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Abstract A fluid–structure interaction system subject to
Sommerfeld’s condition is defined as a Sommerfeld sys-
tem which is divided into three categories: Fluid Sommer-
feld (FS) System, Solid Sommerfeld (SS) System and Fluid
Solid Sommerfeld (FSS) System of which Sommerfeld con-
ditions are imposed on a fluid boundary only, a solid bound-
ary only and both fluid and solid boundaries, respectively.
This paper follows the previous initial results claimed by sim-
ple examples to further mathematically investigate the nat-
ural vibrations of generalized Sommerfeld systems. A new
parameter representing the speed of radiation wave for gen-
eralized 3-D problems with more complicated boundary con-
ditions is introduced into the Sommerfeld condition which
allows investigation of the natural vibrations of a Sommer-
feld system involving both free surface and compressible
waves. The mathematical demonstrations and selected exam-
ples confirm and reveal the natural behaviour of generalized
Sommerfeld systems defined above. These generalized con-
clusions can be used in theoretical or engineering analysis of
the vibrations of various Sommerfeld systems in engineering.

Keywords Sommerfeld system · Complex natural
frequencies · Fluid–structure interaction · Complex energy
flow identity · Speed of radiation wave

1 Introduction

Sommerfeld’s original proof [1] of the uniqueness theorem
of the radiation solution ϕ = φe−iωt of the wave equation
defined in a full infinite 3-dimensional space assumed an
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additional condition

lim
r→∞ r

(
∂φ

∂r
− iκφ

)
= 0, κ = ω/c. (1)

Here, the quantity r stands for the distance from any fixed
point in the space r = 0, i = √−1, κ represents the ratio of
the circular frequency ω of the stimulation and c the speed of
wave in a full infinite three space. This condition is called the
general condition of radiation [2]. The fact that this condition
is superfluous has been rigorously proven by Rellich [3] even
for the case of an arbitrary number of dimensions h where
the radiation condition reads

lim
r→∞ r

h−1
2

(
∂φ

∂r
− iκφ

)
= 0. (2)

Courant and Hilbert [4] further discussed and demonstrated
the characterisation of outward energy radiation of wave radi-
ation problems satisfying the Sommerfeld condition in the
form given by Magnus and Oberhettinger [5]

lim
r→∞

∫ ∫
r=|x−x ′|

∣∣∣∣
(

∂φ

∂r
− iκφ

)∣∣∣∣
2

dSr = 0, (3)

where dSr denotes the surface element of a large sphere Sr

of radius r about a fixed point x ′. As mentioned by Courant
and Hilbert [4], this integration form is less demanding than
Eq. (2), yet it suffices for the characterisation of outward
radiation.

For a problem not defined in a full infinite space, finite
boundary conditions are involved, such as the example inves-
tigated in Sect. 7.4. The speed of the radiation wave may
be different from the speed of the pressure wave or surface
wave. Therefore, we choose notations k and ξ , depending on
the problem, to represent the integrated speed of wave in the
radiation condition. The variable ξ is a positive real number
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to satisfy the case of ξ = c for a full infinite domain problem
discussed by Sommerfeld. The radiation condition is written
in a general form as

lim
r→∞ r

h−1
2

(
∂φ

∂r
− ikφ

)
= 0,

k = ω

ξ
,

ϕ = φe−iωt .

(4)

Considering natural vibrations ϕ = φe−iωt , Eq. (4) is written
in an equivalent form.

lim
r→∞ r

h−1
2

(
∂ϕ

∂r
+ 1

ξ

∂ϕ

∂t

)
= 0. (5)

Sommerfeld’s condition physically represents the case that
waves produced and radiated from the sources must scatter
to infinity with the velocity c or ξ in r direction and no waves
may be radiated from infinity into the prescribed singularities
of the field. Similarly, for a wave coming from infinity, the
absorption condition defined by Sommerfeld [2] has a form
for an arbitrary number of dimensions h

lim
r→∞ r

h−1
2

(
∂φ

∂r
+ ikφ

)
= 0. (6)

Sommerfeld’s condition has been widely adopted to inves-
tigate incompressible water-wave radiation problems, for
example see, Newman [6], Bishop and Price [7], Eatock
Taylor [8].

In the acoustic field, Gaunaurd and Brill [9] presented
a study of the resonance scattering problem of an infinite-
long axisymmetric elastic cylinder excited by an incident
plane wave. The far-field water pressure was expressed by
the Hankel function to manage a wave condition at an infi-
nite boundary. The characteristic matrix of the system was
presented. In a comprehensive critical review paper by Tang
and Fan [10] the mechanisms of sound scattering and radia-
tion of submerged elastic structure–acoustic interaction sys-
tem excited by incident wave was further discussed. In the
conclusion, it is clearly mentioned that the roots of the char-
acteristic equation of the studied structure–acoustic coupling
system are complex. Moreover, Filippi [11] used a Fourier
transformation method to derive the dynamic response of a
one-dimensional vibro-acoustic system excited by an exter-
nal force and subject to the imposed Sommerfeld’s radiation
condition at infinity. However, the main objective in the above
publications mentioned was to study the dynamic responses
of the system excited by external excitations or vibration
sources but it was not intended to explore the natural behav-
iours of the system in which there are no external excitations

applied, although the characteristic equation of the individual
studied system was involved [9–11].

As is well known (see, for example [4,12]), the natural
vibration of a dynamic system is defined by an eigenvalue
problem of the corresponding idealised system with no mate-
rial damping assumed and no external forces. From the
defined eigenvalue problem, the real natural frequencies and
modes of the system are derived or calculated by using finite
element methods [13,14]. For example Morand and Ohayon
[15] presented some detailed methods for numerical mod-
elling of linear natural vibration analysis of elastic structures
coupled to internal fluids. Xing and Price [16] as well as
Xing et al. [17] proposed a mixed finite element substructure-
subdomain method to simulate natural vibrations and
dynamic responses of various linear fluid–structure interac-
tion problems.

A fluid–structure interaction system subject to a Sommer-
feld’s condition is defined as a Sommerfeld system in this
paper. Following the definition of natural vibration of a sys-
tem, we may ask a question: what are the natural dynamic
characteristics of a Sommerfeld system? Here it is needed to
clarify again that in this natural vibration system studied in
this paper, there are no excitations, such as incident waves,
vibration sources etc. applied. The main aims of this research
are to reveal the natural characteristics of the system. These
characteristics are independent of any external excitations of
the system.

To address this problem, Xing et al. [18] investigated the
natural vibrations of beam–water interaction systems. In this
paper, the natural vibration of the beam-water interaction
system under an undisturbed condition at the infinite bound-
ary of the water was well solved but it was unsuccessful in
solving the case of the system with a Sommerfeld condition,
although it was mentioned that “there exists no real solution
for the eigenvalue equation under the Sommerfeld condi-
tion”. To confirm this by an example, Xing (communica-
tion note L/28/02, ship science, University of Southampton,
2002) solved the natural vibration of a linear 1-D fluid–
structure interaction system (Fig. 2) consisting of a mass-
spring system coupled to an infinite fluid domain subject to
a Sommerfeld radiation condition at an infinite boundary. It
was found that the natural vibration of this simple system is
governed by a complex eigenvalue problem and its complex
frequency was obtained. This note was cited by Zhao [19]
who followed the idea and used the method by Xing et al. [18]
to calculate the natural frequencies of a beam-water interac-
tion system subject to a Sommerfeld condition at an infinite
fluid boundary. For the case with no free surface wave, the
complex frequency of the system was obtained [19]. Unfortu-
nately, it failed to find any solution of the natural vibration of
the system with a free surface wave considered. Later, Xing
[20] extended the one mass-spring system to a two masses-
spring system shown in Fig. 3, which increased the degree
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Natural vibrations of Sommerfeld systems 71

of freedom of the solid from one to two, to solve its nat-
ural vibration. The two conjugate complex eigenvalues were
obtained.

All of these mentioned results, including the discussion in
Refs. [9,10], are obtained only by individual simple exam-
ples. Therefore, the solution of the natural vibrations of a
generalized Sommerfeld system has not been reported. More-
over, it is not known the fail reason [19] for the case of
the beam–water Sommerfeld system including a free sur-
face wave condition on the water surface. This paper aims
to investigate this fundamental problem from a generalized
mathematical model covering the various Sommerfeld sys-
tems in engineering. Based on this generalized investigation,
the previously obtained individual conclusions are further
confirmed and extended to the generalized cases. Further-
more, a new parameter representing the speed of radiation
wave in complex boundary conditions is introduced to answer
the fail reason by Zhao [19].

2 Definitions

A fluid–structure interaction system is defined as a Sommer-
feld fluid–structure interaction system if its boundary con-
ditions include at least a Sommerfeld radiation condition in
Sect. 1 or 3. A Sommerfeld fluid–structure interaction sys-
tem may have a Sommerfeld radiation condition on its solid
boundary, or fluid boundary or both fluid and solid bound-
aries. Depending on the location of the Sommerfeld radi-
ation condition only on the fluid boundary, or only on the
solid boundary or on both of the fluid and solid boundaries
of the system, we call a Sommerfeld fluid–structure interac-
tion system as a fluid-Sommerfeld system (FS System), or
a solid-Sommerfeld system (SS System), or a fluid–solid-
Sommerfeld system (FSS System), respectively.

3 Governing equations

An FS System is shown in Fig. 1. The solid is a flexible
structure of mass density ρs in a domain Ωs of boundary
S = Su ∪ ST ∪ Sw ∪ 	 with a unit normal vector νi pointing
outside. The fluid of mass density ρ f in a domain Ω f of
boundary � = � f ∪�b ∪	 ∪�∞ with a unit outside normal
vector ηi is assumed compressible, inviscous and its motion
irrotational. A fixed coordinate system o-x1x2x3 is chosen to
investigate small motions of the system, so that the coordinate
system is considered as an Eulerian system for the fluid and
also a material system for the solid. The Cartesian tensors
[21] with subscripts i , j , k and l, etc. (= 1, 2, 3) obeying
the summation convention are used. For example Ui , Vi , ei j

and σi j represent displacement and velocity vectors, strain
and stress tensors of the elastic solid, respectively; p, vi and

Fig. 1 A fluid-Sommerfeld fluid–structure interaction system (FS Sys-
tem)

ϕ, respectively, denote the dynamic pressure, velocity and
the velocity potential of the fluid. Notations (),t = ∂()/∂t,
Ui, j = ∂Ui/∂x j , Vi = Ui,t = ∂Ui/∂t , Kronecker delta δi j

and permutation tensor ei jk are adopted. The elastic tensor
of the solid material and the speed of sound in the fluid are
represented by Ei jkl and c, respectively. According to the
linear theory, the governing equations describing the natural
vibration of this system are as follows.

3.1 Solid structure

Dynamic equation

σi j, j = ρs Vi,t , (xi , t) ∈ Ωs × (t1, t2). (7)

Geometric relationships

ei j = (Ui, j + U j,i )/2, (8)

Vi = Ui,t , (xi , t) ∈ Ωs × (t1, t2). (9)

Constitutive equation

σi j = Ei jklekl , (xi , t) ∈ Ωs × (t1, t2). (10)

For isotropic materials, the tensor Ei jkl has the following
form [21]

Ei jkl = [2Gν/(1 − 2ν)]δi jδkl + G(δikδ jl + δilδ jk), (11)

where G and ν denote shear modulus and Poisson’s ratio of
the material, respectively.
Boundary conditions
displacement:

Ui = o, (xi , t) ∈ Su × [t1, t2], (12)

traction:

σi jν j = 0, (xi , t) ∈ ST × [t1, t2]. (13)
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72 J. T. Xing

Navier’s equation
Substituting Eqs. (8)–(11) into (7), we obtain the Navier’s

equation

G[Ui, j j + 1/(1 − 2ν)U j, j i ] = ρsUi,t t . (14)

A general radiation condition in the xi direction for this equa-
tion is defined as

lim
x j →∞(Ũi, jν j − ikŨi ) = 0, (15)

where Ui = Ũi e−iωt . To demonstrate that these two Eqs. (14)
and (15) cover general cases, we can derive the equations
for volume (or pressure) waves and shear waves as follows.
Taking a divergence operation on Eqs. (14) and (15), we
obtain two equations for volume variable Ui,i as

[2G(1 − ν)/(1 − 2ν)]Ui,i j j = ρsUi,i t t ,

lim
x j →∞(Ũi,i jν j − ikŨi,i ) = 0,

(16)

which represents a pressure wave equation in a solid. Simi-
larly, taking a curl operation on Eqs. (14) and (15), we obtain
the other two equations for shear waves of variable ersiUi,s ,
i.e.

Gersi Ui,s j j = ρsersiUi,stt ,

lim
x j →∞(ersi Ũi,s jν j − ikersi Ũi,s) = 0.

(17)

The radiation condition defined above for solid dynamics is
the same as the one for fluids. Therefore, we will only discuss
the details for FS systems and directly extend the results to
other cases.

3.2 Fluid domain

Dynamic equation

ϕ,t t/c2 = ϕ,i i , (xi , t) ∈ � f × (t1, t2). (18)

Velocity–velocity potential relation

vi = ϕ,i , (xi , t) ∈ � f × (t1, t2). (19)

Pressure–velocity potential relation

p = −ρ f ϕ,t , (xi , t) ∈ � f × (t1, t2). (20)

Boundary conditions
Free surface:

ϕ,iηi = −ϕ,t t/g, (xi , t) ∈ � f × [t1, t2]. (21)

Fixed boundary:

ϕ,iηi = 0, (xi , t) ∈ �b × [t1, t2]. (22)

Radiation boundary:

lim
r→∞ r

h−1
2 (φ,iηi −ikφ)=0, (xi , t)∈�∞ × [t1, t2], (23)

or

lim
r→∞ r

h−1
2 (ϕ,iηi + ϕ,t/ξ) = 0, (24)

where ϕ = φe−iωt and r = √
xi xi is assumed along the ηi

direction in the 3-dimensional case. The integrated speed ξ

of the wave is an unknown variable to be solved.

3.3 Fluid–solid interaction interface

ϕ,iηi = −Ui,tνi , (xi , t) ∈ 	 × [t1, t2], (25)

σi jν j = −pνi , (xi , t) ∈ 	 × [t1, t2]. (26)

3.4 Displacement solution equations

The displacement Ui of the structure and the potential of
velocity ϕ of the fluid are chosen as variables to be deter-
mined, and the stress σi j and strain ei j in the solid and the
pressure p of the fluid can be eliminated, so that we obtain
the displacement–velocity potential equations of the system
as follows.
Solid structure

Ei jklUk,l j = ρsUi,t t , (xi , t) ∈ �s × (t1, t2), (27)

Ui = o, (xi , t) ∈ Su × [t1, t2], (28)

Ei jklUk,lν j = 0, (xi , t) ∈ ST × [t1, t2]. (29)

Fluid domain

ϕ,t t/c2 = ϕ,i i , (xi , t) ∈ � f × (t1, t2), (30)

ϕ,iηi = −ϕ,t t/g, (xi , t) ∈ � f × [t1, t2], (31)

ϕ,iηi = 0, (xi , t) ∈ �b × [t1, t2], (32)

lim
r→∞ r

h−1
2 (ϕ,iηi + ϕ,t/ξ) = 0,

(xi , t) ∈ �∞ × [t1, t2].
(33)

Fluid–structure interaction interface

ϕ,iηi = −Ui,tνi , (xi , t) ∈ 	 × [t1, t2], (34)

Ei jklUk,lν j = ρ f ϕ,tνi , (xi , t) ∈ 	 × [t1, t2]. (35)

A trivial solution of Ui = 0 = ϕ and ω = 0 satisfying
Eqs. (27)–(35) represents a state of static equilibrium of the
system, which is taken as the reference state of the motion of
the system.

4 A complex identity

A complex power identity used in the following demonstra-
tions is derived herein. Since the governing equations of the
problem are a set of real coefficient equations, if a displace-
ment Ui , potential of velocity ϕ and natural frequency ω are
a solution of Eqs. (27)–(35), the conjugate functions U∗

i , ϕ∗

123



Natural vibrations of Sommerfeld systems 73

and ω∗ of this solution must also be a solution of the same
equations [4]. The method of separation of variables is used
to seek the solution of Eqs. (27)–(35) in the form

Ui (x j , t) = Ũi (x j )T (t), ϕ(x j , t) = φ(x j )T (t), (36)

which are substituted into Eq. (30) giving

T,t t + ω2T = 0, φ,i i + κ2φ = 0, κ = ω/c, (37)

where ω represents a natural frequency of the system to be
determined. From Eq. (37) it follows that the possible solu-
tions of function T (t) take the form e−iωt or eiωt . To satisfy
the radiation condition (33) corresponding to condition (2),
T (t) ∝ e−iωt is chosen. Therefore Eq. (36) takes the form

Ui (x j , t) = Ũi (x j )e
−iωt , ϕ(x j , t) = φ(x j )e

−iωt . (38)

The conjugate variables of Eq. (38)

U∗
i (x j , t) = Ũ∗

i (x j )e
iω∗t , ϕ∗(x j , t) = φ∗(x j )e

iω∗t , (39)

provide the solution of the conjugate equations, represented
by stars “*”, of Eqs. (27)–(35). We use displacement U (I )

i ,
potential of velocity ϕ(I ) and natural frequency ω(I ) repre-
senting a solution of Eqs. (27)–(35) with U∗(J )

i , ϕ∗(J ) and
ω∗(J ) denoting a conjugate solution of the conjugate equa-
tions, where superscripts I and J identify the number of
natural modes of the system.

4.1 A complex power identity

Pre-multiplying Eq. (27) for the solution (I ) by velocity
U̇∗

i = iω∗(J )U∗(J )
i , then integrating over volume �s and

using Green’s theorem [21] and Eqs. (28), (29) and (34),
(35), we obtain a complex power equation for the solid

iω∗(J )

∫
	

ρ f U∗(J )
i ϕ

(I )
,t ν j dS − iω∗(J )

∫
�s

(U∗(J )
i Ei jklU

(I )
k,l

+ ρsU∗(J )
i U (I )

i,t t )d� = 0. (40)

In a similar process, from Eqs. (30)–(33) and (34), (35) it
follows that

−iω∗(J )

⎧⎪⎨
⎪⎩
∫
� f

ρ f ϕ
∗(J )(ϕ

(I )
,t t /g)d�

+
∫

�∞

ρ f ϕ
∗(J )(ϕ

(I )
,t /ξ)d� +

∫
	

ρ f ϕ
∗(J )U (I )

i,t νi d�

+
∫

� f

ρ f [ϕ∗(J )
,i ϕ

(I )
,i + ϕ∗(J )ϕ

(I )
,t t /c2]

⎫⎪⎬
⎪⎭ d� = 0. (41)

For the conjugate equations (*) of Eqs. (27)–(35), we obtain

− iω(I )
∫
	

ρ f U (I )
i ϕ

∗(J )
,t ν j dS + iω(I )

∫
�s

(U (I )
i Ei jklU

∗(J )
k,l

+ρsU (I )
i U∗(J )

i,t t )d� = 0, (42)

iω(I )

⎧⎪⎨
⎪⎩
∫
� f

ρ f ϕ
(I )(ϕ

∗(J )
,t t /g)d� +

∫
�∞

ρ f ϕ
(I )(ϕ

∗(J )
,t /ξ)d�

+
∫
	

ρ f ϕ
(I )U∗(J )

i,t νi d� +
∫

� f

ρ f (ϕ
(I )
,i ϕ

∗(J )
,i

+ϕ(I )ϕ
∗(J )
,t t /c2)d�

⎫⎬
⎭ = 0. (43)

From Eqs. (38) and (39), it follows that (),t = −iω() and
()∗,t = iω∗()∗ which when substituted into Eqs. (40)–(43)
gives

ω(I )ω∗(J )

∫
	

ρ f U∗(J )
i ϕ(I )νi dS

−iω∗(J )

∫
�s

(U∗(J )
i, j Ei jklU

(I )
k,l

−ρsω
2(I )U∗(J )

i U (I )
i )d� = 0, (44)

iω∗(J )ω2(I )

⎧⎪⎨
⎪⎩
∫
� f

(ρ f /g)ϕ∗(J )ϕ(I )d�

+
∫

� f

(ρ f /c2)ϕ∗(J )ϕ(I )d�

⎫⎪⎬
⎪⎭

−ω∗(J )ω(I )

⎧⎪⎨
⎪⎩
∫

�∞

(ρ f /ξ)ϕ∗(J )ϕ(I )d�

+
∫
	

ρ f ϕ
∗(J )U (I )

i νi d�

⎫⎬
⎭

= −iω∗(J )

∫
� f

ρ f ϕ
∗(J )
,i ϕ

(I )
,i d� = 0, (45)

ω(I )ω∗(J )

∫
	

ρ f U (I )
i ϕ∗(J )νi dS

+iω(I )
∫
�s

(U (I )
i, j Ei jklU

∗(J )
k,l

−ω2∗(J )ρsU (I )
i U∗(J )

i )d� = 0, (46)

123



74 J. T. Xing

−iω(I )ω2∗(J )

⎧⎪⎨
⎪⎩
∫
� f

(ρ f /g)ϕ∗(J )ϕ(I )d�

+
∫

� f

(ρ f /c2)ϕ∗(J )ϕ(I )d�

⎫⎪⎬
⎪⎭

−ω∗(J )ω(I )

⎧⎪⎨
⎪⎩
∫

�∞

(ρ f /ξ)ϕ∗(J )ϕ(I )d�

+
∫
	

ρ f ϕ
(I )U∗(J )

i νi d�

⎫⎬
⎭

+iω(I )
∫

� f

ρ f ϕ
∗(J )
,i ϕ

(I )
,i d� = 0. (47)

The summation of Eqs. (44)–(47) and application of the iden-
tity

U∗
i, j Ei jklUk,l = Ui, j Ei jklU

∗
k,l , (48)

gives a complex power identity

i(ω(I ) − ω∗(J ))

⎧⎪⎨
⎪⎩
∫
�s

(U (I )
i, j Ei jklU

∗(J )
k,l

+ρsω
(I )ω∗(J )U (I )

i U∗(J )
i )d� +

∫
� f

[ρ f ϕ
(I )
,i ϕ

∗(J )
,i

+(ρ f /c2)ω(I )ω∗(J )ϕ(I )ϕ∗(J )]d�

+
∫
� f

(ρ f /g)ω(I )ω∗(J )ϕ(I )ϕ∗(J )d�

⎫⎪⎬
⎪⎭

−2ω∗(J )ω(I )
∫

�∞

(ρ f /ξ)ϕ∗(J )ϕ(I )d� = 0. (49)

4.2 Physical explanation

Equation (49) is a complex equation involving multiplica-
tions of complex variables. To understand it physically,
we investigate the product of a complex sinusoidal force
f = F̂e−iω̂t of frequency ω̂ and its response velocity v =
V̂ e−i(ω̂t+α̂), where hatsˆdenote real variables and α̂ a phase
angle (0 ≤ α̂ ≤ 180◦) [12]. In the complex representation of
a physical quantity, the real part represents the correspond-
ing physical variable. For example the physical force f̂ and
velocity v̂ are represented by the complex variables f and v

as

f̂ = Re f = F̂ cos ω̂t,

v̂ = Rev̂ = V̂ cos(ω̂t + α̂).
(50)

The rate of work done by force f̂ through velocity v̂ is given
by

P̂ = f̂ v̂ = P̂R + P̂I ,

P̂R = F̂ V̂ cos2 ω̂ cos α̂,

P̂I = −0.5F̂ V̂ sin 2ω̂t sin α̂,

(51)

of which the time averaged powers are [22]

¯̂P = ¯̂PR + ¯̂PI ,
¯̂PR = 0.5F̂ V̂ cos α̂,

¯̂PI = 0. (52)

The power of the force f̂ consists of a real power P̂R that

has a non-zero time averaged power ¯̂PR dissipated by the
damping and a “workless power” P̂I that describes the energy
exchange in the system but has a zero time averaged power
¯̂PI .

The product of the complex force f and the conjugate
velocity v∗ is given by

P = f v∗ = F̂ V̂ ei α̂ = 2(
¯̂PR + i |P̂I |), (53)

of which the real part equals two times the real time aver-

aged power ¯̂PR and the imaginary part equals two times the
amplitude |P̂I | of workless power P̂I . Therefore, physically,
the real part of Eq. (49) gives an energy balance equation of
time averaged power in the system and the imaginary part
gives a relationship of the amplitudes of workless powers in
the system.

5 Characteristics of natural vibrations

5.1 Energy dissipative process

Characteristic 1: Any non-trivial natural vibration of the
FS System governed by Eqs. (7)–(26) undergoes an energy
dissipative process although no damping exists in either solid
or fluid materials.

To prove this, the complex power identity (49) is rewritten
for a natural vibration (I = J ), therefore superscripts are
omitted, in the following form

Im(ω)

⎧⎪⎨
⎪⎩
∫
�s

(Ui, j Ei jklU
∗
k,l + ρsωω∗UiU

∗
i )d�

+
∫

� f

[ρ f ϕ,iϕ
∗
,i + (ρ f /c2)ωω∗ϕϕ∗]d�

+
∫
� f

(ρ f /g)ωω∗ϕϕ∗d�

⎫⎪⎬
⎪⎭

+ω∗ω
∫

�∞

(ρ f /ξ)ϕ∗ϕd� = 0. (54)
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From the discussion in Sect. 4.2, the time averaged change
rates of the mechanical energies of the system are:
Kinetic energy of solid

¯̇Ts = 0.5Re

⎧⎪⎨
⎪⎩
∫
�S

ρs Vi,t V
∗
i d�

⎫⎪⎬
⎪⎭

= 0.5
∫
�S

Im(ω)ρsωω∗UU∗d�, (55)

Strain energy of solid

¯̇�s = 0.5Re

⎧⎪⎨
⎪⎩
∫
�S

Ui, j t Ei jklU
∗
k,ld�

⎫⎪⎬
⎪⎭

= 0.5
∫
�S

Im(ω)Ui, j t Ei jklU
∗
k,ld�, (56)

Kinetic energy of fluid

¯̇T f = 0.5Re

⎧⎪⎨
⎪⎩
∫

� f

ρ f vi,tv
∗
i d�

⎫⎪⎬
⎪⎭

= 0.5
∫

� f

Im(ω)ρ f ϕ,iϕ
∗
,i d��, (57)

Potential energy of fluid

¯̇� f = 0.5/(ρ f c2)Re

⎧⎪⎨
⎪⎩
∫

� f

p,t p∗d�

⎫⎪⎬
⎪⎭

= (0.5ρ f /c2)Re

⎧⎪⎨
⎪⎩
∫

� f

ϕ,t tϕ
∗
,t d�

⎫⎪⎬
⎪⎭

= (0.5ρ f /c2)

∫
� f

Im(ω)ωω∗ϕϕ∗d�, (58)

Potential energy on free surface [23,24]

¯̇�� = (0.5ρ f /g)Re

⎧⎪⎨
⎪⎩
∫
� f

ϕ,t tϕ
∗
,t d�

⎫⎪⎬
⎪⎭

= (0.5ρ f /g)

∫
� f

Im(ω)ωω∗ϕϕ∗d�. (59)

Substituting Eqs. (55)–(59) into Eq. (54), we obtain

¯̇TS + ¯̇�S + ¯̇T f + ¯̇� f + ¯̇��

= −0.5ω∗ω
∫

�∞

(ρ f /ξ)ϕ∗ϕd�

= −0.5|ω|2
∫

�∞

(ρ f /ξ)|ϕ|2d� < 0. (60)

The left side of Eq. (60) represents the time averaged change
rate of total mechanical energy of the system, which has
a negative value since any non-trivial velocity potential ϕ

satisfying radiation condition (24) on an infinite boundary
�∞ does not vanish. The energy of the system undergoes
a dissipative process. For an undisturbed condition on the
boundary �∞, no waves can reach the infinite boundary and
therefore ϕ = 0 on �∞. Equation (60) shows that the energy
of the system is conservative [18].

This result reveals a physical fact that if a FS System
undergoes a natural vibration excited by a disturbance which
inputs an initial energy into the system, this energy will be
dissipated by the radiation boundary �∞ of the fluid. In the
solid, there is no energy dissipative mechanism and therefore
its initial energy given by the disturbance must transfer into
the fluid domain with a power

∫
	

−pUi,tνi dS on the wet
interface 	. The energy flow balance equation of the fluid
domain [22] concludes that the time averaged energy input
from the solid into the fluid equals the time averaged energy
dissipation on the radiation boundary, that is

Re

⎧⎨
⎩
∫
	

−pU∗
i,tνi d�

⎫⎬
⎭ = Re

⎧⎪⎨
⎪⎩
∫

�∞

ρ f ϕ,tU
∗
i,tνi d�

⎫⎪⎬
⎪⎭

= (ρ f /ξ)

∫
�∞

|ω|2|ϕ|2d�, (61)

where Eqs. (20), (24) and (25) are used to replace pressure
p by potential velocity ϕ.

5.2 Complex conjugate eigenvalues

Characteristic 2: All non-zero eigenvalues corresponding
to natural frequencies of natural vibrations of the FS System
governed by Eqs. (7)–(26) are complex conjugate numbers.

The proof of this conclusion is as follows. If the natural
frequency ω is real, ω = ω∗, and from Eq. (54) it follows
that∫
�∞

(ρ f /ξ)ϕϕ∗d� =
∫

�∞

(ρ f /ξ)|ϕ|2d� = 0, (62)

which yields |ϕ| = 0 on boundary �∞. However, |ϕ| =
0 holds only for the trivial solution. Therefore, the natural
frequency ω must be complex. Furthermore, Eqs. (7)–(26)
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or (27)–(35) are a set of equations with only real coefficients
so that the conjugate frequency ω∗ must be the corresponding
natural frequency.

Characteristic 3: All non-zero complex natural frequen-
cies ω in the solution form (38) of natural vibrations of the FS
System governed by Eqs. (7)–(26) have negative imaginary
parts.

It is easy to know that all terms in Eq. (54) are positive
except Im(ω). Therefore, the imaginary part Im(ω) of the
natural frequency ω must be negative to make Eq. (54) valid
for a non-trivial solution of the problem. Naturally, Im(ω∗)
is positive.

5.3 Number of conjugate eigenvalues

Characteristic 4: The number of conjugate eigenvalues of
the FS System defined by Eqs. (7)–(26) equals the number of
degrees of freedom of the dry structure assuming no fluid in
the system.

To confirm this, we investigate the displacement–velocity
potential Eqs. (27)–(35) by separating them into the follow-
ing two sub-problems. Sub-problem 1: a dynamic response
problem of the solid structure governed by Eqs. (27)–(29)
and excited by the traction force given in Eq. (35) on the
fluid–structure interaction interface 	 and Sub-problem 2: a
radiation problem of the fluid domain governed by Eqs. (30)–
(33) and excited by the boundary velocity given in Eq. (34)
on the fluid–structure interaction interface 	.

For sub-problem 1, a Sturm–Liouville problem [4] is
defined if the right side force of Eq. (35) vanishes, which
represents the natural vibration of the dry solid structure.
Assume that �̂2

I and ŪI i (I = 1, 2, 3, . . . , N ) are the first N
natural frequencies and the corresponding real natural modes
of the dry solid structure. Based on the Sturm–Liouville the-
orem [4], these natural frequencies and modes satisfy the
orthogonal relationships

∫
�s

ŪJ i, j Ei jklŪI k,ld� = diag(�̂2
I )δI J ,

∫
�s

ŪJ iρsŪI i d� = δI J ,

(63)

and all of the orthogonal natural modes construct a complete
orthogonal function space. Therefore, any response Ui of
sub-problem 1 can be represented by a mode summation

Ui = Ū iq(t),

Ū i = [
Ū1i Ū2i · · · ŪNi

]
, (64)

q(t) = [q1 q2 · · · qN ]T ,

where only the first N modes are retained but not losing
generality. Eq. (64) when substituted into Eq. (27) gives

Ei jklŪ k,l jq = ρsŪ i q̈. (65)

Pre-multiplying Eq. (65) by Ū
T
i and then integrating over

volume �s using Green’s theorem, orthogonal relationships
(63) and boundary conditions (28), (29) and (35), we obtain

q̈ + diag(�̂2
I )q =

∫
	

Ū
T
i ρ f ϕ,tνi dS. (66)

Sub-problem 2 is a typical radiation problem of which the
vibration source is the velocity on the boundary 	 defined
by Eq. (34). Based on the original Sommerfeld investigation
[1,2,4], a unique solution ϕ of Sub-problem 2 exists. This
solution satisfies the energy balance equation of the fluid
given in Eq. (61), i.e.

Re

⎧⎨
⎩
∫
	

ρ f ϕ,tU
∗
i,tνi d�

⎫⎬
⎭ = (ρ f /ξ)

∫
�∞

|ω|2|ϕ|2d�. (67)

Now, we seek the natural vibration of the FS System using
Eqs. (66) and (67). As defined in Eq. (38), the time function
vector q and the potential of velocity ϕ take the forms

q = Qe−iωt , ϕ = φe−iωt , (68)

respectively, where Q = [Q1 Q2 · · · QN ]T represents a
complex amplitude vector. Substituting Eq. (68) into
Eqs. (66) and (67), we obtain

diag(�̂2
I − ω2)Q = −iωρ f

∫
	

Ū
T
i νiφdS, (69)

ρ f

⎛
⎝∫

	

Re(φ)νi Ū i d�

⎞
⎠Q = (ρ f /ξ)

∫
�∞

|ϕ|2d�. (70)

Equations (69), (70) can be rearranged in a matrix form as

[
diag(�̂2

I − ω2) iωRT

R −d

] [
Q

1

]
= 0, (71)

where

R = ρ f

∫
	

Re(φ)νi Ū i d�,

d = (ρ f /ξ)

∫
�∞

|ϕ|2d� > 0.

(72)

Here, R is a coupling matrix of the FS System and d involves
the energy dissipative rate |ω|2d (Nm/s) on boundary �∞
of the system. The necessary and sufficient condition for
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Natural vibrations of Sommerfeld systems 77

Eq. (71) to have non-trivial solution Q requires its deter-
minant of the coefficient matrix to vanish, which gives the
characteristic equation of the FS System

∣∣∣∣diag(�̂2
I − ω2) iωRT

R −d

∣∣∣∣ = 0. (73)

Equation (73) is a complex algebraic equation of the unknown
variable ω. The highest power of ω is 2N which defines the
number of pairs of complex conjugate solutions ω equals N ,

which is the degree of freedom of the dry solid structure in
the system.

5.4 Orthogonal relationships

Based on the identity (49), we investigate the orthogonal
relationships of natural modes of the system.
Undisturbed boundary condition on �∞

For this case, the potential velocity ϕ on �∞ vanishes and
therefore the integration defined on �∞ in Eq. (49) vanishes.
For any two different natural frequencies ω(I ) and ω(J )∗, it
follows that

∫
�s

U (I )
i, j Ei jklU

∗(J )
k,l d� +

∫
� f

ρ f ϕ
(I )
,i ϕ

∗(J )
,i d� = 0, (74)

∫
�s

ρsU∗(J )
i U (I )

i d� +
∫
� f

(ρ f /g)ϕ∗(J )ϕ(I )d�

+(ρ f /c2)

∫
� f

ϕ∗(J )ϕ(I )d� = 0, (75)

which are two orthogonal relationships of the fluid–structure
interaction system with an undisturbed condition on the
infinite boundary �∞. Xing et al. [18] demonstrated this
orthogonal relationship for beam–water interaction systems.
As discussed in Sect. 4.2, Eqs. (74) and (75) are two relation-
ships of the workless powers in the system. Physically, the
time averaged power done by the inertial and elastic forces
of a natural vibration of the system on the motion of another
natural vibration of the system vanishes.
Radiation case

In this case, Eq. (49) is a complex equation including two
real equations. The real part represents an equilibrium equa-
tion of the time averaged power dissipated by the forces of
mode (J ) through the motion of mode (I ) (or in a reverse
direction) but the imaginary part of the equation represents a
relationship of the amplitudes of workless powers of the sys-
tem. For radiation cases, there is no simple real orthogonal
equation being found.

6 SS and FSS systems

6.1 SS system

As defined in Sect. 2, an essential difference between an SS
System and an FS System is the location of the Sommer-
feld condition. For an SS System, the Sommerfeld condition
is located only on the solid boundary. The SS System is a
reverse case of the FS System. It is not difficult to derive sim-
ilar theorems and conclusions as described for FS Systems.
We neglected similar results for this system. For example the
characteristic 4 in Sect. 5.3 now reads that the number of con-
jugate natural frequencies of the SS System equals the num-
ber of degrees of freedom of the fluid domain with assumed
rigid wet boundaries in the system.

6.2 FSS system

For FSS systems, there exist the Sommerfeld boundary con-
ditions on both the solid and fluid boundaries. We consider
two radiation problems, one in a fluid and another in a solid,
excited by a disturbance on interface 	. Based on Sommer-
feld’s original investigation [1,2], a unique solution ϕ in the
fluid and Ui in the solid exists. Therefore, if the disturbance
on interface 	 vanishes, this gives a unique trivial natural
vibration, which implies that there are no non-trivial natural
vibrations existing for the FSS System.

7 Examples

To help readers understand the generalized conclusions the-
oretically demonstrated above, it is useful to summarise the
two examples by Xing [20] in Sects. 7.1 and 7.2. The inter-
ested reader may wish to consult this reference for more
details of the solution process.

7.1 A mass-spring system coupled to an infinite fluid
domain

Figure 2 shows a spring-mass system of stiffness K and mass
M is coupled to a 1-D straight semi-infinite long fluid channel
of section area S. The fluid of mass density ρ is assumed
compressible and non-viscous. The origin of the x axis is
located at the natural equilibrium position of the mass. The
displacement x̃(t) of the mass and the pressure p(x, t) of the
fluid are used as variables.

The characteristic equation of the system was obtained as

ω2 + 2ηiω − �̂2 = 0, (76)

where �̂ = √
K/M represents the natural frequency of the

mass-spring system and η = 0.5Sρc/M . The solutions of
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Fig. 2 A one dimensional fluid–mass-spring interaction system

Fig. 3 A mass-spring system of two degrees of freedom coupled to an
infinite fluid domain

Eq. (76) are

ω = −iη ± �, � =
√

�̂2 − η2, (77)

being the natural frequency of the system which corresponds
to a pair of conjugate eigenvalues iω = η ± i�. The corre-
sponding complex natural mode of the system was obtained
as

p(x, t) = ρc(−η − i�)e
η
c (x−ct)e+i �

c (x−ct),

x̃(t) = e−ηt e−i�t .
(78)

The real pressure p̂ and displacement x̂ of the system are

p̂ = ρce
η
c (x−ct){−η cos[�(x − ct)/c]

+ � sin[�(x − ct)/c]},
x̂ = e−ηt cos �t.

(79)

This solution confirms the general conclusions described in
Sect. 5.

7.2 A system of two degrees of freedom coupled to an
infinite fluid domain

Figure 3 shows another simple system extended from Fig. 2.
The solution of the natural vibration is sought in the form

y(t) = Y e−iωt , x̃(t) = Xe−iωt ,

p(x, t) = P(x)e−iωt ,
(80)

To reveal the dynamic behaviour of the system, a mode
transformation[

y
x̃

]
= Φq =

[
ϕ11 ϕ12

ϕ21 ϕ22

] [
q1

q2

]
, (81)

is introduced. Here Φ and q are the matrix of normalized
mode vectors and the generalized coordinator vector of the
dry solid system, respectively. The matrix Φ satisfies the

normalization relationships

ΦTMΦ = I , ΦTKΦ = Λ, (82)

where I denotes a unit matrix and Λ = diag(�̂2
1, �̂

2
2) rep-

resenting a diagonal matrix of the square of two natural
frequencies of the dry structure. The dynamic equation
describing the natural vibration of this system was trans-
formed into the following mode form

I q̈ + Λq = −Sp(0, t)

[
ϕ21

ϕ22

]
. (83)

The mode transformation does not change the eigenvalues of
the system [4], so that the natural frequencies of the system
can be obtained by solving Eq. (83). Now the solution (80)
takes the form

q1(t)= Q1e−iωt , q2(t)= Q2e−iωt , p(x, t)= P(x)e−iωt

(84)

In the end, the equation describing the natural vibration of
the system is represented as⎡
⎣�̂2

1 − ω2 0 Sϕ21

0 �̂2
2 − ω2 Sϕ22

ρcω2ϕ21 ρcω2ϕ22 −iω

⎤
⎦
⎡
⎣Q1

Q2

a

⎤
⎦ = 0, (85)

of which the determinant of the coefficient matrix vanishes
giving the characteristic equation of this system

(1 − λ2)(1 − λ2/α2) − 2iε1λ(1 − λ2/α2)

−2iε2(λ/α)(1 − λ2) = 0, (86)

where

λ = ω/�̂1, α = �̂2/�̂1,

ε1 = 0.5Sρcϕ2
21/�̂1, ε2 = 0.5Sρcϕ2

22/�̂2.
(87)

It was demonstrated that: (i) the solutions of Eq. (86) are com-
plex only and they consist of two pairs of conjugate complex
numbers, (ii) the number of natural modes of the system
equals the number of degrees of freedom of the dry solid
system and it is independent of the infinite fluid domain, (iii)
the natural frequency ω of the system must have a negative
imaginary part.

7.3 An FSS system

Figure 4 shows a one dimensional FSS System consisting of
a semi-infinite uniform elastic rod coupled to a semi-infinite
fluid domain, the same as in Fig. 3. The mass density and elas-
tic modulus of the rod are denoted by ρs and E , respectively.
Here, the rod has an infinite number of dry natural modes.
The governing equations of the system are as follows.
Solid domain

∂2u/∂x2 = (1/C2)∂2u/∂t2,

C = √
E/ρs, −∞ < x < 0.

(88)
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Fig. 4 An FSS System consisting of an infinite elastic rod coupled to
an infinite long fluid domain

Interaction conditions

E S(∂u/∂x)(0, t) = −p(0, t), (89)

∂p/∂x = −ρ f ∂
2u/∂t2, x = 0. (90)

Fluid domain

∂2 p

∂x2 = 1

c2

∂2 p

∂t2 , (0 < x < ∞). (91)

Sommerfeld conditions

∂p

∂x
= (iω/c)P, x → ∞, (92)

∂U/∂x = −(iω/C)U, x → −∞. (93)

We seek the natural vibrations (ω �= 0) in the forms

u(x, t) = U (x)e−iωt , p(x, t) = P(x)e−iωt , (94)

satisfying Eqs. (88)–(93). These solutions take the form

u(x, t) = Ae−iωx/ce−iωt , p(x, t) = Beiωx/ce−iωt , (95)

where A and B are two constants. Substituting Eq. (95) into
Eqs. (89) and (90), we obtain
[

i −ρ f cω
1 −i E Sω/C

] [
p
u

]
= 0, (96)

of which the necessary and sufficient condition of existing
non-zero solutions requires

E Sω/C + ρ f cω = 0, (97)

which is impossible. Therefore, there are no natural vibra-
tions for this FSS System, which support the conclusion
described previously.

7.4 A 2-dimensional example

Let us consider a fluid–solid interaction problem as shown
in Fig. 5. The system consists of a mass-spring system and a
two dimensional water domain � f of depth H and thickness
B perpendicular to the paper plane. The fluid domain bound-
aries include a free surface � f , infinite boundary �∞ and
bottom �b. We assume that the mass M moves only in the x
direction and choose the static equilibrium position O of the
mass as the origin of reference coordinate system O-xy.

Fig. 5 A 2-dimensional example involving both free surface and pres-
sure waves

Using the displacement U of the mass and the pressure p
of the water relative to its static equilibrium configuration,
we seek a natural vibration of the system in the form

U = Ũe−iωt ,

p = P(x, y)e−iωt = X (x)Y (y)e−iωt ,
(98)

where ω denotes a complex natural frequency of the system.
This solution satisfies the governing equations of the system.

∂2 p/∂x2 + ∂2 p/∂y2 = (1/c2)∂2 p/∂t2, (x, y) ∈ � f ,

(99)

∂p/∂y = (−1/g)∂2 p/∂t2, y = H, (100)

∂p/∂y = 0, y = 0, (101)

∂ P/∂x − ik P = 0, x → ∞, (102)

MÜ + KU = −B

H∫
0

p(0, y, t)dy, (103)

∂p/∂x = −ρÜ , x = 0. (104)

Equation (102) is a Sommerfeld condition and k denotes a
characteristic parameter of the system to be determined later.
Substituting Eq. (98) into Eqs. (100)–(103), we obtain

Y ′′ + λ2Y = 0,

Y ′(0) = 0, (105)

Y ′(H) − (ω2/g)Y (H) = 0.

X ′′ + k2 X = 0, (106)

X ′ − jk X = 0, x → ∞.

ω2/c2 = k2 + λ2. (107)

The function Y satisfying Eq. (105) takes the form [18]

Yn(y) = cos(λn y), n = 1, 2, 3, . . . , (108)

where λn are the solutions of equation

λn tan(λn H) = −ω2/g. (109)
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The functions Yn(y) satisfy the following orthogonal rela-
tionship

H∫
0

YmYndy =
{

0, m �=n,

[2λn H +sin(2λn H)]/(4λ), m =n,
(110)

and the corresponding parameters kn are required to satisfy
Eq. (107), i.e.

ω2/c2 = k2
n + λ2

n, n = 1, 2, 3, . . . . (111)

The function Xn satisfying Eq. (106) takes the form

Xn(x) = eikn x . (112)

The pressure in the fluid is now expressed as a summation in
the form

p = P(x, y)e−iωt =
∑

n=1,2,...

Pneikn x cos(λn y)e−iωt , (113)

where Pn are constants to be determined. Now a natural fre-
quencyω �= 0 is sought. From Eqs. (103) and (104), it follows
that

(�̂2 − ω2)Ũ + (B/M)
∑

n=1,2,3,...

Pn

H∫
0

cos(λn y)dy = 0,

(114)

�̂2 = K/M,

ω2ρŨ −
∑

n=1,2,3,...

ikn Pn cos(λn y) = 0. (115)

Using the orthogonal relationship (110) to Eq. (115), we
derive

ω2ρŨ

H∫
0

cos(λn y)dy

−ikn Pn

H∫
0

cos2(λn y)dy = 0, n = 1, 2, 3, . . . , (116)

Equations (114) and (116) are combined to a set of algebraic
equations to seek non-trivial solutions of Ũ and Pn (n =
1, 2, 3, . . .). Retaining the first N functions Yn(x), we express
this set of equations in the matrix form

⎡
⎢⎢⎢⎣

(ω2 − �̂2)M −BȲ1 · · · −BȲN

ω2ρȲ1 −ik1Ŷ1 · · · 0
...

...
. . .

...

ω2ρȲN 0 · · · −ikN ŶN

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

Ũ
P1
...

PN

⎤
⎥⎥⎥⎦ = 0, (117)

where

Ȳn =
H∫

0

cos(λn y)dy = sin(λn H)/λn,

Ŷn =
H∫

0

cos2(λn y)dy = [2λn H + sin(2λn H)]/(4λn),

n = 1, 2, 3, . . . .

(118)

The necessary and sufficient condition for Eq. (117) to have
a non-trivial solution requires that the determinant of the
coefficient matrix of Eq. (117) vanishes, i.e.
∣∣∣∣∣∣∣∣∣

(�̂2/ω2 − 1)M/ρ BȲ1 · · · BȲN

Ȳ1 − jk1Ŷ1 · · · 0
...

...
. . .

...

ȲN 0 · · · − jkN ŶN

∣∣∣∣∣∣∣∣∣
= 0. (119)

Equation (119) is the characteristic equation of the system
from which the natural frequency of the system can be deter-
mined. To solve this complex equation in association with
Eqs. (109) and (111), a numerical iteration method is
required. For a starting value of ω̃, λn and the corresponding
kn are obtained from Eqs. (109) and (111), which are then
substituted into Eq. (119) to obtain a new value of ω. Interac-
tions continue until an accepted error criterion |ω − ω̃| ≤ ε

is reached. For each set of λn and kn , Eq. (119) is an algebraic
equation of ω. The highest power of ω is 2 and, therefore, a
complex conjugate ω can be found.

To avoid complex numerical calculations, we consider a
special case assuming that the depth H of water is very small,
i.e. shallow water. In this case, Eqs. (119) and (118) give a
solution

λ2 = −ω2/(gH), Ȳ = H = Ŷ , (120)

due to tan(λn H) ≈ λn H ≈ sin(λn H). This result when
substituted into Eq. (111) yields

[(c2 + gH)ω2]/(c2gH) = ω2/ξ2 = k2,

ξ =
√

(gH)/(1 + gH/c2).
(121)

The corresponding Eq. (119) now takes the form∣∣∣∣(�̂
2/ω2 − 1)M/ρ B H

H −ik H

∣∣∣∣ = 0. (122)

The characteristic equation of the system is

ω̄2 + 2iω̄η − 1 = 0,

ω̄ = ω/�̂, η = ρB Hξ/(2M�̂),
(123)

which has the solution

ω̄ = −iη ±
√

1 − η2, (124)
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and the corresponding mode form (Ũ = 1 for normalization)

Ũ = 1, P = −iρω̄�̂ξ. (125)

Here, the parameter η plays the role of damping factor and
the parameter ξ represents the speed of the radiation wave
influenced by the free surface and pressure waves. A further
discussion on it is as follows:

(i) No free surface waves. If free surface waves are not con-
sidered, the gravity acceleration tends to infinity, so that
the speed of radiation wave ξ → c, and k = κ = ω/c,
which is the case considering only the pressure wave.
Increasing speed of sound c implies that the energy
dissipates faster from the radiation boundary, so that
damping factor η is larger.

(ii) Incompressible water. Assume that the water is incom-
pressible. The speed c of sound tends to infinity. There-
fore, ξ → √

gH and k = ω/
√

gH where only the free
surface wave is considered.

This example addresses the fail reason by Zhao [19]. If
both of the free surface wave and the compressible wave are
considered, the speed of radiation wave does not equal the
speed of sound in water. Here we introduce a generalized
parameter representing the speed of radiation wave in the
Sommerfeld condition (2). While preparing this paper, fol-
lowing the finding in this example, a separate paper by Xing
[25] was completed to investigate the natural vibration of
beam–water interaction systems subject to the Sommerfeld
condition given in Eq. (2).

8 Dynamic responses

The complex mode theory developed in matrix theory in
mathematics can be used to solve the dynamic responses of a
dynamic system. For example Zhou and Wang [26] used this
approach to solve the dynamic response of offshore plat-
forms subject to the hydrodynamic forces represented by
the Morison’s approximate equation [7] which introduces
the water added mass and damping into the dry structure
equations. Cui et al. [27] solved the dynamic response of a
parallel-plate fuel assembly excited by the fluid flow of a con-
stant speed. The added mass and damping produced by the
flow was added in the structure equations, so that a complex
dynamic equation of the system was produced and solved by
a numerical method.

The above examples confirm that the dynamic response of
a Sommerfeld system can be solved using the complex mode
theory in mathematics. However, as discussed in Sect. 5,
since there is not a simple orthogonal relationship of the
natural modes of a Sommerfeld system, it is not convenient
to use the complex modes in a mode summation method for

dynamic response analysis. As is well known, the natural
modes of the dry structure construct a complete orthogonal
function space to describe any motion of the solid. These nat-
ural modes of the dry structure are easily obtained by a finite
element analysis [13,14]. Furthermore, as indicated by Char-
acteristic 4 of the FS Sommerfeld system, the number of its
complex modes equals the degrees of freedom of the involved
dry structure. Therefore, the space of the natural modes of
the dry structure and the corresponding fluid pressure forms
are sufficient to describe any dynamic responses of FS Sys-
tems. This conclusion theoretically confirms that the solution
approach to solve free surface water wave radiation problems
using the dry modes of the ship [7] is sufficient. To explain
this, we consider the example shown in Fig. 3. Assume that

a force Fe−i�̂t is applied on the mass m, so that the dynamic
equation of this system is represented as

[
m 0
0 M

] [
ÿ
¨̃x
]

+
[

k + K −K
−K K

] [
y
x̃

]
=
[

Fe−i�̂t

−Sp(0, t)

]
.

(126)

The mode transformation given in Eq. (81) transforms
Eq. (126) into the mode form

I q̈ + Λq =
[
ϕ11 ϕ21

ϕ12 ϕ22

][
Fe−i�̂t

−Sp(0, t)

]
. (127)

Since the system is linear, the frequency of dynamic respon-
ses is same as the frequency of the external force. The forced
vibration of the system is assumed as

q(t) = Qe−i�̂t , p(x, t) = aei�̂x/ce−i�̂t , (128)

which when substituted into Eq. (127) produces

⎡
⎣�̂2

1 − �̂2 0 Sϕ21

0 �̂2
2 − �̂2 Sϕ22

ρc�̂ϕ21 ρc�̂ϕ22 −i

⎤
⎦
⎡
⎣Q1

Q2

a

⎤
⎦ =

⎡
⎣ϕ11

ϕ12

0

⎤
⎦ F. (129)

The force frequency �̂ is a real number which cannot equal
any complex natural frequencies ω of the Sommerfeld sys-
tem. As result of this, the determinant of the coefficient matrix
of Eq. (129) does not vanish and the solution Q1, Q2 and a
can be uniquely determined. The physical dynamic response
of the system can be obtained from Eq. (81). This example
shows that for the dynamic response analysis of FS Systems,
it is sufficient to represent the solid motion of the system
based on the natural modes of the dry structure. The com-
plex natural mode analysis of the total system may not be
necessary.
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9 Conclusions

The theoretical demonstrations and the selected examples
in this paper confirm and reveal the following generalized
conclusions:

(1) The natural vibration of a generalized FS system
behaves as free damped vibrations although there is no
material damping in both the solid and the fluid. The
damping is caused by the Sommerfeld radiation con-
dition at the infinite boundary where the energy of the
system transmits from inside to outside.

(2) The natural vibration of a generalized FS system is gov-
erned by a complex eigenvalue problem having only
complex conjugate eigenvalues. The number of com-
plex conjugate eigenvalues of the system equals the
number of degrees of freedom of the solid structure in
the system but independent of the fluid domain where
the Sommerfeld condition is imposed.

(3) There exists a complex energy flow identity for any two
different natural vibrations. The real part of this identity
represents an equilibrium equation of the time averaged
power dissipated through the natural vibration motions.
The imaginary part represents a workless power rela-
tionship between the two natural vibrations.

(4) The natural modes, satisfying its orthogonal relation-
ships, of the dry structure of an FS system are suffi-
cient to be used as a set of complete and orthogonal
functions to construct a mode space to represent the
dynamic response of the FS system excited by exter-
nal forces. This is an efficient approach for dynamic
response analysis of Sommerfeld systems by avoiding
solving any complex eigenvalue problems.

(5) For SS Systems, the reverse conclusions can be made.
For FSS Systems, there exist no natural vibrations.

(6) The new parameter representing the speed of radia-
tion wave in the Sommerfeld condition is introduced,
which provides an approach to investigate some com-
plicated radiation problems involving various boundary
conditions. As a result of this, the natural vibrations of
Sommerfeld systems involving both free surface and
compressible waves can be solved.
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