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Abstract 
Previous research in India has identified urbanisation, human mobility and population 

demographics as key variables associated with higher district level COVID-19 incidence. 

However, the spatiotemporal dynamics of mobility patterns in rural and urban areas in 

India, in conjunction with other drivers of COVID-19 transmission, have not been fully 

investigated. We explored travel networks within India during two pandemic waves using 

aggregated and anonymized weekly human movement datasets obtained from Google, 

and quantified changes in mobility before and during the pandemic compared with the 

mean baseline mobility for the 8-week time period at the beginning of 2020. We fit Bayes-

ian spatiotemporal hierarchical models coupled with distributed lag non-linear models 

(DLNM) within the integrated nested Laplace approximation (INLA) package in R to exam-

ine the lag-response associations of drivers of COVID-19 transmission in urban, suburban 

and rural districts in India during two pandemic waves in 2020-2021. Model results demon-

strate that recovery of mobility to 99% that of pre-pandemic levels was associated with an 

increase in relative risk of COVID-19 transmission during the Delta wave of transmission. 

This increased mobility, coupled with reduced stringency in public intervention policy and 

the emergence of the Delta variant, were the main contributors to the high COVID-19 

transmission peak in India in April 2021. During both pandemic waves in India, reduction 

in human mobility, higher stringency of interventions, and climate factors (temperature and 
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precipitation) had 2-week lag-response impacts on the Rt  of COVID-19 transmission, with 

variations in drivers of COVID-19 transmission observed across urban, rural and suburban 

areas. With the increased likelihood of emergent novel infections and disease outbreaks 

under a changing global climate, providing a framework for understanding the lagged 

impact of spatiotemporal drivers of infection transmission will be crucial for informing 

interventions.

Introduction
The COVID-19 pandemic highlighted the intrinsic role of human movement, along with 
demographics and environmental factors, in the dispersal of human pathogens in a highly 
connected, mobile and globalised society [1–3]. As the global climate changes, and environ-
mental and extreme weather events increase in frequency, the emergence of novel zoonotic 
diseases and outbreaks of bacterial, parasitic and viral infections is likely to become more 
frequent [4]. Effective and efficient responses to future outbreaks and epidemics require a 
thorough understanding of the infection transmission drivers that contributed to different 
COVID-19 pandemic waves, and interventions that were successful in reducing transmission.

In India, the initial wave of COVID-19 was contained by a nationwide lockdown, which 
extended from March 31st to May 31st, 2020 [5], with a subsequent phased lockdown for 
containment zones in effect until June 30th, 2020 [6]. The first wave of COVID-19 transmis-
sion in India was characterised by mild clinical infection and a relatively low mortality rate of 
less than 3% [5]. Several serosurveys carried out following the initial pandemic wave in India 
determined a high proportion of asymptomatic infections [7–10], leading to speculation as 
to the reasons for lower incidence of severe clinical cases including population demographics 
and innate population immunity [11,12].

In March 2021, India experienced a severe second wave of COVID-19 transmission with a 
high proportion of infection associated mortality [13]. The Delta variant, or B.1.617 lineage, 
dominant during the second transmission wave was first identified in Maharashtra in late 
2020 [14] before quickly spreading throughout India and to at least 90 other countries [15]. 
Compared with the initial pandemic wave in India, the Delta wave was characterised by high 
morbidity and mortality, even among a younger age cohort, overwhelming health systems 
across the country [16,17]. On April 26th 2021, India recorded 360,960 new cases, at the time 
the highest number of daily new SARS-CoV-2 infections recorded worldwide [18], and by 
mid-June 2021 more than 29 million cases of COVID-19 had been confirmed [19]. During the 
second pandemic wave, the number of COVID-related deaths in India ranked third globally 
with an estimated 2.7 million COVID-19-related deaths occurring between April and July 
2021 [20].

Although reasons for the second wave of transmission were unclear, it was speculated that 
the surge in case numbers was attributed to the circulation of the B.1.617 lineage of SARS-
CoV-2 (Delta variant), which had a more effective transmission capability, shorter incubation 
period and was more pathogenic than previous lineages [17,21,22]. Prior to this surge in 
transmission, adherence to COVID-19 preventative behaviours in India was less stringent, 
possibly due to pandemic fatigue, economic necessity and complacency due to the perception 
that clinical case infections in India were mild relative to other populations [16,23]. Popu-
lation mobility, which had begun to increase relative to mobility during national lockdown 
interventions, including rural-urban-rural migration to mass election rallies and social and 
religious gatherings such as Kumbh Mela (approximately 7 million people), was also likely to 
be a primary driver of the second wave of SARS-CoV-2 in India [13,15].
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Previous research has explored the relationship between human mobility in response 
to government interventions and COVID-19 transmission during the early stages of the 
pandemic [24–26], or state level associations between human mobility and COVID-19 
transmission during the Delta pandemic wave [27]. However, to our knowledge, no previous 
research has explored the impact of inter-district movement across both pandemic waves, 
relative to pre-pandemic mobility levels, using fine spatial scale aggregated mobility data on 
COVID-19 transmission in India. The contribution of district level urbanisation [28,29], 
population density and demographics [30,31], climate [28,32] and stringency of government 
interventions [24] to COVID-19 transmission in India has also previously been investigated. 
However, methodological approaches have included simple correlation [24,30] or regression 
analyses [33] and, to the best of our knowledge, no spatiotemporal modelling approach has 
been used to explore the urban-rural district level associations of human mobility, stringency 
of government interventions, and climate with transmission risk across both pandemic waves 
in India.

Further to this, although extensive research has been conducted exploring the impact 
of various climate drivers on COVID-19 transmission, substantial heterogeneity exists in 
published results. For example, non-linear associations have been found between tem-
perature and global COVID-19 transmission [34], with lower temperature negatively 
associated with daily COVID-19 cases in a study among 127 countries [35]. Elsewhere, 
across 154 different countries, higher temperatures have been found to be negatively 
correlated with COVID-19 [36]. Globally, the ultraviolet (UV) index has been negatively 
associated with COVID-19 transmission [37,38], with a one to two week lagged impact 
[39,40]. In terms of the impact of humidity and precipitation on COVID-19 transmission, 
results of previous published literature are varied and inconsistent, with some research 
indicating a negative impact of humidity [41,42] and a positive relationship between 
precipitation and COVID-19 cases [41]. Elsewhere, a weak association between cumula-
tive precipitation [43] and no significant correlation between humidity and COVID-19 
[44,45] has been observed.

While COVID-19 is no longer classed as a public health emergency, it remains a pandemic 
with significant associated mortality, long term health effects and seasonal transmission 
peaks [46–48]. In order to prepare for seasonal COVID-19 epidemics, and plan allocation 
of resources such as testing and vaccination booster campaigns, it is critical to develop a 
framework for exploring spatiotemporal variations in drivers of transmission across urban, 
suburban, and rural areas. In this study, we quantified changes in mobility patterns and travel 
networks across India, before and during the COVID-19 pandemic, using spatially resolved, 
aggregated and anonymized weekly human movement datasets obtained from Google. We 
used a Bayesian spatiotemporal hierarchical framework, coupled with distributed lag non-
linear models (DLNM) to examine the lag-response associations between the transmission 
dynamics of COVID-19 and drivers of transmission during the initial wave (July to November 
2020) and Delta wave (March to July 2021) of SARS-CoV-2 in India. We also compared the 
lagged impacts of mobility metrics, climate covariates, and stringency of government inter-
ventions on the transmission of SARS-CoV-2 lineages between both pandemic waves, and 
across urban, suburban and rural delineated districts.

Methods

Ethics statement
Ethical clearance for collecting and using secondary data in this study was granted by the 
institutional review board of the University of Southampton (No. 61865). All data were 
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supplied and analysed in an anonymous format, without access to personal identifying 
information.

Data sources
COVID-19 incidence data.  In India, administrative units are divided into state 

(36 including eight union territories), district and township, corresponding to spatial 
administrative levels I, II and III, respectively (S1 Fig). The daily number of confirmed 
COVID-19 cases at country level were obtained from the COVID-19 Data Repository 
assembled by the Centre for Systems Science and Engineering (CSSE) at Johns Hopkins 
University [49]. We also obtained COVID-19 data at district level (admin II) for the period 
of 26 April 2020 to 31 October 2021 for 666 districts from www.covid19india.org, a volunteer 
driven, crowdsourced tracker for COVID-19 cases in India [50]. COVID-19 data were 
available in 666 district units, as in some cases, depending on testing capacity and guidelines 
in each federal state, data were aggregated to state level only or case incidence was estimated 
by state pool [50].

Administrative level I and II shapefiles for India, corresponding with state and district 
level, were obtained from the Database of Global Administrative Areas (GADM version 3.6) 
(https://gadm.org/). Since the last national census of population in India in 2011, new districts 
have been created by splitting and rearranging some administrative boundaries [30]. COVID-
19 data aggregated to current district boundaries were merged with 2011 administrative level 
II units according to the best spatial alignment of current and previous district boundaries. 
For the purpose of spatial modelling, the islands in Lakshadweep and the Andaman Islands 
have been unified as discrete spatial areas and treated as distinct districts. The authors remain 
neutral with regard to jurisdictional claims in maps used in this study.

Google COVID-19 Aggregated Mobility Research Dataset.  Aggregated and anonymized 
weekly human movement datasets were obtained from Google to measure changes inmobility 
across and within regions in India from November 10, 2019, to December 31, 2021, and 
to assess their impacts on COVID-19 transmission. The Google mobility dataset contains 
anonymized mobility flows aggregated over users who have turned on the Location History 
setting, which is off by default. This is similar to the data used to show how busy certain types 
of places are in Google Maps — helping to identify when a local business tends to be the 
most crowded. The dataset aggregates flows of people between S2 cells, which here is further 
aggregated by district of origin and destination. Each S2 cell represents a quadrilateral on the 
surface of the planet and allows for efficient indexing of geographical data.

To produce this dataset, machine learning was applied to log data to automatically seg-
ment data into semantic trips [51,52]. To provide strong privacy guarantees, all trips were 
anonymized and aggregated using a differentially private mechanism to aggregate flows over 
time (see https://policies.google.com/technologies/anonymization). This research is done on 
the resulting heavily aggregated and differentially private data. No individual user data was 
ever manually inspected, only heavily aggregated flows of large populations were handled. All 
anonymized trips are processed at aggregate level to extract their origin, destination, location 
and time. For example, if users travelled from location a to location b within time interval t, the 
corresponding cell (a, b, t) in the tensor would be n∓err, where err is Laplacian noise. The auto-
mated Laplace mechanism adds random noise drawn from a zero mean Laplace distribution 
and yields (ε, δ)-differential privacy guarantee of ε = 0.66 and δ = 2.1 × 10−29. The parameter ε 
controls the noise intensity in terms of its variance, while δ represents the deviation from pure 
ε -privacy. The closer they are to zero, the stronger the privacy guarantees. Each user contrib-
utes at most one increment to each partition. If they go from a location a to another location b 
multiple times in the same week, they only contribute once to the aggregation count.

www.covid19india.org
https://gadm.org/
https://policies.google.com/technologies/anonymization
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The summed weekly domestic mobility inflows and outflows of each district were then 
divided by the number of origin S2 cells (each was calculated only once) that contained 
data between November 10, 2019 and December 31, 2021. Any potential bias that might be 
introduced by discarding the increasing number of S2 cells in order to protect privacy due to 
the decreasing number of travellers under travel restrictions was accounted for. For compara-
bility of changes in mobility across districts, aggregated flows were further standardised using 
pre-pandemic mean baseline levels of mobility for the first eight weeks of 2020 (December 
29, 2019 – February 22, 2020) (S2 – S4 Fig & S29 Fig). This dataset was analysed by research-
ers at the University of Southampton, UK as per the terms of the data sharing agreement. 
Production of this anonymized and aggregated dataset has been detailed in previous studies 
[3,51–53].

Stringency of COVID-19 intervention.  Stringency Index of COVID-19 intervention 
policy in India data were obtained from the Oxford COVID-19 Government Response 
Tracker (OxCGRT) project at state level and daily temporal resolution (S5 Fig & S30 Fig). 
The Stringency Index is a composite index of government responses to the COVID-19 
pandemic compiled by OxCGRT based on data collected from publicly available sources such 
as news articles, and government press releases and briefings from 1 January 2020 [54,55]. 
The project tracks national government policies and interventions across a standardized 
series of indicators and creates a suite of composite indices to measure the extent of these 
responses to understand how government responses evolved over the course of the pandemic 
[55]. The Stringency Index was calculated as a composite score of 18 indicators of closure 
and containment, health, and economic policy [24,54]. Scores were created using an additive 
unweighted approach, taking the ordinal value and adding a weighted constant if the policy 
was general rather than targeted. The maximum values were rescaled to create a score ranging 
from 0 to 100, with higher scores indicating stricter measures [54]. Stringency Index data for 
India were obtained from 27th April 2020 to 25th July 2021.

Climate data.  Three-dimensional Network Common Data Form (NetCDF) climate data 
were obtained from the Copernicus Climate Data online repository (Copernicus Climate 
Change Service, Climate Data Store, (2023): ERA5 hourly data on single levels from 1940 to 
present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), https://doi.
org/10.24381/cds.adbb2d47 (Accessed on 19-05-2023). Data were ERA5 daily reanalysis global 
climate data obtained for January 2019 to March 2021, gridded to 0.25 degrees of latitude 
and longitude. Variables obtained were mean temperature of air (°C at 2m above the surface 
of land, sea or inland waters), accumulated precipitation (metres), relative humidity (%) and 
downward ultraviolet (UV, KJ m per hour/ 2   ) radiation at the Earth’s surface (S6-S9 Fig & 
S31 – S34 Fig).

ERA5 data are the fifth generation of European Centre for Medium-Range Weather 
Forecasts (ECMWF) reanalysis for the global climate and weather for the past 4 to 7 decades. 
Reanalysis is a method of combining model data with global observations for produc-
ing complete and consistent datasets for a large number of atmospheric, ocean-wave and 
land-surface quantities. Reanalysis works in the same way as the principle of data assimila-
tion which combines previous forecasts with newly available observations on a 12-hour basis 
to produce new best estimates of atmospheric measures [56]. Climate data were extracted 
from NetCDF files using the ncdf4 [54,57] and RNetCDF [58] packages in R statistical soft-
ware version 4.1.0 and aggregated to district level using Quantum Geographic Information 
Systems (QGIS) software [59].

Urban and rural classification.  Data on the degree of urban, rural and suburban 
spatial area within each district (admin level II) were derived from the Global Human 
Settlement Layer (GHSL) [60] using the Degree of Urbanisation – Territorial units classifier 

https://doi.org/10.24381/cds.adbb2d47﻿
https://doi.org/10.24381/cds.adbb2d47﻿
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(GHS-DU-TUC) tool. The GHS-DU-TUC tool classifies local units from a settlement 
classification grid according to the Degree of Urbanisation (DEGURBA). It operationalises 
the method recommended by the 51st Session of the United Nations Statistical Commission 
to delineate cities, urban and rural areas (stage 2, units classification) as defined by the 
Degree of Urbanisation levels 1 and 2. Categorised variables for each degree of urbanisation 
(DEGURBA_L1_1 to DEGURBA_L1_3) were generated for degree of urban vs. rural spatial 
area in each district area in accordance with methods for implementation of INLA models 
outlined in Lezama-Ochoa et al. 2020 [61].

Degree of urbanisation was categorised as follows: (1) Rural (mostly thinly populated 
areas), (2) Suburban (mostly intermediate density areas), and (3) Urban (mostly densely 
populated areas). Population data for 2020 were obtained at 100m spatial resolution from the 
WorldPop online repository (https://www.worldpop.org/) and aggregated to calculate popula-
tion density per km2 for each district. Data on public holiday time periods were obtained from 
the National Portal of India online repository (https://www.india.gov.in/). Public holidays, 
which included the date of public holiday and one day before and after, were assigned a value 
of 1. All other days were given a value 0.

Data analysis
Exploring changes in mobility in India during the pandemic.  To gain a better 

understanding of travel networks and connectivity across India, we explored the overall 
patterns in domestic travel by rural, semi-urban and urban delineated areas in India, using 
weekly Google mobility data from November 10, 2019, to December 31, 2021. The relative 
levels of mobility across regions (regions are defined as six zones comprising different states 
in India defined under the States Reorganisation Act 1956 [62]) and weeks were further 
calculated for each type of flow, relative to the mean level of pre-pandemic baseline in each 
region from December 29, 2019, to February 22, 2020. We also defined mobility reductions 
and communities of population movements between administrative level II units, i.e., 
districts, across the country for five periods (S2 Fig & S3 Fig): 1)

Pre-pandemic period (15 weeks) from November 10, 2019 to February 22, 2020; 2) First 
lockdown (6 weeks), from March 22 to May 2, 2020, that included strict travel restrictions, 
stay-at home orders and closure of many businesses; 3) Pre-second lockdown period (8 weeks) 
from January 31 to March 27, 2021; 4) Second lockdown (6 weeks) for the Delta wave, from 
April 18 to May 29, 2021; 5) post-second lockdown period (8 weeks), from November 7 to 
December 31, 2021, after travel restrictions for COVID-19 had been lifted in India. In the con-
text of travel networks, a community refers to a group of areas that are more closely connected 
internally than with other areas in the network [63,64]. Community structures were detected 
using the Louvain algorithm, a method of extracting communities from large networks [63]. 
We mapped the communities identified to highlight distinct geographic groupings of districts 
in terms of movements across periods.

Reproduction number.  To account for variations in the transmissibility of 
COVID-19, we estimated the instantaneous reproduction number Rt , a measure of initial 
transmissibility of each variant, across the waves, for each district of the country with 
available case data (S10 Fig & S35 Fig). First, the number of daily new COVID-19 cases 
at district level were smoothed using a Gaussian smoothing approach over a 7-day rolling 
window [65]. Second, the mean incidence of cases at day t was assumed following the 
Poisson distribution that is defined as:

	 E I R I wt t
k

t

t k k( )= ∑
=

−
1

	

https://www.worldpop.org/
https://www.india.gov.in/
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where It k−  is the incidence at time t k− , wk  is the infectivity profile which depends on the 
serial interval of COVID-19 (5.2, 95%CI: 4.9–5.5) [66]. The serial interval represents the time 
between onset of the primary case to onset of the secondary case. Last, we estimated the daily 
Rt  for each district with a 7-day sliding window, using the EpiEstim package [67] in R statisti-
cal software version 4.1.0 [68].

In order to account for changing transmissibility of COVID-19 caused by different variants 
in the modelling, we also estimated the variant-specific basic reproduction number (R0) across 
the waves. The variant-specific initial reproduction number (R_in) is a measure of initial trans-
missibility which accounts for the effects of interventions and no depletion in susceptibility in 
the population. We first assembled data of the biweekly proportion of sequences of six main 
SARS-CoV-2 variants, including lineages B.1.1.7 (VOC Alpha), B.1.351 (Beta), P.1 (Gamma), 
B.1.617.2 (Delta), B.1.525 (Eta), and B.1.617.1 (Kappa), based on SARS-CoV-2 sequence data 
in the Global Initiative on Sharing All Influenza Data (GISAID) [69], as of 25 October 2021. 
Using an approach described by Ge et al. [70], we then calculated a weighted average of basic 
reproduction numbers of the six variants mentioned above and the SARS-CoV-2 strain in 
circulation before VOCs became predominant (seven coronavirus variants in total).

Models for examining lag-response associations between COVID-19 transmission and 
different factors.  We built spatiotemporal Bayesian hierarchical models which consisted 
of weekly changes in the Rt  of COVID-19 transmission for 666 districts in India where 
data were available during 17 weeks from March 7 to July 3, 2021 (Delta wave) and during 
the 19 weeks between July 19th 2020 and November 29th 2020 (wave 1). We used a Bayesian 
spatiotemporal hierarchical framework to explore the drivers of infection, accounting for fixed 
and random spatial and temporal effects using the integrated nested Laplace approximation 
(INLA) approach. Bayesian spatiotemporal models provide a robust, flexible approach 
for exploring drivers of infection transmission, while incorporating spatial and temporal 
dependencies and quantifying uncertainty in predictions [71,72]. Bayesian models also allow 
fitting of prior parameters to incorporate prior knowledge and uncertainty in the model. The 
INLA approach is an alternative to Markov Chain Monte Carlo (MCMC) methods which 
approximates posterior estimations by applying numerical integrations for fixed effects and 
Laplace integral approximation to model random effects [72,73]. Bayesian spatiotemporal 
models were built using the INLA package in R version 4.1.0 [73].

We assumed that Rt  adjusted by R0 , denoted as �R R Rt t= / 0 , conformed to the Gamma 

distribution, �R t Gammat
t| _ ~

.
, .  µ

µ
0 5

0 5








 , where µ_t  was the corresponding distribution 

expectation (or mean), reflecting the shape-rate parameterisation of the Gamma distribution 
used by the INLA package. A gamma distribution was determined based on the distribution of 
the observed data and based on the lowest deviance information criterion (DIC) during initial 
exploratory analyses using Weibull, Gaussian and gamma distributions in our base model 
[74]. Models were structured to account for spatial and temporal dependencies in the data 
while incorporating covariates associated with change in Rt .

Spatiotemporal models were constructed by defining a likelihood for the observed data 
(gamma distribution) and specifying latent processes to capture spatial and temporal effects. 
These latent processes were implemented as random effects in the model formulation. 
Variable selection was based on previous published literature (described above), and inclu-
sion of covariates in Bayesian spatiotemporal models was determined by initial exploratory 
analyses using generalised linear models (GLMs). Drivers were included in the model as fixed 
effects, directly incorporated into the linear predictor alongside the random effects. INLA 
was employed as the computational framework for the Bayesian models, allowing for fast and 
accurate approximation of posterior distributions for model parameters and latent effects.
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Spatial and temporal variation in the data were addressed in the model by including terms 
for district (spatial resolution) and week (temporal resolution), representing the locations and 
time periods during which data were collected. To capture unmeasured regional differences and 
temporal trends that could influence transmission, spatiotemporal random effects were incorpo-
rated. These random effects account for dependencies and variations not explained by observed 
covariates. Specifically, the model included two spatiotemporal random effects: rt  (temporal) and 
bi  (spatial), as well as a fixed effect v vi t,   to represent other known drivers. First, for the expecta-
tion of ∆Rt  within each city i, we constructed a base model below which can be expressed as:

	 µi t t i i tr b v, ,= + + +1  	

Where: rt  is a random walk model of order 1 (rw1) (∆r r r Nt t t= − ∼ ( )−
−

1
10,τ ) which is 

used to account for temporal trends in the data over time; bi  is a modified Besag-York-Mollie 
(BYM2) model which accounts for spatial variation across districts, capturing unobserved dif-
ferences between regions that may influence transmission; and  vi t,  is a fixed effect represent-
ing the cumulative infection rate within the population, included to account for the potential 
impact of herd immunity acquired by natural infection in previous waves before mass vacci-
nation. Second, as the evolution of COVID-19 is a complex process, and factors mentioned 
above might not be the only explanatory variables for the observed changes in transmission, 
we further examined the duration of public holidays as a fixed effect in models.

All covariates obtained at daily temporal resolution were averaged by week. To account for 
multicollinearity of factors, we calculated pair-wise Pearson correlations for these variables 
and the variance inflation factor (VIF) for candidate variables in linear regressions for the 
whole country (S11 Fig & S36 Fig). In order to account for any non-normally distributed 
data, we also calculated Kendall rank coefficients between explanatory variables in our model 
as a non-parametric exploration of multicollinearity (S12 Fig & S37 Fig). Estimations of mul-
ticollinearity were broadly similar using Pearson and Kendall rank correlation coefficients, 
with weaker associations found using Kendall rank coefficients. Collinear variables were 
therefore excluded based on the more conservative Pearson correlation coefficients. Variables 
excluded from further analyses, based on highest VIF score and Pearson correlation coeffi-
cients of 0.5, included relative humidity and UV radiation. Only variables with a VIF score of 
less than 2.5 were retained. The relative impacts of remaining factors was thus defined as the 
contributed percentage change in �Rt .

We built models of increasing complexity by systematically incorporating combinations 
of mobility, temperature, precipitation, stringency of intervention policy and public holi-
days covariates into our base model. Model goodness of fit was assessed using the DIC and 
logarithmic score (logscore), consistent with previous studies [75], and final models for each 
pandemic wave were selected. DIC balances model accuracy against complexity by estimating 
the number of effective parameters, while the logarithmic scores measure the predictive power 
of the model when excluding one data point at a time, with smaller values for each denoting 
better fitting models.

Third, we used the distributed lag non-linear models (DLNMs) formulation by defining 
lagged model covariates and a cross-basis matrix and incorporating the resulting cross-basis 
functions into our Bayesian spatiotemporal modelling framework. Using this approach we 
explored exposure-lag response associations between the ratio of increase of Rt  in COVID-
19 transmission, and changes in mobility, meteorological variations, and Stringency Index 
of intervention policy. DLNMs are a family of models that describe the lagged relationship 
between exposure and response variables in a model across both spatial and temporal dimen-
sions [76]. DLNM models incorporate cross-basis functions that combine a lag-response 
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function of variables at the temporal dimension and an exposure-response function to present 
the potential non-linear relationship along with the change of one factor. The resulting 
bi-dimensional exposure-lag-response function   flexibly estimates the intensity of factors at 
varying time-lags after exposure [76].

Given the common delays from infection to diagnosis and reporting, and the delayed 
impact of NPIs on COVID-19 transmission, the lag-response impact of different factors on 
COVID-19 transmission were assessed by 0-3 weeks, with natural cubic splines selected for 
both the exposure and the lag dimensions, consistent with previously published literature [77]. 
Last, we tested 18 candidate models of increasing complexity (with regard to input variables 
and model structure) with DLNMs for the whole country, and rural, suburban, and urban 
areas, respectively (S2 Table). DLNM cross-basis functions were built using R packages ‘dlnm’ 
and ‘splines’ and model parameters were estimated using the INLA approach in R version 
4.1.0 [68,78]. INLA approaches include a wide and flexible class of models ranging from gen-
eralized linear mixed models to spatial and spatiotemporal models that are less computation-
ally intensive therefore avoiding problems with model convergence [73,78,79].

Finally, as no informed prior distribution estimates were available at the time of analyses, 
we explored the sensitivity of the best fit model to a range of uninformative priors. We speci-
fied a range of priors around the hyperparameters, i.e., τ, θ1 , and θ2 , in our base model. Prior 
distributions were investigated for the best fit model using data for the Delta wave time period 
(S4 Table) and for the wave 1 time period (S7 Table) using the deviance information criterion 
(DIC). The choice of prior distributions applied to best fit models using data from both waves 
was found to elicit only negligible measurable differences in model hyperparameters and DIC. 
Therefore, the prior used in this study was a penalized complexity prior with the precision t = 
1/ σ², so that Pr(1/ t  > 0.5) = 0.01.

Model performance and validation.  Model goodness-of-fit was assessed using DIC scores 
to compare model performances and identify the best-fitting model for the whole country, 
and rural, suburban, and urban areas, respectively. We also calculated the difference in mean 
absolute error (MAE) between the baseline model and the final selected model for each 
pandemic wave in order to identify the proportion of districts in different regions of India for 
which a more complex data-driven model improved model fit. Cross-validations using a leave-
one-week-out and leave-one-state-out approach were conducted to refit the selected model. 
This approach excluded one week or one state, respectively, from the fitting process during 
each cross-validation model iteration. Comparisons were made between observations and out-
of-sample posterior predictive Rt  for each state and week of both pandemic waves investigated. 
In order to validate DLNM model results, based on the findings of lag-response associations 
from analyses above, we incorporated lag-adjusted covariates into our spatiotemporal Bayesian 
hierarchical modelling and compared results with observations obtained from Bayesian 
spatiotemporal models incorporating DLNM models built using cross-basis functions.

Results

Spatiotemporal heterogeneity of mobility changes in India during the 
pandemic
Compared with baseline mean mobility patterns during the first 8 weeks of 2020, domestic 
travel within India dropped dramatically after the COVID-19 pandemic was declared by 
the WHO and the country implemented its first lockdown for transmission containment 
(Fig 1). The lowest mobility level for domestic travel (26.9% of the pre-pandemic mean level) 
was observed at week 15 of 2020 (April 5 – 11, 2020). In June 2020, restrictions on opening 
shopping centres, religious places, hotels, and restaurants were lifted [28], coinciding with 
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increased population flows and an increase in infection cases. Overall, mobility gradually 
recovered from mid-May 2020 to early March 2021, even during the first wave of COVID-19 
in the second half of 2020.

A second lockdown was implemented across the country from mid-April to early June 
2021 following a surge in transmission in March 2021 and concern about increased infec-
tions and deaths caused by the Delta variant. Domestic mobility during the second lockdown 
reduced significantly from an average level of 90.5% in the 8 weeks between January 31 – 
March 27, 2021, reaching its lowest level (54.6%) at week 20 of 2021 (May 16 – 22). However, 
the stringency, compliance and duration of mobility reductions were less strict and shorter 
than those of the first wave. Changes in mobility between rural, suburban and urban districts 
of India displayed similar temporal patterns (Fig 1C), but travel in urban areas (73.9%) was 
more affected by the pandemic compared with mobility in semi-urban (91.7%) and rural 
(94.4%) areas in 2020–2021 (Fig 2).

Fig 1.  COVID-19 cases, reproduction numbers and mobility changes in India during the pandemic. (A) Number of daily new 
confirmed COVID-19 cases reported in India from March 15, 2020, to December 25, 2021. (B) Estimated mean and 95% confidence 
interval (CI) of the basic reproduction number ( R0 ) and instantaneous reproduction rate ( Rt ). (C) Relative weekly mobility of 
domestic travel by rural, suburban and urban areas in India as measured by the aggregated Google COVID-19 mobility research 
dataset. Relative mobility levels were standardized by the overall mean level of each type of flow in each region during the first 8 weeks 
of 2020. The red and grey vertical dashed lines indicate the date of the COVID-19 pandemic being declared by the WHO and the first 
date of each year, respectively.

https://doi.org/10.1371/journal.pgph.0003431.g001

https://doi.org/10.1371/journal.pgph.0003431.g001
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Fig 2.  Changes in community domestic travel networks of Indian districts across four time periods in 2019-2021. (A) Communities (n=23) of domestic 
travel at district level during the pre-pandemic period from November 10, 2019, to February 22, 2020. (B) Communities (n=79) of domestic travel during 
the first lockdown on March 22 - May 2, 2020. (C) Communities (n=31) of domestic travel during the second lockdown on April 18 - May 29, 2021. (D) 
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Geographic groupings of connected districts also exhibited spatiotemporal heterogeneity in 
response to mitigation efforts. During the pre-pandemic period, districts formed 23 connected 
travel communities, with 13 major communities encompassing 94.4% of all districts. Connec-
tions between districts were severely disrupted during the first lockdown, forming 79 isolated 
communities, with 54.4% consisting of a single district (S3A Fig). In contrast, the second 
lockdown resulted in 31 communities, with 13 major communities covering 93.8% of dis-
tricts—closer to pre-pandemic patterns. By late 2021, district connections had largely returned 
to their pre-pandemic state (S3D Fig).

Nonlinear and lag-response impacts of mobility and other factors on the 
Delta wave
Bayesian spatiotemporal models with distributed lag nonlinear models (DLNMs) identified 
key lagged drivers of COVID-19 transmission during the Delta wave. Initial analysis excluded 
population density, humidity, and UV radiation due to multicollinearity or lack of signif-
icance (S2 Table). The inclusion of DLNMs for mobility, temperature, precipitation, and 
the Stringency Index (Model 4.1), including the holiday variable as a fixed effect in different 
candidate models and lagged between 0 and 3 weeks, resulted in a greater reduction in the 
DIC and mean logarithmic score compared with the baseline model (S18 Fig). For semi-
urban areas, models which included DLNMs for mobility, temperature, and Stringency Index 
(Model 3.1) had the smallest DIC and logarithmic score, while for rural areas, only the Strin-
gency Index was significant due to smaller mobility reductions.

Recovery of mobility to 99% of pre-pandemic levels and a Stringency Index below 68 
significantly increased the Rt of COVID-19 transmission in India during the study period 
(Fig 3A & 3J). An increase in weekly precipitation (>0.15m) and cooler weather (<27.2°C) 
also increased transmission risk, though the effects of extreme cold (<0°C) were not signifi-
cant (Fig 3D & 3G). Lagged impacts were apparent, with maximum effects observed at 1–2 
weeks for mobility reductions and intervention policies. Similar lag-response patterns were 
found across urban, suburban, and rural areas, though the timing and magnitude of associa-
tions with the Stringency Index varied by region (Fig 4). Posterior predictive results from the 
best fitting model by cross-validation showed that the model had a robust performance com-
pared to observed data (S13-S16 Fig). Spatial random effects and the fitted Rt for the whole 
country are also presented in the Supplementary Information (S17-S20 Fig).

Given the reporting delays of cases after exposure (i.e., incubation period plus the lags 
from illness onset, diagnosis to reporting, normally 10 days with an interquartile range of 8 
– 11 days [80], we found that the introduction of DLNMs improved model adequacy statis-
tics compared with the inclusion of factors with no lags, which confirmed the rationale and 
necessity of considering the lag-response effects in the modelling. The maximum associations 
of mobility reductions (Fig 3B; relative mobility >0.5 times baseline mobility associated with 
RR of <0.8)) and intervention policy (Fig 3K; Stringency Index <30 associated with RR <0.95) 
with changes in Rt  of COVID-19 transmission were found at a lag of 2 weeks with precip-
itation having an apparent maximum impact at a 1 to 2-week lag. However, we also found 
an increasing/decreasing risk of transmission under cool/hot weather at one 1-week lag (Fig 
3F; temperature of <20°C associated with RR >1). Similar lag-response patterns between 

Communities (n=22) of domestic travel post-second lockdown period (8 weeks), from November 7 to December 31, 2021, after travel restrictions for COVID-19 
had been lifted in India. In each panel, geographically adjacent areas of the same colour represent an internally and closely connected community in terms of human 
movement in India. The community structure was detected using the Louvain algorithm, based on the aggregated Google COVID-19 mobility research dataset. Circle 
size represents the relative volume of outbound travellers. The bigger the circle, the higher the level of outflow.

https://doi.org/10.1371/journal.pgph.0003431.g002

https://doi.org/10.1371/journal.pgph.0003431.g002
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Fig 3.  The lagged impact of different factors and scenarios on COVID-19 transmission during the Delta wave in 2021. (A) The overall association 
between mobility changes and COVID-19 transmission dynamics under 0- to 3-week lags. The red/blue lines show ratio of Rt under the scenario of mobility 
below/above the overall mean level (0.99). The histogram with the secondary y-axis shows the frequency of data under different levels. (B) Contour plot of 



PLOS Global Public Health | https://doi.org/10.1371/journal.pgph.0003431  April 30, 2025 14 / 27

PLOS Global Public Health COVID-19 drivers during two transmission waves in India.

COVID-19 transmission and covariates at different levels were also found in urban, suburban, 
and rural districts (Fig 4). The results from leave-one-week-out cross-validation showed the 
best fitting 2-week lag-response model could further improve the prediction of dynamics in Rt 
of COVID-19 transmission across India (S23-S27 Fig).

Comparing lag-response impacts of different factors between waves
We also ran Bayesian spatiotemporal models with DLNMs using data from 19th July to 29th 
November 2020 to compare drivers of transmission during both pandemic waves in 2020 
(initial transmission wave) and 2021 (Delta wave). Results of DLNMs exploring drivers of 
COVID-19 transmission during the first wave were consistent with those exploring associ-
ations of COVID-19 transmission during the Delta wave in India. A rebound in mobility to 
between 1.2 and 1.4 times the mobility of pre-pandemic levels resulted in an increase in RR 
(>1) with a lag-time of between one and two weeks (Fig 5C) and high Stringency Index (80) 
was associated with a lower RR with a two-and-a-half-week lag (Fig 5L).

Fig 4.  The lag-response association between COVID-19 transmission and different factors in urban, suburban, and rural districts. (A) – (D) COVID-19 lag–
response association for different levels of mobility, temperature (Temp), precipitation (Prec) and the stringency of intervention policy in urban areas, relative to the 
overall mean level. Results are for the best fitting model with DLNMs (base model + mobility + temperature + precipitation + intervention policy) in urban districts. 
(E) – (G) Lag–response association between the risk of COVID-19 transmission and different levels of mobility, temperature (Temp), and the stringency of interven-
tion policy in semi-urban areas, based on the best fitting model with DLNMs (base model + mobility + temperature + intervention policy; see SI Table S2) in suburban 
districts. (H) COVID-19 lag–response association for the Stringency Index of intervention policy at low (40), medium (60), and high (80), based on the best fitting 
model with DLNMs (base model + intervention policy) in rural districts. The mean and 95% CI of RR for each level were presented.

https://doi.org/10.1371/journal.pgph.0003431.g004

the association between mobility and risk of COVID-19 transmission. The deeper the shade of purple, the greater the increase in transmission risk, while 
the deeper the shade of green, the greater the decrease in Rt. (C) COVID-19 lag–response association for mobility level at 0.6, 0.8, 1.25, relative to the overall 
pre-pandemic mean level (1). The mean and 95% CI were presented. (D) – (F) Lag-response association between COVID-19 transmission and tempera-
ture (Temp) for cool (10°C), warm (20°C), and hot (30°C) weather, relative to the overall mean of 27.2°C. (G) – (I) COVID-19 lag-response association for 
precipitation (Prec) at 0.05, 0.5, and 1m, relative to the overall mean of 0.15m. (J) – (L) Lag-response association between COVID-19 transmission and the 
stringency of intervention policy at low (40), medium (60), and high (80), relative to the overall mean Stringency Index (68.2). Results are for the best fitting 
model with DLNMs (base model + mobility + temperature + precipitation + intervention policy; see SI Table S2) across the whole country.

https://doi.org/10.1371/journal.pgph.0003431.g003

https://doi.org/10.1371/journal.pgph.0003431.g004
https://doi.org/10.1371/journal.pgph.0003431.g003
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Fig 5.  The lagged impact of different factors and scenarios on COVID-19 transmission during the initial wave of COVID-19 trans-
mission in the second half of 2020. (A) The overall association between mobility changes and COVID-19 transmission dynamics under 
0- to 3-week lags. The red/blue lines show RR under the scenario of mobility below/above the overall mean level (0.99). The histogram with 
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Based on best fit model statistics (lowest DIC and mean logarithmic score compared to 
baseline model) DLNMs which best fit the data were models which included mobility, tem-
perature, precipitation and Stringency Index (Model 4.1; S3 Table). Cold weather (10°C & 
20°C) was associated with a higher RR (Fig 5D & 5F) and an increase in weekly precipitation 
(>0.2m) was also associated with an increase in transmission risk (Fig 5G) with a lag-time 
increase of between 1 and 2 weeks. Consistent with model validation using data for the Delta 
wave, cross-validation showed robust model results when posterior predictive results for the 
initial wave in 2020 were compared with observed data (S38 – S41 Fig).

Discussion
Using a de-identified and aggregated Google COVID-19 mobility research dataset, derived 
from time- and space-explicit mobile phone data, our study quantified changes in population 
movements across rural and urban districts, and identified connected communities of travel 
networks, in India over the course of the pandemic. Our modelling results showed that mobil-
ity changes, together with stringency of government interventions and climate factors had 
lagged-response impacts on the risk of COVID-19 transmission. The first nationwide lock-
down between March and June 2020, together with a reduction in population mobility, appear 
to have been the main drivers of a relatively low transmission wave of COVID-19 in India 
during the first half of 2020 [21,81]. Although the announcement of the lockdown had initially 
resulted in an increase in population mobility, with workers mostly representing informal 
sectors travelling interstate to return home [82], the majority of people travelling were not 
infected and this population mobility therefore had little impact on transmission [5].

In early 2021, NPI restriction measures such as social distancing and mask-wearing had 
been gradually eased due to a sense of COVID-19 clinical infections being mild [8,83], and 
inter-state and rural to urban human mobility was seen to be increasing [21,83]. This included 
mass attendance of political rallies and religious festivals, such as the Hindu festival Kumbh 
Mela in India’s most populous state of Uttar Pradesh where hundreds of thousands of peo-
ple gathered at the banks of the River Ganges [21,23,83]. The modelling results presented 
here indicate that this recovery of mobility in early 2021 to 99% that of pre-pandemic levels, 
together with lower stringency of government interventions and emergence of the more trans-
missible Delta variant, contributed to higher transmission of COVID-19 infection during the 
Delta pandemic wave. This is consistent with previously published research which attributed 
the surge of COVID-19 in April 2021 to the emergence of the more transmissible Delta 
variant (B.1.617 lineage) and dominance as the main circulating strain, as well as relaxation of 
NPIs [13,21,84].

The second lockdown with reduced travel frequency and contact rates among populations 
also played a significant role in mitigating COVID-19 spread across districts and transmission 
in communities in the country. Mobility patterns were inversely associated with the national 
Stringency Index, with a relative drop in mobility below 50% associated with a Stringency 

the secondary y-axis shows the frequency of data under different levels. (B) Contour plot of the association between mobility and relative 
risk (RR) of COVID-19 transmission. The deeper the shade of purple, the greater the increase in RR of transmission, while the deeper the 
shade of green, the greater the decrease in RR. (C) COVID-19 lag–response association for mobility level at 0.8, 1.2, 1.4 relative to the overall 
pre-pandemic mean level (1). The mean and 95% CI were presented. (D) – (F) Lag-response association between COVID-19 transmission 
and temperature (Temp) for cool (10°C), warm (20°C), and hot (30°C) weather, relative to the overall mean of 25°C. (G) – (I) COVID-19 
lag-response association for precipitation (Prec) at 0.5, 1.5, and 2.5m, relative to the overall mean of 0.24m. (J) – (L) Lag-response associ-
ation between COVID-19 transmission and the stringency of intervention policy at three different measures of stringency: 70, 75, and 80, 
relative to the overall mean Stringency Index (76.5). Results are for the best fitting model with DLNMs (base model + mobility + tempera-
ture + precipitation + intervention policy; see SI Table S2) across the whole country.

https://doi.org/10.1371/journal.pgph.0003431.g005

https://doi.org/10.1371/journal.pgph.0003431.g005
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Index of 80, consistent with previous research which found that community mobility, based 
on Google location data, drastically fell after the lockdown was implemented. . However, 
the impacts of mobility changes were not fully synchronized between rural and urban areas, 
and the effects of travel restrictions and other interventions in slowing down COVID-19 
transmission hinged on the intensity of these measures in reducing Rt  of new variants with 
a higher transmissibility. Model results showed differences in lagged associations of COVID-
19 RR with Stringency Index between rural, semi-urban and urban districts [24] and this was 
reflected in urban vs. rural transmission dynamics between both pandemic waves. During the 
first wave of COVID-19 in India, transmission was higher in urban rather than rural settings 
and cases were spatially clustered throughout metropolitan and peri-urban areas [33,85,86]. 
Conversely, during the Delta pandemic wave in India, cases were observed to be spreading 
more in rural areas where access to healthcare can be more limited than in urban areas [18].

Previous research had also observed significant associations between number of COVID-
19 cases and temperature, dew point, humidity and solar radiation [28,34,54,65,87]. Our 
Bayesian spatiotemporal model results were consistent with these findings observing lag-
response associations between COVID-19 transmission and climate covariates (temperature 
and precipitation), although these effects appear to be very limited in terms of relative risk. 
Model results for the Delta pandemic wave found that a decrease in temperature (<20°C) was 
associated with an increased relative risk, consistent with previous modelling studies explor-
ing climate impacts on COVID-19 transmission in India [32], and an increase in precipita-
tion (>2.5m) associated with a decreased relative risk, with a 1 to 2-week lagged impact. This 
is consistent with wave 1 modelling results which found a 1 to 2-week lagged association 
between cold weather and precipitation on an increase in RR of COVID-19 transmission.

The work we have presented builds upon previous research exploring the driving factors 
that led to the surge in COVID-19 transmission during the Delta pandemic wave in India 
[15,23,27], while also presenting a number of novel factors not previously presented in the 
literature. Firstly, to our knowledge this is the first study to explore inter-district mobility 
patterns in India during the initial and Delta waves of COVID-19 transmission, relative to 
pre-pandemic levels, delineated by urban, suburban and rural location. By investigating 
these changes in human mobility using fine spatial resolution Google COVID-19 Aggregated 
Mobility Research data we have demonstrated that a surge in population movement, together 
with an easing of NPIs were the main contributors to the surge in transmission during the 
Delta pandemic wave. To our knowledge, this is also the first study to combine human mobil-
ity data with Stringency Index and climate data within a Bayesian spatiotemporal framework 
to compare drivers of transmission by urban, suburban and rural district over the course of 
the pandemic in India, and quantify the lagged impact of these drivers on COVID-19 trans-
mission risk.

Our modelling approach explored the spatiotemporal heterogeneities in drivers of trans-
mission at district level accounting for urbanisation, building upon previous research explor-
ing the association between state level urbanisation and COVID-19 transmission [29]. Using 
a Bayesian spatiotemporal framework that incorporates spatial and temporal dependencies 
into models is particularly useful in regions such as India with substantial divergence between 
urban and rural areas [88,89]. Additionally, Bayesian hierarchical models provide flexibility for 
quantifying heterogeneities in spatiotemporal drivers of transmission during both pandemic 
waves while allowing complex and nonlinear relationships within the data to be captured [78]. 
Building upon this framework by integrating novel DLNM models into the Bayesian frame-
work allowed us to quantify lagged, nonlinear associations of drivers of transmission with 
COVID-19 incidence, which is critical for quantifying the lagged impact of interventions on 
transmission and to account for the infection incubation period and delays in case reporting.
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While our findings represent a comprehensive understanding of the drivers of transmis-
sion during the initial and Delta waves of COVID-19 transmission in India, these results 
should be interpreted in light of several important limitations. First, the Google mobility 
data is limited to smartphone users who have opted into Google’s Location History feature, 
which is off by default. These data may not be representative of the population as whole, and 
furthermore their representativeness may vary by location. Importantly, these limited data 
are only viewed through the lens of differential privacy algorithms, specifically designed to 
protect user anonymity and obscure fine detail. However, comparisons between mobility 
datasets have shown good agreement with Google Location History data and other commonly 
used mobility data sources for capturing population-level mobility patterns [90]. Moreover, 
comparisons across rather than within locations are only descriptive since these regions can 
differ in substantial ways.

Second, the accuracy of our models relied on accurate estimates of Rt  derived from 
reported case data, with R0  estimates proportional to the contact rate, and might vary accord-
ing to the local situation. The quality of reported data likely differed across districts due to 
varying case definitions, testing and surveillance capacity across the country, with various 
underreporting rates and reporting delays. Third, the Stringency Index data at state level used 
in spatiotemporal analyses for districts was formulated to assess lockdown strictness and 
measure the political commitment and strictness of governmental policies. These data did not 
measure the effectiveness of a country’s response or provide information on how well policies 
were enforced. A higher value of Stringency Index did not necessarily mean that a country’s 
response was better than that of those with lower values [24,54]. Fourth, many other factors 
(e.g., vaccination and prior infections) might also contribute to COVID-19 transmission, but 
our models did not specify the contributions of these factors.

The model results and modelling approach we have described here are critical to our 
understanding of drivers of COVID-19 in India, and elsewhere, and makes an important 
contribution to our understanding of human mobility, NPIs and climate drivers on infection 
transmission. As stated previously, while COVID-19 is no longer a public health emergency, 
it remains a pandemic with substantial associated long-term health impacts and mortality. 
Understanding the lagged impact of human mobility, climate and interventions on infection 
transmission, and heterogeneity in drivers between urban and rural settings, is crucial for 
predicting seasonal transmission dynamics and for allocating resources such as mass testing 
and vaccination campaigns. The Bayesian spatiotemporal framework incorporating DLNMs 
we have presented provides a valuable framework for understanding the impact of drivers of 
COVID-19 transmission, and for understanding future novel infections which emerge due to 
our urbanised global society, with more extreme weather events and pronounced changes in 
climate [91,92].

Supporting information
S1 Fig.  Regions in India investigated by this study and the number and density of popula-
tion at district level (administrative level II) in 2020. Areas shaded in grey are areas for 
which no data is available. S2 Fig. Five periods for travel network modularity analysis (A): 1) 
Pre-pandemic period (15 weeks) from November 10, 2019 to February 22, 2020; 2) First 
lockdown (6 weeks), from March 22 to May 2, 2020, that included strict travel restrictions, 
stay-at home orders and closure of many businesses; 3) Pre-second lockdown period (8 
weeks) from January 31 to March 27, 2021; 4) Second lockdown (6 weeks) for the Delta wave, 
from April 18 to May 29, 2021; 5) post-second lockdown period (8 weeks), from November 7 
to December 31, 2021, after travel restrictions for COVID-19 had been lifted in India. S3 Fig. 
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Relative changes of outbound travel from districts across India during the pandemic com-
pared with average pre-pandemic levels during the 12 weeks from November 10, 2019, to 
February 22, 2020. (A) Reductions of outbound flows under the first lockdown during the 
6-week period from March 22 to May 2, 2020. (B) Changes in outflow during the 8-week 
period from January 31 to March 27, 2021, before the second lockdown. (C) Reductions of 
outflows during the 6-week second lockdown from April 18 to May 29, 2021. (D) Changes in 
outflow during the 8-week period from November 7 to December 31, 2021. Sub-division maps 
at administrative level I (state) and II (district) were obtained from the GADM version 3.6 
(https://gadm.org/). Regions in which outflow data are not available are those represented in 
green. Areas shaded in grey are areas for which no data is available. S1 Table. Summary 
Statistics for data used for wave 1 and Delta wave spatiotemporal models S2 Table. Wave 2: 
Adequacy results for models with DLNMs and increasing complexity. S3 Table. Wave 2: 
Adequacy results for models (without DLNMs) using 2-week lag covariates with increasing 
complexity. S4 Table. Model hyperparameters using a range of prior distributions in best fit 
model 4.1 for Delta Wave. S4 Fig Relative intra-district mobility during the Delta wave in 
India, standardised by pre-pandemic mean baseline levels of mobility for the first eight weeks 
of 2020 (December 29, 2019 – February 22, 2020) for each district. The weeks in 2021 investi-
gated are numbered in maps. Areas shaded in grey are areas for which no data is available. S5 
Fig. Stringency Index of COVID-19 intervention policy implemented during the Delta wave 
in India. The weeks in 2021 investigated are numbered in maps. Areas shaded in grey are 
areas for which no data is available. S6 Fig. Mean temperature at 2m above the surface during 
the Delta wave in India. The weeks in 2021 investigated are numbered in maps. Areas shaded 
in grey are areas for which no data is available. S7 Fig. Accumulated weekly precipitation 
(metres) during the Delta wave in India. The weeks in 2021 investigated are numbered in 
maps. Areas shaded in grey are areas for which no data is available. S8 Fig. Relative humidity 
during the Delta wave in India. The weeks in 2021 investigated are numbered in maps. Areas 
shaded in grey are areas for which no data is available. S9 Fig. Downward ultraviolet (UV) 
radiation (KJ/m2 per hour) during the Delta wave in India. The weeks in 2021 investigated are 
numbered in maps. Areas shaded in grey are areas for which no data is available. S10 Fig. 
Weekly Rt derived from COVID-19 cases reported during the Delta wave in India. The weeks 
in 2021 investigated are numbered in maps. Areas shaded in grey are areas for which no data 
is available. S11 Fig. Pairwise Pearson correlations between weekly means of variables at 
district level during the Delta wave in India, 2021. R0: basic reproduction number. Rt: 
instantaneous reproduction number. ln_R: log(Rt/R0). Cases_rate: new COVID-19 cases 
reported per 1000 people. Cases_accu_rate: cumulative cases per 1000 people reported since 
the first week of the wave. mean_intra: intra-district relative mobility. d2m: relative humidity. 
t2m: mean temperature of air (°C at 2m above the surface of land, sea or inland waters). tp: 
precipitation (metres). uv: downward ultraviolet radiation. Stringency: index of COVID-19 
intervention stringency. Holiday: days of public holidays in a week. pop_sum: total population 
of each district. pop_density: population number per km2 of each district. S12 Fig. Kendall 
rank correlations between weekly means of variables at district level during the Delta wave in 
India, 2021. R0: basic reproduction number. Rt: instantaneous reproduction number. ln_R: 
log(Rt/R0). Cases_rate: new COVID-19 cases reported per 1000 people. Cases_accu_rate: 
cumulative cases per 1000 people reported since the first week of the wave. mean_intra: 
intra-district relative mobility. d2m: relative humidity. t2m: mean temperature of air (°C at 
2m above the surface of land, sea or inland waters). tp: precipitation (metres). uv: downward 
ultraviolet radiation. Stringency: index of COVID-19 intervention stringency. Holiday: days of 
public holidays in a week. pop_sum: total population of each district. pop_density: population 
number per km2 of each district. S13 Fig. Posterior predictive mean Rt during the Delta wave 
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in India, 2021, derived from the best fitting model (model 4.1) at country level using leave-
one-week-out cross-validation approach. The weeks in 2021 investigated are numbered in 
maps. Areas shaded in grey are areas for which no data is available. S14 Fig. Standard devia-
tion (SD) of posterior predictive Rt during the Delta wave in India, 2021, derived from the 
best fitting model (model 4.1 without DLNMs) at country level using a leave-one-week-out 
cross-validation approach. Areas shaded in grey are areas for which no data is available. S15 
Fig. Posterior predictive mean Rt during the Delta wave in India, 2021, derived from the best 
fitting model (model 4.1) at country level using leave-one-state-out cross-validation approach. 
The weeks in 2021 investigated are numbered in maps. Areas shaded in grey are areas for 
which no data is available. S16 Fig. Standard deviation (SD) of posterior predictive Rt during 
the Delta wave in India, 2021, derived from the best fitting model (model 4.1 without 
DLNMs) at country level using a leave-one-state-out cross-validation approach. Areas shaded 
in grey are areas for which no data is available. S17 Fig. Contribution of spatial random effects 
to estimates of Rt changes in the base model. Areas shaded in grey are areas for which no data 
is available. S18 Fig. Improvement by using the best fitting model across the country, com-
pared to baseline model. Difference between mean absolute error (MAE) for the baseline 
model (weekly random effects, spatial random effects and population density) and MAE for 
the best fitting model (model 4.1 with DLNMs). Districts with positive values (pink) suggest 
that capturing the nonlinear and delayed impacts of mobility, climate information and 
intervention stringency, improves the model in these areas. Districts with negative values 
(blue) suggest that mobility, intervention and climate information did not improve the model 
fit and other unexplained factors might dominate space-time dynamics in these areas. The 
MAE of the selected model was smaller than the baseline model for 385 of the 665 (57.9%) 
districts in India, with the results of model performance provided by geo-political regions in 
the Table. Areas shaded in grey are areas for which no data is available. S19 Fig. Observed 
versus posterior fitted Rt in the capital district of each state using the best fitting model (model 
4.1 with DLNMs) at country level. Graphs with a log scale at y-axis show the observed Rt 
derived from reported case data, and corresponding mean and 95% confidence interval (CI, 
shaded pink area) of fitted Rt, derived from the best fitting model (model 4.1 with DLNMs) at 
country level. States are ordered by their geographical location. S20 Fig. Observed versus 
posterior predictive Rt in the capital district of each state, using leave-one-week-out cross-
validation approach. Graphs with a log scale at y-axis show the observed Rt derived from 
reported case data, and corresponding posterior predictive mean and 95% prediction interval 
(CI, shaded pink area), derived from the best fitting model (model 4.1 with DLNMs) at 
country level. States are ordered by their geographical location. S21 Fig. Contribution of 
spatial random effects to estimates of Rt changes in the base model. Areas shaded in grey are 
areas for which no data is available. S22 Fig. Improvement of using the best fitting model with 
2-week lag covariates (no DLNMs), compared to baseline model with the same lag. Difference 
between mean absolute error (MAE) for the baseline model and MAE for the best fitting 
model (Model 4.1). Districts with positive values (pink) suggest that capturing the 2-week lag 
impacts of mobility, temperature, UV and intervention stringency, improves the model in 
these areas. Districts with negative values (blue) suggest that mobility, intervention and 
climate information did not improve the model fit and other unexplained factors might 
dominate space-time dynamics in these areas. The MAE of the selected model was smaller 
than the baseline model for 428 of the 665 (64.4%) districts in India, and further improved the 
best fitting model with DLNMs (_Fig.tifS12). Results of model performance are provided by 
geo-political regions in the Table. Areas shaded in grey are areas for which no data is available. 
S23 Fig. Posterior predictive mean Rt during the Delta wave in India, 2021, derived from the 
best fitting model (model 4.1 without DLNMs) at country level using 2-week lag covariates 
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and leave-one-week-out cross-validation approach. Areas shaded in grey are areas for which 
no data is available. S24 Fig. Standard deviation (SD) of posterior predictive Rt during the 
Delta wave in India, 2021, derived from the best fitting model (model 4.1 without DLNMs) at 
country level using 2-week lag covariates and leave-one-week-out cross-validation approach. 
Areas shaded in grey are areas for which no data is available. S25 Fig. Observed versus 
posterior predictive Rt in the capital district of each state. Graphs with a log scale at y-axis 
show the observed Rt derived from reported case data, and corresponding posterior predictive 
mean and 95% prediction interval (CI, shaded pink area), derived from the best fitting model 
without DLNMs at country level (model 4.1: base model + mobility + temperature + UV + 
intervention policy; see SI Table S2), using 2-week lag covariates and leave-one-week-out 
cross-validation approach. States are ordered by their geographical location. S26 Fig. Poste-
rior predictive mean Rt during the Delta wave in India, 2021, derived from the best fitting 
model (model 4.1 without DLNMs) at country level using 2-week lag covariates and leave-
one-state-out cross-validation approach. Areas shaded in grey are areas for which no data is 
available. S27 Fig. Standard deviation (SD) of posterior predictive Rt during the Delta wave in 
India, 2021, derived from the best fitting model (model 4.1 without DLNMs) at country level 
using 2-week lag covariates and leave-one-state-out cross-validation approach. Areas shaded 
in grey are areas for which no data is available. Table S5. Wave 1: Adequacy results for models 
with DLNMs and increasing complexity. Table S6. Wave 1: Adequacy results for models 
(without DLNMs) using 2-week lag covariates with increasing complexity. Table S7. Model 
hyperparameters using a range of prior distributions in best fit model 4.1 for S28 Fig. 
COVID-19 cases reported by district each week during wave 1 in India. The weeks in 2020 
investigated are numbered in maps. Areas shaded in grey are areas for which no data is 
available. S29 Fig. Relative intra-district mobility during wave 1 in India, standardised by 
pre-pandemic mean baseline levels of mobility for the first eight weeks of 2020 (December 29, 
2019 – February 22, 2020) for each district. The weeks in 2020 investigated are numbered in 
maps. Areas shaded in grey are areas for which no data is available. S30 Fig. Stringency Index 
of COVID-19 intervention policy implemented during wave 1 in India. The weeks in 2020 
investigated are numbered in maps. Areas shaded in grey are areas for which no data is 
available. S31 Fig. Mean temperature at 2m above the surface during wave 1 in India. The 
weeks in 2020 investigated are numbered in maps. Areas shaded in grey are areas for which no 
data is available. S32 Fig. Accumulated weekly precipitation (metres) during wave 1 in India. 
The weeks in 2020 investigated are numbered in maps. Areas shaded in grey are areas for 
which no data is available. S33 Fig. Relative humidity during wave 1 in India. The weeks in 
2020 investigated are numbered in maps. Areas shaded in grey are areas for which no data is 
available. S34 Fig. Downward ultraviolet (UV) radiation (KJ/m2 per hour) during wave 1 in 
India. The weeks in 2020 investigated are numbered in maps. Areas shaded in grey are areas 
for which no data is available. S35 Fig. Weekly Rt derived from COVID-19 cases reported 
during the wave 1 in India. The weeks in 2020 investigated are numbered in maps. Areas 
shaded in grey are areas for which no data is available. S36 Fig. Pairwise Pearson correlations 
between weekly means of variables at district level during the wave 1 in India, 2020. R0: basic 
reproduction number. Rt: instantaneous reproduction number. ln_R: log(Rt/R0). Cases_rate: 
new COVID-19 cases reported per 1000 people. Cases_accu_rate: cumulative cases per 1000 
people reported since the first week of the wave. mean_intra: intra-district relative mobility. 
d2m: relative humidity. t2m: mean temperature of air (°C at 2m above the surface of land, sea 
or inland waters). tp: precipitation (metres). uv: downward ultraviolet radiation. Stringency: 
index of COVID-19 intervention stringency. Holiday: days of public holidays in a week. 
pop_sum: total population of each district. pop_density: population number per km2 of each 
district. S37 Fig. Kendall rank correlations between weekly means of variables at district level 
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during the wave 1 in India, 2020. R0: basic reproduction number. Rt: instantaneous reproduc-
tion number. ln_R: log(Rt/R0). Cases_rate: new COVID-19 cases reported per 1000 people. 
Cases_accu_rate: cumulative cases per 1000 people reported since the first week of the wave. 
mean_intra: intra-district relative mobility. d2m: relative humidity. t2m: mean temperature of 
air (°C at 2m above the surface of land, sea or inland waters). tp: precipitation (metres). uv: 
downward ultraviolet radiation. Stringency: index of COVID-19 intervention stringency. 
Holiday: days of public holidays in a week. pop_sum: total population of each district. 
pop_density: population number per km2 of each district. S38 Fig. Posterior predictive mean 
Rt during wave 1 in India, 2020, derived from the best fitting model (model 4.1) at country 
level using leave-one-week-out cross-validation approach. The weeks in 2020 investigated are 
numbered in maps. Areas shaded in grey are areas for which no data is available. S39 Fig. 
Standard deviation (SD) of posterior predictive Rt during wave 1 in India, 2020, derived from 
the best fitting model (model 4.1) at country level leave-one-week-out cross-validation 
approach. Areas shaded in grey are areas for which no data is available. S40 Fig. Posterior 
predictive mean Rt during wave 1 in India, 2020, derived from the best fitting model (model 
4.1) at country level using leave-one-district-out cross-validation approach. The weeks in 2020 
investigated are numbered in maps. Areas shaded in grey are areas for which no data is 
available. S41 Fig. Standard deviation (SD) of posterior predictive Rt during wave 1 in India, 
2020, derived from the best fitting model (model 4.1) at country level leave-one-district-out 
cross-validation approach. Areas shaded in grey are areas for which no data is available. S42 
Fig. Contribution of spatial random effects to estimates of Rt changes in the base model. Areas 
shaded in grey are areas for which no data is available. S43 Fig. Improvement by using the 
best fitting model across the country, compared to baseline model. Difference between mean 
absolute error (MAE) for the baseline model (weekly random effects, spatial random effects 
and population density) and MAE for the best fitting model (model 4.1 with DLNMs). 
Districts with positive values (pink) suggest that capturing the nonlinear and delayed impacts 
of mobility, climate information and intervention stringency, improves the model in these 
areas. Districts with negative values (blue) suggest that mobility, intervention and climate 
information did not improve the model fit and other unexplained factors might dominate 
space-time dynamics in these areas. The MAE of the selected model was smaller than the 
baseline model for 430 of the 661 (65.17%) districts in India, with the results of model 
performance provided by geo-political regions in the Table. Areas shaded in grey are areas for 
which no data is available. S44 Fig. Observed versus posterior fitted Rt in the capital district of 
each state using the best fitting model (model 4.1 with DLNMs) at country level. Graphs with 
a log scale at y-axis show the observed Rt derived from reported case data, and corresponding 
mean and 95% confidence interval (CI, shaded pink area) of fitted Rt, derived from the best 
fitting model (model 4.1 with DLNMs) at country level. States are ordered by their geographi-
cal location. S45 Fig. Observed versus posterior predictive Rt in the capital district of each 
state, using leave-one-week-out cross-validation approach. Graphs with a log scale at y-axis 
show the observed Rt derived from reported case data, and corresponding posterior predictive 
mean and 95% prediction interval (CI, shaded pink area), derived from the best fitting model 
(model 4.1 with DLNMs) at country level. States are ordered by their geographical location. 
S46 Fig. Posterior predictive mean Rt during the wave 1 in India, 2020, derived from the best 
fitting model (model 4.1 without DLNMs) at country level using 2-week lag covariates and 
leave-one-week-out cross-validation approach. Areas shaded in grey are areas for which no 
data is available. S47 Fig. Standard deviation (SD) of posterior predictive Rt during wave 1 in 
India, 2020, derived from the best fitting model (model 4.1 without DLNMs) at country level 
using 2-week lag covariates and leave-one-week-out cross-validation approach. Areas shaded 
in grey are areas for which no data is available. S48 Fig. Posterior predictive mean Rt during 
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the wave 1 in India, 2020, derived from the best fitting model (model 4.1 without DLNMs) at 
country level using 2-week lag covariates and leave-one-district-out cross-validation 
approach. Areas shaded in grey are areas for which no data is available. S49 Fig. Standard 
deviation (SD) of posterior predictive Rt during wave 1 in India, 2020, derived from the best 
fitting model (model 4.1 without DLNMs) at country level using 2-week lag covariates and 
leave-one-district-out cross-validation approach. Areas shaded in grey are areas for which no 
data is available.
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