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Abstract
The usual gravitational wave memory effect can be understood as a change in
the separation of two initially comoving observers due to a burst of gravita-
tional waves. Over the past few decades, a wide variety of other, ‘persistent’
observables which measure permanent effects on idealized detectors have been
introduced, each probing distinct physical effects. These observables can be
defined in (regions of) any spacetime where there exists a notion of radiation,
such as perturbation theory off of a fixed background, nonlinear plane wave
spacetimes, or asymptotically flat spacetimes. Many of the persistent observ-
ables defined in the literature have only been considered in asymptotically flat
spacetimes, and the perturbative nature of such calculations has occasionally
obscured deeper relationships between these observables that hold more gen-
erally. The goal of this paper is to show how these more general results arise,
and to do so we focus on two observables related to the separation between
two, potentially accelerated observers. The first is the curve deviation, which
is a natural generalization of the displacement memory, and also contains what
this paper proposes to call drift memory (previously called ‘subleading dis-
placement memory’) and ballistic memory. The second is a relative proper
time shift that arises between the two observers, either at second order in their
initial separation and relative velocity, or in the presence of relative accelera-
tion. The results of this paper are, where appropriate, entirely non-perturbative
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in the curvature of spacetime, and so could be used beyond leading order in
asymptotically flat spacetimes.

Keywords: gravitational waves, gravitational wave memory effects,
covariant bitensors

1. Introduction

This paper continues the study of persistent gravitational wave observables introduced in [1]
(hereafter paper I), which was then further developed in [2, 3] (hereafter papers II and III).
Paper I introduced these observables as a general class which encompasses the many general-
izations of the gravitational1 wave memory effect (see, for example, [13–18]) that had arisen
since its discovery by Zel’dovich and Polnarev [19]. These observables were designed to be
quite general, and were defined in any class of spacetimes in which a notion of radiation could
be defined: these include

• perturbations off of a known, exact spacetime (considered for flat backgrounds in paper I
and, for example, [13, 15, 19–21], as well for cosmological backgrounds in, for example,
[22–24]);

• exact, nonlinear plane wave spacetimes (considered in paper II and, for example, [25–27]);
and

• asymptotically flat spacetimes (considered in paper III and, for example,
[14, 16–18, 28, 29]).

Explicitly, the definition of a persistent observable is the following: consider a set of observers
in such a class of spacetimes. A persistent observable is a set of measurements which these
observers can perform, over some interval of their proper time, that will be nonzero only in
the case where gravitational radiation had been present during this interval2. For example,
the original memory effect (now called the displacement memory effect to distinguish it from
other effects [14]) is a change (over some interval of time) in the separation of a pair of two
initially comoving observers who follow geodesics. Up to some caveats discussed in the next
paragraph, this separation would be unchanged in the absence of radiation.

Note that the class of spacetimes in which one is considering an observable can significantly
affect whether or not it counts as ‘persistent’. In paper I, for example, the most general class
of spacetimes which were considered were those that contained a ‘flat-to-flat’ transition: two
regions through which the observers traveled where spacetime was locally flat, separated by
a region that (potentially) possessed a non-zero curvature tensor. The presence of non-zero
curvature in this intermediate region represented the existence of radiation. While this is an
acceptable model for nonlinear plane wave spacetimes (and so was also used in paper II),
it is only a valid model for asymptotically flat spacetimes up to a certain order in 1/r. In
asymptotically flat spacetimes, the natural notion of radiation is the non-vanishing of the Bondi
news tensor, and in regions where it does vanish, the curvature is O(1/r3), as it is in (say) the
Schwarzschild spacetime. As such, the displacement memory should only truly be a persistent
observable, in a perturbative sense, up to O(1/r2). This is expected, as even in the absence of
radiation, the separation between two freely-falling observers will change due to tidal forces.

1 Here, and throughout the rest of this paper, we restrict the discussion to gravitational effects, although similar effects
in a variety of other theories have been considered as well (see, for example, [4–12]).
2 Note that this definition is the contrapositive of the original definition in paper I, and so is equivalent.
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Since paper I, several new persistent observables have been defined [30–35]. Of interest to
this paper is that many of these effects have been considered only in asymptotically flat space-
times. This has been the natural context, both due to practical concerns (as most gravitational
wave phenomena which we observe arise for distant, isolated systems) and because there are
nice interpretations of (some) persistent observables in terms of asymptotic symmetries of such
spacetimes (see [36] and the references therein). However, by only considering observables at
leading [O(1/r), as in paper III], or at most the first subleading [O(1/r2)] order, it is possible
that more general features of these observables have been missed: in particular, those which
are nonlinear in the curvature tensor3. In contrast, for nonlinear plane wave spacetimes, one
can obtain truly nonlinear results (as was done in paper II). However, nonlinear plane wave
spacetimes are not a useful model for studying radiation from isolated sources on scales where
the spherical nature of the gravitational waves becomes apparent.

The main goal of this paper is to return to the original spirit of paper I by considering
features of persistent observables inmore general spacetimes, beyond the classes of spacetimes
in which these features are typically discussed. In particular, we are interested in relationships
both between different persistent observables and between persistent observables and more
fundamental, observable quantities, in contexts where the curvature is not assumed to be weak.

One motivation for doing this is to provide alternative ways to effectively measure an
observable. For example, the original spin memory observable, as defined by [16], was defined
in terms of a phase shift appearing between two counterrotating beams of light in a Sagnac
interferometer. In asymptotically flat spacetimes, it was shown that this effect is O(1/r2),
which is far too small to measure for astrophysical sources. In contrast, a different proced-
ure was proposed by [17] (also bearing the name ‘spin memory’) which gave an equivalent
expression, but at O(1/r), which is more feasible to observe. In a similar vein, current pro-
posals (for example [37, 38]) for measuring persistent observables do not consider setting up
the appropriate system of observers, but instead suggest taking data from a gravitational wave
detector and (up to technical caveats, see [38] for a discussion) showing that the persistent
observable would have been non-zero if appropriate observers had been present. As such, it
is important to know how these observables are related to one another (to determine which
observables a given measurement can probe) and to more easily-measured quantities, such as
the curvature along an observer’s worldline as a function of time.

The first nonlinear relationship which we consider is one that was noted in paper II, for exact
plane wave spacetimes. Here, many of the persistent observables which had been defined in
paper I, while describing many disparate physical effects, could all be written in terms of a set
of four (2× 2-matrix-valued) functions of the coordinates. These four functions, which were
called in paper II the transverse Jacobi propagators (as they were the in-plane components of
the Jacobi propagators discussed in section 2.2), could in fact be used to solve the geodesic
equation in plane wave spacetimes exactly, and so arose naturally for any observables that
were defined in terms of geodesics. Moreover, these transverse Jacobi propagators had the
property that they were not all independent: their values were constrained by the existence of
a conserved Wrońskian. It was argued in paper II that this would mean that not all observables

3 Since the distance to a source of gravitational waves is typically assumed to be large for astrophysically-relevant
sources, consideringO(1/r2) corrections arising from nonlinear effects may seem pointless, from a practical perspect-
ive. However, this is only true if the measurement is on a timescale which is sufficiently short compared to the period
of the gravitational wave. Since the curvature scales as ω2h, where ω is the frequency of the gravitational wave and
h its amplitude, if the measurement timescale T∼ 1/(ω

√
h), either because T or ω is large, then one cannot assume

that nonlinear-in-curvature effects are small. For this reason, one should be careful when considering the effect of
gravitational waves on test particles in the limit of infinite time.
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related to geodesic motion would be independent in these spacetimes. Moreover, at leading
order in 1/r in asymptotically flat spacetimes, this result has already been known [31, 32]. In
section 3.2.1, we show explicitly that this result holds more generally, in particular at sublead-
ing orders in 1/r.

The second relationship which we consider is one that relates persistent observables and
integrated notions of radiation. In paper I, it was noticed that the persistent observables which
were considered could be characterized entirely by a set of temporal moments of the curvature
tensor along an observer’s worldline, to first order in the curvature. This was used in paper III to
prove a similar result asymptotically for the curve deviation observable from paper I, to leading
order in 1/r, in terms of temporal moments of the Bondi news tensor. This was, perhaps, to
be expected: when considering effects which are nonlocal in time and are nonzero only if
there is radiation during the interval of time in question, the only expressions which would
naturally arise would be integrals of the quantity which characterizes the presence of radiation.
In the case of transitions between flat regions, the curvature tensor characterizes the presence of
radiation, while in transitions between nonradiative regions in asymptotically flat spacetimes,
this role is played by the Bondi news. As we will show in section 3.2.2, there exists a natural
generalization of these results: the curve deviation can generally be written in terms of the
moments of an appropriately-defined bitensor.

Throughout this paper, we focus entirely on observables which arise from two observers,
and are related to measurements of their relative separation. Moreover, most of the observ-
ables which we consider, while nonlinear in curvature, are linear in the separation, relative
velocity, and relative acceleration of these two observers. However, as a bonus, we also con-
sider in section 3.3 a proper time shift observable which was first discovered for observers in
asymptotically flat spacetimes [14] which, for initially comoving, freely falling observers, is
nonlinear in the initial separation. While this observable has been considered earlier in this
series in the contexts of linearized gravity and nonlinear plane wave spacetimes (in papers I
and II, respectively), we present the result for more general spacetimes for the first time.

The structure of the remainder of this paper is as follows. First, in section 2, we set the stage
for computing the persistent observables which appear in this paper, which (as mentioned
above) are constructed entirely from the separation of two closely-separated observers. We
do so by using the covariant theory of bitensors, which we review in this section, and we also
review the derivation of formulas for the evolution of the separation in terms of these bitensors,
generalizing the usual formulae for nonlinear geodesic deviation (as derived in, say, [39]) to the
non-geodesic case. We also explicitly discuss the Wrońskian relationship for a set of bitensors
known as the Jacobi propagators, which (as mentioned above) has applications to determining
relationships between certain persistent observables. Next, in section 3, we present our results
for the curve deviation observable, both in terms of nonlinear relationships between its various
pieces and a generalization of the ‘moments’ which were used in papers I and III to understand
this observable. We also present our results for the proper time shift in this same section.
Finally, we conclude with a discussion in section 4.

The notation in this paper is as follows: we adopt the mostly plus metric signature, and
follow the conventions for the curvature tensor of Wald [40]. Apart from a few exceptions, we
use only abstract indices in this paper, which we denote using Latin letters from the beginning
of the alphabet (a, b, etc).We use the conventions for bitensors from [41], and following paper I
we only explicitly give the dependence of a bitensor at a point when it is a scalar at that point,
and use the same annotations for points and their corresponding indices [for example, ωā(x ′)
denotes a one-form at x̄ and a scalar at x′]. Moreover, for any curve γ, we denote by x the point
γ(τ), and apply any adornments to τ or γ to x as well [so, for example, x̄ ′ ≡ γ̄(τ ′)]. Finally,
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we will frequently take products of order symbols, so that (for example) O(a,b)2 is shorthand
for O(a2,ab,b2).

2. Review of covariant bitensors

Following paper I (and to a lesser extent paper II, and to an even lesser extent, paper III),
we study persistent observables in this paper using the theory of covariant bitensors. These
are tensor fields which are a function of two spacetime points, which moreover can have a
tensorial character at each of these points. As bitensors do not typically arise in discussions of
gravitational wave memory, we review their properties in the sections below.

The relevance of bitensors to the gravitational wave memory effect is twofold. First,
bitensors can be used to prove (generalizations of) the geodesic deviation equation, as shown
in [39, 42]. As the geodesic deviation equation and its generalizations form the foundation of
the gravitational wave memory effect, we review this derivation in detail below, culminating
in equation (73). Bitensors are also the natural language for studying persistent observables
more generally, as they provide a coordinate-independent way to describe nonlocal quantities,
such as the difference of two tensors evaluated at different points or solutions of differential
equations along a curve.

In particular, two bitensors, the Jacobi propagators γKa
′
a and γHa′

a, will be key to the
discussion of the rest of the paper. As we will show in section 2.2, they can be used to construct
the solution to the geodesic deviation equation along a curve γ:

ξa
′
= γK

a′
aξ

a+(τ ′ − τ) γH
a′
aξ̇

a+O
(
ξ, ξ̇

)2
. (1)

Here, ξa
′
is the separation vector at some time τ ′ along γ, and ξa and ξ̇a are the separation

and relative velocity at the initial time τ , respectively. As we will describe in more detail in
section 3.1, γKa

′
a and (τ ′ − τ)γHa′

a give rise to the displacement and drift (that is, ‘sublead-
ing displacement’) memories, respectively.

2.1. Fundamental bitensors

In this section, we review two bitensors which lay the foundation for the discussion in this
paper, namely Synge’s world function and the parallel propagator. Their primary utility is in
the fact that one can use them to study the Taylor expansion of any bitensor, as a function of a
separation vector defined between the two points at which the bitensor is evaluated. Naturally
arising in this discussion is the notion of a coincidence limit, the limit where these two points
are taken to be the same.

We start with Synge’s world function, which is a scalar function σ(x,x ′) of two points x
and x′, defined to be half of the square of the geodesic distance between these two points.
This bitensor is only defined for points which lie within a convex normal neighborhood of
one another, which means that there is a unique geodesic which connects these two points.
As this quantity is a function of two points, one can take (potentially repeated) derivatives
with respect to either point, which commute: as is conventional, we denote these by simply
appending indices to the end of σ:

σa1···arb ′
1 ···b ′

s
≡∇ar · · ·∇a1∇b ′

s
· · ·∇b ′

1
σ (x,x ′) . (2)

The most important of these derivatives are −σa(x ′) and σa′(x), as one can show that (when
raised with the metric) they are the tangent vectors to the unique geodesic between x and x′,
where this geodesic is parameterized such that x is where the parameter is zero and x′ is where
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the parameter is one. As such, −σa(x ′) has a natural interpretation as a ‘separation vector’
between x and x′. Moreover, it follows that

σ (x,x ′) =
1
2
σa (x ′)σa (x

′) =
1
2
σa

′
(x)σa′ (x) , (3)

and differentiating these expressions with respect to x or x′ gives

σb (x ′)σab (x
′) = σa (x ′) = σb

′
(x ′)σab′ , (4)

which is just the non-affinely parameterized geodesic equation.
Using these separation vectors, we can expand bitensors in the following way (see, for

example, [41, 43]): for any bitensor of the form ΩA (x ′) whose indices, which we denote with
a composite index A {see, for example, the comments below proposition (2.2.35) of [44]},
lie entirely at x, we seek an expansion of the form

ΩA (x ′) =
∞∑
n=0

(−1)n

n!
ΩA b1···bnσ

b1 (x ′) · · ·σbn (x ′) , (5)

where each term in this expansion is, most importantly, only a tensor at x. Here, loosely fol-
lowing [43], we will derive a version of Taylor’s theorem, determining the coefficients of this
expansion through repeated differentiation.

To do so, we first need to define the coincidence limit of a bitensorial expression, which
corresponds to the limit of taking the two points x and x′ to coincide. This is simple in the case
where we consider a bitensor of the form ΩA (x ′), where all indices lie at x: the definition is
given in terms of the usual limit:

[ΩA (x ′)]x′→x ≡ lim
x′→x

ΩA (x ′) . (6)

In the case where there are some indices (let us denote them by a composite index B ′) which
lie at x′, the coincidence limit is defined by

[ΩA B ′ ]x′→x ≡ lim
x′→x

(
ΩA B ′ZB ′

B

)
, (7)

where ZA ′
A is any bitensor such that ZA

B = δA
B, the identity. Note that this is independent

of which ZA ′
A one chooses, so long as this limit is well-defined. Furthermore, coincidence

limits obey an identity known as Synge’s rule [41, 45]:

∇a [ΩBC ′ ]x′→x = [∇aΩBC ′ ]x′→x+ [∇a′ΩBC ′ ]x′→x . (8)

A variety of coincidence limits are well-known: in particular, it is clear that

[σ (x,x ′)]x′→x = 0, (9)

[σa (x
′)]x′→x = [σa′ (x)]x′→x = 0. (10)

Moreover, by using equations (4) and (8), one can show that [41, 45]

δab = [σab (x
′)]x′→x =

[
σa

′

b′ (x)
]
x′→x

=− [σab′ ]x′→x =−
[
σa

′

b

]
x′→x

.
(11)

As such, upon taking k symmetrized derivatives of equation (5) with respect to x′, three
cases arise once one takes the coincident limit. For k< n, the coincidence limit vanishes, as
there will be remaining factors of σbi(x ′) remaining. For k= n, the only contribution to the
coincidence limit isΩA b1···bn . However, if k> n, there will be terms which involve coincidence

6
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limits of symmetrized derivatives of σa(x ′). As we show in appendix, these coincidence limits
vanish, and so

ΩA (x ′) =
∞∑
n=0

(−1)n

n!
σb1 (x ′) · · ·σbn (x ′)

[
∇(b ′

1
· · ·∇b ′

n )
ΩA (x ′)

]
x′→x

. (12)

In the case where we have a bitensor of the form ΩA B ′ , we can instead perform the expan-
sion for ΩA B ′ZB ′

B, and then apply (Z−1)BC ′ . Here, unlike before, the choice of ZA ′
A is

important, as the expansion involves taking derivatives of this bitensor.
We finally turn to a common choice of such a bitensor Za

′
a, the parallel propagator γga

′
a.

Given a curve γ, consider a basis (eα)a at some point x along γ, together with its dual basis
(ωα)a. Then, extend these bases to be functions along γ by parallel transport:

γ̇b∇b (eα)
a
= 0, γ̇b∇b (ω

α)a = 0. (13)

Note that∇a here can be any connection, not necessarily the metric-compatible one (although
in this paper, it typically will be). The parallel propagator is then defined by [41]

γg
a′
a =

∑
α

(eα)
a′
(ωα)a . (14)

Note that this parallel propagator is always defined in terms of a given curve, which we indicate
with the initial γ subscript. However, it is occasionally useful to consider the parallel propag-
ator defined with respect to the unique geodesic connecting two points in a convex normal
neighborhood: we denote this by ga

′
a.

The important properties of the parallel propagator are as follows, and can be readily veri-
fied from its definition:

γg
a′ ′

a′ γg
a′
a = γg

a′ ′
a, (15a)

γg
a
a′ γg

a′
b = δab, (15b)

along with the following two properties, which, in a sense, provide an abstract definition:

γ̇b
′
∇b′ γg

a′
a = γ̇b∇b γg

a′
a = 0. (16)

Moreover, if γ is a geodesic, it follows from the geodesic equation that

γg
a′
aγ̇

a = γ̇a
′
, γ̇a′ γg

a′
a = γ̇a. (17)

In terms of Taylor’s theorem, the parallel propagator is particularly convenient to use, as
symmetrized derivatives of ga

′
a vanish under the coincidence limit, as shown in appendix. As

such, it follows that

ΩA B ′ =
∞∑
n=0

(−1)n

n!
σc1 (x ′) · · ·σcn (x ′)gD

B ′
[
∇(c ′1

· · ·∇c ′n )ΩA D ′
]
x′→x

, (18)

where gA
A ′ acts on each index inA through a parallel propagator (for example, ifA contains

two raised indices a and b and a lowered index c, then gabca′b ′ c
′
= gaa′gbb′gc

′
c).

2.2. Jacobi propagators

We now turn to the most important bitensors in this section, the Jacobi propagators. Locally,
these can be defined in terms of Synge’s world function by [46]

Ha′
a ≡−

(
σ−1

)a′
a, Ka

′

a ≡ Ha′
bσ

b
a (x

′) . (19)

7
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The former of these expressions has the following meaning:

Ha′
aσ

a
b′ =−δa

′

b′ ; (20)

as can be readily verified, this is equivalent to

σaa′H
a′
b =−δab. (21)

By differentiating equation (20), we can recover

∇c′H
a′
b = Ha′

aH
b′
bσ

a
b′c ′ , (22a)

∇cH
a′
b = Ha′

aH
b′
bσ

a
b′c. (22b)

Similarly, taking a derivative of Ka
′
a using equation (19) gives

∇c′K
a′
b = Ha′

a

(
Kb

′

bσ
a
b′c ′ +σabc′

)
, (23a)

∇cK
a′
b = Ha′

a

[
Kb

′

bσ
a
b′c+σabc (x

′)
]
. (23b)

Moreover, by taking derivatives of equation (4) (together with the version with x and x′

flipped) we can eliminate the third derivatives of Synge’s world function from these equations
by contracting with σc

′
(x) and σc(x ′), yielding the following expressions:

σc
′
(x)∇c′H

a′
b =−Ha′

b+ gbcK
c
c′g

c′a ′
, (24a)

σc (x ′)∇cH
a′
b =−Ha′

b+Ka
′

b, (24b)

Ha
b′σ

c′ (x)∇c′K
b′
b = Kab′K

b′
b− δab, (24c)

σc (x ′)∇cK
a′
b =−Ha′

aR
a
cbdσ

c (x ′)σd (x ′) . (24d)

At this point, affinely parameterize the geodesic γ between x and x′, and let τ be the value
of this affine parameter at x and τ ′ its value at x′ (in many of the cases in this paper, γ will
be timelike and τ proper time, but this is not necessary). One can then show starting from
these equations that Ka

′
a and (τ ′ − τ)Ha′

a are both solutions to the following differential
equation:

D2

dτ ′2A
a′
a =−Ra

′

γ̇ ′b ′γ̇ ′Ab
′

a, (25)

where we have defined

Raγ̇bγ̇ ≡ Racbdγ̇
cγ̇d. (26)

Note that, upon contracting equation (25) with any vector va at x, one recovers the (leading-
order) geodesic deviation equation for ξa

′ ≡ Aa
′
ava:

ξ̈a
′
=−Ra

′

γ̇ ′b ′γ̇ ′ξb
′
. (27)

It is for this reason that the Jacobi propagators are useful for solving the geodesic deviation
equation.

These solutions to equation (25), Ka
′
a and (τ ′ − τ)Ha′

a, differ only in their boundary con-
ditions: by the coincidence limits of derivatives of Synge’s world function, it is clear that[

Ka
′

b

]
x′→x

= δab,
[
(τ ′ − τ)Ha′

b

]
x′→x

= 0, (28)

8
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and by applying equations (24a) and (24c) and coincidence limits, we find that[
DKa

′
b

dτ ′

]
x′→x

= 0,

D
{
(τ ′ − τ)Ha′

b

}
dτ ′


x′→x

= δab. (29)

Under appropriate differentiability conditions on the metric, these are the unique solutions
to equation (25) satisfying these boundary conditions, as equation (25) is simply an ordinary
differential equation along γ.

As with the parallel propagator, one can consider the differential equation in equation (25)
along any curve, and then use that in order to define curve-dependent Jacobi propagators γKa

′
a

and γHa′
a. We discuss the properties of these more general Jacobi propagators in the next two

sections. This discussion is primarily based upon that in section 4.2.1.3 of [47].

2.2.1. Definition for any curve. First, we note that the analogy between the parallel and Jacobi
propagators runs quite deep: first, consider the space of vector fields XA defined by

XA ≡
(
ξa

ξ̇a

)
; (30)

this vector field can be considered as a section on the direct-, or Whitney-sum bundle of two
copies of the tangent bundle to the manifold. Equivalently, at each point it is a member of
the direct sum of two copies of the tangent space. Here, we use capital Latin letters from the
beginning of the alphabet for the indices on this larger space, following [48] and paper I. One
can then consider a bitensor γJA

′
A that is defined by

γJ
A′

A ≡


γKa

′
a (τ ′ − τ) γHa′

a

DγKa
′
a

dτ ′

D
[
(τ ′ − τ) γHa′

a

]
dτ ′

 . (31)

One can further define a curve-dependent connection by

γ∇̂cX
A =∇cX

A+ ĈABcX
B, (32)

where ∇a acts on each component of XA in the usual sense, and

γĈ
A
Bc =

(
0 γ̇cδ

a
b

Racbγ̇ 0

)
. (33)

It is then the case that γJA
′
A is the parallel propagator with respect to this connection, as

γ̇b
′

γ∇̂b′ γJ
A′

A = 0. (34)

In particular, this means that one can immediately derive the following expressions from
equations (15) and (16):

γJ
A′ ′

A′ γJ
A′

A = γJ
A′ ′

A, (35a)

γJ
A
A′ γJ

A′

B = δAB, (35b)

together with

γ̇b γ∇̂b γJ
A′

A = 0, (36)

9
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where (as is usually done with connections) we have extended γ∇̂a to act on covectors such
that the Leibniz rule holds.

The next property which we consider is the fact that any solution to equation (25), along a
general curve, must be a linear combination of the two solutions γKa

′
a and (τ ′ − τ)γHa′

a. In
particular, DγKa

′
a/dτ and D[(τ ′ − τ)γHa′

a]/dτ are also solutions to this equation (note that
the derivatives act on τ , not τ ′). By using Synge’s rule, it follows that[

DγKa
′
b

dτ

]
τ ′→τ

= 0, (37a)

D
{
(τ ′ − τ) γHa′

b

}
dτ


τ ′→τ

=−δab, (37b)

and, applying a second derivative, that[
D2

γKa
′
b

dτ ′dτ

]
τ ′→τ

= Raγ̇bγ̇ , (38a)

D2
{
(τ ′ − τ) γHa′

b

}
dτ ′dτ


τ ′→τ

= 0. (38b)

In order to match these boundary conditions, we therefore find that

DγKa
′
a

dτ
= (τ ′ − τ) γH

a′
bR

b
γ̇aγ̇ , (39a)

D
[
(τ ′ − τ) γHa′

a

]
dτ

=−γK
a′
a (39b)

(see [49] for the specialization of these formulae to the transverse Jacobi propagators). In
the geodesic case, a direct comparison with equations (24d) and (24b) also verifies that these
equations hold.

A final useful property of Jacobi propagators is that, for a geodesic γ, it follows upon con-
tracting equation (25) with γ̇a that

D2
(

γAa
′
aγ̇

a
)

dτ ′2 = 0, (40)

for γAa
′
a = Ka

′
a or (τ ′ − τ)Ha′

a. As such, we can write

γA
a′
aγ̇

a = γg
a′
aB

a+(τ ′ − τ) γg
a′
aC

a, (41)

and a direct comparison with the initial conditions for γAa
′
aγ̇

a shows that

γK
a′
aγ̇

a = γH
a′
aγ̇

a = γ̇a
′
. (42)

A similar analysis shows that

γ̇a′ γK
a′
a = γ̇a′ γH

a′
a = γ̇a. (43)

10
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2.2.2. Wrońskian relationships. We now discuss the existence of a conservedWrońskian for
equation (25) (see, for example, [50, 51] for discussion in general spacetimes, or [49, 52] for
the special case of plane-wave spacetimes). Given two solutions Aa

′
a and Ba

′
a to equation (25),

define

Wab (τ
′)≡ ga′b ′

(
Bb

′

b
d
dτ ′A

a′
a−Aa

′

a
d
dτ ′B

b′
b

)
. (44)

Note that Wab(τ
′) is in fact independent of τ ′, as

d
dτ ′Wab (τ

′) = Ra′γ̇ ′c ′γ̇ ′Ac
′

aB
a′
b−Ra′γ̇ ′c ′γ̇ ′Aa

′

aB
c′
b

= 0,
(45)

using equation (25), the fact that Rabcd = Rcdab, and a relabeling. Considering equation (25) as
a second order differential equation, Wab(τ

′)≡Wab is the conserved Wrońskian defined for
these two solutions.

The simplest case to consider is where

Aa
′

a = (τ ′ − τ) γH
a′
a, Ba

′

a = γK
a′
a. (46)

By the initial conditions in equations (28) and (29), it follows that Wab = gab, so that

gab = ga′b ′

γK
b′
b

D
[
(τ ′ − τ) γHa′

a

]
dτ ′ − (τ ′ − τ) γH

a′
a
DγKb

′
b

dτ ′

 . (47)

It therefore follows that not all of the components of γJA
′
A are independent. This was already

apparent from equations (39a) and (39b), but the importance of this equation is that this is a
pointwise relationship, and not just a relationship showing that some of these components can
be determined in terms of others by solving ordinary differential equations.

There are further results which follow from the conservation ofWab, which can be used to
relate Jacobi propagators with flipped arguments. First, consider the case where

Aa
′

a = (τ ′ − τ) γH
a′
a, Ba

′

a = (τ ′ − τ ′ ′) γH
a′
a′ ′ γg

a′ ′
a. (48)

Evaluating Wab at τ ′ = τ ′ ′, we find that

Wab =−(τ ′ ′ − τ)ga′ ′b ′ ′ γH
a′ ′

a γg
b′ ′

b, (49)

whereas at τ ′ = τ , we find

Wab = (τ − τ ′ ′)gac γH
c
b′ ′ γg

b′ ′
b. (50)

Equating these expressions (and renaming τ ′ ′ to τ ′), it follows that

γH
a′
a = ga

′b ′
gab γH

b
b′ , (51)

which is equivalent to Etherington’s reciprocity law [52–54]. Similarly, if one uses

Aa
′

a = γK
a′
a, Ba

′

a = γK
a′
a′ ′ γg

a′ ′
a, (52)

we find that (at τ ′ = τ ′ ′)

Wab = ga′ ′b ′ ′ γg
b′ ′

b
DγKa

′ ′
a

dτ ′ ′ (53)

and (at τ ′ = τ )

Wab =−gac
DγKcb′ ′

dτ γg
b′ ′

b. (54)

11
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It therefore follows that4

DγKa
′
a

dτ ′ =−gabga
′b ′ DγKaa′

dτ
. (55)

These equations allow us to derive the equivalents of equations (24a) and (24c). By applying
equation (51) and then applying equation (39b) with primed and unprimed variables switched,
we have that

D
[
(τ ′ − τ) γHa′

a

]
dτ ′ = gabg

a′b ′ D
[
(τ ′ − τ) γHb

b′
]

dτ ′

= gabg
a′b ′

γK
b
b′ ,

(56)

which is equivalent to equation (24a). Note that a similar type of analysis starting from
equation (55) does not work, since the derivative on the right-hand side is with respect to τ ,
and not τ ′. However, by combining equations (47), (51) and (56) and rearranging, it follows
that

(τ ′ − τ) γH
a
b′
DγKb

′
b

dτ ′ = γK
a
b′ γK

b′
b− δab, (57)

which is equivalent to equation (24c).

2.3. The (non-)geodesic deviation equation

2.3.1. Derivation. We now turn to deriving a generalized geodesic deviation equation which
allows for arbitrarily-accelerated worldlines (although we assume that the acceleration is per-
turbatively small). This proof is based upon the discussion in [39], and generalizes the discus-
sion in paper I to arbitrary order in separation and relative velocity.

In order to determine the deviation vector between two worldlines γ and γ̄ as a function of
time, we first need to have a definition of this deviation vector. The definition we use is given
by the separation vector between two points, x and x̄, which lie on γ and γ̄, respectively. In
principle, we have a sort of ‘gauge’ freedom to pick any rule for selecting the pairs of points
x and x̄. Following [39], we call this rule a correspondence, and the choice that we make for
much of this paper is to use the isochronous correspondence: given an initial choice for x and
x̄, we set the proper time τ for γ and γ̄ such that x= γ(τ) and x̄= γ̄(τ). The pairs of points
that we select along γ and γ̄ at later times are then those with equal values of proper time. As
such, we have that the separation vector is given, at all values of proper time τ , by

ξa ≡−σa [γ̄ (τ)] . (58)

Since we ultimately want a differential equation for ξa, we take a derivative of ξa with
respect to τ . For any bitensor at x and x̄, such a derivative given by [42]

DΩA B̄

dτ
=
(
γ̇c∇c+ ˙̄γ c̄∇c̄

)
ΩA B̄. (59)

For the case of ξa, this is

ξ̇a =−γ̇bσab (x̄)− ˙̄γ b̄σab̄. (60)

4 Note that there is a typo in equation (4.88) of [47]: the derivative on the right-hand side of that equation should be
with respect to τ , not τ ′.

12
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Using equation (19), this can be written as

˙̄γ ā = Hā
aξ̇

a+Kāaγ̇
a. (61)

While this expression is not useful as a differential equation for ξa (it is in terms of ˙̄γ ā, which
is unknown), it does mean that we can write

DΩA B̄

dτ
=
(
γ̇c∇c∗̄ + ξ̇c∇∗̄c

)
ΩA B̄, (62)

where the horizontal and vertical derivatives∇a∗̄ and∇∗̄a are defined by

∇a∗̄ ≡∇a+Kāa∇ā, ∇∗̄a ≡ Hā
a∇ā (63)

(for a more geometric definition, see [39, 46]). Another application of these derivatives is that,
since

∇∗ ′aσ
b (x ′) = Ha′

aσ
b
a′ =−δba, (64)

we find that we can write equation (5) in an alternative, more easily proven manner:

ΩA (x ′) =
∞∑
n=0

(−1)n

n!
σb1 (x ′) · · ·σbn (x ′) [∇∗ ′b1 · · ·∇∗ ′bnΩA (x ′)]x′→x . (65)

The coincidence limit in this equation is known as the nth tensor extension of ΩA (x ′), and is
given by n partial derivatives ofΩA (x ′) in a normal coordinate system around x [46]. Similarly,
we have that

∇a∗ ′σb (x ′) = σba (x
′)+Ka

′

aσ
b
a′ = 0. (66)

Applying equation (62) once again to equation (61), we find that

¨̄γ ā = Hā
aξ̈

a+Kāaγ̈
a+ Iāabξ̇

aξ̇b+ 2Jāabξ̇
aγ̇b+Lāabγ̇

aγ̇b, (67)

where

Iāab ≡∇∗̄bH
ā
a, (68a)

Jāab ≡
1
2

(
∇∗̄aK

ā
b+∇b∗̄H

ā
a
)
, (68b)

Lāab ≡∇b∗̄K
ā
a. (68c)

Given the accelerations of the two curves, equation (67) is in a desirable form; solving for
ξ̈a, we find that

ξ̈a =−
[
σab (x̄) γ̈

b+σab̄ ¨̄γ
b̄
]
+ Iabc (x̄) ξ̇bξ̇c+ 2J a

bc (x̄) ξ̇
bγ̇c+La

bc (x̄) γ̇
bγ̇c, (69)

where

Iabc (x̄)≡ σaāI
ā
bc, (70a)

J a
bc (x̄)≡ σaāJ

ā
bc, (70b)

La
bc (x̄)≡ σaāL

ā
bc. (70c)

As can be read off from equations (5.8) of [39], we have that

Hā
a = gāa+O(ξ)

2
, (71a)

Kāa = gāa+O(ξ)
2
, (71b)

Iabc (x̄) = O(ξ) , (71c)

13
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J a
bc (x̄) = O(ξ) , (71d)

La
bc (x̄) =−Rabdcξd+O

(
ξ2
)
, (71e)

the first two of which imply that

σab (x̄) = δab+O
(
ξ2
)
, (72a)

σab̄ =−gab̄+O
(
ξ2
)
. (72b)

As such, we can write the general, non-geodesic deviation equation as

ξ̈a =−Raγ̇bγ̇ξb+ aa+O
(
ξ, ξ̇

)2
, (73)

where

aa ≡−
[
σab (x̄) γ̈

b+σab̄ ¨̄γ
b̄
]

=
[
gaā+O

(
ξ2
)]

¨̄γ ā−
[
δab+O

(
ξ2
)]

γ̈b
(74)

is a notion of the relative acceleration of the two worldlines.

2.3.2. Solution. We now consider the solution to equation (73). First, we write this equation
in the form

ξ̈a =−Raγ̇bγ̇ξb+ Sa, (75)

where Sa is some ‘source’ term. When one has aa ̸= 0, but neglects higher-order terms in
separation and relative velocity, this is the equation one must solve directly, for Sa = aa. When
one is instead considering higher-order corrections, this equation is obtained when solving
equation (73) order-by-order: the source becomes a function of the lower-order solution.

The general solution is computed as follows [47]: first, we note that this equation can be
written in terms of the vector XA and the connection γ∇̂a defined in section 2.2 as

γ̇b γ∇̂bX
A = SA, (76)

where

SA ≡
(
0
Sa

)
. (77)

Now, note that the Leibniz rule and equation (36) imply that

d
dτ ′

(
γJ

A
A′XA

′
)
= γJ

A
A′SA

′
, (78)

and so, integrating the left- and right-hand sides of these equations, we find that

γJ
A
A′XA

′
−XA =

ˆ τ ′

τ

dτ ′ ′
γJ

A
A′ ′SA

′ ′
, (79)

or

XA
′
= γJ

A′

AX
A+

ˆ τ ′

τ

dτ ′ ′
γJ

A′

A′ ′SA
′ ′
, (80)
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where we have used equation (35a). From this equation we now extract the first row, which,
using equation (31), yields

ξa
′
= γK

a′
aξ

a+(τ ′ − τ) γH
a′
aξ̇

a+

ˆ τ ′

τ

dτ ′ ′ (τ ′ − τ ′ ′) γH
a′
a′ ′S

a′ ′ . (81)

This equation appeared as equation (4.10) of paper I, where it was proven by confirming that
equation (75) was satisfied, instead of by introducing γJA

′
A.

3. Computation of persistent observables

We now discuss the computation of persistent observables, in terms of the various bitensors
in the previous section (the parallel and Jacobi propagators). Given such expressions, these
observables can then be straightforwardly (if tediously) computed in any spacetimes where
these bitensors are known. While this is not always the most efficient method (for example,
when the geodesic equation has known solutions, such as in the exact plane wave spacetimes
considered in paper II), it does allow for more insight into results that apply to more general
spacetimes.

3.1. Curve deviation

The first observable which we consider in this paper is the ‘curve deviation’, which was intro-
duced in paper I and studied at leading order in asymptotically flat spacetimes in paper III.
This is an observable that a pair of arbitrarily accelerating observers, following general world-
lines γ and γ̄, can in principle measure, and arises as the most natural generalization of the
displacement memory.

This pair of observers carries out the following procedure (see paper I): first, the observers
establish their separation ξa and relative velocity ξ̇a at some initial proper time τ . At a later
proper time τ ′, they then measure their separation ξa

′
; note that they make this measurement

using the isochronous correspondence, associating points on their two worldlines which have
the same value of proper time. This would be a somewhat difficult procedure to do in a realistic
experiment, but for simplicity we assume that this can be done by some set of ‘ideal’ observers.
Moreover, the two observers should have tracked their accelerations as functions of time from
τ until τ ′, which can easily be done with local accelerometers. Once they have communic-
ated this data to one another, they can then compute a predicted separation ξa

′

flat, based on the
assumption that they had been traveling in a region of spacetime which is flat. This predicted
separation obeys the equation

ξ̈a
′

flat = aa
′
, (82)

which can be solved as a function of time to yield

ξa
′

flat = γg
a′
a

[
ξa+(τ ′ − τ) ξ̇a

]
+

ˆ τ ′

τ

dτ ′ ′ (τ ′ − τ ′ ′) γg
a′
a′ ′a

a′ ′ . (83)

At this point, the observers now subtract this quantity from the true value of the separation ξa
′
,

to obtain the curve deviation observable∆ξa
′
:

∆ξa
′
≡ ξa

′
− ξa

′

flat. (84)
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This is non-zero only when the spacetime has had non-zero curvature at (not necessarily all)
points between τ and τ ′, and so is a persistent observable in the context of the flat-to-flat trans-
itions of paper I. As was shown in paper III, it is also a persistent observable in asymptotically
flat spacetimes, at O(1/r).

We now discuss particular pieces of the curve deviation. Suppose, for example, that γ and
γ̄ are both geodesic, and that the initial relative velocity vanishes: this is the case in question
when measuring the displacement memory. To leading order, equation (81) implies that

ξa
′
= γK

a′
aξ

a+O(ξ)
2
, (85)

and so

∆ξa
′
= γ∆K

a′
aξ

a+O(ξ)
2
, (86)

where

γ∆K
a′
a ≡ γK

a′
a− γg

a′
a. (87)

The quantity γ∆Ka
′
a is therefore the relevant quantity to compute when considering the dis-

placement memory effect.
Consider now the addition of an initial relative velocity: in this case, equation (81) instead

shows that

∆ξa
′
= γ∆K

a′
aξ

a+(τ ′ − τ) γ∆H
a′
aξ̇

a+O
(
ξ, ξ̇

)2
, (88)

where (similarly) we have

γ∆H
a′
a ≡ γH

a′
a− γg

a′
a. (89)

This observable was previously called the ‘subleading displacement memory’ [1, 18], by the
following logic: near null infinity, this effect can related to the ‘spin’ [16, 17] and ‘center-
of-mass’ [18] memory effects. These memory effects are ‘subleading’, in the following three
ways:

• in a post-Newtonian expansion [17, 18, 55] and in numerical relativity [56, 57], they can be
shown to be smaller in magnitude than the displacement memory effect for compact binary
inspirals and mergers;

• they can be related to ‘conserved quantities’ (or ‘charges’) that are constructed from pieces
of the metric in Bondi coordinates at higher orders in 1/r [3, 16, 18]; and

• these memory effects are related to ‘subleading soft graviton theorems’ [16].

However, using the term ‘subleading’ when describing this observable in more general space-
times is quitemisleading: in such contexts, there is no reasonwhy this effect needs to be smaller
than the usually-considered displacement memory effect. As such, we propose in this paper to
rename it to ‘drift memory’, as that more physically describes how it arises: it is a correction
to the usual drifting apart of two observers with initial velocity relative to one another.

Before leaving behind the leading-order, geodesic case, we point out that there are two
additional observables that can be computed from the curve deviation. The first is the velocity
memory [13], which describes the dependence of the final relative velocity on the initial sep-
aration. Note that, since Dγ∆Ka

′
a/dτ ′ = DγKa

′
a/dτ ′, one can recover the velocity memory

either from directly looking at the final value of ξ̇a
′
or from the first derivative of the curve

deviation observable, D∆ξa
′
/dτ ′. As the results of, for example, paper III imply (and as we

will show explicitly below), the velocity memory vanishes in asymptotically flat spacetimes,
when computed between two non-radiative regions.
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Another velocity-related observable that has also been considered in the literature is the
final relative velocity as a function of initial velocity [31, 32]. Adopting the terminology
of [31] (which may be due to the terminology appearing in the literature on electromag-
netic memory [5]5), we call this the kick memory. This observable is given by D[(τ ′ −
τ)γ∆Ha′

a]/dτ ′, and it is known that this effect is non-zero in asymptotically flat space-
times [31, 32]6. As we will show in section 3.2.1, the kick memory is somewhat redundant,
and in perturbative contexts it can be entirely determined from the displacement, drift, and
velocity memories. This generalizes results discussed in paper II.

We consider now the effect of adding acceleration terms. Here, we are solving equation (75)
with Sa = aa, and so it follows that

∆ξa
′
= γ∆K

a′
aξ

a+ γ∆H
a′
aξ̇

a+

ˆ τ ′

τ

dτ ′ ′ (τ ′ − τ) γ∆H
a′
a′ ′a

a′ ′ +O
(
ξ, ξ̇,a

)2
. (90)

Moreover, as it can be done without loss of generality (see appendix B of paper II), we focus
exclusively on the case where only γ̄ is accelerating, and so

aa =
[
gaā+O

(
ξ2
)]

¨̄γ ā. (91)

As was shown in appendix C of paper III, when aa
′ ′
can be Taylor-expanded in powers of

τ ′ ′ − τ (for any τ ′ ′ between τ and τ ′), one has the following expansion in initial derivatives
of ˙̄γ ā:

aa
′ ′
= γg

a′ ′
ag

a
ā

∞∑
n=0

(τ ′ ′ − τ)
n

n!
Dn ¨̄γ ā

dτ n
+O

(
ξ, ξ̇, ¨̄γ

)2
. (92)

As such, equation (90) can be written as

∆ξa
′
= γ∆K

a′
aξ

a+ γ∆H
a′
aξ̇

a+
∞∑
n=0

γ∆α
(n)

a′
ag

a
ā
Dn ¨̄γ ā

dτ n
+O

(
ξ, ξ̇, ¨̄γ

)2
, (93)

where

γ∆α
(n)

a′
a ≡

1
n!

ˆ τ ′

τ

dτ ′ ′ (τ ′ ′ − τ)
n
(τ ′ − τ ′ ′) γ∆H

a′
a′ ′ γg

a′ ′
a. (94)

In paper III, γ∆Ka
′
a, γ∆Ha′

a, and γ∆α
(n)

a′
a were all computed in asymptotically flat space-

times in terms of (temporal) moments of the Bondi news. We present a generalization of this
result below in section 3.2.2. We refer to γ∆α

(n)

a′
a, interchangeably with the moments of the

news from which it can be computed, as being related to higher memories. We propose the
name ‘ballistic memory’ for the zeroth higher memory, as γ∆α

(0)

a′
a will be relevant for the first

time if the observers experience constant relative acceleration, as occurs in projectile motion
in classical mechanics.

5 Kick memory was also observed in [8] in the context of purely gravitational effects in spacetimes with compact
extra dimensions, where the relationship with electromagnetic and color memory is more apparent.
6 This provides another reason why using the term ‘subleading displacement memory’ to describe the drift memory
is problematic: by analogy, it motivates referring to the kick memory as the ‘subleading velocity memory’, when in
fact it is superleading in asymptotically flat spacetimes!
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3.2. Nonlinear relationships between observables

3.2.1. Redundancy of the kick memory. We first show that the Wrońskian in equation (47)
can be used to relate different pieces of the curve deviation and its derivative. That is, we show
that the displacement, velocity, drift, and kick memories are not all independent. We start by
expanding

ga′b ′ γK
b′
b

D
[
(τ ′ − τ) γHa′

a

]
dτ ′

= gab+ ga′b ′

γ∆K
b′
b γg

a′
a+ γK

b′
b

D
[
(τ ′ − τ) γ∆Ha′

a

]
dτ ′

 , (95)

and upon inserting this equation into equation (47), we find

ga′b ′ γK
b′
b

D
[
(τ ′ − τ) γ∆Ha′

a

]
dτ ′ = ga′b ′

[
(τ ′ − τ) γH

a′
a
DγKb

′
b

dτ ′ − γ∆K
b′
b γg

a′
a

]
. (96)

As such, if γKa
′
a is invertible, then we can write the kick memory in terms of the other three

memory effects:

D
[
(τ ′ − τ) γ∆Ha′

a

]
dτ ′

=
(
γK

−1
)
b
b′g

a′b ′
gc′d ′

[
(τ ′ − τ)

(
γg

c′
a+ γ∆H

c′
a

) Dγ∆Kd
′
b

dτ ′ − γg
c′
a γ∆K

d′
b

]
. (97)

There are many situations where γKa
′
a is not invertible. For example, when x and x′ are

conjugate points along γ, then for any τ ′ ′ ∈ (τ,τ ′), γKa
′ ′
a and γKa

′
a′ ′ cannot be invertible7.

However, a sufficient condition that γKa
′
a be invertible is given by the following: define

γ∆Ka
b (τ

′)≡ γg
a
a′ γ∆K

a′
b, (98)

and note that

γKa
b (τ

′)≡ γg
a
a′ γK

a′
b = δab+ γ∆Ka

b (τ
′) . (99)

As such, if γ∆Ka
b(τ

′) is ‘small’ in the sense that

lim
n→∞

(γ∆Kn) ab (τ
′) = 0, (100)

then (
γK

−1
)
a
a′ =

(
γK−1

)
a
b γg

b
a′

= γg
b
a′

∞∑
n=0

(−1)n (γ∆Kn) ab (τ
′) .

(101)

7 Note that the definition of x and x′ being conjugate points (see, for example, section 5.3 of [58]) is that there exists
a non-zero Jacobi field that vanishes at x and x′, or in other words that there exists a vector field Aa such that (τ ′ −
τ)γHa′

aAa = 0. It does not necessarily imply that there are multiple geodesics connecting x and x′, unless one is in
a situation where the geodesic deviation equation has no higher-order corrections.
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Equation (100), and therefore equation (97), will hold in a perturbative context, such as in an
expansion in 1/r.

3.2.2. Bitensorial moments. In the previous section, equation (96) provided a pointwise rela-
tionship between the observables arising at linear order for geodesics, implying the existence
of essentially only three point-wise independent observables. However, if one is allowed to
know the values of these observables at all values of their arguments, then their derivatives
are not independent either, implying that there are only two independent observables (say,
displacement and drift). Moreover, equation (39b) implies that

(τ ′ − τ) γH
a′
a =

ˆ τ ′

τ

dτ ′ ′
γK

a′
a′ ′ γg

a′ ′
a, (102)

and so

(τ ′ − τ) γ∆H
a′
a =

ˆ τ ′

τ

dτ ′ ′
γ∆K

a′
a′ ′ γg

a′ ′
a. (103)

As such, in this same sense there is really only one independent observable.
Using this type of argument, we can show, in fact, that all of the linear curve deviation

observables can be written in terms of integrals of a single bitensor. A similar result, not
in terms of bitensors, was shown in paper III: under appropriate circumstances, all of these
observables could be written in terms of the (temporal) moments of the tensor associated with
radiation in asymptotically flat spacetimes: the Bondi news [59–61]. The existence of a nonlin-
ear generalization is not immediately obvious, and it implies that one could in principle easily
extend the results of paper III to O(1/r2).

We start this analysis by noting that, by multiplying equation (39a) by γgab′ ,

d
dτ

(
γK

a′
a γg

a
b′

)
= (τ ′ − τ) γH

a′
bR

b
γ̇aγ̇ γg

a
b′ ; (104)

integrating this equation and inverting the parallel propagator yields

γK
a′
a = γg

a′
a+

ˆ τ ′

τ

dτ ′ ′
γE

a′
a (τ

′ ′) , (105)

where

γE
a′
a (τ

′ ′)≡−(τ ′ − τ ′ ′) γH
a′
a′ ′R

a′ ′
γ̇ ′ ′b ′ ′γ̇ ′ ′ γg

b′ ′
a. (106)

This object is a bitensorial modification of the electric part of the Riemann tensor, hence the
use of the letter ‘E’. This immediately implies that

γ∆K
a′
a =

ˆ τ ′

τ

dτ ′ ′
γE

a′
a (τ

′ ′) , (107)

providing a direct generalization of equation (3.10) of paper III. Next, consider the following
identity, for some f a

′
a(τ

′ ′):

d
dτ ′ ′

[
(τ ′ ′ − τ)

n+1

n+ 1

ˆ τ ′

τ ′ ′
dτ ′ ′ ′ fa

′

a (τ
′ ′)

]

= (τ ′ ′ − τ)
n
ˆ τ ′

τ ′ ′
dτ ′ ′ ′fa

′

a (τ
′ ′)− (τ ′ ′ − τ)

n+1

n+ 1
fa

′

a (τ
′ ′) , (108)
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and so, since the term in brackets on the left-hand side vanishes when τ ′ ′ = τ or τ ′, we find
that

ˆ τ ′

τ

dτ ′ ′ (τ ′ ′ − τ)
n
ˆ τ ′

τ ′ ′
dτ ′ ′ ′fa

′

a (τ
′ ′) =

1
n+ 1

ˆ τ ′

τ

dτ ′ ′ (τ ′ ′ − τ)
n+1

fa
′

a (τ
′ ′) . (109)

This all relies upon the fact that we are integrating fa
′
a(τ

′ ′) over the points over which it is
a scalar, and so the usual intuition from single-variable calculus applies. We can now apply
this equation in the case fa

′
a(τ

′ ′) = γEa
′
a(τ

′ ′). By using equation (103), together with this
equation for n= 0, we find that

(τ ′ − τ) γ∆H
a′
a =

ˆ τ ′

τ

dτ ′ ′ (τ ′ ′ − τ) γE
a′
a (τ

′ ′) , (110)

a generalization of equation (3.13) of paper III.
Finally, using equation (103), equation (94) becomes

γ∆α
(n)

a′
a =

1
n!

ˆ τ ′

τ

dτ ′ ′ (τ ′ ′ − τ)
n
ˆ τ ′

τ ′ ′
dτ ′ ′ ′

γ∆K
a′
a′ ′ ′ γg

a′ ′ ′
a. (111)

Applying equation (109) to equation (111), where fa
′
a(τ

′ ′) = γ∆Ka
′
a′ ′ γga

′ ′
a [note that this

is still a scalar at γ(τ ′ ′)!], we find

γ∆α
(n)

a′
a =

1
(n+ 1)!

ˆ τ ′

τ

dτ ′ ′ (τ ′ ′ − τ)
n+1
ˆ τ ′

τ ′ ′
dτ ′ ′ ′

γE
a′
a (τ

′ ′ ′) , (112)

by applying equation (107) and the fact that

γE
a′
a′ ′ (τ

′ ′ ′) γg
a′ ′

a = γE
a′
a (τ

′ ′ ′) . (113)

Therefore, applying equation (109) once again yields

γ∆α
(n)

a′
a =

1
(n+ 2)!

ˆ τ ′

τ

dτ ′ ′ (τ ′ ′ − τ)
n+2

γE
a′
a (τ

′ ′) , (114)

a direct generalization of equation (3.14) of paper III. As such, denoting by

γE
(n)

a′
a ≡

1
n!

ˆ τ ′

τ

dτ ′ ′ (τ ′ ′ − τ)
n
γE

a′
a (τ

′ ′) (115)

the nth (temporal) moment of the bitensor γEa
′
a(τ

′ ′), we find that

γ∆K
a′
a = γE

(0)

a′
a, (116a)

(τ ′ − τ) γ∆H
a′
a = γE

(1)

a′
a, (116b)

γ∆α
(n)

a′
a = γ E

(n+2)

a′
a. (116c)
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Note that one can recover the velocity-related observables (such as the velocity and kick
memories) by taking derivatives of these expressions. This suggests that it is useful to consider

a parallel set of moments, γ Ẽ
(n)

a′

a, defined by

γ Ẽ
(n)

a′

a ≡
D
dτ ′ γE

(n)

a′
a

=
1
n!

ˆ τ ′

τ

dτ ′ ′ (τ ′ ′ − τ)
n
γ Ẽ

a′
a (τ

′ ′) ,

(117)

using the fact that γEa
′
a(τ

′) = 0, and where

γ Ẽ
a′
a (τ

′ ′)≡−ga
′b ′

γK
a′ ′

b′Ra′ ′γ̇ ′ ′b ′ ′γ̇ ′ ′ γg
b′ ′

a, (118)

which uses equation (56).
We now show how one can easily derive the results of paper III by using the results of this

section. First, note that, in Bondi coordinates {u,r,θi}, the Riemann tensor takes the following
form:

Riuju =− 1
2r

∂uN
i
j+O

(
1/r2

)
, (119)

where N ij is the news tensor, and angular coordinate indices (denoted by Latin letters from the
middle of the alphabet) are raised and lowered using the metric on the round, unit two-sphere.
As was shown explicitly in paper III, one can have asymptotic observers whose four-velocity
γ̇a = (∂u)

a+O(1/r), where ‘O(1/r)’ refers to subleading terms when this vector is expanded
on an orthonormal basis. As such, at leading order we are free to use u as our affine parameter,
and moreover, in paper III it was shown that 1

r (∂i)
a and r(dθi)a are parallel-transported along

this curve to leading order. Therefore, using equations (106) and (119), it follows that at leading
order the angular components of γEa

′
a(τ

′ ′) are given by

γE
i
j (u

′,u;u ′ ′) =
1
2r

(u ′ − u ′ ′)∂u′ ′N
i
j (u

′ ′) . (120)

Next, writing

u ′ − u ′ ′ = (u ′ − u)− (u ′ ′ − u) , (121)

it follows that, for any function f which vanishes at u and u′,

1
n!

ˆ u′

u
du ′ ′ (u ′ ′ − u

)n (
u ′ − u ′ ′) ḟ(u ′ ′)= 1

n!

[(
u ′ − u

)ˆ u′

u
du ′ ′ (u ′ ′ − u

)n
ḟ
(
u ′ ′)

−
ˆ u′

u
du ′ ′ (u ′ ′ − u

)n+1
ḟ
(
u ′ ′)]

=
n+ 1
n!

ˆ u′

u
du ′ (u ′ ′ − u

)n
f
(
u ′ ′)

−


0 n= 0

u ′−u
(n−1)!

ˆ u′

u
du ′ ′ (u ′ ′ − u

)n−1
f
(
u ′ ′) n ̸= 0

,

(122)
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where the second line follows by an ordinary integration by parts. As such, we find that, in the
case where N ij is assumed to vanish at u and u′ (as was done in paper III),

γE
(n)

i
j (u

′,u) =
1
2r

(n+ 1)N
(n)

i
j (u

′,u)− (u ′ − u)

0 n= 0

N
(n−1)

i
j (u ′,u) n> 0

+O
(
1/r2

)
,(123)

where

N
(n)

i
j (u

′,u)≡ 1
n!

ˆ u′

u
du ′ ′ (u ′ ′ − u)

n
Nij (u

′ ′) (124)

is the nth moment of the news, as defined in paper III (see [55, 57] for other definitions that
are more useful in the contexts of those papers). Combining equations (116) and (123) directly
proves equations (3.12-14) of paper III, and this procedure provides a straightforward approach
for computing the extensions of those equations to higher order in 1/r.

We can also perform a similar computation for the derivatives of thesemoments. First, using
equations (118) and (119), we find that

γ Ẽ
i
j (u

′,u;u ′ ′) =
1
2r

∂uN
i
j (u

′ ′)+O
(
1/r2

)
. (125)

By using a similar integration-by-parts procedure as was used to derive equation (123), we
recover

γ Ẽ
(n)

i
j (u

′,u) =− 1
2r

{
0 n= 0

N
(n−1)

i
j (u ′,u) n> 0

+O
(
1/r2

)
.

(126)

This equation shows that, at leading order in 1/r, the velocity memory vanishes and the kick
memory is (apart from a sign) the same as the displacement memory, as discussed above in
section 3.1.

3.3. Proper time shift observable

We next turn to the proper time shift observable, which arises in a setup which is slightly
different from the curve deviation. Here, instead of the two observers associating points on
their two worldlines by enforcing that they have equal values of proper time, they associate
points such that the separation vector, which we denote by ξa⊥, is orthogonal to γ, for all
times τ :

ξa⊥γ̇a = 0. (127)

This is the so-called normal correspondence [39].
Note that equation (43) implies that, if ξaγ̇a = 0 initially, then, assuming that there is no

acceleration or initial relative velocity,

ξa
′
γ̇a′ = O(ξ)

2 (128)

at all later times τ ′. Moreover, when one considers the curve deviation observable,
equations (43) and (93) imply that

∆ξa
′
γ̇a′ = O(γ̈, ¨̄γ)+O

(
ξ, ξ̇

)2
. (129)
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As such, it follows that any interesting differences between ξa⊥ and ξa must arise at second
order, or from the presence of acceleration terms.

Since ξa⊥ is not defined using the isochronous correspondence, it no longer points between
x≡ γ(τ) and x̄≡ γ̄(τ), but x and ˆ̄x≡ γ̄(τ̂), where τ̂ ≡ τ +∆τ : the proper time shift observable
is this quantity ∆τ . To compute ∆τ , we first add to this list of points x̂≡ γ(τ +∆τ), and
consider the triangle composed of x, x̂, and ˆ̄x. Assuming for simplicity that γ is a geodesic,
and that ∆τ is small enough that there is only one geodesic between x and x̂, then

∆τ γ̇ â = σâ (x) . (130)

We can now determine ξa⊥ by applying a procedure presented in [43]: first, define

wâ ≡ gâaξ
a
⊥, (131)

and then expand in powers of ξâ and −∆τ γ̇ â.
Note that, for this entire procedure to work, we need to know that∆τ is itself small, which is

not immediately clear. However, this holds by the following argument: first, in the case where
γ̄ is a geodesic, note that when γ and γ̄ intersect at x (which corresponds to ξa = 0), then ˙̄γa and
ξa⊥ must be colinear, as ξa⊥ points from x to ˆ̄x along the unique geodesic between them, and γ̄
is such a geodesic (note that, if there are multiple geodesics, ξa⊥ is not defined, so the question
is moot). Since ξa⊥γ̇a = 0, this implies that ξa⊥ must vanish when ξa vanishes. However, this
means that ∆τ is zero as well, and so ∆τ and ξa⊥ are both O(ξ), and so are small. When γ̄ is
not a geodesic, ∆τ is therefore O(ξ, ¨̄γ), which is also small.

Since we can assume that ∆τ is small, we can apply equation (37) of [43], obtaining

wâ =−∆τ γ̇ â− ξâ+O(∆τ,ξ)
3
. (132)

Applying equations (90), (107) and (110), we also find that

ξâ = gâaξ
a+∆τgâaξ̇

a+O
(
∆τ,ξ, ξ̇, ¨̄γ

)3
. (133)

Using equation (127) and the fact that γ̇a is parallel-transported, we therefore find that

0= γ̇âw
â

=∆τ − ξaγ̇a−∆τ ξ̇aγ̇a+O
(
∆τ,ξ, ξ̇, ¨̄γ

)3
.

(134)

By solving this equation iteratively for∆τ , our final result is

∆τ =
ξaγ̇a

1− γ̇aξ̇a
+O

(
ξ, ξ̇, ¨̄γ

)3
. (135)

Considering this equation at τ ′, we need both ξa
′
γ̇a′ and ξ̇a

′
γ̇a′ in order to compute∆τ ′. As

we are assuming that γ is a geodesic, the latter is just the derivative of the former with respect
to τ ′. Using equation (81), we can give ξa

′
γ̇a′ in terms of the arbitrary source Sa appearing on

the right-hand side of equation (75):

ξa
′
γ̇a′ =

[
ξa+(τ ′ − τ) ξ̇a

]
γ̇a+

ˆ τ ′

τ

dτ ′ ′ (τ ′ − τ ′ ′) γ̇a′ ′S
a′ ′ , (136)

from which it follows that

ξ̇a
′
γ̇a′ = ξ̇aγ̇a+

ˆ τ ′

τ

dτ ′ ′ γ̇a′ ′S
a′ ′ . (137)
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We now compute ∆τ ′ in the concrete case considered in paper I, namely where ξaγ̇a = 0,
and there is neither initial relative velocity nor acceleration. As such, we recover

∆τ ′ =

ˆ τ ′

τ

dτ ′ ′ (τ ′ − τ ′ ′) γ̇a′ ′S
a′ ′ +O

(
ξ, ξ̇

)3
. (138)

From equation (4.5) of paper I, it follows that

Sa
′
=−

(
2Ra

′

c′b ′γ̇ ′ ξ̇c
′
+∇(γ̇ ′Ra

′

c′)b ′γ̇ ′ξc
′
)
ξb

′
+O

(
ξ, ξ̇

)2
, (139)

where, like in equation (26) we are using γ̇ as an index to indicate contraction with the four-
velocity. As such, using equation (81) we find that

γ̇a′S
a′ =

1
2 γK

b′
bξ

aξb

[
D
dτ ′

(
γK

a′
aRa′γ̇ ′b ′γ̇ ′

)
+ 3Ra′γ̇ ′b ′γ̇ ′

DγKa
′
a

dτ ′

]
+O(ξ)

3
. (140)

Using equation (138) and an integration by parts, we therefore recover that

∆τ ′ =
1
2

{
(τ ′ − τ)Raγ̇bγ̇ +

ˆ τ ′

τ

dτ ′ ′ Ra′ ′γ̇ ′ ′b ′ ′γ̇ ′ ′

×

[
γK

a′ ′
a+ 3(τ ′ − τ ′ ′)

DγKa
′ ′
a

dτ ′

]
γK

b′ ′
b

}
ξaξb+O(ξ)

3
. (141)

The first term can be neglected if the initial Riemann tensor is set to zero (as was the case in
paper I). Moreover, when one expands perturbatively in the Riemann tensor, equation (105)
implies that

γK
a′
a = γg

a′
a+O(R) . (142)

In such an expansion, the second term in the square brackets can therefore also be neglected,
and so we recover equation (2.6) of paper I, which was given without proof. Neglecting the
first term, equation (141) is the generalization to the case where the curvature is not assumed
to be small.

4. Discussion

In this paper, we have considered nonlinear effects arising in persistent observables, which
are usually studied in asymptotically flat spacetimes, in an effort both to understand these
observables more deeply and to yield results which will be applicable beyond the leading
order in 1/r. The properties of the Jacobi propagators in general spacetimes were crucial in
the derivation of these results, and so we reviewed them in detail. Using these properties,
along with general expressions for the solutions to the equation of (non-)geodesic deviation,
we analyzed the following two observables:

• the curve deviation observable of paper I, which contains the usual (displacement) memory
effect, along with the drift, ballistic, and higher memory effects; and

• a proper time shift observable considered in [14] and paper I.
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For the former, we first considered pointwise relationships between the Jacobi propagators,
which showed that the displacement, drift, velocity, and kick memories were not all independ-
ent. Next, we considered differential relationships between the Jacobi propagators, and showed
that they allowed for a generalization of the results of papers I and III, namely that the differ-
ent pieces of the curve deviation can be written in terms of appropriately-defined moments.
Finally, we provided an explicit proof of the results of paper I for the proper time observable,
and since we performed the calculation using bitensors, we also extended them beyond linear
order in the curvature.

With the completion of the analysis of the curve deviation in terms of nonlinearly-defined
moments, it would be interesting to determine whether a similar analysis can be performed
for the remaining observables that were defined in paper I. In particular, it would be useful to
understand how to write the holonomy observable in terms of moments. This observable was
defined using the map which took vectors (sections of some higher-dimensional vector bundle,
motivated by [48]) and parallel-transported them, with respect to some connection ∇̃a, around
a loop formed by two closely-separated worldlines and the unique geodesics between them.
Denoting this map by Λ̃A

B (where, as in section 2.2, capital Latin indices denote indices on
this arbitrary vector bundle), the holonomy observable was given by

Ω̃A
B ≡ Λ̃A

B− δAB

=

ˆ τ ′

τ

dτ ′ ′
γ g̃

A
A′ ′ R̃A

′ ′

B′ ′c ′ ′d ′ ′ξc
′ ′
γ̇d

′ ′

γ g̃
B′ ′

B,
(143)

where γ g̃A
′
A is the parallel propagator for this connection and R̃ABcd its curvature tensor

(see [48] and sections III. A-C of paper I for further discussion). By expanding the separa-
tion vector ξa

′ ′
in this integral in terms of the moments of the curve deviation observable and

the flat-space separation vector ξa
′ ′

flat , it seems plausible that one could write this observable in
terms of moments as well. Similarly, equations (4.126), (4.127) and (4.180) of [47] [a special
case of the latter of which appeared as equation (B3) of paper II] provide evidence that the
dependence of the holonomy on initial separation, relative velocity, and the acceleration can
be related to one another. However, this is somewhat more complicated than the discussion in
this paper, and so we will leave such an analysis to future work.

Using the framework of moments for the curve deviation in section 3.2, it was straight-
forward to derive the results of paper III for the values of the curve deviation in terms of
moments of the Bondi news, which only hold at O(1/r). However, these expressions provide
a path forward to compute the curve deviation at O(1/r2) that is far simpler than starting with
the original expressions. This motivates finding expressions for the holonomy observables in
paper I in terms of moments, as interesting differences between the various holonomies con-
sidered in paper I are expected to arise at this order, since the expressions at this order are no
longer given by paper I’s leading-order-in-curvature results.

There is a particular reason for interest in theO(1/r2) expressions for the holonomy observ-
ables considered in paper I. The connections which were considered in paper I were inspired
by transport laws which related linear and angular momentum at different points [15]. Paper I,
building on [48], defined a four-parameter family of connections

κ
∇a, characterized by a

quadruple of scalar constants collectively referred to as κ. The transport law for linear and
angular momentum in flat spacetime [15] corresponds to κ = (0,0,0,0), and a transport law
which is related both to the Mathisson–Papapetrou equations for spinning test body motion
and to the transport equations for Killing vectors (see, for example, [46, 62]) is given by
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κ = (1/2,0,0,0). However, a new transport law, given by κ = (−1/4,0,0,0)8, was singled
out in [48] as being interesting in asymptotically flat spacetimes. This was due to the following
properties:

• it was the transport law obeyed by the closed, conformal Killing–Yano tensor in the Kerr
spacetime (which has other connections to angular momentum, see for example [63] and
section 6.3 of [64]); and

• it was shown that there existed an asymptotic solution to this transport law which was inde-
pendent of the path taken, for stationary, asymptotically flat spacetimes.

The path-independence of this transport law for this value of κ implies that the holonomy
with respect to this connection is just given by the identity, and so

κ
ΩA

B vanishes, but only for
this value of κ, in these stationary spacetimes. However, the results of paper I indicate that
there is essentially no difference between the holonomies at O(1/r), and so determining the
relationship with the results of [48] would require an investigation of the holonomy to at least
O(1/r2).

Finally, this series of papers has had as its primary focus the three observables defined
in paper I: the curve deviation, the angular momentum holonomy, and finally an observable
defined in terms of spinning test particles. However, there are a plethora of other observables
which have been considered in the literature, such as the Sagnac-interferometer observable
which served as the original definition of the spin memory [16], or the orientation of a gyro-
scope relative to a fixed, fiducial orientation [33, 34]. Much like the analysis in this paper of
the proper time observable of [14], it would be valuable to perform nonlinear analyses of these
observables as well. In particular, there may be possible connections between these observ-
ables and those of paper I, and (as mentioned above) a nonlinear analysis may be helpful in
determining how they behave at subleading orders.
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Appendix. Coincidence limits of symmetrized derivatives

In order to derive the form of Taylor’s theorem in equation (12), we need to show that sym-
metrized derivatives of Synge’s world function take the following form:[

σa(b ′
1 ···b ′

n )

]
x′→x

=

{
−δab1 n= 1

0 n ̸= 1
. (144)

Moreover, in order to derive the form in equation (18), we need to show that symmetrized
derivatives of the parallel propagator vanish:[

∇(c ′1
· · ·∇c ′n )g

a′
b

]
x′→x

=

{
δab n= 0

0 n ̸= 0
. (145)

In this appendix, we show that both of these results hold.
Starting with equation (4), we have that

σa(b ′
1 ···b ′

n )
=

n∑
k=0

(
n
k

)
σc(b ′

1 ···b ′
k
σab ′

k+1···b ′
n )c. (146)

In this sum, if k= 0, then the coincidence limit vanishes. If k= 1, then we have by Synge’s
rule that [

σc(b ′
1
σab ′

2 ···b ′
n )c

]
x′→x

=−∇(b1

[
σab ′

2 ···b ′
n )

]
x′→x

+
[
σa(b1···b ′

n )

]
x′→x

, (147)

which involves the n− 1 case in the first term, and the same as the left-hand side in the second.
If k= n, then we find the same expression as the left-hand side of equation (146) in the coin-
cidence limit; note that if n= 1, this is not a distinct case from the above. As such, the general
expression for n⩾ 2 is given by

[
σa(b ′

1 ···b ′
n )

]
x′→x

=∇(b1

[
σab ′

2 ···b ′
n )

]
x′→x

−
n−1∑
k=2

(
n
k

)[
σc(b ′

1 ···b ′
k
σab ′

k+1···b ′
n )c

]
x′→x

n
. (148)

In the case n= 2, the second term on the right-hand side vanishes as the sum is empty, whereas
the first term vanishes because [σab′ ]x′→x is a constant. Because the terms on the right-hand
side are recursively given in terms of the n− 1 and lower cases, this means that the left-hand
side must vanish when n⩾ 2 as well, by induction. As such, including the cases n= 0 [coming
from equation (10)] and n= 1 [coming from equation (11)], we find equation (144).

To derive equation (145), we start with equation (16), which implies that

∇b ′
1
· · ·∇b ′

n

(
σc

′
∇c′g

a′
a

)
= 0. (149)

Upon expanding the left-hand side and symmetrizing over b ′
1 · · ·b ′

n, we therefore find that

0=
n∑

k=0

(
n
k

)
σc(b ′

1 ···b ′
k
∇b ′

k+1
· · ·∇b ′

n )
∇cg

a′
a. (150)

Taking a coincidence limit of this expression, by equation (144), the only non-zero term in the
sum comes from k= 1, and that non-zero contribution is given by a symmetrized derivative of
the parallel propagator. Combining this result for n> 0 with the fact that gab = δab, we find
that equation (145) holds.
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