
Reproducing the Acoustic Velocity Vectors in a Spherical Listening

Region

Frank Jiarui Wang∗, Thushara Abhayapala∗, Jihui Aimee Zhang†, Prasanga Samarasinghe∗
∗The Australian National University †University of Southampton

June 2024

Abstract

Acoustic velocity vectors (AVVs) are related to
the human’s perception of sound at low frequen-
cies and are widely used in Ambisonics. This pa-
per proposes a spatial sound field reproduction al-
gorithm called velocity matching, which reproduces
the AVVs in the spherical listening region by match-
ing the AVVs’ spherical harmonic coefficients. Us-
ing the sound field translation formula, the spher-
ical harmonic coefficients of the AVVs are derived
from the spherical harmonic coefficients of the pres-
sure, which can be measured by a higher-order mi-
crophone array. Unlike algorithms that only con-
trol the AVVs at discrete sweet spots, the proposed
velocity matching algorithm manipulates the AVVs
in the whole spherical listening region and allows
the listener to move beyond the sweet spots. Sim-
ulations show the proposed velocity matching algo-
rithm accurately reproduces the AVVs in the spher-
ical listening region and requires fewer number of
loudspeakers than pressure matching algorithm.

1 Introduction

Spatial sound field reproduction aims to synthesize
the desired sound field in the listening region. In
most cases, reproduction is achieved by accurately
reconstructing the pressure. Pressure based meth-
ods include matching the pressure at a number of
sweet spots [1], wave field synthesis (WFS) [2–6] and
higher order Ambisonics (HOA) [7–9]. A large num-
ber of loudspeakers are usually involved to achieve
sufficient accuracy in the reconstructed pressure,
which alone does not guarantee satisfactory percep-
tion [10].

Acoustic velocity vectors (AVVs) are essential to
WFS due to the Kirchhoff-Helmholtz integral [4].
Inspired by WFS, in [11] and [12], reproduction was

achieved by matching the pressure and the AVVs
at discrete control points on the boundary of the
listening regions. There was also attempt at solely
matching the AVVs on the boundary [13]. Measur-
ing the AVVs at multiple control points involves a
complicated setup. Moreover, [11] and [12] required
a large number of loudspeakers, which could be im-
practical for home theater or small exhibition space.

Perceptually motivated sound field reproduction
creates the desired perceptual effects by using psy-
choacoustics, and has the advantage of requiring
fewer channels due to its tolerance to lower accu-
racy in the reproduced pressure [14]. AVVs are
related to the human’s perception of sound below
700 Hz [15, 16] and are relevant to the interaural
phase difference. Recently, AVVs were combined
with mixed-source expansion to create immersive
perception over an enlarged region [17]. AVVs were
also used to create the desired perception at non-
central listening points [18].

AVVs have been applied to reproduction at sweet
spots. Gerzon’s velocity vector rV is widely used in
Ambisonics [15, 16, 19, 20]. A time-domain method
that jointly controls the AVVs and the pressures at
multiple sweet spots was derived in [21] and [22]. To
enable listener’s movement beyond the sweet spots,
the AVVs in the whole listening region should be
characterized.

A spherical region can be treated as an inte-
gral of multiple concentric spherical surfaces. In
[23], the spherical harmonic (SH) coefficients of the
AVVs on each concentric spherical surface (abbrev.
SHV-surf coefficients) were derived from the SH
coefficients of the pressure in the spherical region,
which were measured by a spherical microphone ar-
ray [24, 25]. The SHV-surf coefficients were of the
form Xd

a(k, rb) in which rb was the radius of the
spherical surface on which the AVVs were charac-
terized [17, 23]. SHV-surf coefficients were applied
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to virtual microphone synthesis to simulate the sig-
nals at microphones placed on an open sphere [26].
To compute the AVVs in a spherical region, the
SHV-surf coefficients must be calculated for mul-
tiple radii.

To characterize the AVVs in a spherical listen-
ing region using one set of SH coefficients across all
radii, this paper presents the radial independent SH
coefficients of the AVVs (abbrev. SHV-indR coef-
ficients). The SHV-indR coefficients are of the form
(ζê)

d
a(k) and the radial dependency is captured by a

separate radial function Ra(krb). Starting from the
definition of the AVVs, it is found that the SHV-
indR coefficients are related to the SH coefficients
of the pressure in the spherical listening region by
the sound field translation formula. Therefore, the
SHV-indR coefficients can be derived from spherical
microphone array measurements. Unlike SHV-surf
coefficients, which must be calculated at different
radii, one set of SHV-indR coefficients is sufficient
to characterize the AVVs throughout the spherical
listening region. In [27], the SHV-indR coefficients
were derived by using eigenbeam-ESPRIT, which is
a source localization method.

This paper also proposes the velocity match-
ing (VM) algorithm, which reproduces the desired
AVVs in the spherical listening region by match-
ing the SHV-indR coefficients. Due to the radial-
independence, only one set of SHV-indR coefficients
needs to be matched, whereas the SHV-surf co-
efficients must be matched on multiple concentric
spherical surfaces. Simulation shows that VM accu-
rately reproduces the AVVs at low frequencies and
requires fewer number of loudspeakers than pressure
based method.

2 AVV in the spherical region

2.1 AVVs at a point

Figure 1 shows the setup of the geometric model.
The spherical listening region in light blue is free
from sources and scatterers. The derivation starts
from finding the AVVs at a point rb within the lis-
tening region. The local x(b)y(b)z(b) coordinate sys-
tem is centered at rb ≡ O(b). The x(b)y(b)z(b) coordi-
nate system is the translation of the xyz coordinate
system with rb as the translation vector. Note that
r = rb + r(b). The superscript indicates the coordi-
nate system used to express the location. If there
are no superscripts, then the location is expressed

x

y

z 

x(b)

z(b)
  

O
rb≡O(b)

r y(b)r(b)

Figure 1: Setup of the geometric model. The lis-
tening region is in light blue. rb is a point in the
listening region.

with respect to the xyz coordinate system. When
using spherical coordinate system, r = (r, θ, ϕ) in
which r = ||r||, θ is the colatitude measured down-
ward from the zenith (the positive z-axis), and ϕ
is the azimuth measured counterclockwise from the
positive x-axis in the xy plane.

In Figure 1, the pressure at a point r(b) ≡
(r(b), θ(b), ϕ(b)) within the local region in yellow is

p(k, r(b)) =
N∑

n=0

n∑
m=−n

βm
n (k, rb)jn(kr

(b))Y m
n (θ(b), ϕ(b))

(1)
in which k is the wavenumber, jn(·) is the spheri-
cal Bessel function of the first kind, Y m

n (· , ·) is the
SH function of degree n and order m, and N is the
truncation order. The SH coefficients βm

n (k, rb) de-
pend on the location of rb, which is the origin of the
local coordinate system. From [28], the derivative
[∂jn(kr

(b))/∂r(b)]r(b)=0 = (1/3)kδn,1 in which δn,1 is
the Kronecker delta function.

Let ρ0 denote the density of the medium and c
denote the speed of sound. Let x̂, ŷ and ẑ denote
the unit vectors along the x, y, z axes. The AVVs at
rb ≡ O(b) are the linear combinations of βm

1 (k, rb)
[29]

Vx̂(rb, k) =
i

kρ0c

∂p(k, r(b))

∂x

∣∣∣∣
r(b)=0

=

N∑
n=0

n∑
m=−n

βm
n (k, rb)

∂jn(kr
(b))

∂r(b)

∣∣∣∣
r(b)=0

Y m
n

(
π

2
, 0

)

=
1

3

i

ρ0c

[√
3

8π
β−1
1 (k, rb)−

√
3

8π
β1
1(k, rb)

]
, (2)
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Vŷ(rb, k) =
i

kρ0c

∂p(k, r(b))

∂y

∣∣∣∣
r(b)=0

=

N∑
n=0

n∑
m=−n

βm
n (k, rb)

∂jn(kr
(b))

∂r(b)

∣∣∣∣
r(b)=0

Y m
n

(
π

2
,
π

2

)

=
1

3

1

ρ0c

[√
3

8π
β−1
1 (k, rb) +

√
3

8π
β1
1(k, rb)

]
, (3)

Vẑ(rb, k) =
i

kρ0c

∂p(k, r(b))

∂z

∣∣∣∣
r(b)=0

=

N∑
n=0

n∑
m=−n

βm
n (k, rb)

∂jn(kr
(b))

∂r(b)

∣∣∣∣
r(b)=0

Y m
n (0, 0)

=
1

3

i

ρ0c

√
3

4π
β0
1(k, rb). (4)

2.2 The SHV-indR coefficients

In Figure 1, using the global xyz coordinate system,
the pressure at r ≡ (r, θ, ϕ) is

p(k, r) =
L∑

ℓ=0

ℓ∑
q=−ℓ

ξqℓ (k)jℓ(kr)Y
q
ℓ (θ, ϕ). (5)

in which ξqℓ (k) denotes the SH coefficients of the
pressure in the spherical listening region, and L is
the truncation order. Using the sound field transla-
tion formula [30],

p(k, r(b)) =

N∑
n=0

n∑
m=−n

jn(kr
(b))Y m

n (θ(b), ϕ(b))

A∑
a=0

L∑
ℓ=0

ℓ∑
q=−ℓ

ξqℓ (k)G
ℓqa
nmja(krb)Y

(q−m)
a (θb, ϕb)︸ ︷︷ ︸

βm
n (k,rb) in (1)

(6)

As shown in (2), (3) and (4), since the AVVs involve
only βm

1 (k, rb), the derivation restricts n = 1 and
m = {−1, 0, 1}. The term

Gℓqa
1m = 4πi1+a−ℓ(−1)q

√
3(2ℓ+ 1)(2a+ 1)

4π
W1W2

(7)
in which W1 and W2 are the Wigner-3j symbols [31]

W1 =

(
ℓ 1 a
0 0 0

)
W2 =

(
ℓ 1 a
−q m q −m

)
. (8)

Let d = q −m, βm
1 (k, rb) in (6) becomes

βm
1 (k, rb)

=
A∑

a=0

L∑
ℓ=0

ℓ−m∑
d=−ℓ−m

ξ
(d+m)
ℓ (k)G

ℓ(d+m)a
1m ja(krb)Y

d
a (θb, ϕb)

=

A∑
a=0

L−m∑
d=−L−m

[ L∑
ℓ=|d+m|

ξ
(d+m)
ℓ (k)G

ℓ(d+m)a
1m

]
︸ ︷︷ ︸

(γm
1 )da

ja(krb)Y
d
a (θb, ϕb) (9)

in which A is the truncation order.
Operator matrices can be constructed to link the

SH coefficients ξ
(d+m)
ℓ (k) of the pressure to (γm1 )da(k)

with m ∈ {−1, 0, 1} such that

(γγγm1 )(k) = Bm
1 ξ(k) (10)

in which (γγγm1 )(k) and ξ(k) are the column vectors

formed by concatenating (γm1 )da(k) and ξ
(d+m)
ℓ (k),

respectively. The operator matrices do not depend
on the wavenumber k (also the frequency) because

G
ℓ(d+m)a
1m are frequency independent.
The calculation ofBm

1 does not require significant
resources because only three operator matrices with

m = {−1, 0, 1} are required. Moreover, G
ℓ(d+m)a
1m

is non-zero only when |ℓ − 1| ≤ a ≤ ℓ + 1 [31].
Furthermore, since W1 = 0 when a = ℓ [32], only
two conditions a = |ℓ − 1| and a = ℓ + 1 need to
be considered. The dimension of Bm

1 is L2 by (L+

1)2. This is because if ξ
(d+m)
ℓ (k) is measured up to

degree L, the maximum degree of (γm1 )da(k) can be

calculated is (L − 1). For a = L, ξ
(d+m)
ℓ (k) with

ℓ = L+ 1 should be measured.
Substituting (9) into (2), (3) and (4),

Vê(rb, k) =
A∑

a=0

a∑
d=−a

(ζê)
d
a(k)ja(krb)Y

d
a (θb, ϕb) (11)

in which ê ∈ {x̂, ŷ, ẑ} and (ζê)
d
a(k) denotes the

SHV-indR coefficients of the form

(ζx̂)
d
a(k) =

1

3

i

ρ0c

[√
3

8π
(γ−1

1 )da(k)−
√

3

8π
(γ11)

d
a(k)

]
,

(12)

(ζŷ)
d
a(k) =

1

3

1

ρ0c

[√
3

8π
(γ−1

1 )da(k) +

√
3

8π
(γ11)

d
a(k)

]
,

(13)

(ζẑ)
d
a(k) =

1

3

i

ρ0c

√
3

4π
(γ01)

d
a(k). (14)
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Figure 2: Real part of the AVVs on the xy plane
at 500 Hz. (a) A plane wave with incident direction
(θpw, ϕpw) = (π/2, 8π/9) rad. (b) A point source
at rps = (0.7 m, π/2 rad, 8π/9 rad). The red circle
with radius 0.5 m is the cross section of the bound-
ary of the spherical listening region.

Operator matrices Bê with ê ∈ {x̂, ŷ, ẑ} that
compute the SHV-indR coefficients (ζê)

d
a(k) from

the SH coefficients ξ
(d+m)
ℓ (k) of the pressure are con-

structed so that

ζê(k) = Bêξ(k) (15)

in which ζê(k) is the column vector formed by con-
catenating (ζê)

d
a(k). From (12), (13) and (14),

Bx̂ =
1

3

i

ρ0c

[√
3

8π
B−1

1 −
√

3

8π
B1

1

]
, (16)

Bŷ =
1

3

1

ρ0c

[√
3

8π
B−1

1 +

√
3

8π
B1

1

]
, (17)

Bẑ =
1

3

i

ρ0c

√
3

4π
B0

1. (18)

2.3 Illustration of the AVVs in a spheri-
cal region

For a plane wave with incident direction (θpw, ϕpw),

ξqℓ (k) = 4πiℓ Y q
ℓ (θpw, ϕpw) ∀k. (19)

in which (·) denotes conjugation. For a point source
located at rps ≡ (rps, θps, ϕps),

ξqℓ (k) = −ikh
(2)
ℓ (krps)Y

q
ℓ (θps, ϕps) (20)

in which h
(2)
ℓ (·) is the spherical Hankel function of

the second kind. Figure 2 shows the real part of
the AVVs on the xy plane when the source is (a)
a plane wave with incident direction (θpw, ϕpw) =
(π/2, 8π/9) rad, and (b) a point source at rps =
(0.7 m, π/2 rad, 8π/9 rad). The red circle with ra-
dius 0.5 m is the cross section of the boundary of the
spherical listening region. The SH coefficients ξqℓ (k)

of the pressure are truncated to L = 7 and the SHV-
indR coefficients (ζê)

d
a(k) are truncated to A = 6.

The density of the medium ρ0 = 1.2042 kg/m3 and
the speed of sound c = 343.21 m/s. In Figure 2(a),
the AVVs are either parallel or anti-parallel. In Fig-
ure 2(b), the AVVs either converge to or diverge
from a point in the direction of ϕ = 8π/9 rad and
the spherical wave fronts of a point source can be
discerned.

3 Reproducing the AVVs in a
spherical region

This section presents the velocity matching (VM)
algorithm, which reproduces the desired AVVs in
the spherical listening region by matching the SHV-
indR coefficients. Assume there are S loudspeak-
ers with index s = 1, 2, · · · , S. To characterize the
loudspeakers, the pressure mode transfer functions
(ξLs)

q
ℓ(k) are measured, which represent the SH co-

efficients of the pressure in the spherical listening
region when the input to the s-th loudspeaker is
a unit sinusoid at frequency kc/2π Hz. Next, by
using the operator matrices in (15), the s-th loud-
speaker’s velocity mode transfer functions (ζLsê )da(k)
are obtained. To characterize the desired sound
field, the SH coefficients (ξdes)qℓ(k) of the desired
pressure in the spherical listening region are mea-
sured by a spherical microphone array. Next, by us-
ing the operator matrices in (15), the desired SHV-
indR coefficients (ζdesê )da(k) are found. A system of
equations is established

ζdes(k) = H(k)w(k). (21)

In (21), ζdes(k) = [ζdesx̂ (k)T, ζdesŷ (k)T, ζdesẑ (k)T]T

in which ζdesê (k) with ê ∈ {x̂, ŷ, ẑ} is the col-
umn vector formed by concatenating (ζdesê )da(k)
and (·)T denotes matrix transpose. H(k) =
[ζL1(k), ζL2(k), · · · , ζLS(k)] and its s-th column
ζLs(k) = [ζLsx̂ (k)T, ζLsŷ (k)T, ζLsẑ (k)T]T in which

ζLsê (k) with ê ∈ {x̂, ŷ, ẑ} is the column vector
formed by concatenating (ζLsê )da(k). The column
vector w(k) contains the loudspeaker weights. The
VM algorithm is compared with the pressure match-
ing (PM) algorithm [7], which finds the loudspeaker
weights by matching the SH coefficients of the pres-
sure in the spherical listening region. PM has a
system of equations

ξdes(k) = G(k)w(k) (22)
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Figure 3: (a) Setup of the 8-channel loudspeaker
array with loudspeakers denoted by black crosses.
The loudspeakers are located on the yellow sphere
with radius 1 m. The loudspeaker angular directions
are denoted as (θLs, ϕLs) in degrees. The spherical
listening region with radius 0.5 m is bounded by the
red sphere. The cyan sphere at the center of the
listening region has radius 0.15 m. (b) Condition
numbers of H(k) for VM and G(k) for PM.

in which ξdes(k) is the column vector formed by
concatenating (ξdes)

q
ℓ(k). The matrix G(k) =

[ξL1(k), ξL2(k), · · · , ξLS(k)] in which the s-th col-
umn ξLs(k) is formed by concatenating (ξLs)qℓ(k).
In both (21) and (22), the loudspeaker weights w(k)
are found by Moore-Penrose pseudoinverse.

Figure 3(a) shows the 8-channel loudspeaker ar-
ray. The desired sound field is a plane wave with in-
cident direction (θpw, ϕpw) = (π/2, 8π/9) rad. The
pressure SH coefficients (ξdes)qℓ(k) and (ξLs)

q
ℓ(k) are

truncated to ℓ = 4. Hence, the SHV-indR coef-
ficients (ζdesê )da(k) and (ζLsê )da(k) are truncated to
a = 3. At each wavennumber k, the dimension of
H(k) is 48-by-8 and the dimension of G(k) is 25-by-
8. The density of the medium ρ0 = 1.2042 kg/m3

and the speed of sound c = 343.21 m/s. In
Figure 3(b), the condition numbers remain stable,
though those of H(k) are slightly lower than those
of G(k). The Moore-Penrose pseudoinverse is cal-
culated by the pinv function in MATLAB and the
default tolerance is used. Code for simulation can
be accessed from https://github.com/FJWang01/

SH_Velocity.

Figure 4 shows the reproduced pressure and the
AVVs on the xy plane at 500 Hz. Figures 4(a) and
4(c) are reproduced by VM, whereas Figures 4(b)
and 4(d) are reproduced by PM. The ground truth
of the AVVs is in Figure 2(a). VM achieves better
results in both reproduced pressure and reproduced
AVVs. Like [33] and [34], the velocity reproduction
error

η(k) = cos−1(DOT(k)) rad, (23)

where

DOT(k) =
Vdes(rb, k)

||Vdes(rb, k)||2
·
[

Vre(rb, k)

||Vre(rb, k)||2

]T
(24)

VM
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Figure 4: Real part of the reproduced pressure and
the reproduced AVVs on the xy plane at 500 Hz.
The desired sound field is a plane wave with in-
cident direction (π/2, 8π/9) rad. (a) and (c) are
reproduced by VM; (b) and (d) are reproduced by
PM. The red circle and the cyan circle are the cross
sections of the red sphere and the cyan sphere in
Figure 3(a), respectively.
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Figure 5: Velocity reproduction errors in the real
part of the reproduced AVVs. R = 0.5: the spheri-
cal listening region bounded by the red sphere with
radius 0.5 m in Figure 3(a); R = 0.15: the region
bounded by the cyan sphere with radius 0.15 m in
Figure 3(a).

in which Vdes(rb, k) ≡
[V des

x̂ (rb, k), V
des
ŷ (rb, k), V

des
ẑ (rb, k)] is

the desired AVV and Vre(rb, k) ≡
[V re

x̂ (rb, k), V
re
ŷ (rb, k), V

re
ẑ (rb, k)] is the repro-

duced AVV. Here, only the real part of the AVVs
are considered. In Figure 5, the blue line and the
red line illustrate the velocity reproduction errors
averaged across 113081 evaluation points within
the red sphere with radius 0.5 m in Figure 3(a).
VM achieved lower errors below 500 Hz. Above
500 Hz, the errors of VM and PM are similar. The
yellow line and the purple line show the velocity
reproduction errors averaged across 2993 evaluation
points within the cyan sphere of radius 0.15 m
in Figure 3(a). Up to slightly above 1 kHz, VM
performs better than PM. The simulation result
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suggests that to reproduce the desired AVVs at low
frequencies, VM requires fewer loudspeakers than
PM. VM has strong potentials in home theater and
small exhibition spaces, where space constraints
only allow the installation of small loudspeaker
array. For reproduction at mid to high frequencies,
intensity based method [20,34–37] can be used.

4 Conclusion

This paper presented the SHV-indR coefficients,
which were the radial independent SH coefficients
of the AVVs in a spherical region. The SHV-indR
coefficients were derived from the SH coefficients of
the pressure in the spherical region by using the
sound field translation formula. The SHV-indR co-
efficients were used in VM, which reproduced the
AVVs in the spherical listening region by match-
ing the SHV-indR coefficients. Simulation showed
at low frequencies, VM accurately reproduced the
AVVs using few number of loudspeakers. Future
work will include conducting perceptual tests and
investigating methods to enlarge the listening re-
gion.
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“3D perceptual soundfield reconstruction via
virtual microphone synthesis,” IEEE/ACM
Transactions on Audio, Speech, and Language
Processing, vol. 31, pp. 1305–1317, 2023.

[27] A. Herzog and E. A. P. Habets, “General-
ized intensity vector and energy density in the
spherical harmonic domain: Theory and appli-
cations,” The Journal of the Acoustical Society
of America, vol. 150, no. 1, pp. 294–306, 07
2021.

[28] F. Ma, T. D. Abhayapala, and W. Zhang,
“Multiple circular arrays of vector sensors for
real-time sound field analysis,” IEEE/ACM
Transactions on Audio, Speech, and Language
Processing, vol. 29, pp. 286–299, 2021.

[29] A. H. Moore, C. Evers, and P. A. Naylor, “Di-
rection of arrival estimation in the spherical
harmonic domain using subspace pseudointen-
sity vectors,” IEEE/ACM Transactions on Au-
dio, Speech, and Language Processing, vol. 25,
no. 1, pp. 178–192, 2017.

[30] B. Rafaely, Fundamentals of Spherical Array
Processing. Springer, 2015.

[31] R. A. Kennedy and P. Sadeghi, Hilbert Space
Methods in Signal Processing. Cambridge Uni-
versity Press, 2013.

[32] Digital Library of Mathematical Functions,
“3j, 6j, 9j Symbols,” accessed on May 5, 2024.
[Online]. Available: https://dlmf.nist.gov/34.3

7

https://dlmf.nist.gov/34.3


[33] L. Birnie, T. Abhayapala, V. Tourbabin,
and P. Samarasinghe, “Mixed source sound
field translation for virtual binaural applica-
tion with perceptual validation,” IEEE/ACM
Transactions on Audio, Speech, and Language
Processing, vol. 29, pp. 1188–1203, 2021.

[34] H. Zuo, P. N. Samarasinghe, and T. D. Abhaya-
pala, “Intensity based spatial soundfield repro-
duction using an irregular loudspeaker array,”
IEEE/ACM Transactions on Audio, Speech,
and Language Processing, vol. 28, pp. 1356–
1369, 2020.

[35] ——, “Intensity based soundfield reproduction
over multiple sweet spots using an irregular
loudspeaker array,” in 2020 28th European Sig-
nal Processing Conference (EUSIPCO), 2021,
pp. 486–490.

[36] H. Zuo, T. D. Abhayapala, and P. N. Sama-
rasinghe, “3D multizone soundfield reproduc-
tion in a reverberant environment using inten-
sity matching method,” in ICASSP 2021 - 2021
IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2021,
pp. 416–420.

[37] J.-W. Choi and Y.-H. Kim, “Manipulation of
sound intensity within a selected region using
multiple sources,” The Journal of the Acous-
tical Society of America, vol. 116, no. 2, pp.
843–852, 08 2004.

8


	Introduction
	AVV in the spherical region
	AVVs at a point
	The SHV-indR coefficients
	Illustration of the AVVs in a spherical region

	Reproducing the AVVs in a spherical region
	Conclusion

