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Featured Application: The design and rapid manufacture of efficient scale-propellers for use on
small first-person view drones, such as those used in special operations to improve their endurance.

Abstract: This study investigated the efficiency of scale-propellers, typically used on small drones.
A scale-propeller is accepted as having a diameter of 7 to 21 inches. Recent special operations has
demonstrated the utility of relatively small, low-cost first-person view (FPV) drones, which are
attritable. This investigation outlines the development of a MATLAB optimisation code, based on
minimum induced loss propeller theory, which calculates the optimal chord and twist distribution
for a chosen propeller operating in known flight conditions. The MATLAB code includes a minimum
Reynolds number functionality, which provides the option to alter the chord distribution to ensure
the entire propeller is operating above a set threshold value of Reynolds (>100,000), as this has been
found to be a transition point between low and high section lift-to-drag ratios. Additional functions
allow plotting of torque and thrust distributions along the blade. The results have been validated
on experimental data taken from an APC ‘Thin Electric’ 10” × 7” propeller, where it was found that
both the chord and twist distributions were accurately modelled. The MATLAB code resulted in a
16% increase in the maximum propulsive efficiency. Further work will investigate a direct interface to
SolidWorks to aid rapid propeller manufacturing capability.
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1. Introduction
1.1. Rationale

A propeller is a propulsion device that exerts a force on a large mass of air. The earliest
versions of the propeller have been around for centuries, with Archimedes developing a
rotating screw system, which could be used to draw water from deep wells. Since their
first use in the 19th century, hydrodynamic propellers have been the propulsion system
of choice for countless marine vehicles. However, it wasn’t until the 20th century when
the Wright brothers used the first aerodynamic propeller as the propulsion system for their
historic aircraft, the Wright Flyer. The Wright brothers were forced to develop their own
propeller design method, due to the lack of existing aerodynamic propeller theory available
to them. The method they used is now known as blade element theory, and it is still used
to design propellers today. In simple terms, blade element theory assumes that the airflow
over each section of a propeller blade is two-dimensional. Whilst in reality there will be
aerodynamic interference between blade sections, it is assumed to be negligible. After
several design iterations, the Wright brothers achieved a maximum propulsive efficiency of
78% by 1910. In comparison, modern large-scale propellers can now achieve maximum
efficiencies of up to 90% [1]. However, this very high efficiency figure is infeasible for small
scale propellers, such as those used on small FPV drones.
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1.2. Propeller Data Analysis

Data analysis of the UIUC Propeller Databases 1 & 4, by the authors, as shown in
Figure 1, has shown that peak efficiencies of these small propellers (7–21” diameter) is
typically between 45–75% [2], with a lot of variability between manufacturers, even with the
same diameter and pitch. The reasons for this efficiency loss will be discussed in detail later
in this paper, but relate to low Reynolds numbers, choice of airfoil and physical geometry.
Research into this topic is limited to a few studies [2–4], meaning that there is ample scope
for development in this important area of aerodynamic research.
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Figure 1. Propeller peak efficiency increase with pitch/diameter ratio (UUIC Database) [2]. Note:
This data has been extracted and transformed by the authors to produce this graph.

1.3. Aim of the Study

The main aim of this work is to analyse the efficiency of scale propellers as used on
small drones (see Figure 2) and to develop a MATLAB program which can accurately and
easily optimise propeller geometry at operating conditions specified by the end user to
improve efficiency and thereby increase endurance. The methodology used in this work
follows the theory based around the Betz condition that a constant-displacement velocity
across the propeller wake provides a propeller design with maximum efficiency.
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All propellers have spanwise or radial circulation distributions which minimise the
kinetic energy loss associated with the generation of lift (thrust). By determining the
geometry which results in these circulation distributions, one can determine the geometry
of the propeller which results in the minimum losses (most efficient).

1.4. Literature Review

High propulsive efficiencies can be achieved on propellers used on full-scale crewed
aircraft, such as the C-130J Super Hercules, and there are two main reasons why this is the
case. Firstly, the propellers tend to have complex variable pitch mechanisms, which allow
the propeller to operate at peak efficiency under different flight conditions. Such mecha-
nisms are costly, complex and too heavy to include within small propellers for attritable
uncrewed aircraft. Variable pitch mechanisms are also required to control helicopter rotors,
which is why these rotors tend to have a constant angle of twist along the blade.

Secondly, full-scale aircraft propellers tend to have large diameters, which leads to
greater chord lengths. As will be explained later in this study, large diameter propellers
operate in higher Reynolds (Re) number regimes, which enable greater efficiencies to be
achieved, in contrast to smaller propellers which operate at lower Re numbers. Therefore,
creating propeller geometries that permit higher efficiencies to be reached, whilst not induc-
ing large mass and cost penalties, would lead to significant improvements in performance.

A previous research project at the University of Southampton resulted in a MATLAB
code being developed which optimised propeller geometry for given operating condi-
tions [4]. This work was used as the basis for the Mejzlik propeller online performance
program [5]. Another research project examined the low Reynolds number propeller
problem, but instead focused on using overlapping propellers as a solution [6]. However,
neither of these projects attempted to design a single propeller which could operate at high
efficiencies in low Reynolds number regimes.

The earliest analytical work on propellers was performed by Rankine and Froude
in the 19th century. The theory developed was intended for use on marine propellers.
The theory they developed later became known as Actuator Disk Theory (ADT)—or axial
momentum theory. Whilst this doesn’t include any detailed propeller aerodynamics, this
theory allows designers to develop rough performance and sizing requirements.

ADT is based on a number of assumptions:

• The rotor is modelled as an actuator disk, which adds momentum and energy to the
air;

• There is no inflow or outflow through the wake boundary;
• The flow is steady, incompressible and inviscid;
• The flow is one dimensional and uniform;
• The flow is uniform through the disk and wake;
• The disc does not impart any swirl to the flow.

Using inviscid flow theory and taking a force balance across the actuator disk, the
thrust can be easily calculated. For a given thrust, the induced axial velocity can be
calculated according to Equation (1).

waxial =

√
V2

4
+

T
2ρA

− V
2

(1)

1.5. Historical Perspective

In the minutes of the (1890) Proceedings of the Institution of Civil Engineers [7], the
use of propellers for marine applications was discussed, and it soon became clear that the
theory they were developing was applicable to aeronautics as well.

Drzewiecki (1892) is credited with the development of Blade Element Theory (BET) [8].
BET is a method used to analyse propeller performance that, unlike actuator disk theory,
considers the propeller geometry and aerodynamic properties. In blade element theory it is
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assumed that the flow over a blade section is two-dimensional. This means that the flow
over a given blade section is unaffected by the flow over neighbouring sections—in this
analysis, the effective velocity is simply the result of the axial velocity and the rotational
velocity. The propeller blade is broken down into multiple sections, and the forces acting
on each of these blade sections is determined. By integrating over the length of the blade,
the overall blade forces can be developed.

Weick (1925) in his NASA technical note entitled: Simplified Propeller Design for
Low-Powered Airplanes [9] detailed an empirical design method for propellers. The design
process is accomplished through the use of charts and basic formulae and involves no
detailed calculations. The data required for this design method is the aircraft airspeed,
the brake horsepower and the revolutions per minute of the engine, and the density of air.
From this data, the performance coefficient, advance ratio and efficiency of the propeller are
found empirically. The article also educates on what materials are capable of withstanding
the centripetal forces at different propeller diameters and rotational speeds.

In his 1935 paper, entitled Airplane Propellers [10], Glauert formulated a method for
analysing arbitrary propeller designs. The method is a combination of axial momentum
theory and blade element theory, and includes corrections for momentum loss due to radial
flow. The method is limited, as the contraction of the propeller wake is not considered. As
a result, the theory is accurate for low disc loading (small thrust per unit disc area), but is
only adequate for estimating performance at high disc loadings.

Propeller Analysis from Experimental Data [11] is a 1940 report (Stickle & Crigler) in
which propeller performance is analysed. The data used in this analysis was obtained in a
20-foot wind tunnel with a 4-foot diameter propeller, but the results apply to all propellers.
Firstly, aerodynamic theory is used to create formulae which can be used to calculate both
the axial and rotational energy losses in the wake of a propeller. These are then validated
with wind tunnel data, and it is shown that, for an optimal propeller, the loss in efficiency
due to rotational velocity is always very small. However, for a propeller with high-blade
settings, this efficiency loss can become quite high. The load distribution along a propeller
blade is also examined, and the maximum thrust generation is found to always be between
0.7 R–0.85 R (where R is the radius of the blade). Finally, the benefits of counter-rotating
propellers over single propellers with an increased diameter are examined, and it was found
that only small gains in propeller efficiency can be expected with counter-rotating blades.

A book by Theodorsen (1948) entitled Theory of Propellers [12] was a development of
the earlier propeller theory developed by Drzewiecki (1892), and Reynolds et al. (1890).
Theodorsen focussed on the wake downstream of the propeller more than the propeller
itself, as “thrust, torque and efficiency are uniquely and completely established by the
knowledge of the wake far behind the propeller and of the wake alone. To establish
these quantities, in fact, it is absolutely unnecessary to know the design of the propeller”.
Theodorsen introduces a mass coefficient, which represents the effective cross-section
of the column of air behind the propeller divided by the projected propeller wake area.
Formulae are then developed for calculating the torque, thrust, energy loss and efficiency,
in terms of the mass coefficient, for any propeller with ideal circulation distribution, from
the downstream wake conditions.

In 1979, McMasters and Henderson working for Boeing, published a report entitled
Low-Speed Single-Element Airfoil Synthesis [13] which outlines the design criteria and
the practical restraints for an airfoil operating at low Reynolds numbers. The report also
describes a ‘synthesis’ based approach to airfoil design, in contrast to the typical ‘analytical’
approach. First, the boundary layer characteristics are defined, as they define the pressure
distribution and therefore the airfoil performance. From this, powerful computational tools
were used to generate an airfoil shape which yields the pre-defined boundary layer.

A Master’s thesis by Gamble (2009) entitled Automatic Dynamic Propeller Testing at
Low Reynolds Numbers [14] focuses on the testing of propellers and reducing propeller
test times, by designing a system in which propeller data can be acquired systematically.
The effect of the Reynolds number on efficiency and propeller pitch were also examined.
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Another Master’s thesis by Koch (1998) called the Design and Performance Calcu-
lations of a Propeller for Very High-Altitude Flight [15] examined propellers for use in
low Reynolds number flow regimes (60,000–100,000). A design process utilizing BET and
ADPAC (a numerical Navier-Stokes code) was used to optimise a propeller for high altitude
flight. The operating conditions for this study were 25.9 km (85,000 ft) at Mach 0.4, and
each propeller was required to absorb 63.4 kW (85 bhp).

Propeller Performance Measurement for Low Reynolds Number Unmanned Aerial
Vehicle Applications [16] focused on the testing of small propellers, particularly those used
on UAV systems. An Integrated Propulsion Test System (IPTS) was used to evaluate the
performance of many propellers, and a database of performance data was created. This
IPTS setup is similar to the one in use at the University of Illinois at Urbana-Champaign’s
(UIUC) Department of Aerospace Engineering, where a vast propeller database has been
created [2]. Using a load cell to measure thrust and a torque cell to measure torque,
efficiency curves have been plotted, and in modern propeller research this database is often
used for comparative reasons.

Similarly, in Low Reynolds Propellers for Increased Quadcopters Endurance [17], the
design process for creating a propeller for use in low Reynolds number flow is detailed
by Carvalho (2013). A validation exercise of the UIUC Propeller database [2] was also
completed, by comparing the UIUC experimental results of the APC Slow Flyer 10” × 7”
to simulated results on JBLADE software v.17. The highest efficiency value was found to
be 61% from JBLADE simulations, compared to the experimental value of 59%. Note: The
UIUC database was updated in March 2015, to account for a new wind tunnel correction
method for the drag due to the propeller mounting fixture. This had the result of increasing
the peak efficiency of props by approximately 10%.

A journal paper entitled Propeller Performance Measurements at Low Reynolds
Numbers [18] by Silvestre, et al. (2015) discussed the design of propellers for use on
high-altitude airships. Two APC propellers were tested between 4 m/s and 28 m/s in
1 m/s intervals, and the data was compared to the UIUC database in order to validate the
test-rig. It was shown that as the Reynolds number increases with increasing RPM values,
the efficiency and thrust coefficient of the propeller was increased significantly. It is also
stated that the test-rig would be used to create experimental data that could improve the
JBLADE software v.17 in the future.

In a 2016 paper by Kuantama, et al. entitled Quadcopter Propeller Design and Perfor-
mance Analysis [19] used SolidWorks to analyse the efficiency of a two-bladed 16” × 5”
propeller. The range of RPM values used in this case study was 1000–9000 RPM. The
experimental data was compared to datasheets of existing propellers in order to validate
the SolidWorks flow simulation method.

A book by Prior (2018) Optimising Small Multi-Rotor Unmanned Aircraft—A Practical
Design Guide [20] gives an overview of propellers used on small multi-rotor aircraft.
Propeller variables are discussed, including the geometry and airfoil choice that needs
to be made when designing a propeller. Basic propeller theory, including momentum
theory, various propeller coefficients, and propeller efficiency is outlined. The effect of
using overlapping rotors is explored, from large aircraft such as the Boeing CH-47 Chinook
helicopter, to smaller aircraft such as the Malloy Aeronautics Hoverbike. Finally, Prior
discusses the challenges of propeller design in low Reynolds number flow, using the
analogy that at low Reynolds numbers, air becomes more viscous and therefore achieving
high efficiencies is much harder.

Finally, an Experimental Study on the Aerodynamic and Aeroacoustic Performances
of a Bio-Inspired UAV Propeller [21] discussed the performance of a baseline propeller and
a bio-inspired propeller with the same design thrust (3N) and solidity (0.12) are analysed.
It was found that for the same thrust generation, the bio-inspired propeller emitted lower
noise under constant power input. The planform shape of the bio-inspired propeller was
inspired by the cicada wing and the shape of maple seed.
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1.6. The Optimum Propeller

There is ample literature describing and validating various methods of analysing
propeller performance, however there is significantly less existing literature on design
methods for optimum propellers.

All propellers have spanwise or radial circulation distributions which minimise the
kinetic energy loss associated with the generation of lift (thrust). By determining the
geometry which results in these circulation distributions, one can determine the geometry
of the propeller which results in the minimum losses (most efficient). In 1979, Larrabee
published Design of Propellers for Motorsoarers [22] which explains his method, and forms
a series of equations which are solved iteratively to form the final propeller geometry. The
two geometric parameters this method calculates are the chord distribution and the twist
distribution. The suitability of the method for three very different applications was then
discussed. These were propellers for use on a human-powered aircraft, a powered hang
glider and a motorsoarer. Comparisons were made between the calculated propellers and
the actual propellers used on these aircraft, and in all instances the calculated geometry
was found to be very close to the actual optimum geometry.

The Design of Optimum Propellers (Adkins & Liebeck, 1994) [23] further explains the
process, which is based around the Betz condition that a constant-displacement velocity
across the propeller wake provides a propeller design with maximum efficiency. Using
the circulation functions developed by Betz & Prandtl [24] and Goldstein [25], one can use
the Betz condition to obtain the chord and twist distributions of a theoretical propeller
with minimum losses. The original equations stated by Betz and Glauert [10] were only
applicable for propellers with light-loading, however, Theodorsen [12] showed that the
Betz condition for minimum loss can be applied to heavy-loading as well, by including the
contraction of the wake in the equations.

In his paper entitled Increasing of Aircraft Propeller Efficiency by Using Variable Twist
Propeller Blades (Klesa, 2008) [26], the method is simplified to a simple step by step iterative
process. Klesa shows that a MATLAB code could be written to generate the optimum chord
and twist distributions, and shows that the varying flight conditions will present different
optimal geometry, meaning that a propeller can only be optimised for one design point at a
time, unless deploying variable pitch mechanisms.

2. Materials and Methods
2.1. Propeller Theory—Geometry
2.1.1. Airfoil Geometry

An airfoil is a 2D cross-sectional shape of an object that, when moved through a fluid,
produces an aerodynamic force. The most common application of airfoils is on the wings
of fixed-wing aircraft, however, they are also used on propellers. Among others, the main
objective when selecting an airfoil is to create the highest lift to drag ratio. The most suitable
airfoil will depend on the flow conditions the airfoil will be operating in. Using online tools
such as JavaFoil [27] or QProp [28], existing airfoils can be analysed, and new airfoils can
be created and analysed. Figure 3 depicts a NACA0012 in JavaFoil, which is one of the
most common airfoils. As can be seen, the airfoil is symmetric (it has no camber). This can
be deduced from the ’00’ digits in the airfoil name. The airfoil has a thickness to chord ratio
of 12% (hence the ’12’ digits in the airfoil name).
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However, most airfoils used on propellers are cambered, as symmetric airfoils require
either high angles of attack or high flow speeds to produce significant lift, resulting in poor
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lift to drag ratios. The NACA3414 airfoil, as seen in Figure 4, is a cambered airfoil. It has
3% maximum camber (signified by the ‘3’ digit), with the maximum camber occurring at
40% chord (signified by the ‘4’ digit), and a thickness to chord ratio of 14%.
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2.1.2. Propeller Geometry

Aside from the diameter, the pitch of the propeller is the most important geometric
parameter when designing a propeller. The pitch of a propeller is defined as the distance
that, if the propeller were moving through a soft solid, the propeller would move forward
in one complete rotation. Of course, in conventional propellers the pitch will decrease from
the hub to the tip, and so it has become convention to specify the pitch of a fixed pitch
propeller at 75% of the distance from the hub to the blade tip. Propellers with high pitch
values can produce higher thrust levels at higher speeds than low pitch propellers, whilst
low pitch propellers can produce higher thrust levels at low speeds. Therefore, the main
driver in selecting the pitch for a propeller is the velocity of the propeller. From the pitch,
the theoretical angle of twist can be calculated for the length of the blade using Equation (2).

Angle o f Twist = tan−1
( p

2πr

)
(2)

Another important geometric aspect of a propeller is the taper profile. Whilst rotor
blades found on helicopters tend to have no taper, and wings on fixed wing aircraft tend to
have linear tapers, the taper profile of propellers is typically quite complicated, involving
complex curves. The taper profile is defined as the variation of chord length along the
blade. Typically, the chord length is small at the hub, it increases, resulting in a maximum
chord length between 25% and 75% along the blade radius, and then it decreases towards
the blade tip.

2.2. Non-Dimensional Coefficients

The performance parameters of a propeller (or rotor) can be expressed in non-dimensional
form. Understanding how to calculate these quantities is therefore key to understanding
propeller theory. It should be noted that these coefficients differ for propellers and rotors.
A rotor is defined as an aerodynamic propulsion device which operates in static conditions,
whereas a propeller operates in non-static conditions. Simply put, for the calculation of
these coefficients a rotor is a propeller operating with a forward flow speed of zero. From
Leishman (2008) [29], the non-dimensional coefficients can be found using Equations (3)–(8),
and are categorised in Table 1 below.

CT =
T

1
2ρA(ΩR)2 (3)

CTp = 3.875CT =
T

ρn2D4 (4)

CP =
P

1
2ρA(ΩR)3 (5)

CPp = 12.175CP =
P

ρn3D5 (6)

CQ =
Q

1
2ρA(ΩR)2R

(7)
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CQp = 1.938 CQ =
Q

ρ n2D5 (8)

Table 1. Definitions of non-dimensional propeller and rotor coefficients.

Propeller Rotor

CTp Propeller Thrust Coefficient CT Rotor Thrust Coefficient

CPp Propeller Power Coefficient CP Rotor Power Coefficient

CQp Propeller Torque Coefficient CQ Rotor Torque Coefficient

Another dimensionless quantity of rotor blades is the blade solidity, which can be
defined as the ratio of total blade area to the disk area, as defined in Equation (9). Values of
the solidity for conventional helicopters vary from about 0.06 to 0.12.

σ =
Area o f rotor blades
Area o f rotor disk

=
BcR
π R2 =

Bc
π R

(9)

2.3. Propeller/Rotor Efficiency

The efficiency calculation of a blade propulsion system varies depending on whether
the system is a rotor or propeller driven system. Rotor driven systems, such as those
found on helicopters, use a hover efficiency metric called the Figure of Merit (FoM), whilst
propeller driven systems use a more conventional propulsive efficiency term ηP.

2.3.1. Figure of Merit

The Figure of Merit is a dimensionless factor used to calculate hover efficiency of rotor
driven propulsion systems. The concept of a Figure of Merit was first proposed by Renard
(1903) and then Glauert (1935), but was first presented in its present form by Richard H.
Prewitt of Kellett Aircraft. The Figure of Merit is defined in Equation (10).

FoM =
Ideal Power Required to hover

Actual Power Required to hover
=

C
3
2
T√

2CP
(10)

Equation (10) is derived from simple momentum theory, and thus assumes there is
no viscous losses when calculating the ideal power required to hover. In the actual power
required to hover measurement, viscous effects will result in both profile and induced
loss contributions, and therefore for a real rotor, the Figure of Merit must be less than 1.
Hover propulsion systems can be optimised to achieve FoM values of up to 0.9, however,
achieving an optimal FoM value will result in a significantly lower propulsive efficiency
value. Therefore, rotor propulsion systems are often designed to have FoM values of around
0.6, resulting in higher efficiencies at high speeds at the expense of lower efficiencies in
hover conditions.

The disc loading of a rotor is defined as the ratio of the thrust produced by the rotor
to the rotor disk area. To make a meaningful comparison between the FoM values of
multiple rotors, the rotors must have the same disc loading. The disc loading will increase
the induced power relative to the profile power, resulting in a higher FoM which is a
misleading value for comparison. Generally, rotors with high disc loadings will give higher
figure of merit values than rotors with low disc loadings.

2.3.2. Propulsive Efficiency

The propulsive efficiency, ηP, of a propeller driven propulsion system is a more useful
expression of propeller performance, since in their operation, all propulsion systems will
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have axial flow with a non-zero velocity. Firstly, the advance ratio, J which is needed to
calculate the propulsive efficiency, is defined in Equation (11).

J =
Axial Flow Velocity

Tip Rotational Velocity
=

V
nD

(11)

Typically, in the range of 0–2, the advance ratio is the ratio of axial velocity to rotational
velocity at the tip of the propeller. As can be seen in Equation (12), the propulsive efficiency
is directly proportional to the advance ratio, J.

ηP = J
CT
CP

≡ Tc
Pc

(12)

As can be seen in Equation (12), the propulsive efficiency of a propeller is directly
affected by the coefficients of thrust and power. Looking back to Equations (4) and (6),
it can be seen that both the angular velocity and the propeller diameter will affect the
propulsive efficiency. The fluid density, which is in the denominator of both coefficients,
cancels out and therefore does not affect the efficiency. However, the propulsive efficiency
is determined by other factors not explicitly seen in Equations (4) and (6). The propeller
pitch/diameter ratio, airfoil geometry, spanwise chord, taper profile and material choice
all affect the thrust and power terms seen in Equations (4) and (6); thus, they all affect
the propulsive efficiency. The efficiency curve of an APC 10” × 7” propeller is shown in
Figure 5, with data from the UIUC propeller database [2].
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Well-designed propellers typically have maximum efficiencies at advance ratios of
between 0.5 and 0.7. However, the maximum efficiency for a propeller only occurs at one
advance ratio (J), meaning that as the advance ratio increases, the efficiency will quickly
reduce to a minimum. This sudden drop means that designing an efficient propeller that
will be operated over a range of advance ratios is very challenging, as one can select an
advance ratio at which the propeller will operate at maximum efficiency, but any variation
in advance ratio can lead to a drastic drop in efficiency. Therefore, the maximum efficiency
of a propeller is limited to a single airspeed at a given angular velocity. Propellers on larger
aircraft suffer from compressibility losses, whereby the tips of the blades approach the
speed of sound, resulting in shock wave formation and the losses associated with these.
Transonic flow begins at about Mach 0.8.
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2.4. Reynolds Number

The Reynolds number of a certain flow condition is defined as the ratio of inertial forces
to viscous forces, and it is a dimensionless parameter that can help predict flow patterns.
The Reynolds number is defined in Equation (13), where L is the characteristic length.

Re =
ρ · V · L

µ
(13)

As can be seen in Equation (13), if all other parameters are held constant, the Reynolds
number will decrease if the characteristic length decreases. When analysing propeller flow,
the characteristic length is the chord length of the blades, and so smaller blades will result
in smaller Reynolds numbers. As can be seen in Figure 6, at a Reynolds number of 100,000
for smooth airfoils, there is a sudden transition from a low maximum section CL/CD ratio
to a high maximum section CL/CD ratio. Propellers used on small drones often operate in
Reynolds numbers less than 100,000, and the maximum lift/drag ratio that can be achieved
is therefore limited by their small diameters.
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When operating below the 100,000 Reynolds number threshold, the lower lift/drag
ratios associated with these flow regimes, are the biggest contributor to the lower efficiencies
associated with scale propellers. The velocity component in Equation (13) means that the
angular velocity of the propeller affects the Reynolds number. The Reynolds number will
vary along the length of the blade, due to varying chord lengths and rotational velocities,
and at low angular velocities sometimes no part of the blade will exceed the 100,000
Reynolds number threshold. It is therefore critical for a propellers efficiency to operate at
the highest RPM value possible (assuming tip speeds do not approach Mach 0.8).

2.5. Propeller Geometry Optimization

The following section describes a method that is used to iteratively design propeller
chord and twist distributions. The following systems of equations are only reviewed briefly
in this paper, but a more detailed explanation and derivation has been written by both
Larrabee (1979) [22] and Adkins & Liebeck (1994) [23]. The method below assumes that the
shaft power supplied to the motor is known, however, if the required thrust of the propeller
is known instead, Klesa (2008) [26] describes a method that is largely the same as the one
described here. This method assumes light-loading (<400 N/m2) and incompressible flow.
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2.6. Calculating Propeller Geometry

The numerical method is based on the Betz criteria [24]. The Betz criterion for optimum
loading for a lightly loaded actuator disk in axial flight states that the trailing edge vortex
sheets, after an initial deformation close to the rotor disk, move axially downward as a rigid
screw surface (i.e., the ratio of translational velocity to rotational velocity is constant). For
every iteration of this method, the displacement velocity is assumed to be radially constant.
If the wake helix angle is φs, the axial and swirl velocity components are therefore given by
Equations (14) and (15).

waxial = v′Cos22ϕs (14)

wswirl = v′cos ϕssinϕs (15)

In this method, the displacement velocity will be represented by the displacement
velocity ratio, which is defined in Equation (16). This is the variable which will be optimised
to result in optimum propeller geometry, but this will be discussed later.

ζ =
v′

V
(16)

Both Betz & Prandtl (1919) and Goldstein (1929) derived momentum loss functions,
which describe the energy lost in a propeller wake. Whilst Goldstein’s function is more
accurate, Prandtl’s momentum loss function, F, will be used here for simplicity.

F(r) =
2
π

arccose− f (17)

f (r) =
B
2
· 1 − ξ

sinϕt
(18)

ξ(r) =
r
R

(19)

ξ is the non-dimensional radius and is calculated by dividing the radial co-ordinate, r,
by the propeller tip radius, R as in Equation (19). φt is the flow angle at the propeller tip,
and is a function of the displacement velocity, as seen in Equation (20). From the flow tip
angle, the flow angle, φ, of every radial point can be found using Equation (21).

tanϕt =
V

ΩR
·
(

1 +
ζ

2

)
(20)

ϕ(r) = arctan
tanϕt

ξ
(21)

From Equations (17)–(21), the Equations (22) and (23) can be derived, which describe
the circulation, Γ, at any radial point r. The circulation function, G, is more accurate
for vortex sheets which are flat, parallel and closely spaced, however, it is an adequate
approximation for most propellers.

Γ(r) =
2πV2ζG

BΩ
(22)

G(r) = F · Ωr
V

· cosϕsinϕ (23)

Applying the Kutta-Joukowski theorem for a blade element at radius r, the lift per unit
length of the blade can be equated as in Equation (24), where W is the local total velocity.

ρW2ccL
2

= ρW (24)
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Applying the expression for Γ in Equation (22), results in Equation (25).

Wc(r) =
4πV2Gζ

cLBΩ
(25)

The total velocity W can be expressed by Equation (26).

W(r) =
V(1 + a)

sinϕ
(26)

a and a′ are variables which appear several times in this method. The derivation of
them will not be included in this paper, but can be found in ’Increasing of Aircraft Propeller
Efficiency by Using Variable Twist Propeller Blades’, a paper by Klesa (2008) [26].

a(r) =
ζ

2
· cos2ϕ · (1 − ϵtanϕ) (27)

a′(r) =
ζ

2
· V

Ωr
· cosϕsinϕ

(
1 +

ϵ

tanϕ

)
(28)

E is the section drag to lift ratio and is the only airfoil property that is required for
this method. By dividing Equation (25) by Equation (26), the value of c can be calculated
for any radial co-ordinate. Using Equation (29), the angle of twist (β) can be found at any
radial co-ordinate.

β(r) = ϕ+ α (29)

2.7. Optimising Propeller Geometry

The two main geometric parameters of the propeller, the chord and twist distribution,
have now been calculated, however these parameters are not optimised. The following sec-
tion details how the displacement velocity ratio is optimised to produce optimal propeller
geometry in an iterative process. Firstly, the non-dimensional design power coefficient, Pc,
has to be calculated using Equation (30), where P is the known shaft power supplied to the
propeller.

Pc =
2P

ρV3πR2 (30)

The key equation in the iterative process is Equation (31), which after simple integra-
tion results in Equation (32).

dPc

dξ
=

dJ1

dξ
· ζ+ dJ2

dξ
· ζ2 (31)

Pc = J1 · ζ+ J2 · ζ2 (32)

J1 and J2 are simply variables used in the iteration process and have no physical
meaning. ’Design of Propellers for Motorsoarers’, a paper by Larrabee (1979) [22], contains
a full derivation of Equations (31)–(34).

dJ1

dξ
= 4ξG

(
1 +

ϵ

tanϕ

)
(33)

dJ2

dξ
=

1
2
· dJ1

dξ
· (1 − ϵtanϕ) · cos2ϕ (34)

After evaluating the derivatives of J1 and J2 at every radial co-ordinate, integrating
with respect to the non-dimensional radius will result in values for J1 and J2. Re-arranging
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Equation (32), results in Equation (35). Using calculated values of Pc, J1 and J2, a new value
of the displacement velocity ratio can be found.

ζ = − J1

2J2
+

√(
J1

2J2

)2
+

Pc

J2
(35)

The process is then repeated using the new value for the displacement velocity ratio,
and is iterated until the displacement velocity ratio converges. Initially, an estimate for the
displacement velocity ratio is used, which has to be small and is often zero. If the thrust,
T is known then a slightly different Equation (36) (the non-dimensional Design Thrust
Coefficient, Tc) is used with derivatives of I1 and I2. in the above procedure [30–32].

Tc =
2T

ρV2πR2 (36)

3. Results
3.1. Implementing the Optimization Method Using MATLAB

The required inputs for a MATLAB computer program which implements the iterative
method are found in Table 2, along with their units. The non-dimensional hub radius is
found by dividing the hub radius by the propeller tip radius.

Table 2. Inputs to MATLAB computer program which outputs optimal propeller geometry.

Input Unit

Diameter (D) Inch
Velocity (V) m/s

Shaft Power (P) W
Propeller Speed RPM
Air Density (ρ) kgm−3

Number of Blades (B) -
Airfoil CL -
Airfoil CD -

Non-Dimensional Hub Radius -
Angle of Attack (α) Degree

Displacement velocity ratio convergence level -
Number of blade elements -

The angle of attack input specifies the additional twist angle that is desired on the
propeller. As can be seen in Equation (29), if the angle of attack is specified as zero, the
radial twist angle distribution will be the same as the radial flow angle distribution.

As the method is not analytical, there will inevitably always be errors. The main
sources of error in the method are the assumptions of light-loading and incompressible
flow, made throughout the method. Without greatly increasing the method complexity,
there is little that can be done about this. However, the accuracy of the method can be
increased by varying two of the inputs in Table 2. Firstly, the number of blade elements
defines the blade element width. Using more blade elements will result in smaller blade
element widths, resulting in a more complete and accurate output, as can be seen in
Figure 7a,b. The displacement velocity ratio convergence level defines how close the
calculated value of zeta needs to be to the original value for the program to classify the
displacement velocity ratio as ’converged’.

Using a smaller value for this input will therefore increase accuracy, at the inevitable
expense of increased computation time, due to an increased number of iterations, as can be
seen in Figure 8.
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3.2. Reynolds Number Distribution

Using Equation (13), the Reynolds number distribution along the blade can be calcu-
lated, using the optimal chord distribution output from the program. The re-arrangement
of Equation (13) to an equation suitable for the computer program is found below.

Re(r) =
ρ · W(r) · c(r)

µ
=

ρ · Ω r · c(r)
µ

(37)

As already discussed in this paper, a Reynolds number of 100,000 represents a transi-
tion point at which the lift-to-drag ratio of a smooth airfoil increases drastically. In propeller
design, it is therefore highly desirable for the Reynolds number to be above 100,000 at
most radial co-ordinates. Whilst this could be achieved at all radial co-ordinates by simply
increasing the chord length close to the propeller hub, structural requirements dictate that
this chord profile is not commonly seen in small (less than 21-inch diameter) propellers.
There would also be a drag penalty associated with increasing the chord length, which
would reduce the lift-to-drag ratio of the blade sections close to the hub.
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’Increasing of Aircraft Propeller Efficiency by Using Variable Twist Propeller Blades’,
a paper by Klesa (2008) [26], details a method which, given that the above radial variables
have been calculated at every radial co-ordinate, can be easily used to calculate the radial
distribution of thrust generated by the propeller. After derivation, the equation used in the
computer program is shown in Equation (38).

dT(r) = 2πρV · (1 + a) · (2VaF) · dr (38)

An example thrust distribution, plotted by calculating dT at every radial co-ordinate,
is shown in Figure 9.
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a design advance ratio of 0.59, 2-blades, a shaft power of 3 kW, zero angle of attack, standard density
of 1.225 kg/m3 and a lift-to-drag ratio of 20.

As can be seen in Figure 9, the majority of the thrust developed by a propeller is between
the non-dimensional radii of 0.4 and 0.95. Using numerical integration, it is found that for
the example in Figure 9, 85% of the thrust is developed between 0.4 and 0.95 of the propeller
radii, but other propellers will yield very similar results. Therefore, in the computer program
created for this paper, the program ensures that all blade stations between non-dimensional
radii of 0.4 and 0.95 experience Reynolds numbers above the 100,000 threshold.

The unmodified Reynolds number distributions of two example propellers are found
in Figure 10.Appl. Sci. 2024, 14, x FOR PEER REVIEW 16 of 24 

 

 
Figure 10. Radial Reynolds number distribution along a 10-inch and 20-inch propeller blade with 
design inputs of: velocity of 10 m/s, 2000 RPM, two blades and a hub radius of 0.15. 

For clarification, a flow chart outlining the basic architecture of the MATLAB pro-
gram which outputs optimal propeller geometry and subsequently modifies this to mini-
mise the effect of low Reynolds number on propeller efficiency is shown in Figure 11. 

Figure 10. Radial Reynolds number distribution along a 10-inch and 20-inch propeller blade with
design inputs of: velocity of 10 m/s, 2000 RPM, two blades and a hub radius of 0.15.



Appl. Sci. 2024, 14, 6296 16 of 23

For clarification, a flow chart outlining the basic architecture of the MATLAB program
which outputs optimal propeller geometry and subsequently modifies this to minimise the
effect of low Reynolds number on propeller efficiency is shown in Figure 11.
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3.3. Program User Interface Design

In order to make the MATLAB program user friendly, MATLAB libraries inputdlg()
and listdlg() were used to create a series of pop-up windows that ask the user for the inputs
required. The user can choose between whether the required thrust or consumed shaft
power is known.

Following this, the pop-up window in Figure 12 appears, asking the user for the
required inputs. Lift and drag coefficient data can be found in ‘Aerodynamic data banks
for Clark-Y, NACA 4-digit and NACA 16-digit airfoil families’ [29].

Appl. Sci. 2024, 14, x FOR PEER REVIEW 18 of 24 
 

Following this, the pop-up window in Figure 12 appears, asking the user for the re-
quired inputs. Lift and drag coefficient data can be found in ‘Aerodynamic data banks for 
Clark-Y, NACA 4-digit and NACA 16-digit airfoil families’ [29]. 

 
Figure 12. Pop-up window from MATLAB code, in which user can provide required inputs. 

Following this, a window appears asking the user if they require the Reynolds num-
ber chord adjustment. If the user does require this, they are then prompted to input the 
desired minimum Reynolds number, which by default is 100,000. If not, the code is run as 
normal. The MATLAB code can be found via a link in Appendix A. 

3.4. Validation of the MATLAB Program 
In order to validate the MATLAB program, its output was compared to online data 

for the APC ’Thin Electric’ 10” × 7”, from the UIUC propeller database [2]. Inputs to the 
program, found in Table 3, were chosen to match the performance of the APC ’Thin Elec-
tric’ 10” × 7” propeller. For example, the propeller RPM and forward velocity were chosen 
to match the advance ratio at which the APC propeller has a maximum efficiency (advance 
ratio of 0.6). The airfoil coefficients of lift and drag are from the Clark-Y airfoil, which is a 
common airfoil for propeller design [30,31]. An angle of attack of zero was used, as due to 
assumptions made in the method the twist angles are large, thus eliminating the 

Figure 12. Pop-up window from MATLAB code, in which user can provide required inputs.

Following this, a window appears asking the user if they require the Reynolds number
chord adjustment. If the user does require this, they are then prompted to input the desired
minimum Reynolds number, which by default is 100,000. If not, the code is run as normal.
The MATLAB code can be found via a link in Appendix A.



Appl. Sci. 2024, 14, 6296 18 of 23

3.4. Validation of the MATLAB Program

In order to validate the MATLAB program, its output was compared to online data
for the APC ’Thin Electric’ 10” × 7”, from the UIUC propeller database [2]. Inputs to
the program, found in Table 3, were chosen to match the performance of the APC ’Thin
Electric’ 10” × 7” propeller. For example, the propeller RPM and forward velocity were
chosen to match the advance ratio at which the APC propeller has a maximum efficiency
(advance ratio of 0.6). The airfoil coefficients of lift and drag are from the Clark-Y airfoil,
which is a common airfoil for propeller design [30,31]. An angle of attack of zero was used,
as due to assumptions made in the method the twist angles are large, thus eliminating
the requirement for additional angle of attack. The shaft power was approximated by
comparing the required shaft powers of propellers of a similar diameter and pitch on the
APC database [32].

Table 3. Inputs to MATLAB program for validation study.

Input Input Value

Diameter (D) 10 inch
Velocity (V) 15.87 m/s

Shaft Power (P) 68.77 W
Propeller Speed (n × 60) 6519 RPM

Air Density (ρ) 1.225 kgm−3

Number of Blades (B) 2
Airfoil CL 0.4
Airfoil CD 0.02

Non-Dimensional Hub Radius 0.15
Angle of Attack (α) 0◦

Displacement velocity ratio convergence level 0.1
Number of blade elements 100

In Figures 13–15, the chord, twist and Reynolds number distribution for both the
MATLAB program output and the APC ’Thin Electric’ 10” × 7” propeller are plotted.
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In Table 4, calculated parameters for both the MATLAB output and the UIUC database
wind tunnel measurements can be found. The CT and CP values in Table 4 are for an
advance ratio of 0.5751, which is the advance ratio at which the maximum efficiency occurs.
Results from the APC propeller database [32] are also included for reference, however these
are simulated and not experimental.

As can be seen in Figures 13–15, the MATLAB program output closely resembles the
geometry of the APC propeller. The APC propeller has larger chord lengths towards the
propeller tip, and this is most likely due to structural issues, which the MATLAB program
does not consider. Finally, there is a significant difference (16%) between the maximum
propulsive efficiencies, the main source of which being the assumptions of light-loading,
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incompressible flow and zero tip losses made in the MATLAB program method. On the
contrary, there is only a 2% difference between the UIUC wind tunnel test data and the
APC simulation database. The smaller difference is most likely due to similar assumptions
made in both calculation processes. However, the fact that the MATLAB program computes
an optimized geometric profile in terms of the blade twist and blade chord, as well as
computes these using a baseline Re number of 100,000 may mean that this is a better
propeller design in terms of propulsion efficiency. Note that the MATLAB code produces a
higher pitch over the spanwise radius, r of the propeller.

Table 4. Comparison of calculated performance parameters for MATLAB generated propeller and
APC ’Thin Electric’ 10” × 7” [2,32].

MATLAB Program UIUC Experimental
Results [2]

APC Theoretical
Results [32]

ηp 0.870 0.714 0.727
CT 0.0626 0.0514 0.0477
CP 0.0414 0.0414 0.0405
J 0.5751 0.5751 0.6166

Pitch at 0.75 R 8.6” 7” 7”

4. Discussion

In this paper, the efficiency of propellers used for small drones has been examined,
and various ways of improving their efficiency have been evaluated.

This was first done by developing a MATLAB code, based on an optimisation method
described in various literature on propeller theory. For a set of inputs specified by the
user, the code will output a full chord and twist distribution for an optimal propeller blade.
A function allowing the user to modify the chord distribution to ensure the blade was
operating above a given Reynolds number threshold was then added. Another function
was programmed which enabled the user to view the thrust and torque distributions along
the blade. Finally, a case study comparing results from the MATLAB code to published
results for a similar propeller, the APC ’Thin Electric’ 10” × 7”. This case study validated
the MATLAB code, proving that it could be a useful tool to use for designing optimum
propellers. Further work is necessary to validate this approach across a broad range of
propeller sizes to ensure accuracy and reliability of results.

4.1. Summary

(1) A MATLAB tool has been developed, which takes inputs from the end user and
calculates the optimal propeller geometry. The code is both fast, reliable and easy to use.

(2) Theoretically, the propeller design created will achieve higher efficiencies at a range
of RPM values than commercially available propellers. From the MATLAB code, it was
calculated that whilst operating at 6500 RPM, an efficiency of 0.87 can be expected.

4.2. Recommendations for Further Work

The research and design work that has been undertaken for this paper has highlighted
several areas in which further research could be beneficial.

The MATLAB tool developed in this study outputs a plot of chord and twist distri-
butions for an optimum design based on end user input. These distributions then have
to be manually converted into a set of airfoil curves, which are then linked by a surface
loft in the SolidWorks CAD program. If a program which automated this process, and
automatically output a SolidWorks file could be created, this would reduce the design time
of optimal propellers to a fraction of the time it currently takes to complete the manual
process. The MATLAB code could also be improved by incorporating tip loss calculations
into the optimisation process, as in the current code tip losses are neglected. Furthermore,
the code could also be designed to calculate the optimal blade winglet profile to reduce
the losses from wingtip vortices. Finally, the code could be modified so that the user is
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warned when the propeller tip speed is approaching transonic speeds of Mach 0.8. This
would make it easier for the user to avoid the compressibility effects and shock waves that
are associated with such tip speeds.
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Nomenclature

A Propeller disc area (m2)
B Number of propeller blades
c Blade chord length (m)
D Propeller diameter (inches)
F Prandtl’s momentum loss factor
G Circulation function
I1 Thrust loading integral
I2 Thrust loading integral
J Propeller advance ratio, V/n D
J1 Power Loading integral
J2 Power Loading integral
n Number of complete revolutions per second
p Propeller pitch (inches)
P Shaft power consumed by propeller (W)
Q Propeller shaft torque (Nm)
r Distance along the propeller radius (m)
R Propeller blade radius (m)
T Thrust produced by the propeller (N)
V Freestream velocity (m/s)
V1 Displacement velocity (m/s)
W Total local velocity (m/s)
cD Airfoil section coefficient of drag
cL Airfoil section coefficient of lift
CT Thrust Coefficient
CP Power Coefficient
CQ Torque Coefficient
mblade Mass of a propeller blade (kg)

https://m-selig.ae.illinois.edu/props/propDB.html
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Pc Design Power Coefficient
Tc Design Thrust Coefficient
v, Displacement velocity (m/s)
waxial Induced axial velocity component (m/s)
wswirl Induced swirl velocity component (m/s)
xblade Extension of a propeller blade (m)
xCoG Distance from centre of rotation to propeller blade centre of gravity (m)
Re Reynolds number

Greek Symbols

α Propeller blade angle of attack (degree)
β Propeller blade angle of twist (degree)
ζ Displacement velocity ratio, v1/V
ηp Propeller efficiency, Tc/Pc ≡ J CT/CP
µ Viscosity of air (kgm−1 s−1)
ξ Non-dimensional radius, r/R
Γ Circulation (m2/s)
ρ Air density (kgm−3)
σ Rotor solidity
Ω Propeller angular speed (rad/s)
φ Flow angle (degree)
φs Wake helix angle (degree)
φt Flow angle at propeller blade tip (degree)

Appendix A. MATLAB Program Code

The 226-line MATLAB program code entitled ‘Prop_Analysis_V3.m’ is available online:
https://app.box.com/s/ozf91uzaz79rsxzvtauknh5ygc2giwgc (accessed on 28 May 2024).
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