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a b s t r a c t   

An explanation is proposed to martensite inhibition beyond characteristic concentration thresholds in ti-
tanium binary alloys. The method combines the phenomenological theory of martensite crystallography 
(PTMC) and thermodynamic calculations (TCs) to describe the conditions under which martensite forma-
tion is favourable. It is shown that martensite can be crystallographically prevented while being thermo-
dynamically favourable. The PTMC is implemented by taking into account the influence of composition. 
After a comprehensive comparison to experiments, two twinning systems and two glide systems are in-
ferred to be able to produce the lattice invariant shear. The critical concentrations above which martensite 
cannot form are computed and compared to experimental results on binary and ternary systems, showing 
good agreement. The proposed method may be used as a guide to design titanium alloys for controlled 
martensitic behaviour. 

© 2021 The Author(s). Published by Elsevier B.V. 
CC_BY_4.0   

1. Introduction 

Martensitic transformation is responsible for some of the most in-
teresting mechanical properties of titanium alloys. The formation of 
martensite can induce shape memory and superelastic effects [1–3], 
which both have application in biomedical industry, or can improve 
ductility and work-hardening via transformation induced plasticity 
(TRIP) [4–7]. In the past few years, there has been an increasing interest 
in designing titanium alloys displaying martensitic transformation. In 
order to improve design methods, it is useful to understand the com-
position dependency of martensite formation. The present work aims at 
showing how the composition-dependent geometric accommodation of 
martensite can control the occurrence of the transformation. 

Binary titanium alloys are known to undergo martensitic trans-
formation under a variety of conditions [8] (Fig. 1). In pure titanium, 
martensite forms upon quenching from the high temperature body 
centered cubic (bcc) β-phase field [8]. The addition of elements 
known as β-stabilizers (e.g. Fe, Cr, Mo, V, Nb, Ta and W) contributes 
to stabilize the β-phase at the expense of martensite. Martensite 
displays hexagonal close-packed (hcp) α’ or orthorhombic α” struc-
ture, depending on composition [8]. For the purpose of the 

mathematical modelling presented here, the hcp structure can be 
described as an orthorhombic structure where =b a3 . Therefore, 
martensite will be here referred to in a more general way as αm, as in  
[9]. Dilute alloys usually display martensite upon quenching; when 
increasing the concentration of β-stabilizers above a certain 
threshold (labelled βc on Fig. 1), martensite only forms upon de-
formation until, with further increasing concentration, no marten-
site forms anymore, neither upon quenching nor deformation [10]. 
For each alloying element, the minimal concentration necessary to 
prevent martensite formation is called βd.

1 The values of βd for dif-
ferent binary systems are reported in Table 1. The present work fo-
cuses on the reason why martensite stops forming beyond a certain 
elemental concentration. 

The chemical driving force for martensite transformation (Δgch) is 
generally thought to be the key factor controlling martensite forma-
tion. Δgch = g g m, where gβ and g m are respectively the Gibbs free 
energies of the parent β phase and of the martensite product phase. It 
is commonly reported that the inhibition of martensite for an ele-
mental concentration above βd is due to Δgch being too low to com-
pensate for the energy terms opposing the transformation, i.e. 
interfacial energy and elastic strain energy. To test this hypothesis, 
Δgch was computed at room temperature as a function of composition 
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in different binary systems, as shown in Fig. 2. The calculations were 
performed with CALculation of PHAse Diagrams (Calphad) method, 
using the “TCTI1″ thermodynamic titanium database of Thermo-Calc® 
software. The free energy of the martensite is assumed to equal that of 
the hcp phase; this approximation has been used and discussed be-
fore [23–25]. The critical concentrations βd of the different elements 
are also displayed in Fig. 2. It is apparent from the figure that the 
values of βd correspond to highly scattered values of Δgch which are 
not close to zero. The situation is more pronounced for systems such 
as Ti-Fe and Ti-Cr, where martensite does not form, even under stress, 
at values of Δgch largely exceeding that of the elastic energy opposing 
the transformation (~100 J/mol for thermoelastic martensite [26]). It 
follows that thermodynamic considerations alone cannot explain the 
formation of martensite and the stabilization of β-phase. 

In the present work, the phenomenological theory of martensite 
crystallography (PTMC) is adopted to explain the absence of mar-
tensite as being due to the lack of plausible shear systems to undergo 
the transformation via an invariant plane strain (IPS). The PTMC is a 
well-established tool that allows to explain and interpret the crys-
tallographic features of the observed martensite. For example, the 
composition dependency of the coordinates of the habit planes of 
martensite plates have been investigated in various binary and 
ternary titanium alloys [27–30,31]. However, to the best of our 
knowledge, no previous attempt has been made to extend the cal-
culations to compositions where martensite is not observed. By 
showing that for these compositions it is impossible to form mar-
tensite through an IPS, the present work proposes an interpretation 
to martensite inhibition in titanium alloys. 

2. Main principles of the PTMC and hypothesis of this work 

2.1. Invariant plane strain problem 

The PTMC, independently developed by Wechsler et al. [41] and 
Bowles and Mackenzie [42–45], and summarised for instance in  
[46,47], solved an apparent contradiction between experimental 
observations and crystallography. When a martensite plate forms in 
a metal on the surface of which straight lines have been drawn 
before transformation, the initially flat surface is tilted, the broken 
line elements remain straight, and the interface between the 

Fig. 1. Transitions exhibited by binary Ti systems.  

Table 1 
Critical concentration βd beyond which martensite has never been reported in binary 
alloys, neither upon quenching nor deformation.      

Binary system βd wt% βd at% References  

Ti-Fe 3.5–4.6 3–4 [11] 
Ti-V 16–20 15.2–19 [12–14] 
Ti-Mo 14–16 7.5–8.7 [13–16] 
Ti-Cr 5.6–7.4 5.2–6.85 [17,18] 
Ti-Zr 100 100 [19] 
Ti-Ta 72–76 40–45 [20] 
Ti-Nb 40–42.5 25.7–27.8 [21] 
Ti-W 29.9–32.2 10–11 [22] 
Ti-Os 7.5–10.9 2–3 [22]    

Fig. 2. Computation of the driving force for martensite formation at room temperature. 
The stars represent, for each system, the critical concentration above which martensite 
has not been experimentally reported upon quenching or deformation. The experimental 
observations are collected from [11] for Ti-Fe, [17,32,33] for Ti-Cr, [34,35,14,36,13] for Ti-V,  
[34,15,37,14,16] for Ti-Mo, [17,28] for Ti-Ta and [38,21,39,40] for Ti-Nb. 
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martensite plates and the matrix remains continuous. This can only 
be possible if the interface plane, called habit plane, remains un-
distorted and unrotated during the transformation. Such a trans-
formation is called an invariant plane strain (IPS) [42]. However, in 
most martensitic transformations, the crystallography of the parent 
and product lattices are such that one lattice cannot be transformed 
into the other by an IPS. There was therefore an inconsistency be-
tween the lattice transformation and the macroscopic observations. 
The authors of the PTMC [42,43] solved this puzzle by describing the 
transformation in terms of a total lattice deformation that homo-
geneously transforms the parent lattice into a plate of product lat-
tice, followed by a so-called lattice invariant shear (LIS). The LIS 
takes place inhomogeneously, meaning that the plate is not sheared 
as a whole but in segments, maintaining the crystallographic 
structure after the total lattice deformation, while allowing the 
average interface plane (macroscopic habit plane) to be invariant. 
The LIS can be produced either by twinning of the product lattice or 
by dislocation glide. 

2.2. Inputs and outputs of the PTMC 

The PTMC allows to solve the IPS problem, or in other words to 
determine along which habit planes martensite can form with a 
macroscopically invariant plane strain. If a solution to this problem 
exists, the outputs of the calculation procedure are the coordinates 
of the habit plane, the volumetric fraction ftw of a martensite plate 
being internally twinned by the LIS or the number of interface dis-
locations, as well as the total average strain. In order to calculate 
these features, three inputs are necessary. The first one is the lattice 
correspondence between martensite and parent phase; this is well 
established in Ti alloys and given in Appendix A. Second, the ei-
genvalues of the lattice transformation, labelled η1, η2 and η3 are 
required [45]. They are determined by the lattice parameters of both 
the parent and the product phases via: 

=

=

=

a
a

b

a
c

a

2

2
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where a, b and c are the lattice parameters of the martensite2 and aβ 

is the lattice parameter of the parent bcc phase. The lattice para-
meters depend on composition, as described in Section 3. Third, the 
plane and direction in which the LIS takes place need to be de-
termined [45]. The coordinates of the planes and directions can be 
defined in the initial parent lattice, in the product lattice or in the 
eigenbase. The correspondence between the coordinates are pro-
vided in Appendix A. Hereon, h and u are unit vectors parallel to the 
initial positions of the normal to the shear plane and the shear di-
rection of the LIS, respectively. The coordinates of h in the eigenbase 
will be denoted (h1, h2, h3) and those of u will be denoted [u1; u2; u3], 
where comas refer to row vectors and semicolons to column vectors. 
It is not universally accepted which LIS systems are involved in Ti 
alloys; different possibilities have been considered in the literature  
[45,48,28]. The selection of potential LIS systems is addressed in  
Section 3.1. It should be noted that when the LIS mechanism is 
twinning, then either h or u depend on the composition, given that 
the twinning elements depend on the lattice parameters. 

2.3. Conditions for the existence of a solution to the IPS problem 

The existence of a solution to the IPS problem depends on the 
eigenvalues of the transformation and on the LIS system. Crocker 
and Bilby [49] pointed out that two necessary conditions must be 
simultaneously fulfilled for the IPS problem to have a solution, one 
concerning the plane of the LIS, 
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Assuming that the LIS system (h and u) is known (section 3.1), a 
solution to the IPS problem exists as long as Inequations (2) and (3) 
are met. These conditions are necessary but not sufficient for mar-
tensite formation to be possible. Once it is verified that the IPS 
problem has a solution satisfying (2) and (3), the complete PTMC 
calculation has to be performed. Indeed, the mathematical solution 
of the problem may, for instance, lead to a calculated fraction of 
internally twinned martensite ftw that either exceeds unity or is 
negative, which is physically impossible. In such case, the solution 
should be discarded. 

2.4. Hypothesis 

As discussed above, critical compositions βd exist beyond which 
martensite does not form although it appears to be thermo-
dynamically more stable than the β phase (Figs. 1 and 2). On the 
other hand, when martensite forms, experiments show that the 
transformation always takes place via an IPS. The hypothesis made 
here is that the experimental compositional thresholds correspond 
to the limits of existence of solution to the IPS problem. In other 
words, the inhibition of martensite would be the consequence of 
“crystallographic incompatibility”, meaning that the parent phase 
cannot be transformed into martensite via an IPS. 

To demonstrate this, we first express the eigenvalues as a func-
tion of composition. Second, a list of potential LIS systems is es-
tablished based on theoretical considerations regarding lattice 
correspondences and interface mobility along with experimental 
observations. Once the list of potential LIS systems is established, it 
is possible, for a given composition to predict whether martensite 
can form adopting any such LIS system, following the procedure il-
lustrated in Fig. 3. If none of the potential LIS systems allows the 
transformation, then it can be concluded that martensite formation 
is inhibited for such composition. If at least one LIS system allows 
the transformation to take place, the transformation is crystal-
lographically possible. It can then be verified, by computing the 
chemical driving force and the elastic strain energy as described in  
Section 5, whether the energy balance favours the transformation. 

3. Composition dependency of eigenvalues 

The eigenvalues are functions of the lattice parameters (Eq. (1)). 
In order to derive an expression of the lattice parameters as a 
function of composition, Vegard’s law is adopted, the linear variation 
of the lattice parameters with the concentration in alloying elements 
is expressed as: 

= +
= +
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where a0, b0 and c0 are the lattice parameters of martensite in pure 
Ti, and a 0 is that of the β-phase. Δai is the change in lattice 

2 a and b are independent in the case of an orthorhombic martensite whereas 
=b a 3 if the martensite has an hcp structure 
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parameter of a due to an increase in 1 at% of element i, and xi is the 
atomic percent of element i. The values of the lattice parameters in 
pure titanium for α’ are extracted from [50]. Orthorhombic mar-
tensite does not form in pure titanium, but the extrapolation of 
measurements made from concentrated alloys (e.g. Ti-Mo, Ti-Ta, 
Ti-Nb in [50]) as a function of composition shows that the calcula-
tion of the lattice parameters at 0% of solute element leads to the 
same value for the parameters of α”. The adopted lattice parameters 
of the three crystallographic structures in pure titanium are 
gathered in Table 2. 

Measurements in the literature are scarce and scattered but 
linear relationships between atomic concentration and lattice 
parameters are usually found [24,52,53]. It can also be noted that the 
variation of the lattice parameters is continuous with respect to 
composition, and that at the compositions where the transition α’/α” 
takes place, the two crystallographic structures exhibit the same 
lattice parameters [22,24]. Since the purpose of this work is to de-
scribe trends on the martensitic transformation when increasing the 
concentration in alloying elements, it was chosen to extract such 
trends from articles where the lattice parameters were consistently 
measured for different alloys of the same binary or ternary system, 
in order to reduce bias in the measurements. The used values are 
gathered in Table 3. Potential consequences on the model will be 
discussed later. 

3.1. Selection of LIS systems 

To assess whether the suppression of martensite can be 
explained by the absence of any solution to the IPS problem, it is 
necessary to establish a comprehensive list of potential LIS systems. 
According to the PTMC, the lattice invariant shear can take place by 
twinning or by dislocation glide. Several studies exploiting the PTMC 
only focus on twinning as LIS mode [45,58,27]. On the other hand, 
other authors have reached the conclusion that the LIS should occur 
by dislocation glide [48]. Given that experiments show both twinned 
and untwinned martensite [28], both modes are considered here. 

3.1.1. Selection of the potential twinning systems 
According to the PTMC, in order for a twinning system to be a 

possible LIS system, the two twins in the product lattice must cor-
respond to two crystallographically equivalent lattices in the parent 
phase [43]. This condition of equivalent correspondences uniquely 
determines the four twinning elements if either the twinning di-
rection or the twinning plane is known. It also implies that i) if the 
twinning plane is rational (twinning of type I), then it has to 
be generated from a mirror plane in the parent lattice [43] ii) if the 

Fig. 3. Procedure to determine whether martensite is inhibited. The PTMC elements are calculated following the method described in [42,43,45]. The dashed arrow only applies if 
the LIS is accomplished by twinning since in that case, either the shear direction or shear plane depends on the lattice parameters. 

Table 2 
Lattice parameters for 0% solute element additions [nm].        

a b c References  

β  0.3283   [51] 
α’  0.2959 a3 0.468 [50] 

α”*  0.288 0.5264  0.4734 [50]  

* extrapolated from concentrated alloys.  

Table 3 
Evolution of the lattice parameters upon addition of alloying elements [10−3 nm/at%].          

Δaα″ Δbα″ Δcα″ a c Δaβ  

Fe [11,51] – – – 0 -1.5 -0.54 
V [22,54] +0.62 -1.84 -0.8748 -0.164 -0.297 -0.257 
Mo [22,50] +2.29 -3.16 -1.48 0 +0.2831 -0.1259 
Cr [51,55] – – – -0.26 -1.33 -0.39 
Zr [53,56] +0.9 -0.28 +0.3 +0.22 +0.5 +0.31 
Ta [52,57] +0.9 -1.3856 0 0 +0.5 +0.02 
Nb [38] +1.364 -1.546 -0.238 0 +0.5 +0.013 
W [22] +2.43 -2.46 -0.57 -1.3 -0.4 -0.15 
Os [17,22] +6.3 -8.82 +1.2 – – -0.55 
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twinning direction is rational (type II), then it has to be generated 
from a two-fold axis in the parent lattice [58]. Bowles and Mackenzie 
showed that if the twinning system is assumed to be of type I, only 
two possible twinning systems meet the condition of equivalent 
correspondences [43]. These systems are labelled A and B and are 
reported in Table 4. As far as we are aware the list of all possible type 
II twinning systems meeting the condition of equivalent corre-
spondences has not been reported in the literature, so we attempt to 
do it here. This list can be established by slightly adapting the proof 
made for type I twinning in [45], as follows. The twinning direction 
has to be generated from a two-fold axis [58]. There are nine such 
directions in the bcc lattice (〈110〉B and 〈100〉B) [58], that generate 
five non equivalent directions in the orthorhombic lattice (calculated 
with the correspondence matrix of Appendix A), namely 〈001〉O, 
〈010〉O, 〈100〉O, 〈011〉O and 〈211〉O. 

The calculation of the twinning elements following the condition 
of equivalent correspondences shows that a twinning plane does not 
exist for 〈001〉O, 〈010〉O and 〈100〉O (the calculated plane coordinates 
are (000)). The 〈011〉O direction corresponds to the so-called com-
pound twinning (meaning both the twinning plane and direction are 
rational) and is the same as the twinning system B mentioned above 
and in Table 4. Therefore, only 21̄1̄ O remains as a potential direc-
tion for type II twinning. The twinning plane and magnitude can 
then be obtained by adapting the procedure provided for type I 
twinning in [43]. The expression of the shearing plane in the 
orthorhombic basis is provided in Table 4. 

Experimental observations can help to narrow down the list of 
possible twinning systems. It appears that, whereas type A twinning 
and type II twinning have been experimentally reported in the lit-
erature to act as LIS modes [28,44,27], type B is generally not ob-
served. This point will be discussed later but, for the time being, we 
hence exclude type B twinning from the list of potential LIS systems 
to perform our calculations. 

3.1.2. Selection of the potential glide systems 
To the best of our knowledge, and as opposed to the case where 

the LIS is accomplished by twinning, no rules have been reported in 
the literature to determine which glide systems can act as LIS. Here, 
the choice of potential glide systems is inferred from the following 
reasoning. As the inhomogeneous shear is lattice invariant and is 
assumed to take place in the product phase, the dislocations in-
volved in the process should have lattice translation Burgers vectors 
in the product lattice. The energy required for the spontaneous 
formation of a dislocation with said Burgers vector is too high for 
thermal agitation nucleation within the time and temperature 
ranges associated to martensitic transformation [59]. Hence, the 
only available dislocations for the lattice invariant shear will be 
considered to be those inherited from the parent phase. Dislocations 
in bcc metals are commonly of 1111

2 B type [59]. The four equivalent 
〈111〉B directions in the bcc lattice and the directions they generate in 
the orthorhombic or hcp lattice are shown in Table 5. The bcc dis-
locations generate two possible non equivalent dislocations in the 
orthorhombic or hcp lattice that we labelled G and H in Table 5. 

Dislocations of type H correspond to lattice translation vectors in 
the orthorhombic and hcp phases whereas dislocations of type G 
have a Burgers vector corresponding to half a lattice translation 
vector [60],3 and their motion in the product phase would thus 
create stacking faults in their wake. Thus, the shear induced by type 
G dislocations is not lattice invariant, and these dislocations are 
discarded. As a result, type H dislocations ( 1̄21̄01

3 H or 1̄101
2 O) are 

expected to be those involved in the lattice invariant shear. It re-
mains to determine what are the possible glide planes for these 
dislocations. We assume that the LIS systems should be selected 
among the slip systems usually observed during conventional plastic 
deformation. A list of the experimentally reported slip systems in the 
hcp phase of titanium alloys has been reported in [48]. In this list, 
only three families of glide systems involve type H dislocations. They 
have been gathered in Table 6, and labelled H1, H2 and H3. We as-
sume that they are the most plausible candidates for the lattice in-
variant shear. Among these three possible slip systems, only H1 and 
H2 can act as LIS systems for Ti alloys, because for the system H3, the 
restriction on the plane (Eq. (2)) cannot be fulfilled simultaneously 
with the restriction on the direction (Eq. (3)) for the range of ei-
genvalues displayed by Ti alloys. It should be noted that the argu-
mentation described above does not lead to the same glide systems 
as the ones usually considered for titanium alloys, that come from 
Otte’s work [48]. The discrepancy between the list of this work and 
Otte’s will be discussed later. As opposed to the cases where the LIS 
is produced by twinning, where the twinning systems are usually 
well characterized, experimental characterization of both the shear 
plane and direction involved in the LIS is rare when martensite is not 
internally twinned. We therefore cannot use experimental reports to 
narrow down the list of glide systems, as has been done above for 
twinning systems, and we will consider hereon that both systems H1 
and H2 are plausible candidates to accomplish the LIS. 

3.1.3. Summary 
A set of two glide systems and two twinning systems are selected 

as candidates to accomplish the lattice invariant shear. These sys-
tems are listed in Tables 7 and 8, with the coordinates of the planes 

Table 4 
Possible twinning systems expressed in the orthorhombic or hcp lattice.     

System  Twinning systems in the orthorhombic or hcp lattice  

A Plane (11̄1̄)O - (11̄01̄)H

Direction + +[4 2 2 , 2 3 , 2 3 ]2
2

3
2

2
2

1
2

3
2

1
2

2
2

3
2

2
2

1
2

3
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1
2

3
2

1
2

O

B Plane (01̄1)O - (01̄12)H

Direction [011]O - [011̄1]H

Type II Plane + +( 2 , 3 2 , 3 2 )2
2

3
2

1
2

2
2

3
2

1
2

2
2

3
2

1
2

O

Direction [21̄1̄]O[45̄13̄]H

Table 5 
Possible types of dislocations in the parent and product lattices.      

Label Dislocation in the bcc 
lattice 

Generated dislocation in the product lattices  

G [111]1
2 B [1̄01]1

2 O [2̄113]1
6 H

G [111̄]1
2 B [101]1

2 O [21̄1̄3]1
6 H

H [1̄11]1
2 B [1̄10]1

2 O [1̄21̄0]1
3 H

H [11̄1]1
2 B [1̄1̄0]1

2 O [1̄1̄20]1
3 H

3 Indeed, lattice translation vectors in the hcp lattice are given by k x x x x[ , , , ]1 2 3 4 H, 
with =k 1

3
if (x1 − x2) is a multiple of 3, and k = 1 otherwise [60] 
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and directions expressed in the eigenbase, so that the values can 
directly be input to Eqs. (2) and (3). Comparison with experimentally 
observed planes will be discussed later. 

4. Identification of the compositional space where martensite 
formation is possible from a crystallographic point of view 

Now that a list of plausible lattice invariant shear systems is 
proposed, the conditions expressed by Inequations (2) and (3) allow 
to determine whether martensitic transformation is possible with a 
certain LIS depending on the lattice parameters. 

4.1. Transformation compositional restrictions 

The restrictions on the planes and directions allow to define ei-
genvalue ranges where the transformation is possible. For each LIS 
system, the limits in “eigenvalue space” indicate the ranges within 
which martensitic transformation is possible. For example, for type 
A twinning (Table 7), the restriction on the LIS plane expressed by 
inequation (2) allows to define a surface in (η1, η2, η3) space, 
described by the following equation: 

+ + =1
2

(1 ) (1 )
1
4

(1 ) (1 )
1
4

(1 ) (1 ) 02
2

3
2

3
2

1
2

1
2

2
2

(5) 

and represented by the blue surface in Fig. 4 and expanded in  
Appendix B. Martensitic transformation with type A twinning is 
impossible on the left hand side of the blue surface. Similarly, the 
restrictions on the LIS direction expressed in Inequation (2) allow to 
define a surface in (η1, η2, η3) space, described by the following 
equation: 
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and represented by the yellow surfaces in Fig. 4. Eq. (3) is met in the 
region between the two yellow surfaces. When the LIS occurs due to 
twinning, the twinned fraction cannot exceed 1. The surface ftw = 1 is 
plotted as a red surface in Fig. 4.4 The region where all conditions for 
martensitic transformation are met is labelled R1 in Fig. 4. 

Vectors showing the variation of the eigenvalues when alloying 
elements are added to pure Ti are shown in Fig. 4 for the bcc to 
orthorhombic transformation. Each bullet represents an increase of 
1 at% in the given alloying element, and the red star shows the ei-
genvalues associated with the transformation of pure titanium. For 
pure titanium and low solute contents, where the orthorhombic 
phase is normally not observed, trends have been extrapolated. As 
alloying elements are added, as symbolized on the map by arrows, 
the points move away from pure titanium towards surfaces and may 
eventually cross them to reach a zone where the transformation is 
impossible. The map shows, for example, that for the Ti-Mo system, 
martensitic transformation is possible with type A twinning until its 
vector crosses the blue surface, which corresponds to Ti-14Mo (wt%). 
For higher concentrations, twinning A does not allow the transfor-
mation to take place. A similar plot for the eigenvalues associated to 
the bcc to hcp martensitic transformation in three binary systems is 
shown in Appendix B. Additionally, similar surfaces can be drawn for 
type II twinning and for the two potential glide systems Appendix B. 
This allows to calculate, for each binary system, the range of com-
positions for which martensitic transformation is crystallographically 
allowed. 

4.2. Summary and comparison to experiments 

The possibility to form martensite with one or the other LIS 
system as a function of composition, calculated as exposed above, is 
shown in Figs. 5 and 6 together with the experimentally reported 
behaviour regarding martensitic transformation. It can be noted that 
the experimental compositions at which martensite forms some-
times slightly overlap with those at which martensite is inhibited, 
due to the experimental results being collected from different 
sources. The calculations were performed for α’ in Ti-Fe, Ti-Cr and 
Ti-Zr, because these systems are known to display only hcp mar-
tensite; and for α” for the other systems. The experimentally ob-
served concentrations above which martensite is not observed 
match fairly well the calculated thresholds for which the geometry 
of the lattices does not allow an IPS to accomplish the transforma-
tion. For orthorhombic systems, the calculations indicate that no 
martensite can form above 14 wt% in Ti-Mo, 17 wt% in Ti-V, 37 wt% in 
Ti-Nb and 78 wt% in Ti-Ta (Fig. 5), which is relatively consistent with 
experiments. The calculations also show that martensite can crys-
tallographically form in any mixture of Ti and Zr (Fig. 6), which is 
also consistent with experiments. Some systems, such as Ti-Ta, Ti-Nb 
(Fig. 5) and Ti-Os (Fig. 6) display different critical concentrations 
depending on the LIS system, whereas others, such as Ti-Fe, Ti-Cr 
(Fig. 6), Ti-Mo or Ti-V (Fig. 5) exhibit a single compositional 
threshold for all considered LIS systems. These common thresholds 
can be explained by the fact that, at a certain concentration, Ti-Fe, 
Ti-Cr, Ti-Mo and Ti-V reach η3 = 1 (i.e. the horizontal planes on Fig. 4, 
which corresponds to a common border for the four LIS systems). 

5. Computation of the Ms temperature 

The procedure described above outlines a necessary condition for 
martensite formation; at least one LIS system should allow for 
geometric accommodation via an IPS. However, for the transforma-
tion to take place, crystallographic feasibility must be accompanied 
by a system energy reduction. A way to verify whether martensite is 
stable at room temperature is to calculate its martensite start tem-
perature (Ms). A model for this has been proposed in [25]. However, 
in such procedure the elastic strain energy was calculated without 
accounting for the orientation of the habit plane. The determination 
of the geometric elements of the transformation, as expressed here, 
allows for a more precise calculation. To obtain the elastic strain 
energy due to an invariant plane strain Pm, the total displacement 
vector m dm can be decomposed into a uniaxial dilatation du 

Table 6 
Glide systems of the orthorhombic or hcp phase involving 1̄101

2 O dislocations.         

Label hcp orthorhombic bcc 

H1 (0001)H [12̄10]1
3 H (001)O [11̄0]1

2 O (110)B [11̄1̄]1
2 B

H2 (101̄1)H [12̄10]1
3 H (111)O [11̄0]1

2 O (011̄)B [11̄1̄]1
2 B

H3 (101̄0)H [12̄10]1
3 H (110)O [11̄0]1

2 O (1̄12̄)B [11̄1̄]1
2 B

Table 7 
Possible lattice invariant shear systems; coordinates of the shear planes in the ei-
genbase.     

Shear plane in the eigenbase (h1, h2, h3)  

Twinning A ( 2 , 1̄, 1̄)1
2 P

Twinning II 
+

+
2 , ,2

2
3
2

1
2 3 2

2
3
2 2 1

2

2
2
2 3 3

2 2 1
2

2
P

Glide H1 (001)P 

Glide H2 ( 2 , 1, 1)1
2 P

4 It can be shown that in the usual range of eigenvalues for binary titanium alloys, 
for type A twinning, the necessary twinned fraction exceeds 1 or is lower than 0 if the 
third eigenvalue is less than unity. 
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(parallel to the normal to the habit plane pm, where pm is a unit 
vector) and a shear component ds lying in the habit plane. Once Pm is 
determined, this decomposition is straightforward (du = m(pm’dm) 
pm and ds = m dm − du if the vectors are expressed in an orthonormal 
basis). From Eshelby’s theory, Christian derived the expression for 
the volumetric elastic strain energy Eel of such a transformation for 
an ellipsoidal plate of semi-thickness c and radius r [62]: 

µ= +E
c
r

d d
1 4

(2 )
2el u s

2 2

(7) 

where μ is the shear modulus of the considered alloy and ν its 
Poisson ratio. The total change in energy associated with the trans-
formation is = +G r c E G r( ) 2el

ch4
3

2 2 where ΔGch is the vo-
lumetric chemical driving force for the transformation and γ is the 
interfacial energy. Then, a martensite plate of semi-thickness cd and 
radius a is in thermo-mechanical equilibrium with its surroundings 
when =

=( ) 0G
c c cd

: 

µ= +G T
T c

a
d d( ) 2

( )
1 4

(2 )
2

ch d
u s

2 2

(8) 

In Eq. (8), ΔGch is approximated with that of the β → α transforma-
tion, this approximation has been discussed in [24,25]. ΔGch is 
computed using the “TCTI1″ database of Thermo-Calc® software. 
μ depends on temperature and composition, as stated in [63], and ds 

and du depend on composition via the lattice parameters as detailed 
in Section 3. Ms is considered to be the temperature at which a 
martensite plate of 50 nm semi-thickness and 100 μm diameter is in 
thermomechanical equilibrium with its environment (as in [25]). 

This temperature is obtained by iteratively computing the elastic 
strain energy and the chemical driving force for different tempera-
tures until Eq. (8) is met. The elastic strain energy associated with 
the presence of a martensite plate depends on the magnitude of the 
macroscopic deformation Pm, and thus on the chosen LIS systems. 
Therefore, several Ms temperatures can be calculated, one for each 
geometrically possible LIS. An example of Ms calculation is displayed 
in Fig. 7 along with the temperature T0, defined as the partitionless 
equilibrium temperature between the hcp and bcc phase. The Ms 

calculations are illustrated for Ti-Cr and Ti-Fe binary systems, as 
these systems are known to form martensite only upon quenching, 
which makes comparison with experimental Ms more straightfor-
ward. For comparison purpose, the Ms that would be obtained if the 
transformation occurred without a LIS is also shown in Fig. 7; the 
procedure to calculate it is detailed elsewhere [25]. It can be noticed 
in Fig. 7 that the scatter between the calculated Ms corresponding to 
different LIS systems is very small, and that all the calculated Ms are 
very close from T0, indicating that the elastic strain energy only has a 
minor contribution on the Ms temperature. 

While the geometric behaviour may exhibit discontinuities with 
respect to composition, it can be seen with the calculation of T0 that 
there is no discontinuity in the thermodynamic stability of the hcp 
phase, since T0 gradually decreases upon chromium or iron addition, 
and is still far above room temperature at compositions for which 
martensite is never reported. This seems to indicate that the sharp 
transitions observed on the martensitic behaviour of Ti alloys are 
due to geometric compatibility issues, and cannot be solely ex-
plained by the thermodynamic stability of the different phases. It is 
sometimes claimed that the critical composition from which mar-
tensite stops forming is the composition at which the Ms tempera-
ture falls below room temperature, which is inconsistent with the 
present calculations, both from thermochemical and micro- 
mechanical points of view. As a matter of example, Otte [64] noticed 
that martensite did not form in a Ti-10Cr alloy, even when quenched 
down to −196 °C. As he pointed out, any reasonable extrapolation of 
the known Ms in this binary system would have made one expect the 
Ms temperature to lie around 200 °C. On the other hand, the argu-
ments related to crystallography presented here can explain this 
observation. 

6. Discussion 

6.1. Choice of the possible inhomogeneous shear or twinning systems 

The PTMC requires to choose potential inhomogeneous shear 
systems, but there is no general agreement on which systems are 
activated in Ti alloys, and no clear rule exists to make such a choice. 
It is not the focus of this work to explain the choice of the activated, 
but rather to establish a list of systems that seem to be plausible 
candidates to realise the LIS. In order to validate our initial hy-
pothesis, it is necessary to verify whether the list of LIS systems 
determined here (Tables 7 and 8) is consistent with experimental 
observations. 

Fig. 4. Limits for the martensitic transformation to be possible with twinning of type 
A as LIS, together with eigenvalues for orthorhombic martensitic transformation in 
some binary Ti-x systems. These binary systems are those for which martensite is 
known to be orthorhombic above a certain concentration. The plain black lines re-
present the extrapolation of the eigenvalues for concentrations for which orthor-
hombic martensite does not exist (pure Ti and dilute alloys), and each bullet 
represents an increase of 1 at% in the given alloying element. 

Table 8 
Possible lattice invariant shear systems; coordinates of the shear directions in the eigenbase.     

Shear direction in the eigenbase [u1, u2, u3]  

Twinning A +

+

[4 2 2 , 2 (2 3 ), 2

(2 3 )]
2
2

3
2

2
2

1
2

3
2

1
2

2
2

3
2

2
2

1
2

3
2

1
2

2
2

3
2

2
2

1
2

3
2

1
2

P
Twinning II [ 2 , 1̄, 1̄]1

2 P

Glide H1 
, , 01̄

3
2
3 P

Glide H2 
, , 01̄

3
2
3 P
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6.1.1. Choice of potential twinning systems 
The present work leads to the conclusion that type A and type II 

twinning modes are the most likely to be activated, whereas type B 
is discarded. The conclusion that type B twinning does not act as a 
LIS system agrees with a large body of experimental evidence. First, 
in most cases where martensite forms, type B twinning is anyway 
not allowed due to the restrictions on the shear plane and direction 
(Eqs. (2) and (3)). It has also been reported that in some special 

conditions where the lattice parameters would make it possible for 
this system to act as LIS, this twinning mode was not activated  
[31,65,27]. Nevertheless, Williams et al. observed type B twins in 
some Ti-Cu alloys [66], and such twins have also been reported in Ti 
alloys containing Ag and Mg [31], which may seem in contradiction 
with our conclusion that type B twinning should not act as a LIS 
mode. However, Williams et al. [66] claimed that the type B twins 
they observed in Ti-Cu were most likely induced by the stress 

Fig. 5. Possibility to form α” martensite with the four potential LIS systems as a function of composition in binary systems. The experimental observations are collected from  
[22,35,14,36,13] for Ti-V, [22,15,37,14,16] for Ti-Mo, [17,28] for Ti-Ta and [38,21,39,40] for Ti-Nb. Superelasticity corresponds to martensite formation upon loading which reverses 
to the parent phase upon unloading. 
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resulting from the formation of secondary martensite plates. 
Banerjee et al. [67], who observed type B twins in a zirconium alloy, 
reached the same conclusion. Thus, we suggest that the occasional 
presence of type B twins in martensite is not inconsistent with our 
conclusion, and we infer that whenever such twins are observed, 
they should be resulting from the stress associated with the for-
mation of new plates rather than from the necessary LIS. 

Nevertheless, the absence of type B twinning as a lattice invariant 
shear mode is not always well explained, especially considering that 
it has recently been reported as a deformation twinning mode in a 
Ti-Mo alloy [68]. It is not clear why this twinning mode, which in-
volves the smallest shear among all possible hcp twinning modes, 
and a reasonable shuffle [69], can act as mechanical twinning mode, 
but is usually not observed as a transformation twinning mode, even 

Fig. 6. Possibility to form martensite with the four potential LIS systems as a function of composition in binary systems. The experimental observations are collected from [11] for 
Ti-Fe, [17,61,33] for Ti-Cr, and [22] for Ti-Os. The calculations were performed for α’ martensite for Ti-Fe, Ti-Zr and Ti-Cr, as these systems do not display any orthorhombic 
martensite; and for α” for Ti-Os. 
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in conditions where the lattice parameters would allow it. Sun et al. 
proposed an explanation based on calculations of the critical shear 
stress for twinning and concluded that the order of magnitude of the 
critical shear stress for type B twinning was approximately six times 
higher than the critical shear stress for type A twinning [31], which 
may constitute an explanation for the usual absence of type B 
twinning as a LIS mode. Further work would be needed to relate the 
critical stress for the activation of all LIS modes to the composition, 
in order to verify that type B twinning is less energetically favourable 
than any of the other modes proposed here. 

Conversely, twinning systems A and II as possible LIS modes 
constitue a reasonable choice since both have been widely reported. 
Type A transformation twins were observed in pure Ti [70] and in a 
number of alloys including Ti-V [71], Ti-Ta [28], Ti-Mo [72], Ti-Nb  
[29], Ti-Nb-Al [27], Ti-Mn [15,73], and Ti-Cr [18,74]. There are fewer 
reports of type II transformation twins but, as pointed out in [47,28], 
type A and type II twins can be easily confused, and this mode of LIS 
has at least been reported in Ti-Ta [28] and Ti-Nb-Al [27] alloys. 
Therefore, the choice of type A and II as the only possible LIS 
twinning modes is well supported by the literature. 

6.1.2. Choice of potential glide systems 
Investigations of PTMC in titanium alloys often focus on twinning 

only as the LIS mode [27,45]. It is however of interest to consider not 
only twinning but also glide as a potential LIS mechanism. Indeed, 
internal twins are not systematically observed in martensite, and it 
has been experimentally confirmed that the LIS can take place by 
dislocation glide [28]. However, the complete characterization of the 
involved LIS systems is experimentally complex and hence rare. In 
this work, two glide systems were retained as potential LIS systems, 
relying on theoretical considerations (Section 3.1.3). Although there 
is little experimental support for their choice, we attempt to show 
here that our choice is not in disagreement with experiments. 

It was postulated here that only 112̄01
3 H dislocations could be 

involved in the LIS. These dislocations have indeed been observed in 
martensite plates in Ti-Mo [72], Ti-Cu [66] and Ti-V [71]. In the 
present work, 2̄1131

3 H (labelled G) dislocation glide as LIS was 
considered as unlikely, since these dislocations cannot be generated 
from simple dislocations from the parent phase (two bcc disloca-
tions would be necessary to generate one 2̄1131

3 H). This seems in 
disagreement with observations made in some Ti-Cu alloys [66] and 
Ti-V alloys [71], where 2̄1131

3 H dislocations were reported as 

interface dislocations. However, in both cases, these observations 
were made on plates where multiple LIS systems were activated and 
where at least one of the LIS systems considered in Table 7 was 
activated as well. We suggest that in those cases, the operating LIS 
mode is among the ones proposed here, and that the presence of 

2̄1131
3 H dislocations at the interface may be the consequence of the 
accommodation stresses. The choice of the potential glide planes is 
more difficult to verify, since even when dislocations are identified 
in martensite, there are very few reports on the planes on which 
they lie. In the few cases where the entire LIS glide mode was de-
scribed, however, the results are consistent with the conclusion 
reached here. In Zr-Ti alloys, for example, Banerjee et al. observed 
dislocations in a plane that corresponds to the H2 system described 
in Table 7. Therefore, the assumptions made here regarding the 
potential LIS glide systems show no inconsistency with reported 
experimental results, although it should be kept in mind that only a 
detailed experimental characterization of LIS modes would fully 
confirm them. There is no evidence that all of the chosen shear 
systems can indeed act as LIS, even in conditions where the geo-
metry makes it possible. The calculations presented here are led by 
considering the systems that can constitute LIS, which does not 
mean that all of them are active. 

6.1.3. Comparison with other attempts from the literature to determine 
the inhomogeneous shear systems 

To our knowledge, the only attempt to systematically investigate 
the theoretically possible LIS systems in Ti alloys is the one per-
formed by Otte [48]. The conclusions drawn by Otte contrast with 
our findings, since the two systems considered by him as the most 
probable ones (glide along [21̄1̄3](2̄112) and [21̄1̄3](1̄011)) are not 
in the list considered here. To determine which systems are the most 
likely, Otte calculated the coordinates of the habit planes associated 
with a number of plausible glide and twinning systems as LIS, and 
adopted the ones that allowed best agreement with reported ex-
perimental habit planes. Although his method is very reasonable, the 
results are somehow in disagreement with experiments, since they 
led him to conclude that type A and type II twinning are not likely to 
act as LIS systems, although these modes have been unambiguously 
characterised as LIS modes in numerous titanium alloys 
(Section 6.1). Considering the large uncertainty on the habit plane 
measurements along with the sensitivity of the habit plane calcu-
lations to the lattice parameters (detailed below), it was chosen in 
this work not to primarily focus on agreement between habit plane 

Fig. 7. Example of calculation of the Ms temperature in Ti-Cr an Ti-Fe. The black bullets show the experimental Ms from [23,35]. Whenever the transformation is “crystal-
lographically impossible” with a given LIS system, the Ms was arbitrarily set to −120 °C. 
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calculations and measurements to infer a list of plausible LIS sys-
tems, but rather to give more importance to geometric considera-
tions, and to experimental characterization of LIS systems when 
available. Moreover, as detailed below, the choice of LIS systems 
made in the present work is still consistent with reported habit 
planes measurements. 

6.1.4. Comparison between experimental and calculated habit planes 
The coordinates of the habit planes depend on the activated LIS 

system. Thus, a comparison between experimental measurements 
and calculations of habit planes coordinates may help confirming or 
discarding the list of LIS systems. The uncertainty is in general sig-
nificant on experimental values of habit plane coordinates due to the 
large scatter generally observed in the measurements [75–77], and 
to the fact that the reported coordinates are usually not those of the 
centre of the cluster of experimental measurements, but rather 
those of the closest lattice plane. An uncertainty of 5° on these 

measurements is therefore assumed here, consistently, for example, 
with the scatter exhibited by the measurements of [75] or [77]. 
The uncertainty on habit plane calculation performed with the PTMC 
can be large as well, mainly because of the uncertainty on the lattice 
parameters calculation, which is estimated here to ±0.015 Å for 
reasons exposed later (Section 6.2). The comparison between mea-
sured habit planes coordinates and calculations performed with the 
list of LIS systems described above for α’ is exemplified in Fig. 8 in 
the case of pure titanium. In pure titanium, both twinned martensite 
with {334}B habit plane [70] and non-twinned martensite with 
{12, 8, 9}B habit plane [78] have been reported. The stereographic 
projections of these experimental habit planes are displayed with an 
uncertainty of 5° in Fig. 8a and b for the former, and in Fig. 8c and d 
for the latter. The calculated habit planes, taking into account the 
uncertainty on the lattice parameters, are also shown in Fig. 8. The 
uncertainty on the lattice parameters were taken into account by 
executing each habit plane calculation 1000 times, varying randomly 

Fig. 8. Stereographic projections of calculated habit planes for various LIS systems in pure titanium; (a) type A twinning (b) type II twinning (c) glide with H1 system (d) glide with 
H2 system. The black circled bullets represent the habit plane coordinates computed with the lattice parameters as described above. The cloud of points (1000 per system) 
represents the calculation results when randomly varying the lattice parameters in the range ± 0.015 Å around the initial calculated value. Experimental habit planes observed for 
internally twinned martensite ((a) and (b)) and untwinned martensite ((c) and (d)) are also displayed. The red and blue zones around the experimental habit planes represent an 
uncertainty of 5° around the announced habit plane. 
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the lattice parameters in the range ± 0.015 Å around the initial cal-
culated value. Although the scatter is very large, the calculations are 
consistent with observations. In turn, in the case of twinned mar-
tensite, the activation of type A or type II twinning as LIS may equally 
explain the observed {334}B habit plane (in reality, only type A 
transformation twins were reported [70] to our knowledge, but as 
mentioned before, type II is not to be neglected as it has already 
been reported to act as transformation mode). In the case of the 
{12, 8, 9}B habit plane, no transformation twins were observed, 
which means that the LIS should occur by dislocation glide, but no 
experimental information was found in the literature regarding the 
activated glide system. As shown in Fig. 8, both H1 and H2 systems 
may explain the observed habit planes. It should be noted that, given 
the large uncertainty on both habit plane measurements and cal-
culations, agreement between both does not appear to be sufficient 
to infer which system is activated. This does however constitute a 
supplementary evidence that the selection of LIS made here is 
consistent. Similar comparisons between habit plane calculations 
and experiments were performed for a variety of alloys where the 
habit planes were characterised, and where martensite was reported 
not to be internally twinned; namely Ti-53Ta [28], Ti-5V [71], Ti- 
16Nb-3Al (at%), Ti-18Nb-3Al(at%)5[27] and Ti-20Nb (at%) [29]. It 
turned out that, in each of these cases, the experimental observa-
tions can be explained by activation of system H1, system H2 or both, 
provided the uncertainties are taken into account. Thus, the choice 
of LIS systems made here is further supported by a reasonable 
agreement between experimental and calculated habit planes. 

6.2. Sensitivity of the model to lattice parameters 

The approach proposed here is sensitive to the lattice para-
meters. Those used for calculations are derived from linear functions 
of the concentration in alloying elements, which coefficients are 
extracted from measurements reported in the literature. The preci-
sion of the calculated values is limited due to the experimental 
uncertainty on the measurement (generally between around 
± 0.005 Å and ±0.01 Å [50,72]), the uncertainty in the linear 
relationship that is assumed, or the fact that the lattice may be able 
to elastically contract or expand to reach dimensions promoting the 
transformation.6 Yan et al. analyzed the lattice parameters for 
three binary systems coming from multiple sources from the lit-
erature [50]. From their data, it appears that the usual maximum 
difference between lattice parameters measurements performed by 
different authors for the same composition is around 0.03 Å. This 
scatter should include the errors coming from the sources listed 
above. Therefore, in order to evaluate the sensitivity of the present 
calculations to the lattice parameters, the thresholds above which 
martensite is not supposed to form were recalculated by changing 
the lattice parameters values within a reasonable range. The calcu-
lations were performed a thousand times for each binary system, 
and for some ternary systems (varying the concentration in one 
element), adding every time random values in the range [−0.015 Å, 
+0.015 Å] to all lattice parameters. For each set of calculations, βd 

was determined as the lowest concentration for which crystal-
lographic accommodation is impossible. This allows to determine a 
domain where 95% of the calculated βd are located. Fig. 9 displays the 
results of these calculations as a function of the experimental ob-
servations regarding these systems, where the reported 

experimental ranges are also represented. The sensitivity of the 
calculations to the lattice parameters is of the same order than the 
experimental scatter. Thus, even considering a potential error of ±  
0.015 Å on the estimation of the lattice parameters, the method 
presented here allows to explain fairly well the absence of marten-
site in Ti alloys, or at least to rank the addition elements by their 
martensite inhibition power. In summary, although an error on the 
lattice parameters would modify the calculated thresholds above 
which martensite cannot form, the trends remain correct, and the 
PTMC allows to explain or interpret the inhibition of martensite 
above critical values of element concentrations. 

6.3. Crystallographic interpretation of transitions regarding martensitic 
transformation 

Different reasons are mentioned in the literature regarding the 
suppression of martensite formation (even upon deformation) in 
concentrated alloys. As mentioned before, the hypothesis that mar-
tensite formation is suppressed in β alloys because the Ms tempera-
ture becomes too low is not convincing, since the thermodynamic 
driving force for martensite formation is very high at concentrations 
where martensite is not observed (Fig. 2). Another widespread ex-
planation for the absence of martensite is the presence of ω phase, 
that would inhibit martensite formation [8]. It is indeed well estab-
lished that ω phase is often present when martensite is not, which 
naturally leads to explain the absence of martensite by the presence 
of ω. However, Cai et al. showed that the ω phase can continuously 
transform into martensite α” upon deformation in a β metastable alloy  
[80]. It was also shown in a Ti-Mo alloy that both martensite and 
ω can form upon deformation in the same sample [81]. It is therefore 
difficult to assert that the ω phase is on its own responsible for the 
absence of martensite, even after deformation. Although it is entirely 
plausible that above a critical fraction of ω phase, martensite cannot 
form anymore, the present work suggests that the inhibition of 
martensite is more likely to be due to crystallographic incompatibility. 

Fig. 9. Comparison between the experimental thresholds above which martensite is 
not observed and the calculated thresholds. The height of the boxes represents the 
uncertainty in the calculation when varying the lattice parameters ± 0.015 Å, whereas 
the width of the boxes represent the possible critical compositions, according to 
experimental observations extracted from the literature. Green boxes are for hcp 
structure, red boxes for orthorhombic structure. The upper bounds of experimental 
thresholds for Ti-W and Ti-Ta are speculated; indeed, Ti-W alloys have been reported 
to display martensite upon quenching up to 10 at% and Ti-40Ta has been reported to 
form martensite upon deformation, but no information was found regarding higher 
concentrations in W or Ta. 

5 In that case, the calculations were performed by varying the lattice parameters 
around the values experimentally reported by Inamura et al. [27] since the 
dependency of the lattice parameters to the Al content is not known. 

6 Taking a typical ratio between the yield stress σy and the elastic modulus 
E yielding = 4 10y

E
3 [79] and roughly approaching the maximum elastic elongation 

ϵ by = y
E

, the maximal order of magnitude of the error made on the lattice para-
meters, if they can elastically extend, should be around ±0.01 Å. 
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7. Conclusions   

• Four lattice invariant shear (LIS) systems are thought to be 
plausible candidates for martensite accommodation in titanium 
alloys; namely (i) twinning in the (11̄1̄)O plane (type A) or (ii) in 
the [21̄1̄]O direction (type II), or dislocation glide along either (iii) 
the [11̄0]1

2 O direction in the (001)O plane (H1 system) or (iv) the 

[11̄0]1
2 O direction in the (111)O plane (H2 system). The proposed 
list of LIS systems is consistent with existing experimental 
characterisation of LIS systems as well as of habit plane 
coordinates.  

• Martensite inhibition beyond critical concentrations in binary 
titanium alloys may be explained by the impossibility to trans-
form via any plausible invariant plane strain (IPS). This is de-
monstrated by extrapolating PTMC calculations to compositions 
where martensite does not exist.  

• A formulation combining computational thermodynamics with 
the PTMC describes the occurence of martensite formation and 
the Ms temperature as a function of composition in binary and in 
some ternary alloys, showing good agreement with the literature. 
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Appendix A. Correspondence matrices and basis 

In what follows, the considered variant of martensite is related to the parent bcc lattice by the correspondence matrix BCO: 

=C
0 1̄ 1
0 1 1
1̄ 0 0

B O

(A.1) 

which is in accordance with the Burgers relationship [82]. The subscript O is used for the matrices and vector expressed in the orthorhombic 
basis, and can refer to an orthorhombic or an hcp lattice. Following Bowles and Mackenzie’s notation, a column vector which coordinates are 
expressed in any basis A will be designated [A; x], the corresponding row vector is written (x; A), and the normal to the planes are generally 
expressed as row vectors in the reciprocal basis A*. With this notation, any direction [B;x] in the bcc basis is transformed into [O;x] = OCB[B;x]  
= BCO

−1[B;x] when the transformation occurs, and any plane of normal (n, B*) transforms into a plane which normal in the orthorhombic basis 
is expressed as (n, O*) = (n, B*) BCO. The eigenbasis P of the transformation in related to the bcc base by the matrix PTB [44]. 

=T

0 0 1̄

0

0

P B
1̄
2

1
2

1
2

1
2 (A.2)  

If a direction in the hcp basis is given by its four Miller indices [h, k, −h −k, l], this direction can be translated into coordinates 
[O;x] = [x1;x2;x3] in the orthorhombic basis via the correspondence matrix CO Hdir (consistent with the correspondence given by 
Srivastava [83]): 

= =
x
x
x

h
k
l

h
k
l

C .
1
2

3 0 0
1 2 0
0 0 2

1

2

3
O Hdir

(A.3) 

whereas if the indices (h, k, − h −k, l) designate a plane, the corresponding plane (n, O*) = (n1, n2, n3) in the orthorhombic basis is obtained 
thanks to the correspondence matrix CH Opl [83]: 

= =( ) ( ) ( )n n n h k l h k lC
1 1 0
0 2 0
0 0 1

1 2 3 H Opl

(A.4)  
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Appendix B. Representation of the surfaces that determine the geometric possibility of forming martensite with an invariant plane 
strain 

Fig. B.10 Fig. B.11 Fig. B.12 Fig. B.13 Fig. B.14.  

Fig. B.11. Limits for the martensitic transformation to be possible with glide systems H1 and H2, together with eigenvalues for hcp martensitic transformation in some binary Ti-x 
systems. Starting from pure Ti, each bullet represents an increase of 1 at% in the given alloying element. These binary systems are those which display only hcp martensite and no 
orthorhombic martensite. Starting from pure Ti, each bullet represents an increase of 1 at% in the given alloying element. 

Fig. B.12. Limits for the martensitic transformation to be possible with twinning of type A as LIS, together with eigenvalues for hcp martensitic transformation in some binary Ti-x 
systems. These binary systems are those which display only hcp martensite and no orthorhombic martensite. Starting from pure Ti, each bullet represents an increase of 1 at% in 
the given alloying element. 

Fig. B.10. Limits for the martensitic transformation to be possible with glide systems H1 and H2, together with eigenvalues for orthorhombic martensitic transformation in some 
binary Ti-x systems. These binary systems are those for which martensite is known to be orthorhombic above a certain concentration. The arrows represent the extrapolation of 
the eigenvalues for concentrations for which orthorhombic martensite does not exist (pure Ti and dilute alloys), and each bullet represents an increase of 1 at% in the given 
alloying element. 
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