consisting of

τi = iσi , (4.47)
18The covariant derivative acting on the ghost should really be with respect to the total connection A + a,

but in the absence of ghost zero modes the operator dA is what remains after localization.
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where σi are the Pauli matrices. Note that

tr(τiτj) = −2δij . (4.48)

As mentioned in section 3, the solutions to the equation of motion (4.40) are Yang-Mills
connections which can carry magnetic flux [29]. The flux is parameterized by an element
of the magnetic weight lattice of G, denoted Γ, which for G = SU(2) is a single integer
m, such that ⋆F = 2πm τ3.

For m = 0, the solutions modulo gauge transformations form the moduli space of flat
SU(2) connections on Σ, whose irreducible part for g ≥ 2 has dimension 6g − 6. For m ̸= 0,
the moduli space consists of reducible connections, and is equivalent to a 2g dimensional space
of flat U(1) connections that we denote by Mm. For g = 1, only the reducible part appears
regardless of m, while for g = 0, the flux number m completely characterizes the solutions.

We henceforth restrict to m ̸= 0, and therefore to reducible connections. Solutions to
the equation of motion for ϕ parameterize infinitesimal unbroken gauge transformations. On
the reducible part of the moduli space the isotropy group is U(1). A solution is simply a
constant profile for the scalar, which we parameterize as ϕ = 2π2ϕ0 τ3, and which is moreover
in the same Cartan subalgebra as the magnetic flux or the holonomies of A.

Thinking of the m, ϕ0, and the abelian connections as living in a Cartan subalgebra,
specifically the Lie algebra of the maximal torus for the unbroken U(1), the space of reducible
solutions must also be divided by the Weyl group, which acts on the flat connections and on
ϕ0 as a reflection in the Lie algebra of U(1), as well as taking m to −m.

We are interested in evaluating the effective action for ϕ0 in a sector where m ̸= 0, and
deriving from it the perturbation series in ϵ. The analogous calculation for higher rank
groups is the effective action in a sector where m ∈ Γ lies in the interior of a Weyl chamber,
rather than on a boundary. Such an m can also be characterized as not being fixed by any
element of the Weyl group. The manipulations below, including the characterization of the
various zero modes that arise in the process of localization, is valid for such an m. For m ∈ Γ
not satisfying this criterion, we must deal with the various branches of the moduli space
described above. We will not attempt this here.

Bosonic fluctuations. We now expand the bosonic part of (4.38) around the Yang-Mills
connection A and the covariantly constant scalar ϕ0. The fields ϕ and a are fluctuations
around this background, orthogonal to the bosonic moduli space in the standard inner product.
The localizing action in background gauge, expanded to quadratic order, and with the usual
re-scaling of the fields to eliminate the dependence on t, reads

Sloc. =
1

32π4
∫
Σ
tr(iϕ0 ∧K(a) + iϕ ∧ dA∆Aa) +O(t−1/2) , (4.49)

where K(a) is an expression quadratic in a.
We now take advantage of the linear dependence of this action on the fluctuation ϕ, which

will not appear elsewhere, to integrate out ϕ. This introduces a functional delta function

δ(dA∆Aa) . (4.50)
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Integration of a using the delta function is, as usual, accompanied by a functional determinant

Nbos. = det ′
( 1
32π4 dA∆A

)−1
, (4.51)

where det′ denotes a determinant over all modes outside the kernel of (4.50). Note that the
factor Nbos. is independent of ϕ0, but depends explicitly on the background connection A.

Integration over the fluctuations a is thus trivial for all modes not in the kernel of the
operator dA∆A, equivalently the kernel of ∆A. The kernel itself consists of adjoint-valued
one-forms satisfying

dAa = d†Aa = 0 . (4.52)

Solutions to these equations can be organized according to their F̂ eigenvalue (see appendix B
for details). We denote this eigenvalue ±iλ following [29], and noting that in our conventions

λ = ±2πm . (4.53)

Vanishing λ implies a direction tangent to the moduli space. For a fixed non-zero λ, (B.15)
gives the dimension of the kernel as

dimKeradλ(P )⊗Ω1(∆A) = dimH1
d′′A

(Σ, adλ(P )) + dimH1
d′′A

(Σ, ad−λ(P )) . (4.54)

When evaluated on the kernel, the expression K(a) collapses to a ∧ F̂ a. Taking both values
of λ into account, we get a count of the number of real bosonic modes in the kernel of (4.50)

Nb ≡ 2 dimH1
d′′A

(Σ, adλ(P )) + 2 dimH1
d′′A

(Σ, ad−λ(P )) . (4.55)

The modes collectively denoted by a will not show up in the fermionic part of the action,
and we perform the integration over them here. Let {ai}Nb

i=1 be an orthonormal basis for
the modes in the kernel of (4.50), xi auxiliary bosonic variables, and xiai the orthogonal
projection of the field a to this sector. The integration over all fluctuations a gives the
one-loop determinant

Zbos.
1-loop =

∫
Da δ(dA∆Aa) exp

( 1
32π4

∫
Σ
tr
(
2π2iϕ0τ3

(
a ∧ F̂ a

)))

= Nbos.

∫ Nb∏
i=1

(
dxi e−2πimϕ0x2

i

)
. (4.56)

The Nb integrals can be turned into a single radial integral, and further simplified by changing
the integration variable to be the square root of the radial coordinate. Moreover, the resulting
Jacobian can be expressed in terms of derivatives in ϕ0. Namely,∫ Nb∏

i=1

(
dxi e−2πimϕ0x2

i

)
= ΩNb−1

2

(
− 1
2πim

d
dϕ0

)Nb/2−1 ∫ ∞

0
dr e−2πimϕ0r , (4.57)

where

ΩNb−1 =
2πNb/2

Γ(Nb/2)
(4.58)
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is the volume of the unit (Nb − 1)-sphere. The last integral is of the same kind encountered
in the finite-dimensional toy model of section 4.2 (cf. Footnote 15). The result reads

Zbos.
1-loop = − Nbos.

(−2im)Nb/2 Γ(Nb/2)
dNb/2−1

dϕ0Nb/2−1

(
pv 1

ϕ0
+ iπ sign(m) δ(ϕ0)

)
. (4.59)

Fermionic fluctuations. We now examine the fermionic part of the action∫
Σ
tr
( 1
32π4 ψ ∧

(1
2∆A + F̂

)
ψ + c̄∆Ac− ic̄ d†Aψ

)
. (4.60)

Suppose that we substitute for A a solution of the Yang-Mills equations. The operator ∆A

acting on scalars is positive semi-definite. The only modes of c or c̄ in the kernel of ∆A

are those with Λ eigenvalue 0. These are covariantly constant scalars in the same Cartan
subalgebra as ⋆F . It is possible to further gauge fix to get rid of such modes, but this
turns out to be equivalent to simply discarding them from the action a priori, which is
the approach we follow.19

Zero modes of ψ lie in the kernel of the operator 1
2∆A + F̂ . These come in two varieties:

1. Modes which are simultaneously in the kernel of both F̂ and ∆A. These are in one to
one correspondence with ordinary harmonic one-forms, and comprise a vector space
of dimension 2g. They are physical zero modes, representing tangent vectors to the
moduli space of flat connections [29]. We will denote them {ψi0}

2g
i=1.20

2. Modes for which F̂ψ is equal to −|λ|ψ and ∆Aψ takes its minimal value of 2|λ|. These
are spurious zero modes which must be dealt with before continuing with the calculation.
According to (B.19) all such modes are of the form dy for some scalar y. Moreover, for
the {λ,−λ} pair we have the following number of real fermionic zero modes of this type

Nf ≡ 2 dimH0
d′′A

(Σ, adλ(P )) + 2 dimH0
d′′A

(Σ, ad−λ(P )) .

Note that modes of type 2 are not by themselves zero modes of the full fermionic action.
Because of the mixing term between ψ and c̄, the actual zero modes consist of the modes

ψ = dAy , c = iy . (4.61)

The quadratic form for the fermions being antisymmetric, the zero modes are orthogonal
to all non-zero modes and can be considered separately. The non-zero modes, meanwhile,
contribute a factor of

Nferm. = det ′
( 1
32π4

(1
2∆A + F̂

))
det ′(∆A) . (4.62)

As with the factor Nbos., this factor is independent of ϕ0 but depends explicitly on A.
19We have implicitly done the same with the equivalent mode of the field B, which decouples from the gauge

fixing term (4.45). Hence, there are no zero modes in the ghost sector.
20Such modes should be completely absent from the non-classical part of the effective action (cf. [35]),

although we could not confirm this. We will only show that the partition function can be recovered without
taking such terms into account.
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In order to lift the type 2 zero modes, we must introduce an additional exact term. Let
{yi}Nf

i=1 be an orthonormal basis for the bosonic version of the type 2 zero modes. Let vi
be anti-commuting parameters such that viyi is the orthogonal projection of the ghost field
c to the zero mode sector. We choose to add

(δ + δBRST)
1

16π3
∫
Σ
tr
(
−iF

[
ϕ0, viy

i]) = 1
16π3

∫
Σ
tr
(
dAψ

[
ϕ0, viy

i])
= − i

16π3
∫
Σ
tr
(
dAdA

(
vjy

j)[ϕ0, viyi])
= i

16π3 vjvi
∫
Σ
tr
([
F0, y

j][ϕ0, yi]) , (4.63)

where in the second line we have already taken the quadratic approximation and expanded ψ

in the appropriate modes. Evaluating the resulting Pfaffian in the variable v gives a factor of

(2imϕ0)Nf/2 . (4.64)

The effective action. The classical part of the effective action for the moduli is obtained
by evaluating (4.35) on the zero modes ϕ0, ψi0. Because (4.35) depends only on F and not on
A, it does not depend on the flat connections, and reduces to a single expression on every
connected component of the moduli space of Yang-Mills connections. This gives

− logZcl.
effective = ϵϕ20 + 2πimϕ0 +

1
2ψ

i
0 ∧ ψ0i . (4.65)

The quantum part of the effective action for the mode ϕ0 is the distribution defined by
the product of (4.56) and (4.64). Using the expressions for Nb and Nf , the Riemann-Roch
theorem, and fact that

c1(ad−λ) = −c1(adλ) , (4.66)

and

dimC adλ = 1 , (4.67)

we see that
1
2 (Nb −Nf ) = 2g − 2 . (4.68)

Moreover, the factors of ϕ0 multiplying the distribution give a different distribution with
the same singular support.

The complete expression for the partition function then reads

Z = 1
2
∑
m∈Z

∫
dϕ0

∫
Mm

∫ ∏
i

dψi0 Zeffective , (4.69)

where the full effective action is given by

Zeffective = Z
cl.
effective Z

(1)
effective Z

(2)
effective Z

(3)
effective . (4.70)
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Taking into account both the measure for ϕ0 and the division by the center of SU(2), the
final result for the quantum part of the effective action has been written as a product of
the three expressions

Z
(1)
effective = − 1

(2g − 3)!
d2g−3

dϕ02g−3

(
pv 1

ϕ0
+ iπ sign(m) δ(ϕ0)

)
, (4.71)

Z
(2)
effective = (−4m2)1−g , (4.72)

Z
(3)
effective = π2NBRST Nbos. Nferm. . (4.73)

The first expression, the only one which depends on ϕ0, is indeed the one-loop determi-
nant (3.30) predicted by the Poisson summation procedure. We have separated the constants
so that the result matches without prefactors. This is our primary result from this section.

The second expression amounts to an allowed renormalization of the type described
in (2.12) albeit depending on the flux number m. The third expression is independent of
ϕ0, but depends explicitly on the point in the Yang-Mills moduli space Mm given by the
background connection A. In analogy with the discussion of the analytic torsion in the case
of flat connections [2], we expect the integral of this expression over the moduli space to be
a topological invariant, possibly depending on m, and for the product

Z
(2)
effective

∫
Mm

Z
(3)
effective , (4.74)

together with a numerical factor coming from the fermionic zero modes to be an m independent
renormalization. It should be possible to show this by manipulation of the determinants
with an appropriate regularization scheme, but we have not done so.

To summarize, localization using the purely imaginary localizing term (4.38) immediately
yields the correct bosonic moduli space, while the fermion zero modes require a more detailed
analysis. The non-classical part of the effective action for the modulus ϕ0 comes from
integrating out a collection of distinguished bosonic and fermionic fluctuations, the harmonic
modes x and the type-2 fermionic zero modes y. A priori, counting these modes requires a
detailed mode by mode analysis, but the combination appearing in the final expression can
be recovered from an index theorem, in this case the Riemann-Roch theorem. This is also
the situation one often encounters when using a positive semi-definite localizing term.

A number of issue remain to be resolved in this calculation. The computation of the ϕ0
independent part of the quantum effective action is incomplete. Moreover, the lifting of the
fermion zero modes necessitated the addition of a term with a seemingly independent coefficient
which alters the final result by numerical factors. We hope to return to these matters.

5 Discussion

We have demonstrated that the full perturbative expansion of the partition function of
Yang-Mills theory on a genus g surface around unstable instantons can be reliably computed
in two different ways, at least for gauge group SU(2). We first showed that the expansion can
be computed starting with the lattice gauge theory result for the partition function and using
a generalized form of Poisson summation. We then demonstrated that the same expansion
results from a somewhat non-standard supersymmetric localization calculation.
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A surprising feature of the latter calculation was the emergence of an effective action for a
scalar mode which takes the form of a distribution, rather than a function. The distributions
we recover are specific regularizations of the singular functions which one obtains in the
other localization approaches reviewed below. Consequently, we expect that the results of
any calculation which can be reliably carried out in either approach will agree. It would be
interesting to investigate how such a distribution could come about from a determinant over
the fluctuations for a positive semi-definite localizing term, or the associated index theorem.
Preliminary steps in this direction were taken in [37].

Standard supersymmetric localization computations for A-twisted N = (2, 2) gauge
theories on S2 have previously been performed in [38, 39], and generalized to higher genus
surfaces in [35]. Results for 2dYM can be straightforwardly read off from these references. The
effective action for the scalar modulus, which is complex in these settings, is a meromorphic
function, rather than a distribution. In fact, meromorphic functions are generically produced
by localization in this class of models, even in the presence of matter superfields [35]. Such
singular effective actions would naively imply ambiguous results for protected observables.
However, detailed examination has shown that they can be dealt with in some cases.

A detailed examination of the breakdown of localization, or rather deformation invariance,
in this context, specifically at genus one, was initiated in [40, 41]. The authors showed that,
at least in a wide class of models satisfying some conditions on the gauge charges of chiral
multiplets, the integration over the supersymmetric moduli should be carried out over
a contour in the complex plane associated with the JK residue prescription [42]. This
prescription, which was introduced following Witten’s work on non-abelian localization, yields
non-ambiguous results for protected observables. The prescription has passed numerous
checks. The results were generalized to higher genus in [35].

We do not believe that 2dYM falls within the class of models to which the JK residue
prescription applies, but we cannot state with certainty that the results of [35] cannot be
generalized to this case. However, the analogous analysis of Chern-Simons theory, carried
out in [38], emphasizes the need to perform the sum over instanton sectors before applying
the JK residue prescription. We believe that this implies that one would not be able to
use the machinery of the JK residue to compute the perturbation series, rather only the
final result, for 2dYM.

The expression (4.71) is similar to the effective action for ϕ0 provided by the derivation
using torus gauge in [4], or from the twisted N = (2, 2) perspective examined in [35, 38].
Both of these approaches yield an effective action of the form

ϕ2−2g
0 , (5.1)

although in [35, 38] the status of this expression is different because the contour of integration
for ϕ0 is not the same. As explained in the toy example, (4.71) can be thought of as a
specific regularization of (5.1).

There are a number of unsatisfactory aspects of the JK residue prescription which one
may hope to address with an alternative localization procedure such as the one used here.
For one, to the best of our knowledge, the JK residue prescription can only be used for
gauge theories with charged matter satisfying certain criteria and yielding specific types of
singularities for the effective action. We do not believe that any such restriction applies to
our procedure. It is often useful to be able to gauge global symmetries at the level of the
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exact partition function, without specifying the dynamical fields. Such a process is possible
in most localization computations by weakly gauging the symmetry, whereby the partition
function depends on additional parameters. However, the JK residue prescription requires
full knowledge of the charges of dynamical chiral multiplets, and therefore presumably does
not allow one to gauge global symmetries without reverting to the original description of
the theory. It seems plausible that this difficulty can be addressed in our procedure, since
multiplication of distributions with compatible wave front sets is a well-defined process.

A JK residue type prescription is needed in order to evaluate analogous partition
functions in higher dimensions, e.g. for twisted N = 2 theories on toric Kähler manifolds
in four dimensions [43] and the related N = 1 indices in five dimensions [44]. Because of
the need for a mode by mode analysis, justifying the use of a specific prescription becomes
increasingly difficult in these contexts. The derivation of a distributional effective action
may be simpler in these situations.

In upcoming work, we incorporate non-simply-connected groups and discrete theta angles,
and also apply our techniques to the expectation values of observables like the Wilson loop.
We expect to be able to generalize our results to higher rank groups.
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A Fourier transforms

In this appendix we compute the Fourier transform of the distribution f(x) defined in (3.8). In
order to do so, we consider the Fourier transforms of the two factors in (3.8), which are given by

F (x) F̂ (p)

− 1
(2g − 3)!

d2g−3

dx2g−3

(
pv 1

x

) (−π2)g−1

(2g − 3)! (2|p|)
2g−3 for g ∈ Z, g ≥ 2,

e−ϵx
2

√
π

a
e−π

2p2/ϵ for ϵ > 0.

We can reconstruct the Fourier transform of (3.8) as the convolution of the two transforms
in the table above, namely

f̂(p) = (−4π2)g−1

(2g − 3)!

√
π

2
√
ϵ

∫ ∞

−∞
dq |q|2g−3 e−π

2(p−q)2/ϵ

= (−4ϵ)g−1

(2g − 3)!

√
π

2
√
ϵ

∫ ∞

0
dq q2g−3

(
e−(q+πp/

√
ϵ)2 + e−(q−πp/

√
ϵ)2)

, (A.1)
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where in the last line we have split the integration range and changed integration variable with
q 7→ ±πq/

√
ϵ. The integral can be readily evaluated and expressed in terms of a Kummer

confluent hypergeometric function with

f̂(p) = (−1)g−1π

Γ(g − 1/2) ϵ
g−3/2

1F1(3/2− g; 1/2;−π2p2/ϵ) . (A.2)

However, for our purposes, it is useful to recast it as

f̂(p) = (−4ϵ)g−1

(2g − 3)!

√
π

2
√
ϵ

(
G(πp/

√
ϵ) +G(−πp/

√
ϵ)
)
, (A.3)

where we have introduced

G(x) =
∫ ∞

0
dq q2g−3e−(q−x)2

= e−x
2

22g−3
∂2g−3

∂x2g−3

∫ ∞

0
dq e−q2+2xq

=
√
π e−x

2

22g−2
∂2g−3

∂x2g−3

[
ex

2(1 + erf(x))
]
. (A.4)

The above can be evaluated in terms of Hermite polynomials by using

∂k

∂xk
e−x

2 = (−1)k e−x2
Hk(x) . (A.5)

We can now rewrite (A.2) as

f̂(p) = e−π
2p2/ϵ P (p) + erf(πp/

√
ϵ) Q′(p) , (A.6)

where P and Q are even polynomials defined with

P (p) = (−1)g−1 (2π)2g−3
√
ϵ

π
p2g−4

g−2∑
k=0

(
− ϵ

2π2p2
)k k∑

m=0

(−1)m (2k − 2m− 1)!!
2mm! (2g − 2m− 3)! , (A.7)

Q(p) = (−1)g−1√π ϵg−1

2Γ(g − 1/2) L
− 1

2
g−1

(
−π

2p2

ϵ

)
. (A.8)

The first definition can be obtained from

P (p) = (−1)g−1 2
√
π ϵg−

3
2

2g−4∑
k=0

ik

k! (2g − 3− k)! Hk

( iπp√
ϵ

)
H2g−4−k

(
πp√
ϵ

)
, (A.9)

while the second implies21

Q′(p) = (−1)g−1π
5
2 ϵg−2

Γ(g − 1/2) pL
1
2
g−2

(
−π

2p2

ϵ

)

= iπ ϵg−
3
2

(2g − 3)! H2g−3

( iπp√
ϵ

)
. (A.10)

21The second equality follows from the well-known relation between generalized Laguerre and Hermite
polynomials

H2n+1(x) = (−1)n 22n+1 n! x L
1
2
n (x2) .
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B Yang-Mills connections

We will need several results about the moduli space of Yang-Mills connections on Riemann
surfaces which can be found in [29], or can be straightforwardly derived from the results
therein. We refer the reader to the original work of Atiyah and Bott [29] for a detailed analysis.

Let Σ be a smooth two manifold with a Riemannian metric, and let ⋆ be the Hodge star
operator. The exterior derivative is denoted by d, and we denote by d† ≡ − ⋆ d ⋆ its adjoint
with respect to the usual inner product for differential forms, namely,

(η, ω) ≡
∫
Σ
η ∧ ⋆ω . (B.1)

Let η be a differential form of degree [η], then

⋆2η = (−1)[η] . (B.2)

Specifically, ⋆2 = −1 when acting on one-forms. The Hodge star therefore splits the space
of complexified one-forms Ω1

C into the forms with ⋆-eigenvalue ±i, denoted Ω1,0 and Ω0,1,
and splits the exterior derivative d into d′ and d′′ according to the image. This induces
a holomorphic structure on Σ.

Let A be a connection on a principle G-bundle P over a Riemann surface Σ, and let
F be its curvature. A satisfies the Yang-Mills equations if

d†AF = 0 , (B.3)

where dA is the covariant exterior derivative, and d†A its adjoint. The background gauge
condition is defined to be d†AA = 0. The following facts apply to such an A [29].

The adjoint scalar ⋆F is covariantly constant. The eigenvalues of the operator

Λ ≡ i[⋆F, ·] (B.4)

acting on the space of adjoint-valued forms are locally constant, and such forms can be
decomposed accordingly. The maps given by the operator dA, and by its Hodge dual d†A,
commute with Λ and respect this decomposition. We define also the operator

F̂ ≡ −i ⋆ Λ , (B.5)

acting on adjoint-valued one-forms.
The covariant Laplacian is given by

∆A ≡ dAd
†
A + d†AdA . (B.6)

∆A is a positive semi-definite operator. The tangent space to the moduli space of solutions at
A consists of adjoint-valued one-forms annihilated by both F̂ and ∆A. The Hessian for the
Yang-Mills term, around a solution of the Yang-Mills equations and in background gauge, is
equivalent to ∆A+ F̂ and vanishes only when acting on directions tangent to the moduli space.

The holomorphic structure defined on the tangent bundle of Σ extends to the associated
adjoint bundle ad(P ). This allows complexified adjoint-valued one-forms to be decomposed
into Ω1,0(Σ, adC(P )) and Ω0,1(Σ, adC(P )) on which ⋆ acts as −i and i respectively, with a
corresponding decomposition of the covariant exterior derivative into d′A and d′′A.
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The holomorphic structure and the operators d′′A and d′A are compatible with the
decomposition according to eigenvalues of Λ. We denote by adλ(P ) the vector bundle with
Λ eigenvalue λ and define the Laplacians

□′′
A ≡ d′′A(d′′A)† + (d′′A)†d′′A , (B.7)

□′
A ≡ d′A(d′A)† + (d′A)†d′A . (B.8)

□′′
A and □′

A define the same operator on Ω1,0(Σ, adλ(P )) and Ω0,1(Σ, adλ(P )), and when
acting there,

∆A = 2□′′
A = 2□′

A . (B.9)

When acting on Ω0,0(Σ, adλ(P )), we instead have

□′
A +□′′

A = ∆A , (B.10)
□′
A −□′′

A = λ . (B.11)

We have the following isomorphisms, following from Hodge theory and Serre duality,

keradλ(P )⊗Ω1(∆A) ≃ H1
d′′A

(Σ, adλ(P ))⊕H1
d′′A

(Σ, ad−λ(P )) , (B.12)

keradλ(P )(d′′A) ≃ H0
d′′A

(Σ, adλ(P )) , (B.13)

keradλ(P )(d′A) ≃ keradλ(P )⊗Ω2((d′′A)†) ≃ H0
d′′A

(Σ, ad−λ(P )) . (B.14)

Specifically,

dim keradλ(P )⊗Ω1(∆A) = dimH1
d′′A

(Σ, adλ(P )) + dimH1
d′′A

(Σ, ad−λ(P )) . (B.15)

For adjoint-valued one-forms with Λ eigenvalue λ, the smallest non-zero eigenvalue of ∆A

is greater than or equal to 2|λ|. We will need the following result, which we derive from [29]:

Proposition. Let v ∈ Ω1,0(Σ, adC(P )) be such that ∆Av = 2|λ|v. Then v = d′Ax for some
x ∈ Ω0,0(Σ, adC(P )) satisfying d′′Ax = 0. Likewise, let v ∈ Ω0,1(Σ, adC(P )) be such that
∆Av = 2|λ|v. Then v = d′′Ax for some x ∈ Ω0,0(Σ, adC(P )) satisfying d′Ax = 0.

Proof. Let v ∈ Ω1(Σ, adλ(P )) be such that ∆Av = 2|λ|v. Assume v ∈ Ω0,1(Σ, adC(P )) and
λ < 0 so that F̂ v = −|λ|v. From the Hodge decomposition with respect to d′′A we have
v = d′′Ax since v is not harmonic. We always have

□′
Ax−□′′

Ax = λx . (B.16)

Now we compute

−2λd′′Ax = 2{d′′A, (d′′A)†}d′′Ax
= 2d′′A□′′

Ax .

Hence, by acting on the left with (d′′A)† we have

□′′
Ax = −λx , (B.17)
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leading to □′
Ax = 0, which implies

d′Ax = 0 . (B.18)

The case with v ∈ Ω1,0(Σ, adC(P )) and λ > 0 is proved using the decomposition with respect
to d′A.

Combined with the isomorphisms above, this gives

dim({v ∈ Ω1(Σ, adλ(P )) |∆Av = 2|λ|v}) = dimH0
d′′A

(Σ, adλ(P )) + dimH0
d′′A

(Σ, ad−λ(P )) .
(B.19)

Finally, the Riemann-Roch theorem for d′′A states

dimH0
d′′A

(Σ, adλ(P ))− dimH1
d′′A

(Σ, adλ(P )) = (c1(adλ) + (1− g) dimC adλ) . (B.20)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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