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Abstract
Summary In a Norwegian youth cohort followed from adolescence to young adulthood, bone mineral density (BMD) levels 
declined at the femoral neck and total hip from 16 to 27 years but continued to increase at the total body indicating a site-
specific attainment of peak bone mass.
Purpose To examine longitudinal trends in bone mineral density (BMD) levels in Norwegian adolescents into young 
adulthood.
Method In a prospective cohort design, we followed 980 adolescents (473 (48%) females) aged 16–19 years into adulthood 
(age of 26–29) on three occasions: 2010–2011 (Fit Futures 1 (FF1)), 2012–2013 (FF2), and 2021–2022 (FF3), measuring 
BMD (g/cm2) at the femoral neck, total hip, and total body with dual x-ray absorptiometry (DXA). We used linear mixed 
models to examine longitudinal BMD changes from FF1 to FF3.
Results From the median age of 16 years (FF1), femoral neck BMD (mean g/cm2 (95% CI)) slightly increased in females 
from 1.070 (1.059–1.082) to 1.076 (1.065–1.088, p = 0.015) at the median age of 18 years (FF2) but declined to 1.041 
(1.029–1.053, p < 0.001) at the median age of 27 years (FF3). Similar patterns were observed in males: 16 years, 1.104 
(1.091–1.116); 27 years, 1.063 (1.050–1.077, p < 0.001); and for the total hip in both sexes (both p < 0.001). Total body BMD 
increased from age 16 to 27 years in both sexes (females: 16 years, 1.141 (1.133–1.148); 27 years, 1.204 (1.196–1.212), 
p < 0.001; males: 16 years, 1.179 (1.170–1.188); 27 years, 1.310 (1.296–1.315), p < 0.001).
Conclusion BMD levels increased from 16 to 18 years at the femoral and total hip sites in young Norwegian females and 
males, and a small decline was observed at the femoral sites when the participants were followed up to 27 years. Total body 
BMD continued to increase from adolescence to young adulthood.
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Introduction

The incremental societal burden of osteoporotic fractures in 
the elderly is tremendous [1]. In Norway, the country with the 
highest reported fracture incidences worldwide [2–6], hip frac-
ture rates have declined over a 15-year period between 1999 
and 2013 [7, 8]. However, due to the aging population, the 
total number is expected to rise [7]. In addition to the added 
burden due to other osteoporotic fractures [9], hip fractures 
remain a serious health burden in Norway today [10].

Osteoporotic fractures mainly occur in adults over 50 years, 
and early preventive strategies are advocated to identify high-
risk individuals and to reduce the burden of osteoporotic frac-
tures [11–13]. Although age and sex contribute to 10-year 
fracture risk estimates independently of bone mineral density 
(BMD) [14–16], BMD constitutes a central part of the defini-
tion and diagnosis of osteoporosis [17, 18]. From a lifetime 
perspective, premenopausal bone mass maintenance in women 
and peak bone mass (PBM) attainment in adolescence are 
important predictors of future fracture risk [19].

One simulation study estimated that a 10% increase in PBM 
may delay the development of osteoporosis by 13 years [20]. 
This delay is greater than the 2 years found to be obtained by 
maximizing BMD levels following menopause or by slowing 
menopausal bone loss rates [20]. Similar findings are reported 
by others [21–23], indicating that the promotion of bone health 
in youth, before the onset of bone loss, is important to further 
combat future osteoporosis and fractures [23].

Previous research has indicated that femoral neck and total 
hip PBM are achieved at ~ 15 to 19 years in females and ~ 16 
to 19 years in males [19, 24–27]. For lumbar spine, bone 
mass appears to peak later in life, between 33 and 40 years in 
females and between 19 and 33 years in males [24]. Similar 
findings were observed for forearm BMD, where PBM were 
achieved between 30 and 40 years [28]. This indicates that 
PBM attainment is site-specific.

In the present study, we aimed to examine the longitudi-
nal trends in BMD at the femoral neck, total hip, and total 
body from adolescence at 16–19 years to young adulthood at 
26–29 years in a Norwegian youth cohort. Secondary aims 
were to compare the BMD levels of Norwegian adolescents 
with the Lunar reference data from adolescence to young 
adulthood.

Methods

Study population

We included adolescents attending the Fit Futures study (FF) 
[29] in a prospective cohort design. The FF includes three 
waves of data collection: FF1, 2010–2011; FF2, 2012–2013; 

and FF3, 2021–2022. All first-year students (n = 1117) in all 
upper-secondary schools in Tromsø and Balsfjord munici-
palities, North Norway, were invited to participate in FF1 
and 1038 students (92.9%) attended [30]. All who attended 
FF1 were invited to the follow-up surveys, of which 714 
(68.8%) attended FF2 and 642 (61.8%) attended FF3. Addi-
tionally, 132 new upper-secondary students attended FF2, 
leaving total sample sizes at 846 in FF2 and 705 in FF3. We 
included those under 19 who underwent dual x-ray absorpti-
ometry (DXA) scans at baseline (FF1). Of the 1038 partici-
pants who attended at baseline (FF1), 52 were 19 years or 
older, and 6 were missing total body DXA scans. Therefore, 
we ended up with a sample of 980 participants, of which 473 
were females and 507 males. From this cohort, 692 (females, 
n = 381; males, n = 311) and 502 (females, n = 281; males, 
n = 221) attended FF2 and FF3, respectively. A flow chart 
of included participants is found in Fig. 1. In total, 462 
(females, n = 251; males, n = 211) attended all surveys and 
provided valid DXA scans at all measurement time points 
(not shown in flow as this is not the total sample size).

Ethics

The present study was approved by the Regional Committee 
of Medical Research Ethics (ref. 2013/1459/ REK Nord). 
The Fit Futures study is a population-based health survey 
and has since 2018 been regulated by the Regulations on 
population-based health research and the Data Protection 
Legislation in Norway. The participants have given writ-
ten informed consent at all three waves. Participants below 
16 years of age in FF1 had to bring additional written con-
sent from a legal guardian to attend the survey.

Measurements of BMD

In all three waves of FF, BMD (g/cm2) was measured with 
DXA (GE Lunar Prodigy, Lunar Corporation, USA), the 
gold standard for BMD measurements [31], at the femoral 
neck, the total hip, and total body. DXA scans were per-
formed by trained technicians, and quality assessment pro-
cedures were performed according to protocol on a daily 
basis. The coefficient of variation of the DXA machine used 
in this study has previously been estimated to be 1.17% for 
the total hip and 1.72% for femoral neck measurements [32]. 
The total body coefficient of variation has not been estimated 
for the DXA machine used in this study. Z-scores were cal-
culated according to the Lunar reference population, whose 
reference data derives from multiple cohort studies (total 
n = 2818 participants) [33–38]; z-scores reported in this 
study are calculated by age, sex, and ethnicity using appro-
priate age- and sex-matched reference data for adolescents 
under 20 years (FF1 and FF2) and young adults between 20 
and 29 years (FF3).
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Descriptive data

In all surveys, height and weight were measured in all 
participants according to the same protocol to the nearest 
0.1 cm and 0.1 kg on an automatic electronic scale (Jenix DS 
102 stadiometer, Dong Sahn Jenix, Seoul, Korea) wearing 
light clothing and no shoes. We calculated the body mass 
index (BMI) as weight divided by height squared (kg/m2) 
and used iso-BMI to classify normal weight (correspond-
ing to < 25 kg/m2 for adults), overweight (25–29 kg/m2 
for adults), and obese (> 30 kg/m2 for adults) participants 
according to Cole and Lobstein [39]. We measured fat mass 
(kg) and lean mass (kg) using total body DXA scans. To 
determine puberty, girls were asked if and when they had 
started menarche, and boys were rated according to the 
Pubertal Development Score by Paterson et al. [40], ranging 
from 1 to 4. Alcohol intake (frequency of drinking), leisure 
time physical activity (Saltin–Grimby physical activity scale 
[41]), screen time (mean week and weekend hours per day), 
smoking (never, sometimes, daily), snuff (never, sometimes, 
daily), high school study program (general, sport, and voca-
tional training), self-perceived health (very bad, bad, neither 
good nor bad, good, excellent), vitamin (daily, sometimes, 
never), cod liver oil (daily, sometimes, never), milk intake 
(frequency), and cheese intake (frequency) were obtained 
from questionnaires.

Statistical analyses

To compare differences in baseline characteristics between 
those attending all three surveys and those only attending 
FF1 or FF1 and FF2, we used independent sample t-tests 
(weight, BMI, fat mass, lean mass, and femoral neck, total 
hip, and total body BMD) and Pearson’s chi-square tests 
(physical activity level). We used linear mixed models with 
maximum likelihood and a random intercept on the subject 

level to test the main effect of time (surveys 1, 2, and 3) for 
changes in BMD and z-score (Lunar reference data) at the 
femoral neck, total hip, and total body. To compare changes 
from surveys 1 to 2 and 3, we modeled time (survey) as 
a categorical variable. We also ran linear mixed models 
adjusted for weight to examine whether weight was a con-
founding source of BMD changes. The covariance structure 
was set to first-order autoregressive (AR1) with homoge-
neous variance. All analyses were stratified by sex. For 
sensitivity analysis, we used repeated measures univariate 
analysis of variance (ANOVA) to examine the longitudinal 
changes in BMD levels by only including those participat-
ing in FF1, FF2, and FF3 with valid DXA scans (females, 
n = 251; males, n = 211). Data are shown as mean with 95% 
confidence intervals (CI) and as mean ± standard deviation 
(SD) and frequency (%) for descriptive values. All statistical 
analyses were performed using Stata version 17 (StataCorp 
LLC, TX, USA).

Results

The majority of the participants were 16 years old (females, 
16.2 ± 0.5; males, 16.1 ± 0.6), normal weight, and attended 
general studies at baseline (Table 1). About 70% rated their 
health as good or excellent, and most had never smoked or 
used snuff (Table 1). Most of them were physically active in 
their leisure time and drank alcohol less than once per week 
(Table 1). At baseline, females attending all three surveys 
had higher weight (p = 0.041), more lean mass (p < 0.001), 
and higher BMD levels (all p < 0.03) than females only 
attending FF1 or FF1 and FF2 (Supplementary Table S1). 
There were no differences in baseline characteristics between 
males attending all three surveys versus males only attending 
FF1 or FF1 and FF2 (Supplementary Table S1).

Fig. 1  Flow chart of the 
included participants

n=1117Invited FF1: 

Attended: n=1038 n=846 

Additionally attended: N/A

Over 18 years FF1: 

Missing DXA FF1: 

Fit Futures 1 2010-11 Fit Futures 2 2012-13 Fit Futures 3 2021-22 

n=52 

n=6 

N=980 Baseline total sample: 

Follow-up attendance: 

n=705 

n=692 n=502 

n=132 N/A

Not included in baseline: n=154 n=203
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We observed a main effect of time in femoral neck BMD 
acquisition for both females and males (both p < 0.001) 
(Fig.  2). In females, the femoral neck BMD slightly 
increased from 1.070 g/cm2 (95% CI, 1.059–1.082 g/cm2) in 
FF1 to 1.076 g/cm2 (95% CI, 1.065–1.088 g/cm2; p = 0.015) 
in FF2 but thereafter declined to 1.041 g/cm2 (95% CI, 
1.029–1.053 g/cm2; p < 0.001) in FF3 (Fig. 2). A similar 
pattern was observed in males, where the femoral neck BMD 
increased from 1.104 g/cm2 (95% CI, 1.091–1.116 g/cm2) in 
FF1 to 1.134 g/cm2 (95% CI, 1.121–1.147 g/cm2; p < 0.001) 
in FF2 and declined to 1.063 g/cm2 (95% CI, 1.050–1.077 g/
cm2; p < 0.001) in FF3 (Fig. 2).

Similar patterns were observed for total hip BMD in 
both sexes (main effect of time, both p < 0.001) (Fig. 3). 
In females, the total hip BMD increased from 1.062 g/cm2 
(95% CI, 1.051–1.074 g/cm2) in FF1 to 1.073 g/cm2 (95% 
CI, 1.061–1.084 g/cm2; p < 0.001) in FF2, with a decline 
to 1.050 g/cm2 (95% CI, 1.038–1.062 g/cm2; p < 0.001) in 
FF3 (Fig. 3). In males, the total hip BMD increased from 
1.115 g/cm2 (95% CI, 1.102–1.127 g/cm2) in FF1 to 1.136 g/
cm2 (95% CI, 1.123–1.149 g/cm2; p < 0.001) in FF2 and 

Table 1  Descriptive characteristics at baseline. The Fit Futures 1 
2010–2011

Females Males

Total, n 473 507
Age (yrs), mean ± SD 16.2 ± 0.5 16.1 ± 0.6

  15 years, n (%) 14 (3.0) 36 (7.1)
  16 years, n (%) 380 (80.3) 390 (76.9)
  17 years, n (%) 72 (15.2) 65 (12.8)
  18 years, n (%) 7 (1.5) 16 (3.2)

Anthropometric, n 473 507
  Height (m), mean ± SD 1.65 ± 0.07 1.77 ± 0.07
  Weight (kg), mean ± SD 61.0 ± 11.5 70.3 ± 14.4
  BMI (kg/m2), mean ± SD 22.5 ± 4.0 22.4 ± 4.2
    Normal weight (< 25 kg/m2)* 368 (77.8) 376 (74.2)
    Overweight (25–29 kg/m2)* 76 (16.1) 92 (18.1)
    Obese (≥ 30 kg/m2)* 29 (6.1) 39 (7.7)

Dual x-ray scan, n 473 507
  Fat mass (kg), mean ± SD 20.5 ± 6.2 14.7 ± 10.8
  Lean mass (kg), mean ± SD 38.5 ± 4.6 53.7 ± 6.9

High school main program, n 473 507
  General studies, n (%) 242 (51.2) 148 (29.2)
  Sports high school, n (%) 38 (8.0) 65 (12.8)
  Vocational training, n (%) 193 (40.8) 294 (58.0)

Puberty, n 470 398
  Menarche girls, n (%) 467 (99.4) N/A
  Menarche age (year), mean ± SD 12.7 ± 1.2 N/A
  PDS boys, n (%)# N/A 3.3 ± 0.4

Self-perceived health, n 380 320
  Very bad, n (%) 0 (0) 3 (0.9)
  Bad, n (%) 17 (4.5) 14 (4.4)
  Neither good nor bad, n (%) 74 (19.5) 73 (22.8)
  Good, n (%) 206 (54.2) 139 (43.4)
  Excellent, n (%) 83 (21.8) 91 (28.4)

Smoking, n 468 499
  Never, n (%) 373 (79.9) 379 (76.0)
  Sometimes, n (%) 77 (16.5) 103 (20.6)
  Daily, n (%) 18 (3.9) 17 (3.4)

Snuff, n 469 498
  Never, n (%) 310 (66.1) 293 (58.8)
  Sometimes, n (%) 67 (14.3) 64 (12.9)
  Daily, n (%) 92 (19.6) 141 (28.3)

Alcohol frequency, n 474 498
  Never, n (%) 111 (23.4) 159 (31.9)
  Once per month or less, n (%) 219 (46.2) 185 (37.2)
  2–4 times per month, n (%) 136 (28.7) 145 (29.1)
  2–3 times per week, n (%) 8 (1.7) 6 (1.2)
  4 or more times per week, n (%) 0 (0) 3 (0.6)

Leisure time physical activity, n 470 499
  Inactive, n (%) 65 (13.8) 148 (29.7)
  Moderate, n (%) 191 (40.6) 125 (25.1)
  Vigorous, n (%) 137 (29.2) 114 (22.9)
  Very vigorous, n (%) 77 (16.4) 112 (22.4)

Table 1  (continued)

Females Males

Screen time, n (%) 464 498
  Hours∙week−1, mean ± SD 6.3 ± 1.4 6.9 ± 1.4

Vitamin supplements, n 492 516
  Daily, n (%) 161 (32.7) 215 (41.7)
  Sometimes, n (%) 220 (44.7) 211 (40.9)
  Never, n (%) 111 (22.6) 90 (17.4)

Cod liver oil supplement, n 492 516
  Daily, n (%) 233 (47.4) 259 (50.2)
  Sometimes, n (%) 166 (33.7) 174 (33.7)
  Never, n (%) 93 (18.9) 83 (16.1)

Milk intake, n 486 513
  Glass∙day−1, mean ± SD 2.0 ± 1.8 2.5 ± 2.4
  No glasses, n (%) 55 (11.3) 59 (11.5)
  1–2 glasses∙day−1, n (%) 261 (53.7) 231 (45.0)
  2.1–4 glasses∙day−1, n (%) 124 (25.5) 126 (24.6)
  > 4 glasses∙day−1, n (%) 46 (9.5) 97 (18.9)

Cheese intake, n 495 515
  Servings∙week−1, mean ± SD 2.5 ± 1.9 2.8 ± 2.0
  Never, n (%) 27 (5.5) 25 (4.9)
  1 serving∙week−1, n (%) 88 (17.6) 76 (14.8)
  2 servings∙week−1, n (%) 204 (41.2) 194 (37.7)
  5 servings∙week−1, n (%) 177 (35.8) 220 (42.7)

Data are shown as mean ± SD or as frequency (%)
n number of participants with information, BMI body mass index, 
PDS puberty development score, SD standard deviation
* Iso-BMI derived from Cole and Lobstein, 2012, Pediatr Obes[39]
# PDS score from Petersen et al., 1988, J Youth Adolesc[40]
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decreased to 1.086 g/cm2 (95% CI, 1.072–1.100 g/cm2; 
p < 0.001) in FF3 (Fig. 3).

The total body BMD steadily increased in both females 
and males from FF1 to FF3 (main effect of time, both 
p < 0.001) (Fig. 4). In females, the total body BMD increased 
from 1.141 g/cm2 (95% CI, 1.133–1.148 g/cm2) in FF1 to 
1.157 g/cm2 (95% CI, 1.150–1.165 g/cm2; p < 0.001) in 
FF2 to 1.204 g/cm2 (95% CI, 1.196–1.212 g/cm2) in FF3 
(p < 0.001) (Fig. 4). In males, the total body BMD increased 
from 1.179 g/cm2 (95% CI, 1.170–1.188 g/cm2) in FF1 to 
1.222 g/cm2 (95% CI, 1.213–1.232 g/cm2, p < 0.001) in 
FF2 to 1.310 g/cm2 (95% CI, 1.296–1.315 g/cm2) in FF3 
(p < 0.001) (Fig. 4).

In models adjusted for weight, patterns of associa-
tions with time were generally similar to the unadjusted 

models (all main effects of time, p < 0.001) (Supplementary 
Table S2). However, females did not change their femoral 
neck BMD from FF1 to FF2 (p = 0.74) (Table 2) as observed 
in the unadjusted model (Fig. 2).

When comparing the FF sample with the Lunar Prod-
igy reference database, z-scores for the femoral neck were 
unchanged from FF1 to FF2 in females (p = 0.17) but 
decreased to below zero in FF3 (p < 0.001) (Table 2). In 
males, femoral neck z-scores increased from FF1 to FF2 
(p = 0.02) and decreased to below zero in FF3 (p < 0.001) 
(Table 2). Total hip z-scores in females increased from FF1 
to FF2 (p < 0.001) and decreased to FF3 (p < 0.001). In 
males, the total hip z-score was unchanged from FF1 to FF2 
(p = 0.48) and decreased to below zero in FF3 (p < 0.001) 
(Table 2). Total body z-scores were positive and increased 
from FF1 to FF3 for both females and males (all p < 0.001) 
(Table 2).

In sensitivity analysis only including those participating 
in all surveys, the results remained unchanged compared 
with the main analysis (Supplementary Table S3).

Discussion

In this Norwegian youth cohort followed over 10 years from 
the median of 16 to 27 years, PBM levels at the femoral neck 
and total hip seemed to be reached in the second decade 
since BMD increased from 16 to 19 years but decreased up 
to the median age of 27. Total body BMD levels continued 
with a steady increase from adolescence to young adulthood. 
These patterns were mirrored when comparing z-scores for 
the Lunar reference database.

Our observation of attained femoral neck and total 
hip BMD levels in the second decade is consistent with 

Fig. 2  Longitudinal changes in bone mineral density at the femoral 
neck (the Fit Futures study 2010–2022). Data are shown as mean 
with error bars as 95% confidence intervals

Fig. 3  Longitudinal changes in bone mineral density at the total hip 
(the Fit Futures study 2010–2022). Data are shown as mean with 
error bars as 95% confidence intervals

Fig. 4  Longitudinal changes in bone mineral density for total body 
(the Fit Futures study 2010–2022). Data are shown as mean with 
error bars as 95% confidence intervals
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previous research [19, 24]. Notably, males had a greater 
incline in BMD levels at the femoral neck and total hip than 
females from FF1 to FF2, which suggests that males reach 
peak BMD levels later than females. This has also been 
observed in previous studies. In one study, peak femoral 
neck BMD was observed at 19 years among 1052 males 
aged 18–28 years [42], and in another study, femoral neck 
and total hip BMD peaked at 19–21 years for males and 
16–19 years for females [24].

However, we also observed that peak BMD levels are 
site-specific, where total body BMD increased from FF1 
to FF3. The site-specific difference in BMD for the femoral 
neck and total hip at 16–19 years as compared to the total 
body BMD later in life was also observed previously [24–27, 
43]. In a previous study, lumbar spine BMD levels increased 
from 16 to 32 years [24], and in another study, forearm PBM 
was reached between the ages of 30 and 40 years [28]. Thus, 
it is plausible that we did not observe peak total body BMD 
when participants were ~ 27 years old and that it may further 
increase, potentially towards 30 years [43].

We observed that the positive z-scores at the femoral neck 
and total hip for females and males in FF1 and FF2 turned 
negative at FF3, except at the total hip in females where all 
three measurement points of z-scores were positive. Previous 
studies in the same Norwegian adolescent sample as used 
in our study showed that BMD levels in Norwegian adoles-
cents between 16 and 18 years appeared to be slightly higher 
than the Lunar pediatric reference data [30]. However, in 
this study, the femoral neck and total hip BMD z-scores 
approximated the Lunar reference data when participants 
were 27 years old, indicating that in the transition to young 
adulthood, an observed advantage at the median age of 16 to 
18 years [30] is no longer present at adult age. The reasons 
for this shift are not easily explainable. However, we cannot 
rule out a possible cohort effect. For example, some partici-
pants studied sports during high school, which may indicate 

them being very active during adolescence, while they may 
perform similar physical activity levels in young adulthood; 
however, this is only speculation from our side. Other life-
style and environmental factors may also contribute to this 
development and warrant further investigation.

At the same time, total body BMD z-scores were increas-
ing with increasing age, which may be promising for low-
ering the fracture risk in general [44]. Nevertheless, more 
research on the reasons for the observed decline in the femo-
ral neck and total hip BMD levels in the transition to young 
adulthood, and whether total and upper body BMD levels 
contribute to lower future fracture risk, is warranted.

Strengths

The strength of the present study is the population-based 
design within a region with an identified high risk of osteo-
porotic fractures. Moreover, our study had high attendance 
rates throughout the surveys, with 93% in the baseline sur-
vey in 2010–2011 and 68.8% and 61.8% in the follow-up 
surveys, respectively. Although potential selection bias can-
not be ruled out, especially in follow-up surveys where those 
being healthier potentially agreed to participate, we used 
linear mixed models that utilize all available data to com-
pensate for dropouts over time. Moreover, our DXA data was 
derived from trained technicians conducting strict quality 
control on densitometer performance, which likely secured 
BMD measurements with high precision [32].

Limitations

As we only had access to two-dimensional DXA measure-
ments, which is a surrogate determinant of bone strength 
[45], we lacked an opportunity to evaluate the development 
of cancellous and cortical bone compartments or to capture 
changes in the microarchitecture of the bones [22, 23]. Bone 

Table 2  The longitudinal change in z-score in girls and boys. The Fit Futures 2010–2022

Data are shown as mean z-scores and 95% CI
Main effect of time from the linear mixed model
CI confidence intervals

Fit Futures 1 (2010–2011) Fit Futures 2 (2012–2013) Fit Futures 3 (2021–2022) Main effect of time

Femoral neck
  Girls (n = 474) Mean (95% CI) 0.51 (0.43 to 0.59) 0.60 (0.50 to 0.70)  − 0.001 (− 0.10 to 0.10)  < 0.001
  Boys (n = 504) Mean (95% CI) 0.11 (0.02 to 0.21) 0.18 (0.08 to 0.28)  − 0.23 (− 0.33 to − 0.13)  < 0.001

Total hip
  Girls (n = 474) Mean (95% CI) 0.39 (0.30 to 0.48) 0.48 (0.40 to 0.57) 0.23 (0.14 to 0.32)  < 0.001
  Boys (n = 504) Mean (95% CI) 0.13 (0.04 to 0.22) 0.11 (0.02 to 0.21)  − 0.15 (− 0.25 to − 0.06)  < 0.001

Total body
  Girls (n = 476) Mean (95% CI) 0.20 (0.11 to 0.29) 0.48 (0.38 to 0.56) 0.97 (0.88 to 1.07)  < 0.001
  Boys (n = 507) Mean (95% CI) 0.28 (0.19 to 0.36) 0.02 (− 0.07 to 0.11) 0.87 (0.77 to 0.96)  < 0.001



Archives of Osteoporosis           (2024) 19:58  Page 7 of 8    58 

growth during maturation involves both accumulations of 
bone mass and expansion of bone volume, and these two 
processes do not always occur in parallel [46]. Indeed, BMD 
values should be interpreted with care in individuals with 
a growing skeleton, as skeletal strength may increase due 
to an increased area despite decreasing BMD [42]. Conse-
quently, this may have influenced our interpretation of the 
longitudinal trends.

Conclusion

In this prospective cohort study, BMD levels increased from 
16 to 18 years at the femoral and total hip sites in young 
Norwegian females and males, and a small decline in BMD 
was observed at the femoral sites in the third decade when 
participants were 27 years old. Total body BMD increased 
from adolescence to young adulthood. More studies on lon-
gitudinal trends are warranted to validate whether similar 
declines in the femoral neck and total hip BMD levels in this 
age span are observed elsewhere.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11657- 024- 01414-2.
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