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ABSTRACT

The evolution of nuclear spin state populations is investigated for the case of a 13C2-labeled triyne in solution, for which the near-equivalent
coupled pairs of 13C nuclei experience cross-correlated relaxation mechanisms. Inversion-recovery experiments reveal different recovery
curves for the main peak amplitudes, especially when the conversion of population imbalances to observable coherences is induced by a radio
frequency pulse with a small flip angle. Measurements are performed over a range of magnetic fields by using a sample shuttle apparatus. In
some cases, the time constant TS for decay of nuclear singlet order is more than 100 times larger than the time constant T1 for the equilibra-
tion of longitudinal magnetization. The results are interpreted by a theoretical model incorporating cross-correlated relaxation mechanisms,
anisotropic rotational diffusion, and an external random magnetic field. A Lindbladian formalism is used to describe the dissipative dynamics
of the spin system in an environment of finite temperature. Good agreement is achieved between theory and experiment.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0213997

I. INTRODUCTION

In our previous paper,1 we explored the effects of cross-
correlated relaxation on the nuclear magnetic resonance (NMR) line
shapes of strongly coupled 13C pairs in the near-equivalence regime.
The molecular system under study, denoted here as I, is shown in
Fig. 1. This is a 13C2-labeled triyne, with two different end groups
creating a small difference in isotropic chemical shifts between the
two 13C sites. Since the resonance frequency difference between the
two 13C sites is much smaller than the J-coupling between the 13C
nuclei, each 13C2 pair forms a near-equivalent AB system in an
isotropic solution.2 Three of the four energy eigenstates of the 13C
pair are given, to a good approximation, by the three components of
the spin-1 triplet state of the spin pair, while the remaining state is
approximately equal to the spin-0 singlet state.2 The rod-like shape
of I causes strongly anisotropic rotational diffusion in solution.1

As shown in Ref. 1, the 13C NMR spectrum consists of four
peaks, with two strong central peaks associated with single-quantum
coherences between the near-triplet states and two weak outer peaks
associated with coherences between the near-singlet state and the
outer near-triplet states. A large difference in the NMR linewidths is
observed for the two triplet–triplet peaks and is attributed to a strong
correlation between the fluctuating chemical shift anisotropy and
dipole–dipole coupling interactions.3–10 Reference 1 gives explicit
analytical expressions, under some approximations, for the positions
and linewidths of the spectral peaks, in the presence of cross-
correlated relaxation driven by anisotropic rotational diffusion.
Good agreement with experiment was achieved.

In this paper, we continue our investigations of the NMR
relaxation of I in isotropic solution. In the current paper, we con-
sider the relaxation of the spin state populations, as investigated by
inversion-recovery NMR experiments. As shown below, inversion-
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FIG. 1. Schematic representation of I, with black circles representing 13C labels.
The different substituents at the ends of the molecule give a small chemical shift
difference of 0.16 ppm between the two 13C sites.

recovery NMR experiments display a strong asymmetry between the
recovery trajectories of different spectral peaks after an initial pulse.
The asymmetry in the recovery to thermal equilibrium is associ-
ated with the cross correlation of the chemical shift anisotropy and
dipole–dipole interactions.5,8,11–14

We also present the results of NMR experiments, which
demonstrate the long decay time constant TS of 13C2 singlet order
for I in solution, where the term singlet order means the population
imbalance between the singlet state and the triplet manifold.15–18

The singlet decay time constant TS is found to exceed the magne-
tization relaxation time constant T1 by a factor of more than 100
under some conditions. The slow decay of nuclear singlet order is
due, in this case, to the strong cross correlation of the chemical shift
anisotropy interactions for the two 13C sites, as well as the immunity
of singlet order to relaxation caused by dipole–dipole interactions
within the spin pair.

Since the phenomena of interest involve the approach of
nuclear spin systems to thermal equilibrium, the associated relax-
ation theory must take into account the finite temperature of the
thermal environment. There are several methods for introducing
the finite environmental temperature into standard NMR relaxation
theories, which is based on second-order perturbation theory, as
formulated by Bloch, Wangsness, Redfield, and Abragam.19–21 The
prevalent method, used for example in the books by Abragam21

and Ernst et al.,22 is to introduce the thermal equilibrium density
operator ρeq as an ad hoc correction to the Liouville–von Neu-
mann equation. This leads to the inhomogeneous master equation
(IME).22 However, this equation provides, in some circumstances,
incorrect and even physically impossible predictions.23,24 In the cur-
rent work, we use, instead, a Lindbladian formulation of the relax-
ation superoperator, which is consistent with the rigorous theory
of open quantum systems.23–27 The resulting theory accurately pre-
dicts analytical operator trajectories and peak amplitudes, which in
turn offer physically intuitive insights into the population dynamics
throughout the relaxation process.

II. METHODS
A. Sample

Experiments were performed on the 13C2-labeled triyne deriva-
tive shown in Fig. 1 and referred to as I. The synthesis of I is given
in the supplementary material of our previous article.1 The sample
consisted of 19 mg of I, made up to a 200 μl 0.3M solution in CDCl3.
The solution was degassed by five freeze–thaw cycles.

B. Equipment
All high-field experiments were performed on a 400 MHz

(9.4 T) Bruker Avance Neo spectrometer. For the low-field

FIG. 2. Pulse sequence for variable flip-angle inversion recovery with optional field
cycling. The pulse sequence elements are as follows: (a) 180○ composite pulse
90○y 180○x 90○y to invert the thermal equilibrium populations. (b) Optional shuttling of
the sample to low field over an interval τshut ≃ 0.25 s, followed by free evolution for
a variable interval τ, and shuttling of the sample back to high field over a second
interval τshut ≃ 0.25 s. (c) A pulse with flip angle β creates measurable coherences
before acquisition of the signal. The experiments are repeated with the evolution
interval τ taking values between 0.5 and 35 s.

experiments, the sample was mechanically transported from the
bore of the spectrometer to a position above the magnet.

The custom-built sample shuttle was based on a design by
Kiryutin,28,29 in which the sample shuttle was mounted above the
spectrometer, and the sample is mechanically transported to a region
of low field. The sample is mounted on a carriage and transported
on a rail system via control by a stepper motor, which in turn is con-
trolled by the spectrometer pulse program. In our shuttle system, the
sample is at high field (9.4 T) prior to shuttling. The shuttling to low
field takes ∼0.25 s.

C. Pulse sequences
In all experiments, the 13C radio frequency field corresponded

to a nutation frequency of 29.4 kHz. The NMR signal was sampled
with 1280k data points with a spectral width of 81.46 ppm.

1. Variable flip-angle inversion-recovery
Inversion-recovery experiments were conducted using the

pulse sequence shown in Fig. 2. The equilibrium spin-state popula-
tions were inverted by a 90○y 180○x 90○y composite pulse,30 followed by
a variable delay τ, and excitation of observable transverse magnetiza-
tion by a readout pulse of flip-angle β. The NMR signal was acquired
in the following interval and Fourier-transformed to generate the
partially recovered NMR spectrum.

The process was repeated with a set of delays τ between 0.5 and
35 s in order to track the recovery of inverted longitudinal magneti-
zation. For low-field relaxation experiments, the sample was shuttled
to a field <9.4 T, and back again, during the delay τ.

Separate experiments were performed with the flip-angle β tak-
ing values of 10○, 50○, and 90○. As discussed below, the partially
recovered spectra depend on the value of the readout flip-angle β.

2. Relaxation of singlet order
The relaxation of singlet order was studied as a function of

magnetic field strength by the pulse sequence shown in Fig. 3.
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FIG. 3. Pulse sequence used to measure the singlet decay time constant TS as
a function of field strength. (a) A singlet order destruction (SOD) filter removes
residual singlet order, before thermal equilibrium is established by a 6 s delay,
and singlet order is generated by the M2S pulse sequence.2 A T00-filter removes
residual spin order other than singlet order.32 (b) The sample is optionally shuttled
to low field in the interval τshut and evolves freely during the interval τ before being
shuttled back to high field in the second τshut interval. (c) Singlet order is converted
back to measurable magnetization via the S2M pulse sequence; i.e., chronological
reverse of M2S, with an additional 90○ pulse. The NMR signal is detected in the
subsequent interval. The evolution interval τ takes values between 0.1 and 640 s.

This consists of: (1) a singlet-order destruction (SOD) fil-
ter to remove any residual long-lived singlet order left over from
the previous transient;31 (2) a relaxation delay of 6 s to allow the
establishment of thermal equilibrium magnetization; (3) an M2S
(magnetization-to-singlet) pulse sequence to generate singlet order
from thermal equilibrium magnetization;2 (4) a T00-filter sequence
to remove NMR signals not deriving from singlet order;32 (5)
a variable relaxation delay incorporating optional shuttling from
high field to low field, and back again; (6) an S2M (singlet-to-
magnetization) sequence for regenerating observable magnetiza-
tion from singlet order;2 and (7) NMR signal acquisition. The
M2S, S2M, T00-filter, and SOD-filter sequences are specified in the
supplementary material.

III. RESULTS
A. Inversion-recovery

The results of inversion-recovery experiments are shown in
Fig. 4, for flip angles β = 10○, 50○, and 90○. In each case, a set of
spectra is shown, spanning relaxation delays τ between 0.5 and 35 s.
As discussed in our previous paper,1 each spectrum corresponds to
a superposition of two Lorentzian peaks with markedly different
widths. The asymmetric broadening is due to a strong cross cor-
relation between the dipole–dipole and chemical shift anisotropy
relaxation mechanisms.1

When the flip angle of the last pulse is β = π/2 = 90○ (Fig. 4, top
row), the asymmetric doublet is inverted for small values of τ and
then recovers as τ is increased. The two doublet components appear
to recover at roughly similar rates, in this case.

The behavior is distinctly different when the flip angle of the last
pulse is small (β = 10○, Fig. 4, bottom row). In this case, the right-
hand (most shielded) peak clearly recovers much faster than the left-
hand (less shielded) peak and has already partially recovered for the
shortest τ delay. The spectral series for β = 50○ (Fig. 4, middle row)
is intermediate between the two cases.

The peak amplitudes at each value of τ were obtained by fitting
each spectrum to a superposition of two absorption Lorentzians as
shown in Fig. 5. The assumed form of the spectral function is

L(ω) = a+
λ+

λ2
+ + (ω − ω+)2 + a−

λ−
λ2
− + (ω − ω−)2 , (1)

where a± are the peak amplitudes, λ± are the linewidths, and ω± are
the center frequencies for the two peaks, as given in our previous
article.1

The center frequencies ω± and linewidths λ± were determined
by fitting a reference spectrum of I with the condition a+ = a−. These
frequencies and linewidths were then kept fixed for the analysis of
the entire spectral series.

The fitted linewidths are λ+ = 2π × 0.24 Hz and λ− = 2π
× 0.34 Hz. The frequency difference between the peaks was esti-
mated to be ∣ω+ − ω−∣ = 2π × 0.62 Hz. As shown in Fig. 5, the
broader doublet component is shifted to low δ (“high field”) rela-
tive to the narrower component. This corresponds to ω+ < ω− when
the negative sign of the Larmor frequency is taken into account.33

The trajectories of the peak amplitudes are shown in Fig. 6,
for three different flip angles β. These plots clearly show the strong
asymmetry between the recovery rates of the two peaks, in the case
of a small flip angle β.

In the case of β = π/2, the recovery curve for longitudinal
magnetization after inversion is well described by the following
function:

f (τ) = a0 e−τ/T1 + a∞(1 − e−τ/T1) (2)

with a0 and a∞ being the amplitudes at τ = 0 and τ →∞,
respectively.

The best-fit T1 values using Eq. (2) are given in Table I for fields
ranging from 5 mT to 9.39 T. The rate constants T−1

1 are plotted as a
function of magnetic field in Fig. 7(a). The T−1

1 values between 1.94
and 9.39 T are fitted reasonably well by a field-independent term,
which dominates at low field, plus a term that depends on B2

0, and
which dominates at high field. This quadratic fit is shown by the
blue curve in Fig. 7(a). There is an additional contribution at low
magnetic fields, of which the behavior is reminiscent of relaxation
induced by dissolved oxygen.34

B. Singlet order relaxation
At all magnetic fields, the integrated signal strength gener-

ated by the SOD–M2S–T00–τ–S2M pulse sequence in Fig. 3 decays
monotonically with respect to the waiting interval τ. One example
of the slow singlet-order decay is shown in Fig. 8. For all mag-
netic fields, the dependence of signal amplitude on τ fits well to a
monoexponential decay, of the following form:

f (τ) = aS e−τ/TS , (3)

where aS is a constant.
The estimated values of TS are given in Table I, which shows

that the singlet decay time constant TS exceeds the magnetization
equilibration time constant T1 by more than a factor of 100, over a
wide range of magnetic fields.
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FIG. 4. Left: Experimental inversion-recovery spectra 9.4 T, for β = 10○, 50○, 90○, obtained by the pulse sequence in Fig. 2. Spectra are shown for pulse sequence intervals τ
= {0.5, 0.75, 1, 1.25, 1.5, 2, 2.5, 3, 4, 5, 7.5, 10, 12.5, 15, 20, 25, 30, 35} s, with the spectra for the shortest interval given by the most negative curves. Right: SpinDynamica35

simulations, using the parameters given in Table II.

The singlet decay rate constant T−1
S is plotted as a function of

magnetic field in Fig. 7(b). The field-dependence of T−1
S is qualita-

tively similar to that of T−1
1 , apart from being ∼100 times slower. The

blue curve in Fig. 7(b) shows a second-order polynomial fitted to the
data from 0.845 to 9.4 T. There is an additional contribution at very
low field, which may tentatively be ascribed to relaxation induced by
paramagnetic dissolved oxygen.17,34

IV. THEORY
The following theory expands on that given in Ref. 1, by includ-

ing the antisymmetric CSA interaction, fluctuating random fields,
and a Lindbladian description of the relaxation of the spin system in
contact with a finite-temperature environment.

A. Spin Hamiltonian
The spin Hamiltonian consists of coherent and fluctuating

terms. Coherent terms are the same for all members of the spin

ensemble. Fluctuating stochastic terms differ between the members
of spin ensemble and fluctuate randomly in time, causing nuclear
spin relaxation.

1. Coherent Hamiltonian
The coherent Hamiltonian may be written as

Hcoh = HCS +HJ , (4)

where HCS and HJ are the chemical shift and spin–spin coupling
Hamiltonians, respectively. Expressed in a frame rotating about the
magnetic field at the mean frequency of the two chemical shifts, these
terms take the following forms:

HCS =
1
2
ωΔ(I1z − I2z) (5)

and

HJ = ωJI1 ⋅ I2, (6)
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FIG. 5. The 90○ pulse-acquire spectrum of a 0.3M solution of I in CDCl3 at 9.39 T
fitted as a sum of two absorption Lorentzian functions [Eq. (1)]. The narrow peak
is associated with the single-quantum coherence Q+, and the broad peak with the
coherence Q−, where the coherence operators Q± are given in Eqs. (46) and (47).

with ωΔ = ω0Δδiso and ωJ = 2πJiso, where ω0 is the Larmor fre-
quency, Δδiso is the isotropic chemical shift difference, and Jiso is the
isotropic spin–spin coupling constant.

For a magnetically equivalent system (ωΔ = 0), the eigenba-
sis of the coherent Hamiltonian consists of the singlet and triplet
states.36 These states span a Hilbert space of dimension NH = 4. For
finite ωΔ, the matrix representation of Hcoh in this basis is

∣S0⟩ ∣T+1⟩ ∣T0⟩ ∣T−1⟩

Hcoh =
1
4

⎛
⎜⎜⎜⎜
⎝

−3ωJ 0 2ωΔ 0
0 ωJ 0 0

2ωΔ 0 ωJ 0
0 0 0 ωJ

⎞
⎟⎟⎟⎟
⎠

. (7)

The chemical shift frequency difference ωΔ appears as off-diagonal
elements mixing the singlet state ∣S0⟩ and the central triplet state
∣T0⟩.

2. Fluctuating Hamiltonian
The fluctuating Hamiltonian, which is responsible for the relax-

ation of the spin system, may be written in the general form as
follows:

HΛ(t) = cΛ
+2

∑
ℓ=0

+ℓ

∑
m=−ℓ

(−1)mAΛ
ℓ−m(t)XΛ

ℓm, (8)

where cΛ is a constant for interaction Λ, AΛ are spatial components
of irreducible spherical tensors (IST), and XΛ

ℓm are spin, or spin-field,
IST operators. The spatial components AΛ

ℓm(t) of these interactions
fluctuate in time due to the random molecular motion in solution.

In the current molecular system, the most important fluctu-
ating interactions are the dipole–dipole coupling between the two
13C spins and the symmetric components of the two chemical shift
anisotropies. These interactions all have spherical rank ℓ = 2. The
terms cΛ, AΛ

2m and XΛ
2m for these interactions are specified in Ref. 1.

The spin-1/2 pair also experiences fluctuating spin–rotation
interactions,37,38 as well as fluctuating sources of magnetic fields
located on different molecules. Such intermolecular terms include

FIG. 6. Experimental (points) and analytical peak trajectories (curves) using
Eq. (48) and parameters in Table II for the variable flip-angle inversion-recovery
experiments at 9.4 T, obtained by the pulse sequence in Fig. 2. Analytical curves
were computed using routines in SpinDynamica.35

interactions with nuclear spins on other molecules (including the
solvent) and also unpaired electron spins, such as dissolved oxy-
gen molecules. For simplicity, we take into account these additional
interactions by a simplified model of fluctuating random magnetic
fields, as described below.

The coherent and incoherent spin-system parameters assumed
for I are given in Table II.

B. The Liouvillian
The quantum state of the spin ensemble is described by the

density operator ρ, defined by

ρ = ∣ψ⟩⟨ψ∣, (9)

where ∣ψ⟩ is the quantum state of an individual system, written as a
ket in Hilbert space, and the overbar denotes an ensemble average. In
the current case of a spin-1/2 pair, the Hilbert space has dimension
NH = 4, so the corresponding Liouville space of spin operators has
dimension NL = N2

H = 16. The density operator may be written as a
Liouville space ket, denoted ∣ρ(t)).
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TABLE I. Values of T1 and TS as a function of static magnetic field strength, from
inversion-recovery experiments using β = π/2. The two rows with the largest TS/T1

ratios are shown in bold. The rate constants T−1
1 and T−1

S are plotted as a function of
magnetic field in Fig. 7.

B0/T T1/s TS/s TS/T1

9.39 2.2 ± 0.04 209 ± 2 94 ± 2
7.96 2.5 ± 0.1 272 ± 7 111 ± 5
5.11 4.2 ± 0.1 459 ± 15 109 ± 5
1.94 6.5± 0.2 789 ± 23 121 ± 5
0.845 6.2± 0.3 789 ± 23 127 ± 7
0.409 6.1 ± 0.03 608 ± 14 99 ± 2
0.218 5.9 ± 0.03 509 ± 38 86 ± 6
0.126 5.7 ± 0.2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0.0428 5.6 ± 0.2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0.0210 5.8 ± 0.07 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0.0116 5.8 ± 0.03 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0.006 95 5.8 ± 0.03 537 ± 50 92 ± 9
0.005 5.5 ± 0.2 549 ± 57 100 ± 11

The evolution of the spin ensemble may be described by the
Liouville–von Neumann equation,

d
dt
∣ρ(t)) = L̂∣ρ(t)), (10)

where L̂ is the Liouvillian, given by

L̂ = L̂coh + Γ̂, (11)

where L̂coh is the coherent Liouvillian, given by

L̂coh = −iĤcoh. (12)

Here, Ĥcoh is the commutation superoperator of the coherent
Hamiltonian, defined by

Ĥcoh∣A) = [Hcoh, A], (13)

with A being an arbitrary operator.
The superoperator Ĥcoh generates the coherent dynamics, while

the relaxation superoperator Γ̂ generates the dissipative dynamics.
These two terms do not commute in general, which leads to a rich
interplay between the coherent and dissipative dynamics.

In general, the Liouvillian superoperator has a set of NL
eigenoperators and eigenvalues as follows:

L̂∣Qq) = Λq∣Qq), q ∈ {0, 1, . . . , NL − 1}, (14)

with

Λq = −λq + iωq, (15)

where λq and ωq are both real.
Consider the commutation superoperator for the spin angular

momentum operator along the main magnetic field as follows:

Îz ∣A) = ∣[Iz , A]), (16)

FIG. 7. Relaxation rate constants T−1
1 and T−1

S as a function of magnetic field.
(a) Filled circles with confidence limits: Experimental values of T−1

1 as a func-
tion of field B0. Light blue curve: Polynomial T−1

1 (B0) = aB2
0 + c with parameters

a = 3.67 × 10−3 s−1 T−1 and c = 0.146 s−1, obtained by fitting the experimen-
tal data above 1.5 T. Gray dashed line: Theoretical field dependence of the rate
constant λ(1) (Table V). Gray solid line: Theoretical field dependence of the rate
constant λ(2) (Table V). Black solid line: Theoretical field dependence of T−1

1 ,
obtained by fitting the analytical inversion-recovery trajectories of Eq. (49) to a
single-exponential form, for the flip angle β = π/2. (b) Filled circles with confi-
dence limits: Experimental values of T−1

S as a function of field B0. Light blue curve:
Polynomial fit T−1

S (B0) = aB2
0 + c with the parameters a = 40.6 × 10−6 s−1 T−2

and c = 1.16 × 10−3 s−1, obtained by fitting the experimental data above 0.8 T.
Black solid line: Theoretical field dependence of T−1

S . All theoretical curves use the
parameters given in Table II.

where A is an operator. In the high-field approximation,40 Îz
commutes with the Liouvillian superoperator L̂ as follows:

[Îz , L̂] = 0. (17)

A consequence of Eq. (17) is that the Liouvillian eigenoperators
∣Qq) may be classified by their coherence order pq, defined as their
eigenvalue under the commutation superoperator Îz ,

Îz ∣Qq) = pq∣Qq). (18)

For an ensemble of spin-1/2 pairs, the coherence orders take values
pq ∈ {−2,−1, 0,+1,+2}.

The previous paper1 was mainly concerned with the dynamics
of eigenoperators with pq = −1, which are single-quantum coher-
ences oscillating at frequencyωq and which are capable of generating
a quadrature-detected NMR signal. Meanwhile, the current paper
is mainly concerned with zero-quantum (ZQ) eigenoperators with
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FIG. 8. Singlet order decay curve obtained by the pulse sequence in Fig. 3 at 9.4 T.
The light blue line shows the monoexponential decay function [Eq. (3)] with time
constant TS = 209 s. The black curve shows the theoretical decay function from
Eq. (55), for the best-fit parameters given in Table II.

pq = 0. Those eigenoperators with eigenvalues for which ωq = 0 rep-
resent configurations of spin-state populations, while those with
eigenvalues for which ωq ≠ 0 represent ZQ coherences, which oscil-
late at ωq. In both cases, the configurations relax back toward
thermal equilibrium under the dissipative effects of Γ̂ with rate con-
stant λq > 0. As described below, it is important that the form of Γ̂
correctly takes into account the finite temperature of the molecular
environment.

Consider the spin dynamics in the following basis of normal-
ized zero-quantum spherical tensor operator components:

B0 = {T0
00,Tg

00,Tg
10,Tu

10,Tu†
10 ,Tg

20}, (19)

where the basis operators are

T0
00 =

1
2
𝟙

= 1
2
(∣S0⟩⟨S0∣ + ∣T+1⟩⟨T+1∣ + ∣T0⟩⟨T0∣ + ∣T−1⟩⟨T−1∣)

Tg
00 = −

2√
3

Ij ⋅ Ik

= − 1
2
√

3
(3∣S0⟩⟨S0∣ − ∣T+1⟩⟨T+1∣ − ∣T0⟩⟨T0∣ − ∣T−1⟩⟨T−1∣),

Tg
10 =

1√
2
(Ijz + Ikz)

= 1√
2
(∣T+1⟩⟨T+1∣ − ∣T−1⟩⟨T−1∣),

Tu
10 =

1
2
(Ijz − Ikz) +

1
2
(I−j I+k − I+j I−k )

= ∣T0⟩⟨S0∣,

Tu†
10 =

1
2
(Ijz − Ikz) −

1
2
(I−j I+k − I+j I−k )

= ∣S0⟩⟨T0∣,

Tg
20 =
√

2
3
(3IjzIkz − Ij ⋅ Ik)

= 1√
6
(∣T+1⟩⟨T+1∣ − 2∣T0⟩⟨T0∣ + ∣T−1⟩⟨T−1∣).

(20)
The spherical tensor operator components satisfy the rotational
property,22

R̂ϕ(Ω)Tlm =
+l

∑
m′=−l

D(l)m′m(Ω)Tlm′. (21)

TABLE II. Spin system parameters for I in solution.

Parameter Value Note

Jjk 214.15 Hz Experimentala

Δδiso 0.16 ppm Experimentalb

bjk/(2π) −4152.84 Hz Estimatedc

δCSA
j −145.7 ppm Calculated for the equilibrium structured

ηj 0.020 Calculated for the equilibrium structured

δCSA
k −145.4 ppm Calculated for the equilibrium structured

ηk 0.023 Calculated for the equilibrium structured

τ� 155 ps Best fite

ω2
randτrand 0.549 × 10−3 Hz Best fite

ΔδCSA 13.3 ppm Best fitf

κjk 0 Assumed for simplicity
aObtained from a 90○ pulse-acquire spectrum on a 700 MHz spectrometer.
bEstimated from the 13C spectrum of natural abundance material.
cEstimated from the internuclear distance, rjk = 122 pm.
dGeometry optimization and magnetic shielding tensors were calculated at the B3LYP/aug-cc-PVTZ level of theory using the
Gaussian 09 software.1,39

eBest fit to the 9.4 T, β = 10○ , 50○ , 90○ flip-angle experiments using Eq. (48).
fBest fit to the singlet relaxation field-dependent data using Eq. (56).

J. Chem. Phys. 161, 014112 (2024); doi: 10.1063/5.0213997 161, 014112-7

© Author(s) 2024

 23 July 2024 14:03:32

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

The superscripts u and g in Eq. (20) indicate a two-spin operator,
which is odd or even, respectively, under exchange of the two spins.
The odd-parity rank-1 spherical tensor operator components Tu

10
and Tu†

10 were introduced previously in the context of symmetry-
based singlet–triplet excitation.41 These two operators represent the
zero-quantum coherences.

The Tg
00 operator has an expectation value proportional to the

population imbalance between the singlet and triplet manifolds and
referred to as singlet order. The Tg

10 operator has an expectation
value proportional to longitudinal magnetization and referred to as
longitudinal order. The Tg

20 operator has an expectation value pro-
portional to the deviation in population of the central triplet state
∣T0⟩ from the mean population of the outer triplet states ∣T±1⟩. The
operator T0

00 is proportional to the unity operator and represents
the sum of populations over all states, which is conserved under all
processes.

C. Coherent Liouvillian
The ZQ block of the matrix representation of L̂coh, as defined

in Eq. (12), is given by

T0
00 Tg

00 Tg
10 Tu

10 Tu†
10 Tg

20

L̂coh = −i

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 0

0 0 0
1√
3
ωΔ − 1√

3
ωΔ 0

0 0 0 0 0 0

0
1√
3
ωΔ 0 ωJ 0

1√
6
ωΔ

0 − 1√
3
ωΔ 0 0 −ωJ − 1√

6
ωΔ

0 0 0
1√
6
ωΔ − 1√

6
ωΔ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(22)

In the near-equivalence limit, ∣ωJ ∣≫ ∣ωΔ∣, the basis operators
of B0, given in Eq. (20), define an approximate eigenbasis of the
coherent zero-quantum Liouvillian.

D. Relaxation superoperator
1. Lindbladian thermalization

In Ref. 1, we treated the dissipative dynamics of the spin
system by using a relaxation superoperator constructed with the
Redfield–Abragam formalism.20,21,42,43 Although this method is suf-
ficient for treating the decay of coherences, it displays irrecoverable
flaws when treating the dynamics of spin-state populations for the
case of a spin system interacting with a finite-temperature environ-
ment. The usual remedy is to introduce a thermal equilibrium term
ρeq into the Liouville–von Neumann equation (10), leading to the
so-called inhomogeneous master equation (IME).20–22,42 However,
it has been shown that the IME is not consistent with the theory
of open quantum systems44–47 and in some cases leads to unphys-
ical results.23 In the current paper, we avoid such uncertainties by
constructing the relaxation superoperator through a Lindbladian
formalism.23,48 This allows for a rigorous treatment of a spin sys-
tem in contact with a finite-temperature environment, without the
introduction of ad hoc terms.

It should be noted, however, that since the current experiments
only involve spin systems with very small amounts of spin order,
the standard IME approach and the Lindbladian formalism give
indistinguishable results. The Lindbladian approach is used here
for theoretical consistency and in anticipation of experiments on
hyperpolarized systems, where the validity of the standard IME is
insecure.23

The Lindbladian form of the relaxation superoperator in an
isotropic medium of finite temperature is given by

Γ̂ θ ≃ Γ̂θintra + Γ̂θrand, (23)

where Γ̂θintra is the contribution to the relaxation superoperator
from intramolecular relaxation mechanisms and Γ̂θrand is the relax-
ation superoperator for the intermolecular contributions, approx-
imated by a random-field mechanism. The symbol θ signifies
“thermalization”23 and indicates that the relaxation superoperator
takes into account the finite temperature of the environment. The
following equation uses the symbol βθ for the inverse temperature
parameter:

βθ = h̵/kBT, (24)

where kB is the Boltzmann constant.

2. Intramolecular relaxation
The intramolecular relaxation superoperator is given by

Γ̂θintra =∑
Λ Λ′

Γ̂θΛΛ′ , (25)

where each term has the following form:

Γ̂θΛΛ′ = δℓ ℓ′c
ΛcΛ

′

∑
ℓ,m

JθΛΛ
′

ℓℓ′m(ω0) D̂[[XΛ
ℓm]

L
, [XΛ′†

ℓ′m]
L
]. (26)

Each term Γ̂θΛΛ′ involves two spin interactions Λ and Λ′, which have
spatial ranks ℓ and ℓ′, respectively. The Kronecker delta δℓ ℓ′ ensures
that only terms of the same spatial rank ℓ contribute to the relaxation
superoperator. The terms Γ̂θΛΛ′ with ℓ = ℓ′ butΛ ≠ Λ′ represent cross
correlation contributions to the relaxation superoperator.

The terms JθΛΛ
′

ℓℓ′m(ω0) are the thermalized spectral density func-
tions given below, [XΛ

ℓm]
L

are the mth components of ℓth-rank
irreducible spherical spin (or spin-field) tensors for interaction Λ in
the laboratory (L-) frame (see our previous article, Ref. 1), and D̂ is
the Lindbladian dissipator,23,27 defined as follows:

D̂[A, B†]Q = AQB† − 1
2
(AB†Q +QAB†), (27)

where A, B, and Q are arbitrary operators.
Assuming that I may be approximated as a symmetric top, the

spectral density terms JθΛΛ
′

ℓℓ′m(ω0) for the intramolecular interactions
are given by

JθΛΛ
′

ℓℓ′m(ω0) = (2ℓ + 1)−1∑
n
[AΛ∗

ℓn ]
D
[AΛ′

ℓ′n]
D

× 2τ(ℓ)�
1 +m2ω2

0τ
(l)2
�

exp{−1
2
βθmω0}. (28)
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In Eq. (28), τ� is the rotational correlation time associated with
diffusion about axes perpendicular to the molecular long axis and
[AΛ∗

ℓn ]
D

are spatial functions in the principal axis frame D of the
rotational diffusion tensor. These may be expanded in terms of func-
tions in the common principal axis frame P of the anisotropic spin
interactions,

[AΛ
ℓn]

D
=∑

n′
[AΛ

ℓn′]
P
D(ℓ)n′n(ΩPD). (29)

Here, D(ℓ)n′n(ΩPD) are Wigner functions with angles ΩPD as argu-
ments, which parameterize the orientation of the two frames with
respect to one another. It may be shown that for rigid linear
molecules, the only non-vanishing terms in Eq. (28) are for n = 0.
The details of the derivation leading to Eq. (28) are given in the
supplementary material of our previous paper.1

3. Random-field relaxation
In this paper, relaxation by spin-rotation49–51 and fluctuat-

ing intermolecular couplings43,52 is approximated by a mechanism
involving randomly fluctuating fields, which are partially correlated
at the two spin sites. The appropriate relaxation superoperator is as
follows:23

Γ̂θrand =
2

∑
j,k=1

κjkω
( j)
rmsω

(k)
rms

+1

∑
m=−1

Jθm,rand(ω0)

× D̂[[Xrand
1m ]

L
, [Xrand†

1m ]
L
], (30)

where ω( j)
rms and ω(k)rms are the root-mean-square amplitudes of the

local field fluctuations associated with spins j and k, respectively, and
Jθm,rand(ω0) is the thermalized spectral density function given by

Jθm,rand(ω0) =
2τrand

1 +m2ω2
0τ2

rand
exp{−1

2
βθmω0}, (31)

where τrand is the random field correlation time.
The spin tensor components in Eq. (30) are given by

[XΛ
10]

L
= Ijz ,

[XΛ
1±1]

L
= ∓ 1√

2
I±j .

(32)

The symbol −1 ≤ κjk ≤ +1 is a coefficient describing the degree
of correlation of fluctuations experienced by both spins. κjk = 1 rep-
resents perfectly correlated random fields, while κjk = −1 represents
perfect anti-correlation. By definition, the autocorrelations are equal
to one, κjj = κkk = 1.

4. Relaxation matrices
Figures 9(a)–9(c) show graphical representations of the ZQ

blocks of the relaxation superoperators, evaluated numerically
for the interaction parameters specified in Table II and the
supplementary material of our previous article.1

Figure 9(a) shows the matrix representation of the Lindblad-
thermalized DD relaxation superoperator Γ̂θDD, in the zero-quantum
operator basis B0. The element with the dashed outline corre-
sponds to the relaxation rate constant of singlet-order, Tg

00, which

vanishes under the DD mechanism. The element with a solid out-
line corresponds to the relaxation rate constant of longitudinal
order, Tg

10. Note the small off-diagonal elements (Tg
10∣Γ̂

θ
DD∣T0

00) and
(Tg

10∣Γ̂
θ
DD∣Tg

20), indicated by the faint colors. These off-diagonal ele-
ments are asymmetric about the diagonal. They are very small for
the simulated parameters (∼10−6 s−1) and arise from the thermal-
ization of the relaxation superoperator using Lindbladian dissipators
[Eq. (27)], required for the rigorous representation of the contact of
the spin system with a finite-temperature environment.23,27,48,53 It is
not yet known whether these small matrix elements are associated
with NMR phenomena.

Figure 9(b) shows the zero-quantum block of the relaxation
superoperator after the inclusion of the CSA mechanism. The
off-diagonal elements are still small compared to the diagonal
ones, indicating that B0 is close to an eigenoperator basis of the
ZQ block.

Figure 9(c) shows the inclusion of DD–CSA cross correlation,
as well as the DD and CSA auto-correlation terms. Cross-correlated
relaxation introduces significant off-diagonal elements between the
Tg

10 and Tg
20 operators.

5. Zero-quantum secular approximation
The full Liouvillian is a superposition of the coherent part,

whose zero-quantum block is given in Eq. (22), and the dissipative
part, given by the relaxation superoperator.

As shown in Eq. (22), the diagonal matrix elements for the
operators Tu

10 and Tu†
10 are given by

(Tu
10∣ L̂coh∣Tu

10) = −iωJ ,

(Tu†
10 ∣ L̂coh∣Tu†

10) = +iωJ ,
(33)

while the corresponding diagonal matrix elements for all the other
zero-quantum operators are zero. In the near-equivalence limit, ∣ωJ ∣
greatly exceeds the coherent off-diagonal term ∣ωΔ∣ and also all off-
diagonal components of the relaxation superoperator. It follows that,
to a good approximation, all off-diagonal Liouvillian terms connect-
ing the operators Tu

10 and Tu†
10 with other zero-quantum operators

may be ignored,

(Tu
10∣ L̂∣Qq)→ 0, ∀ Qq ≠ Tu

10,

(Tu†
10 ∣ L̂∣Qq)→ 0, ∀ Qq ≠ Tu†

10 ,

(Qq∣ L̂∣Tu
10)→ 0, ∀ Qq ≠ Tu

10,

(Qq∣ L̂∣Tu†
10)→ 0, ∀ Qq ≠ Tu†

10.

(34)

The effect of this approximation is to decouple the ZQ coherences
from the populations. In principle, the off-diagonal elements of the
coherent Liouvillian, given in Eq. (22), give rise to singlet–triplet
leakage terms, which appear to second-order in the chemical shift
difference. These second-order leakage terms are ignored in the
following discussion.

This approximation leads to a considerable simplification of the
zero-quantum spin dynamics and is called here the zero-quantum
secular approximation. The implementation of the zero-quantum
secular approximation at the level of the relaxation superoperator
is illustrated in Fig. 9(e).

J. Chem. Phys. 161, 014112 (2024); doi: 10.1063/5.0213997 161, 014112-9

© Author(s) 2024

 23 July 2024 14:03:32

https://pubs.aip.org/aip/jcp
https://doi.org/10.60893/figshare.jcp.c.7278001


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

FIG. 9. Numerical matrix representations of the zero-quantum blocks of the relaxation superoperators in the B0 basis given in Eqs. (19) and (20), for the parameters in
Table II. (a) Thermalized relaxation superoperator Γ̂θDD for the intra-pair DD mechanism. Diagonal elements corresponding to singlet order Tg

00 and longitudinal order Tg
10

are indicated by dashed and solid borders, respectively. (b) With inclusion of the CSA mechanism. Off-diagonal elements for these two mechanisms, which are not removed
under secularization, are at least five orders-of-magnitude smaller than the diagonal elements and considered negligible. (c) With inclusion of the DD–CSA cross correlation,
showing the off-diagonal elements connecting theTg

10 andTg
20 operators. (d) With fluctuating random fields included. (e) Matrix representation of the relaxation superoperator

after zero-quantum secularization (Sec. IV D 5).

E. Relaxation of longitudinal magnetization
We now consider the peak trajectories in an inversion-recovery

experiment, as shown in Figs. 4 and 6. For simplicity, the follow-
ing analytical treatment of the relaxation of longitudinal spin order
makes the following approximations:

● The high-temperature approximation is made:

∣ω0βθ∣≪ 1. (35)

● The biaxiality parameters of the two CSA tensors are
ignored: ηj = ηk = 0.

All parameters used for the analytical curves and simula-
tions are given in Table II. For simplicity, we assume uncorrelated
fields, κjk = 0, and τ� and ω2

randτrand become the only two fitted
parameters.

1. Polarization moment trajectories
Invoking the high-field and high-temperature approximations,

the thermal equilibrium density operator may be expressed as

∣ρeq) ≃ N−1
H ∣𝟙 − βθω0Iz)

= 1
2
(T0

00 −
1√
2
ω0βθT

g
10), (36)

using the spherical tensor operators in Eq. (19). Upon application of
a π-pulse, by virtue of Eq. (21), we have

∣ρinv) = R̂ϕ(π)∣ρeq)

= 1
2
(T0

00 +
1√
2
ω0βθT

g
10). (37)
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TABLE III. The negative of the diagonal elements of the 3 × 3 zero-quantum block of the Liouvillian, as given in Eq. (40). All
expressions utilize the high-temperature approximation.

λDD
10 ≃ −(Tg

10∣Γ̂
θ
DD∣T

g
10) = 3

10 b2
jk{ τ�

1+τ2
�
ω2

0
+ 4τ�

1+4τ2
�
ω2

0
}

λDD
20 ≃ −(Tg

20∣Γ̂
θ
DD∣T

g
20) = 9

10 b2
jk

τ�
1+τ2

�
ω0

λCSA
10 ≃ −(Tg

10∣Γ̂
θ
CSA∣T

g
10) = 3

20 ω
2
0([δCSA

j ]
2 + [δCSA

k ]2) τ�
1+τ2

�
ω2

0

λCSA
20 ≃ −(Tg

20∣Γ̂
θ
CSA∣T

g
20) = 1

60 ω
2
0{4 τ�(δCSA

j − δCSA
k )2 + (5[δCSA

j ]
2 + 5[δCSA

k ]2 + 8δCSA
j δCSA

k ) 3τ�
1+τ2

�
ω2

0
}

λrand
10 ≃ −(Tg

10∣Γ̂
θ
rand∣T

g
10) = 2ω2

randτrand

λrand
20 ≃ −(Tg

20∣Γ̂
θ
rand∣T

g
20) = 2 (2 + κ jk)ω2

randτrand

TABLE IV. The off-diagonal elements of the 3 × 3 zero-quantum block of the Liouvillian in the high-temperature approximation, as given in Eq. (40), with θ10 = θDD
10 + θ

CSA
10

+ θrand
10 . The thermal terms θ10 and θ20 are small compared to the others but are necessary for a correct treatment of thermal equilibration. All expressions are given in the

high-temperature approximation.

θDD
10 + θCSA

10 = (Tg
10∣Γ̂

θ
DD + Γ̂θCSA∣T0

00) = − 3
10
√

2
b2

jkω0βθ{ τ�
1+τ2

�
ω2

0
+ 4τ�

1+4τ2
�
ω2

0
} − 3

20
√

2
ω3

0βθ([δCSA
j ]

2 + [δCSA
k ]2) τ�

1+τ2
�
ω2

0

θrand
10 = (Tg

10∣Γ̂
θ
rand∣T0

00) = −
√

2ω0βθω2
randτrand

θ20 = (Tg
20∣Γ̂

θ
DD×CSA∣T0

00) = − 3
10

√
3
2 b jkω2

0βθ(δCSA
j + δCSA

k ) τ�
1+τ2

�
ω2

0

Δ = (Tg
10∣Γ̂

θ
DD×CSA + Γ̂θrand∣T

g
20) = − 3

√
3

10 ω0b jk(δCSA
j + δCSA

k ) τ�
1+τ2

�
ω2

0
+ 1√

3
ω0βθ κ jk ω2

randτrand

Δ′ = (Tg
20∣Γ̂

θ
DD×CSA + Γ̂θrand∣T

g
10) = − 3

√
3

10 ω0b jk(δCSA
j + δCSA

k ) τ�
1+τ2

�
ω2

0
− (2+κ jk)

√
3

ω0βθ ω2
randτrand

The density operator at a time τ after the π-pulse may be written
as follows:

∣ρ(τ)) = e L̂ τ ∣ρinv) =∑
ℓ

ρℓ0(τ)∣Tℓ0), (38)

where ρℓ0(τ) are the polarization moments54,55 defined as follows:

ρℓ0(τ) = (Tℓ0∣ρ(τ)) = (Tℓ0∣e L̂ τ ∣ρinv). (39)

The trajectories of the polarization moments indicate the mixing of
different spin ranks during the recovery interval τ.

Within the zero-quantum secular approximation, the relax-
ation dynamics of longitudinal magnetization may be analyzed in
terms of the following 3 × 3 block of the Liouvillian matrix, spanned
by the operators T0

00, Tg
10, and Tg

20:

L =
⎛
⎜⎜
⎝

0 0 0
θ10 −λ10 Δ
θ20 Δ′ −λ20

⎞
⎟⎟
⎠

. (40)

The diagonal elements are given by λℓ0 = λDD
ℓ0 + λCSA

ℓ0 + λrand
ℓ0 . The

analytical expressions for the elements are given in Tables III and
IV.

The zero-quantum Liouvillian matrix L may be diagonalized
through

L = SΛS−1, (41)

where Λ is a diagonal matrix with the eigenvalues of L on the
diagonal,

Λ =
⎛
⎜⎜
⎝

0 0 0
0 −λ(1) 0
0 0 −λ(2)

⎞
⎟⎟
⎠

, (42)

and S is a matrix whose columns are the eigenvectors of L,

S =
⎛
⎜⎜
⎝

S11 0 0
S21 S22 S23

1 1 1

⎞
⎟⎟
⎠

. (43)

The elements of Λ and S are given in Table V. The eigenvector
of L corresponding to the zero eigenvalue represents the thermal
equilibrium state. The terms λ(1) and λ(2) are equal to the non-zero
eigenvalues after a change of sign and correspond to the relaxation
rate constants for the zero-quantum Liouvillian eigenoperators.

Using Eq. (41), the polarization moment trajectories generally
take a biexponential form and may be written as follows:

ρg
ℓ0(τ) = (T

g
ℓ0∣S exp{Λτ} S−1∣ρinv)

= gg
ℓ0 exp{−λ(1)τ} + hg

ℓ0 exp{−λ(2)τ} + ρg
ℓ0(eq). (44)

The coefficients gg
ℓ0, hg

ℓ0, and ρg
ℓ0(eq) are given in Table V for

ℓ = 1 and ℓ = 2. From Eq. (44), the polarization moments become
equal to ρg

ℓ0 at equilibrium, i.e., at large τ (see Table V).
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TABLE V. Rate constants λ(1) and λ(2), elements of S, coefficients gg
ℓ0 and hg

ℓ0, and
thermal equilibrium polarization moments ρg

ℓ0(eq) for ℓ = 1 and ℓ = 2.

λ(1) = 1
2(λ10 + λ20 +

√
4ΔΔ′ + (λ10 − λ20)2)

λ(2) = 1
2(λ10 + λ20 −

√
4ΔΔ′ + (λ10 − λ20)2)

S11 = λ10λ20−ΔΔ′
λ10θ20+θ10Δ′

S21 = λ20θ10+θ20Δ
λ10θ20+θ10Δ′

S22 = − 1
2Δ′ (λ10 − λ20 +

√
4ΔΔ′ + (λ10 − λ20)2)

S23 = − 1
2Δ′ (λ10 − λ20 −

√
4ΔΔ′ + (λ10 − λ20)2)

gg
10 = S22

2(S11S22−S11S23)
( S11βθω0√

2
− S21 + S23)

gg
20 = 1

2(S11S22−S11S23)
( S11βθω0√

2
− S21 + S23)
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− S21 + S23)

hg
20 = − 1

2(S11S22−S11S23)
( S11βθω0√

2
− S21 − S22)

ρg
10(eq) = − 1

2
√

2
ω0βθ
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FIG. 10. Polarization moment trajectories after the π-pulse in an inversion-recovery
experiment, calculated for the parameters in Table II. Points: Numerical SpinDy-
namica simulations, using the full 16-dimensional Liouvillian. Solid lines: Analytical
polarization moment trajectories using Eq. (44). Both polarization moments are
given relative to the equilibrium rank-1 polarization moment, defined in Eq. (45).
The numerical and analytical trajectories are indistinguishable. The trajectories
show that rank-1 polarization is converted into negative rank-2 polarization by
cross-correlated DD–CSA relaxation.

Figure 10 compares the numerical and analytical polarization
moment trajectories for the parameters given in Table II. The polar-
ization moments are provided relative to the rank-1 polarization
moment in thermal equilibrium, which is given through Eq. (36) by

ρg
10(eq) = − 1

2
√

2
ω0βθ. (45)

The agreement is good. The cross-correlated DD–CSA relaxation
induces the conversion of rank-1 polarization into rank-2 polariza-
tion, induced by the off-diagonal elements of the relaxation matrices
shown in Figs. 9(c) and 9(e).

2. Observable coherences and peak amplitudes
In the inversion-recovery pulse sequence shown in Fig. 2, a

pulse of flip angle β is applied after the evolution interval τ and
induces (−1)-quantum coherences, which are detected in the sub-
sequent interval. As described in our previous article,1 the operators
representing the observable (−1)-quantum coherences are given in
the near-equivalence limit by

Q+ = ∣T0⟩⟨T+1∣ (46)

and

Q− = ∣T−1⟩⟨T0∣, (47)

which are associated with the narrow and broad spectral peaks,
respectively (see Fig. 5).

From Eq. (38), the peak amplitudes for an inversion-recovery
experiment with flip angle β and evolution interval τ are given in
terms of polarization moments ρℓ0(τ) by

a±(β, τ) = 1
2

i(I−∣Q±)∑
ℓ

(Q±∣R̂0(β)∣Tℓ0)ρℓ0(τ). (48)

The complex pre-factor is required to describe quadrature detec-
tion.40 In general, these equations predict a bi-exponential recovery
of both spectral peak amplitudes, with exponential rate constants
equal to λ(1) and λ(2),

a±(β, τ) = 1
2
√

2
{(ρg

10(eq) ±
√

3 ρg
20(eq) cos β) sin β

+ (gg
10 ±
√

3 gg
20 cos β) sin β exp (−λ(1)τ)

+ (hg
10 ±
√

3 hg
20 cos β) sin β exp (−λ(2)τ)}. (49)

The terms gg
ℓ0, hg

ℓ0, ρg
ℓ0(eq), and the rate constants λ(1) and λ(2)

are given in Table V.
A comparison of the experimental and analytical peak

amplitudes for inversion-recovery experiments with flip angles
β = 90○, 50○, and 10○ is shown in Fig. 6. The agreement is excellent.

Figure 4 shows several series of simulated spectra, for
inversion-recovery experiments with different values of flip angle
β, as a function of evolution interval τ. The good agreement of
the simulated spectra (right) with the experimental spectra (left) is
gratifying.

3. Population dynamics
We now consider the dynamics of the spin state popula-

tions under the inversion-recovery procedure. Consider a spin
state ∣r⟩. The population of ∣r⟩ at a time τ after the inversion
pulse may be expressed in terms of the polarization moments as
follows:

pr(τ) = ⟨r∣ρ(τ)∣r⟩

=
2

∑
ℓ=0
⟨r∣Tℓ0∣r⟩ρℓ0(τ). (50)
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The singlet and triplet populations are, therefore, given in terms
of polarization moments by the following expressions:

ΔpS
0 = −

√
3

2
ρg

00(τ),

ΔpT
+1 = +

1
2
√

3
ρg

00(τ) +
1√
2
ρg

10(τ) +
1√
6
ρg

20(τ),

ΔpT
0 = +

1
2
√

3
ρg

00(τ) −
2√
6
ρg

20(τ),

ΔpT
−1 = +

1
2
√

3
ρg

00(τ) −
1√
2
ρg

10(τ) +
1√
6
ρg

20(τ),

(51)

where the deviation of a state population from the mean is denoted
as follows:

Δpr = pr −
1
4

. (52)

From the trajectories in Sec. IV E 1, the populations of the states
∣T+1⟩ and ∣T0⟩ become equal after a time interval τ = 0.59 s. As a
result, the broad spectral peak vanishes for this value of τ, when a
small flip angle β is used. This effect is evident by comparing Figs. 6
and 10.

Using the polarization moment trajectories with Eq. (51) and
peak amplitudes, the movement of populations between the states
in the interval τ of the inversion-recovery experiment, and the
spectra obtained by taking the Fourier transform of the signal
induced by the final pulse, may be invoked. These are sketched
in Fig. 11.

F. Relaxation field-dependence
1. Longitudinal relaxation

From Eq. (49), the total signal amplitude, for an inversion-
recovery experiment with flip angle β, is given as a function of τ
by

a(β, τ) = a+(β, τ) + a−(β, τ)

= 1√
2

sin β{ρg
10(eq) + gg

10 exp (−λ(1)τ)

+ hg
10 exp (−λ(2)τ)}. (53)

For long τ, the above expression tends to a value proportional
to thermal equilibrium magnetization,

lim
τ→∞

a(β, τ) = 1√
2
ρg

10(eq) sin β. (54)

In general, Eq. (53) describes a bi-exponential recovery to
equilibrium.

Since the recovery is bi-exponential, it is not possible to give
a theoretical expression for the single parameter T1 over the full
range of magnetic fields. As such, the function in Eq. (2) was fit-
ted to recovery curves calculated via Eq. (49) and T1 extrapolated.
These theoretical values of T1 are plotted in Fig. 7(a). There is
some discrepancy, potentially due to population exchanges taking
place during the shuttling process, which takes a finite amount
of time.

FIG. 11. Energy level diagram illustrating the population dynamics during the τ
interval of an inversion-recovery experiment, and how that describes the behavior
of the peaks in the spectrum. All populations are described as deviations from a
state with equal populations: The filled balls represent positive population devi-
ations, while the empty balls represent negative population deviations. (a) Spin
state populations at thermal equilibrium. (b) A π-pulse inverts populations, and
a pulse with arbitrary β gives an inverted spectrum. (c) After a delay τ = 0.59 s
and a 10○-pulse, the peak associated with the Q− coherence vanishes. (d) After
a delay τ = 1.44 s, the rank-1 polarization moment ρg

10(τ) vanishes, and peaks
with amplitude of opposite sign are observed. A further delay restores thermal
equilibrium.

2. Singlet relaxation
The theory given above predicts a single-exponential decay of

the polarization moment ρg
00(τ), according to

ρg
00(τ) = ρ

g
00(0)e

−λg
00τ. (55)

As shown in Table VI, the intra-pair dipole–dipole mechanism and
the CSA–DD cross correlation terms do not contribute to the singlet
relaxation. The theoretical decay rate constant for singlet order is,
therefore, given by

λg
00 = λ

CSA
00 + λrand

00

= 1
3
ω2

0(ΔδCSA)2τ� + 2 (1 − κjk)ω2
randτrand, (56)

where ΔδCSA is the CSA difference parameter.
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TABLE VI. Analytical relaxation rate constants for singlet order in the extreme-
narrowing limit and utilizing the high-temperature approximation. The chemical shift
difference is given by the parameter ΔδCSA = δCSA

j − δCSA
k .

λDD
00 ≃ −(Tg

00∣Γ̂
θ
DD∣T

g
00) = 0

λCSA
00 ≃ −(Tg

00∣Γ̂
θ
CSA∣T

g
00) = 1

3 ω
2
0(ΔδCSA)2τ�

λDD×CSA
00 ≃ −(Tg

00∣Γ̂
θ
DD×CSA∣T

g
00) = 0

λrand
00 ≃ −(Tg

00∣Γ̂
θ
rand∣T

g
00) = 2 (1 − κ jk)ω2

randτrand

For simplicity, we assume uncorrelated fields and arbitrarily set
κjk = 0. Then, the product of the mean-squared random-field ampli-
tude and the random field correlation time, ω2

randτrand, may be esti-
mated from the inversion-recovery data at 9.4 T for β = 10○, 50○, 90○

flip-angle experiments and ΔδCSA in turn by fitting the exper-
imental field-dependence of the singlet relaxation rate constant,
shown in Fig. 7(b). This leads to the best-fit parameter set given
in Table II.

The theoretical singlet order decay is compared to the exper-
imental data in Fig. 8. The agreement is excellent. The theoretical
field-dependence of the singlet order decay rate constant is com-
pared to the experimental data in Fig. 7(b). The agreement is good,
except at low magnetic fields, where an additional contribution to
the singlet relaxation rate is evident. This indicates the presence
of additional mechanisms with a longer correlation time, such as
paramagnetic relaxation by dissolved oxygen.56,57

The best-fit value for the CSA difference parameter ΔδCSA
≃ 13.3 ppm is much larger than an estimate provided by DFT
(density functional theory) calculations for the equilibrium molecu-
lar geometry. This indicates that less symmetrical non-equilibrium
geometries are important participants in singlet order relaxation.
A similar conclusion was drawn from a study of nuclear singlet
relaxation in different molecular systems.58

V. DISCUSSION AND CONCLUSIONS
In this paper, and the previous one,1 we have presented a

comprehensive study of the nuclear spin dynamics in a system con-
taining an isolated spin-1/2 pair, and which exhibits anisotropic
rotational diffusion and strong cross correlation effects. The spin
pair is almost magnetically equivalent so that the Hamiltonian eigen-
states are given by the singlet and triplet nuclear spin states, to a good
approximation. As described in the previous paper,1 the strong cross
correlation of the dipole–dipole and chemical shift anisotropy inter-
actions leads to a strong difference between the widths of the two
main spectral peaks.

In this paper, we show how the cross correlation leads to a
strong difference between the trajectories of the two peaks in an
inversion-recovery experiment with a small flip angle for the final
readout pulse. The broad peak recovers from inversion much more
rapidly than the narrow peak in these experiments. This effect is well
explained by a theoretical description using a Lindbladian formula-
tion of the relaxation superoperator, which takes into account the
finite temperature of the molecular environment.

Singlet NMR experiments reveal the existence of very long-
lived nuclear singlet order, with a time constant ratio TS/T1 exceed-
ing 100 over a range of magnetic fields. The experimental results

are explained well by a theoretical model, including relaxation by
chemical shift anisotropy, dipole–dipole coupling, and their cross
correlation. A full description also requires the inclusion of fluc-
tuating magnetic fields at the sites of the nuclear spins, and in our
treatment, uncorrelated fields are assumed for simplicity.

SUPPLEMENTARY MATERIAL

The supplementary material contains experimental parameters
and simulation details for the numerical and analytical analyses. A
Mathematica notebook is available on request.
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