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Linear unsteady aerofoil theory, while successfully used for the prediction of unsteady7
aerofoil lift for many decades, has yet to be proven adequate for predicting the propulsive8
performance of oscillating aerofoils. In this paper we test the hypothesis that the central9
shortcoming of linear small-amplitude models, such as the Garrick function, is the failure10
to account for the flow acceleration caused by aerofoil thrust. A new analytical model is11
developed by coupling the Garrick function to a cycle-averaged actuator disc model, in a12
manner analogous to the blade-element momentum theory for wind turbines and propellers.13
This amounts to assuming the Garrick function to be locally valid and, in combination with14
a global control volume analysis, enables the prediction of flow acceleration at the aerofoil.15
The new model is demonstrated to substantially improve the agreement with Large-Eddy16
Simulations of an aerofoil in combined heave and pitch motion.17

Key words:18

1. Introduction19

The Theodorsen function has been successfully used over the last century for the predic-20
tion of unsteady harmonic aerofoil lift in applications requiring analytical solutions, low21
computational cost, or fast computations. An extension to the Theodorsen function was22
derived by Garrick (1937) to also include the propulsive thrust of a foil oscillating in heave23
and/or pitch. The function is derived based on the same underlying assumptions as those of24
Theodorsen: potential flow, the aerofoil represented by a flat plate, small-amplitude motion,25
and the wake assumed to be co-planar with the aerofoil and moving with the freestream26
velocity. However, the Garrick function has been demonstrated to severely over-predict27
the propulsive efficiencies of oscillating foils relative to experiments and simulations (e.g.28
Fernandez-Feria 2016; Faure et al. 2022), leading to the supposition that the inviscid small-29
amplitude assumptions are inappropriate for the propulsive foil problem.30

In this paper we hypothesise that the shortcomings of small-amplitude linear aerofoil31
theory are largely explained by the neglecting of the axial flow acceleration that results32
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from the aerofoil thrust – a well known phenomenon that can be modelled using actuator33
disc (AD) theory. Coupling the Garrick function to an AD model is analogous to blade-34
element momentum (BEM) theory used for e.g. wind turbines. This amounts to assuming35
the Garrick function to be locally valid, and coupled to a global control volume analysis36
through an actuator disc (representing the frontal area swept by the oscillating foil) via the37
axial induction factor. We develop a cycle-averaged unsteady AD model and demonstrate,38
by comparing with Large-Eddy Simulations (LES), that both steady and cycle-averaged39
AD coupling give substantial improvements to the Garrick function. The results suggest that40
linear small-amplitude models are able to make reliable predictions for foil propulsion trends,41
as long as the local flow acceleration is taken into account. The outcome of this study is a42
simple and fully analytical model for oscillating foil propulsion.43

2. Theoretical model44

2.1. Introduction to modelling framework45

Figure 1 shows the control volumes (CVs) that will be used for the unsteady AD analysis;46
Figure 1a (CV1) will be used for the momentum balance, Figure 1b (CV2) for the energy47
balance, and Figure 1c (CV3) for the mass balance. Figure 1c also illustrates the definition48
of the flow acceleration parameters 𝛼2 and 𝛼4, such that the mean velocity at the aerofoil is49
given by 𝛼2𝑈∞ and at the exit face by 𝛼4𝑈∞, where 𝑈∞ is the freestream velocity. These are50
analogous to the induction factors of conventional AD theory. Based on these we define a51
”global”, ”foil” and an ”exit” reduced frequency (𝑘𝑔, 𝑘 𝑓 and 𝑘𝑒) given by52

𝑘𝑔 =
𝜔𝑏

𝑈∞
= 𝛼2𝑘 𝑓 = 𝛼4𝑘𝑒 (2.1)53

where𝜔 is the foil oscillation frequency in rad/s and 𝑏 is the half-chord. Following AD theory54
convention, we assume the flow to be inviscid and the mean pressure to be fully recovered55
(𝑝 = 𝑝∞) at the exit boundaries.56

2.2. Small-amplitude linear aerofoil theory: The Garrick function57

The full form of the Garrick function will not be presented here; readers are referred to the58
original paper. For the purpose of this paper we present only an expression for the wake59
circulation distribution. For an aerofoil oscillating in a combination of pitch and heave in a60
fluid of density 𝜌, the wake circulation at downstream location 𝑥 and time 𝑡 is given by61

𝛾(𝑥, 𝑡) = 𝐴0(𝑡) cos( 𝑘𝑒𝑥
𝑏

) + 𝐵0(𝑡) sin( 𝑘𝑒𝑥
𝑏

) (2.2)62

where the exit reduced frequency 𝑘𝑒 is used by assuming a location far downstream of the63
aerofoil. The time-dependent variables 𝐴0(𝑡) and 𝐵0(𝑡) are given by64

𝐴0 = 4 [𝜁1 sin(𝜔𝑡) − 𝜁2 cos(𝜔𝑡)] (2.3)65
66

𝐵0 = 4 [𝜁1 cos(𝜔𝑡) + 𝜁2 sin(𝜔𝑡)] (2.4)67

where 𝜁1 and 𝜁2 are functions of the aerofoil kinematics, and can be found in the original68
paper (also provided in a supplementary data sheet; see the Data availability statement below).69
They are also functions of the foil frequency 𝑘 𝑓 and the local velocity 𝛼2𝑈∞. In Garrick’s70
original paper 𝑘 𝑓 and 𝑘𝑒 were taken as equal to 𝑘𝑔 (that is, 𝛼2 = 𝛼4 = 1). In the following71
section we will introduce the flow acceleration parameters through a cycle-averaged unsteady72
AD theory framework, which is subsequently coupled to the Garrick function to obtain the73
values of 𝑘 𝑓 , 𝑘𝑒, 𝛼2 and 𝛼4.74
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Figure 1: Control volumes used. a) CV1, with mass-permeable side boundaries far from
aerofoil. b) CV2, with side boundaries far from aerofoil following the mean streamlines.

c) CV3, with side boundaries encompassing the AD following the mean streamlines.

2.3. Cycle-averaged unsteady actuator disc theory75

The principles of steady-flow AD theory are well known and can be found in textbooks such76
as Hansen (2015). In this paper we will conduct an unsteady CV analysis assuming potential77
flow, and applying cycle-averaging to predict the effect of unsteady flow on the mean thrust78
and propulsive efficiency. The unsteadiness is assumed to be generated entirely by aerofoil79
and wake vorticity, meaning that the unsteady components of bulk flow acceleration terms80
𝛼2 and 𝛼4 are assumed negligible. Based on the results of Yu et al. (2019), who used an81
unsteady AD model to estimate bulk flow oscillations in the wake of a wind turbine, this82
assumption is most likely to hold at high reduced frequencies. We retain the assumptions of83
linear aerofoil theory that the wake is planar and moving at the local mean velocity.84

Similarly to Young et al. (2020) but omitting the viscous terms, we begin with the integral85
equations for momentum and energy balance on a fluid CV with a control surface CS:86

𝑓𝑖 =

∫
𝐶𝑆

𝑝𝑛𝑖 𝑑𝐴 +
∫
𝐶𝑆

𝜌𝑢𝑖𝑢 𝑗𝑛 𝑗 𝑑𝐴 + 𝜕

𝜕𝑡

∫
𝐶𝑉

𝜌𝑢𝑖 𝑑𝑉 (2.5)87

88

𝑊 =

∫
𝐶𝑆

(
𝑝 + 𝜌

𝑢𝑖𝑢𝑖

2

)
𝑢 𝑗𝑛 𝑗 𝑑𝐴 + 𝜕

𝜕𝑡

∫
𝐶𝑉

𝜌
𝑢𝑖𝑢𝑖

2
𝑑𝑉 (2.6)89

with vector quantities given in tensor form. Here 𝑓𝑖 is the force acting on the fluid and 𝑊 is90
the power input to the fluid by the aerofoil. Because we assume potential flow conditions, we91
can use the unsteady Bernoulli equation (neglecting gravity) given by92

𝑝

𝜌
+ 𝑢𝑖𝑢𝑖

2
+ 𝜕Φ

𝜕𝑡
= 𝜒(𝑡) =

[
𝑝

𝜌
+ 𝑢𝑖𝑢𝑖

2
+ 𝜕Φ

𝜕𝑡

]
𝑟𝑒 𝑓

. (2.7)93

We introduce the time-dependent parameter 𝜒(𝑡) which denotes the reference value for the94
Bernoulli equation taken from a single point in the flow field, usually far from the aerofoil.95
The term 𝜕Φ/𝜕𝑡 is the time derivative of the velocity potential, and 𝜌𝜕Φ/𝜕𝑡 is the added96
mass pressure of potential flows (see e.g. Katz & Plotkin 2001, chap. 13.7). Substituting for97
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the pressure 𝑝 in Equations 2.5 and 2.6:98

𝑓𝑖 =

∫
𝐶𝑆

𝜌

(
𝜒(𝑡) −

𝑢 𝑗𝑢 𝑗

2
− 𝜕Φ

𝜕𝑡

)
𝑛𝑖 𝑑𝐴 +

∫
𝐶𝑆

𝜌𝑢𝑖𝑢 𝑗𝑛 𝑗 𝑑𝐴 + 𝜕

𝜕𝑡

∫
𝐶𝑉

𝜌𝑢𝑖 𝑑𝑉 (2.8)99

100

𝑊 =

∫
𝐶𝑆

𝜌

(
𝜒(𝑡) − 𝑢𝑖𝑢𝑖

2
− 𝜕Φ

𝜕𝑡
+ 𝑢𝑖𝑢𝑖

2

)
𝑢 𝑗𝑛 𝑗 𝑑𝐴 + 𝜕

𝜕𝑡

∫
𝐶𝑉

𝜌
𝑢𝑖𝑢𝑖

2
𝑑𝑉. (2.9)101

It is immediately clear that the velocity terms in the first integral of Equation 2.9 cancel.102
We now divide the variables into mean and fluctuating components, such as 𝑢 = 𝑈 + 𝑢′103
where the capital letter implies the mean value and a dash implies the fluctuating component.104
Alternatively, time-averages are also denoted with overbars. Cycle-averaging the momentum105
and energy balance equations, we simplify to106

𝐹𝑖 = 𝜌

∫
𝐶𝑆

[(
𝜒 −

𝑈 𝑗𝑈 𝑗 + 𝑢′
𝑗
𝑢′
𝑗

2

)
𝑛𝑖 +

(
𝑈𝑖𝑈 𝑗 + 𝑢′

𝑖
𝑢′
𝑗

)
𝑛 𝑗

]
𝑑𝐴 (2.10)107

𝑊 = 𝜌

∫
𝐶𝑆

(
𝜒𝑈 𝑗 + 𝜒′𝑢′

𝑗
− 𝜕Φ

𝜕𝑡
𝑢′
𝑗

)
𝑛 𝑗 𝑑𝐴. (2.11)108

We can now solve Equations 2.10 and 2.11 for CV1 and CV2, respectively, noting that only109
the exit faces of CV1 and CV2 will be affected by the unsteady terms.110

2.4. Fluctuating velocity terms111

In order to derive analytical expressions for the fluctuating velocity terms we make the112
following assumptions: the wake is planar, it travels at the local freestream velocity, the113
vortex circulation is given by the Garrick function (Equation 2.2), and the exit face is far114
enough downstream of the aerofoil so that the wake can be approximated as extending to115
positive and negative infinity along the horizontal axis. Based on these assumptions, the116
fluctuating components of the velocity at a point (𝑥, 𝑦) on the exit face, induced by the wake117
vortex circulation along the horizontal axis (with vortices located at 𝑥′), are given by the118
Biot-Savart law (see Katz & Plotkin 2001, chap. 2) as:119

𝑢′𝑥 = −
∫ ∞

−∞

𝐴0 cos( 𝑘𝑒𝑥
′

𝑏
) + 𝐵0 sin( 𝑘𝑒𝑥

′

𝑏
)

2𝜋
𝑦

[(𝑥 − 𝑥′)2 + 𝑦2]
𝑑𝑥′ (2.12)120

121

𝑢′𝑦 =

∫ ∞

−∞

𝐴0 cos( 𝑘𝑒𝑥
′

𝑏
) + 𝐵0 sin( 𝑘𝑒𝑥

′

𝑏
)

2𝜋
𝑥 − 𝑥′

[(𝑥 − 𝑥′)2 + 𝑦2]
𝑑𝑥′. (2.13)122

The evaluation of these integrals for 𝑘𝑒 > 0 and 𝑏 > 0 gives123

𝑢′𝑥 = −𝑒−
𝑘𝑒
𝑏
|𝑦 |

2
|𝑦 |
𝑦

[
𝐴0 cos( 𝑘𝑒𝑥

𝑏
) + 𝐵0 sin( 𝑘𝑒𝑥

𝑏
)
]

(2.14)124

125

𝑢′𝑦 =
𝑒−

𝑘𝑒
𝑏
|𝑦 |

2

[
𝐴0 sin( 𝑘𝑒𝑥

𝑏
) − 𝐵0 cos( 𝑘𝑒𝑥

𝑏
)
]
. (2.15)126

From Equation 2.10 we know that for the 𝑥-component of momentum at the exit face we will127

require expressions for 𝑢′𝑥𝑢′𝑥 and 𝑢′𝑦𝑢
′
𝑦 only. To evaluate these, for simplicity we say 𝑥 = 0 at128

the exit face, such that129

𝑢′2𝑥 =
𝑒−2 𝑘𝑒

𝑏
|𝑦 |

4
𝐴2

0 (2.16)130
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131

𝑢′2𝑦 =
𝑒−2 𝑘𝑒

𝑏
|𝑦 |

4
𝐵2

0. (2.17)132

Based on the definitions of 𝐴0 and 𝐵0 in Equations 2.3 and 2.4, we see that 𝐴2
0 = 𝐵2

0,133

and thus that 𝑢′𝑥𝑢′𝑥 = 𝑢′𝑦𝑢
′
𝑦 over the CV exit face. Note that it can be demonstrated that134

[𝑢′𝑥]𝑦=0± = ∓𝛾/2 (Katz & Plotkin 2001, chap. 3), which suggests the equality 𝑢′𝑥𝑢
′
𝑥 = 𝑢′𝑦𝑢

′
𝑦135

holds also at 𝑦 = 0. Since 𝑛𝑦 = 0 for the exit face, the 𝑢′
𝑖
𝑢′
𝑗

term in Equation 2.10 is 𝑢′𝑥𝑢′𝑥 for136

𝑖 = 𝑥. Thus the cycle-averaged fluctuating terms in Equation 2.10 cancel on the exit face.137

2.5. The Bernoulli equation reference term138

We introduced 𝜒(𝑡) to represent the reference parameter used in the unsteady Bernoulli139
Equation 2.7. This term can be taken as the total farfield pressure 𝜒 = 𝑝∞/𝜌 + 𝑈2

∞/2 at140
all CV boundaries, except for at the exit boundary of CV3 (Figure 1c). Here the energy141
discontinuity created by the AD means that the reference point must be taken downstream of142
the AD and between the two mean-flow streamlines that define the CV boundary. However,143
by choosing the reference point on the internal face of the CV boundary, indicated by ”ref-144
i” in Figure 1c, we can simplify further. We define an additional reference point, marked145
”ref-e” in Figure 1c, at the same position but on the external face of the CV boundary. The146
assumption of fully developed flow at the exit face of the CV suggests that the pressure at the147
two reference points must be equal. Applying Equation 2.7 to obtain the pressure at ref-e,148
noting that 𝜒 = 𝑝∞/𝜌 +𝑈2

∞/2 outside the streamtube, we get149

𝑝𝑟𝑒 𝑓 −𝑖

𝜌
=

𝑝𝑟𝑒 𝑓 −𝑒

𝜌
=

𝑝∞
𝜌

+ 𝑈2
∞

2
−

[
(𝑈∞ + 𝑢′𝑥)2 + 𝑢′2𝑦

2
+ 𝜕Φ

𝜕𝑡

]
𝑟𝑒 𝑓 −𝑒

. (2.18)150

Using Equation 2.18 as the pressure term in Equation 2.7, we obtain 𝜒 downstream of the151
AD in CV3 as152

𝜒(𝑡) = 𝑝∞
𝜌

+ 𝑈2
∞

2
−

[
(𝑈∞ + 𝑢′𝑥)2 + 𝑢′2𝑦

2
+ 𝜕Φ

𝜕𝑡

]
𝑟𝑒 𝑓 −𝑒

+
[
(𝛼4𝑈∞ + 𝑢′𝑥)2 + 𝑢′2𝑦

2
+ 𝜕Φ

𝜕𝑡

]
𝑟𝑒 𝑓 −𝑖

.

(2.19)153
Because we assume that the vortex-induced flow is the only source of unsteadiness, and this154
has no discontinuity across the CV boundary, the expressions in brackets in Equation 2.19155
are equal except for the 𝛼4 terms. Thus Equation 2.19 can be simplified to156

𝜒(𝑡) = 𝑝∞
𝜌

+
𝛼2

4𝑈
2
∞

2
+ [𝑢′𝑥]𝑟𝑒 𝑓𝑈∞(𝛼4 − 1) (2.20)157

where [𝑢′𝑥]𝑟𝑒 𝑓 indicates the fluctuating axial velocity at the reference location.158

2.6. Added mass energy term159

Since the time derivative of the potential field is needed, only the unsteady component of the160
flow potential will be considered, which is assumed fully determined by the wake vorticity.161
Only the added mass on the exit face is needed. The potential of a free vortex is given by162
Φ = 𝛾𝜃/2𝜋 (Katz & Plotkin 2001, chap. 3) where 𝜃 is the angle between the point of interest163
and the horizontal axis intersecting the vortex core. The potential field induced by the wake164
circulation (Eq. 2.2) distributed along 𝑥′, at a point (𝑥, 𝑦) on the exit face, is then given by165

Φ =
1

2𝜋

∫ ∞

−∞

[
𝐴0 cos( 𝑘𝑒𝑥

′

𝑏
) + 𝐵0 sin( 𝑘𝑒𝑥

′

𝑏
)
]

tan−1
( 𝑦

𝑥 − 𝑥′

)
𝑑𝑥′. (2.21)166
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Evaluating the integral at 𝑥 = 0, the potential is167

Φ(𝑥 = 0, 𝑦) = −𝑏 |𝑦 |
𝑦

(1 − 𝑒−
𝑘𝑒
𝑏
|𝑦 |)

2𝑘𝑒
𝐵0. (2.22)168

Taking the time derivative and noting that 𝜕𝐵0/𝜕𝑡 = −𝜔𝐴0, we obtain169

𝜕Φ

𝜕𝑡
(𝑥 = 0, 𝑦) = 𝑏𝜔

2𝑘𝑒
|𝑦 |
𝑦
𝐴0(1 − 𝑒−

𝑘𝑒
𝑏
|𝑦 |). (2.23)170

We then evaluate 𝜕Φ/𝜕𝑡 𝑢′𝑥 for the energy balance in Equation 2.11 using the expression for171
𝑢′𝑥 from Equation 2.14:172

𝜕Φ

𝜕𝑡
𝑢′𝑥 (𝑥 = 0, 𝑦) = − 𝑏𝜔

4𝑘𝑒
𝐴2

0 (1 − 𝑒−
𝑘𝑒
𝑏
|𝑦 |)𝑒−

𝑘𝑒
𝑏
|𝑦 | . (2.24)173

2.7. Momentum balance174

To evaluate the cycle-average momentum balance (Equation 2.10) we use CV1 (Figure 1a).175
The CV is rectangular and all boundaries (shown by dashed black lines) are mass-permeable.176
The upper and lower boundaries are assumed to be far from the aerofoil and wake, such that177
unsteady flow effects are negligible everywhere except over the central part of the exit face.178
We demonstrated in Section 2.4 that the fluctuating components of velocity in Equation 2.10179
cancel on the exit face. This removes all unsteady terms from Equation 2.10, reducing to the180
momentum balance for steady AD theory. The evaluation procedure is well known (see e.g.181
Hansen 2015) and we can obtain182

𝐹𝑥

1
2 𝜌𝑈

2
∞A

= 𝐶𝑇𝑔 = 2𝛼2 (𝛼4 − 1) . (2.25)183

Here we define the global thrust coefficient 𝐶𝑇𝑔 using the AD area A, given by the frontal184
area swept by the oscillating aerofoil (see Figure 1c).185

2.8. Energy balance186

We use CV2 (Figure 1b) to evaluate Equation 2.11. The upper and lower boundaries follow187
the mean flow streamlines, such that the exit area can be found (through mean flow mass188
conservation) to be A2−A 𝛼2

𝛼4
(𝛼4−1), where A2 is the inlet area. Again the upper and lower189

boundaries are assumed far enough from the aerofoil so that unsteady effects are negligible190
everywhere except at the central part of the exit face. There are two unsteady terms in191
Equation 2.11, one related to 𝜒′ and the other to the added mass. At the exit face, as shown192
in Section 2.5, 𝜒′ = [𝑢′𝑥]𝑟𝑒 𝑓𝑈∞(𝛼4 − 1), which is constant in 𝑦. From Equation 2.14 we193

see that 𝑢′𝑥 is anti-symmetric in 𝑦. Thus the integral of 𝜒′𝑢′𝑥 over the exit face is zero. This194
leaves the added mass term as the only unsteady flow contribution to the energy balance.195
Evaluating Equation 2.11 for each CV boundary, recalling the expressions for 𝜒 inside and196
outside the wake streamtube from Section 2.5, we obtain197

𝑊

𝜌
= −A2𝑈∞

[
𝑝∞
𝜌

+ 𝑈2
∞

2

]
+

(
A2 − A𝛼2

𝛼4
(𝛼4 − 1) − A𝛼2

𝛼4

)
𝑈∞

[
𝑝∞
𝜌

+ 𝑈2
∞

2

]
+198

+ A𝛼2
𝛼4

𝛼4𝑈∞

[
𝑝∞
𝜌

+
𝛼2

4𝑈
2
∞

2

]
−

∫ ∞

−∞

𝜕Φ

𝜕𝑡
𝑢′𝑥 𝑑𝑦. (2.26)199

We can integrate the added mass term over ±∞ without loss of generality since there are200
no unsteady wake effects at the upper and lower CV boundaries. Cancelling terms and201



7

normalising to obtain the global power coefficient 𝐶𝑃𝑔 gives202

𝑊

1
2 𝜌𝑈

3
∞A

= 𝐶𝑃𝑔 = 𝛼2(𝛼2
4 − 1) − 1

1
2 𝜌𝑈

3
∞A

∫ ∞

−∞
𝜌
𝜕Φ

𝜕𝑡
𝑢′𝑥 𝑑𝑦. (2.27)203

Evaluating the added mass integral from Equation 2.24, noting that it is symmetric in 𝑦:204

2
∫ ∞

0
𝜌
𝜕Φ

𝜕𝑡
𝑢′𝑥 𝑑𝑦 = −𝜌 𝑏𝜔

2𝑘𝑒
𝐴2

0

∫ ∞

0
(1 − 𝑒−

𝑘𝑒
𝑏
𝑦)𝑒−

𝑘𝑒
𝑏
𝑦 𝑑𝑦 = −𝜌𝜔𝑏

2

4𝑘2
𝑒

𝐴2
0. (2.28)205

In steady AD theory the energy input 𝑊 to the CV is the energy required for generating206
the thrust of an ideal disc propulsor, that is 𝑊 = 𝛼2𝑈∞𝐹𝑥 . However, for the present non-207
ideal case the total oscillation energy of the aerofoil 𝑊 𝑓 must be considered, which is equal208
to the thrust energy plus the energy required to generate the wake (Garrick 1937), i.e.,209
𝑊 = 𝑊 𝑓 ⩾ 𝛼2𝑈∞𝐹𝑥 . 𝑊 𝑓 is obtained from the chordwise integration of lift force times the210
vertical aerofoil velocity, and is evaluated analytically by Garrick. Note that for 𝛼2 = 𝛼4 = 1,211
Equation 2.28 is equivalent to the Garrick wake energy. To account for 𝑊 𝑓 we define the212
”local” efficiency 𝜂𝑙 in relation to the ”global” efficiency 𝜂𝑔:213

𝜂𝑙 =
𝛼2𝑈∞𝐹𝑥

𝑊 𝑓

= 𝛼2𝜂𝑔 . (2.29)214

Incorporating the expressions from Equations 2.28-2.29 into Equation 2.27, and noting that215
𝑘𝑒 = 𝑘𝑔/𝛼4, we obtain216

𝐹𝑥

1
2 𝜌𝑈

2
∞A

= 𝐶𝑇𝑔 = 𝜂𝑙
[
𝛼2

4𝜂𝑎𝑚 − 1
]

(2.30)217

where we have introduced the parameter 𝜂𝑎𝑚 to represent the added mass term:218

𝜂𝑎𝑚 = 1 + 1
2𝛼2𝑘𝑔

𝐴2
0𝑏

𝑈2
∞A

. (2.31)219

Equations 2.25 and 2.30 thus define the cycle-averaged inviscid actuator disc equations220
for this system. As mentioned, Equation 2.25 is equivalent to the steady formulation, but221
Equation 2.30 differs through the 𝜂𝑙 and 𝜂𝑎𝑚 terms. The standard steady AD theory result222
for an ”ideal” propulsor (that is when 𝑊 = 𝛼2𝑈∞𝐹𝑥) is recovered by setting 𝜂𝑙 = 𝜂𝑎𝑚 = 1.223

3. Numerical procedure and results224

3.1. Numerical procedure225

Equations 2.25, 2.29, 2.30 and 2.31, and the Garrick function expressions for thrust 𝐹𝑥 and226
power 𝑊 𝑓 , are solved iteratively using the MATLAB function fsolve until convergence of227
all variables, adjusting the Garrick function for the local flow acceleration 𝛼2 and reduced228
frequency 𝑘 𝑓 . The cycle-averaged AD model is only evaluated for 𝐶𝑇𝑔 > 0. To validate the229
new model we evaluate the case of an aerofoil flapping in combined heave and pitch, and230
compare the results to Large-Eddy Simulations (LES).231

We use an immersed-boundary implicit-LES solver called the Boundary Data Immersion232
Method (BDIM) to solve 3-D incompressible Navier-Stokes equations. The solver has been233
validated in several previous studies of flapping foils up to 𝑅𝑒 = 50, 000 (Maertens &234
Weymouth 2015; Zurman-Nasution et al. 2020). The foil is a NACA0016, and the kinematics235
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consist of a combination of heave 𝐻 (𝑡) and pitch 𝜃 (𝑡) motions, with functional form236

𝐻 (𝑡) = ℎ0 sin(𝜔𝑡) (3.1)237

𝜃 (𝑡) = 𝛼0 sin(𝜔𝑡 + 𝜓) (3.2)238

𝛼0 = sin−1
(

0.7ℎ0
1.5𝑏

)
(3.3)239

where ℎ0 is heave amplitude and 𝛼0 is pitch amplitude in radians, and the heave-pitch phase240
difference is 𝜓 = 90◦. The pitch axis is located at the quarter-chord from the leading edge.241
For a given heave amplitude in the range of 0.4𝑏 < ℎ0 < 𝑏, we vary the Strouhal number242
𝑆𝑡 = 𝜔ℎ0/(𝜋𝑈∞) between 0.15 < 𝑆𝑡 < 0.80 to vary the frequency 𝜔. The AD area is found243
from the heave amplitude as A = 2ℎ0.244

The simulations were performed at 𝑅𝑒 = 10, 000, which was deemed sufficiently high245
since the thrust coefficient of a flapping foil is almost invariant at 𝑅𝑒 > 10, 000 (Senturk &246
Smits 2019). The domain extends horizontally from −6𝑏 to 24𝑏 and vertically from −8𝑏 to247
8𝑏. To ensure domain height independence, two representative cases were re-run at double248
domain height; the resulting propulsive efficiencies changed by less than 1%. The foil has a249
spanwise width of 2𝑏 and periodic boundary conditions applied to both sides. The foil and its250
near wake are simulated within a sub-domain using a uniform Cartesian grid with a resolution251
of Δ𝑌 = 2𝑏/128 to reach (on average) 𝑦+ = 𝑦𝑛𝑢𝜏/𝜈 ≈ 5, Δ𝑋 = 2Δ𝑌 and Δ𝑍 = 2Δ𝑌 . Here252
𝑦𝑛 is the wall-normal distance, 𝑢𝜏 is friction velocity, 𝜈 is kinematic viscosity, and 𝑋,𝑌, 𝑍253
are global coordinates for horizontal, vertical and spanwise directions respectively.254

3.2. Results255

Figures 2a-c compare results for the global propulsive efficiency (𝜂𝑔, Eq. 2.29) and the256

foil power and thrust coefficients (𝐶𝑃 𝑓 = 𝑊 𝑓 /𝜌𝑈3
∞𝑏 and 𝐶𝑇 𝑓 = 𝐹𝑥/𝜌𝑈2

∞𝑏 ) normalised by257
𝑘2
𝑔𝑎

2 = 𝑆𝑡2𝜋2/4, where 𝑎 = ℎ0/2𝑏 is the nondimensional heave amplitude. Figures 2d-g show258
the acceleration parameters (𝛼2 and 𝛼4), local foil efficiency (𝜂𝑙) and added mass parameter259
(𝜂𝑎𝑚), all for the same set of cases and plotted against the global reduced frequency 𝑘𝑔. The260
original Garrick predictions (black lines) have significant errors in both global efficiency261
(Figure 2a) and power (Figure 2b) relative to the LES (circles), while the AD-coupled262
models substantially improve the agreement of both. The AD coupling also improves the263
thrust prediction (Figure 2c), although it is marginal compared to its effect on the power.264

The steady AD (𝜂𝑎𝑚 = 𝜂𝑙 = 1, dashed lines) and the cycle-averaged AD (solid coloured265
lines) give similar trends in foil performance, the latter agreeing better with the LES especially266
at high frequencies. The similarity between steady and cycle-averaged AD predictions is due267
to the non-ideal energy input by the foil (𝜂𝑙 < 1) being largely balanced by the wake energy268
exiting the CV (𝜂𝑎𝑚 > 1). Figures 2d-e indicate the significance of local flow accelerations;269
the velocity at the foil is up to about 4 times𝑈∞, and velocity at the CV exit even higher. The270
steady AD under-predicts 𝛼2 and over-predicts 𝛼4 compared to the cycle-averaged AD.271

Figure 2 𝑓 shows that 𝜂𝑙 approaches ≈ 0.58 to 0.6 with increasing 𝑘𝑔, suggesting that the272
local efficiency in the AD model is close but not equal to the unmodified Garrick efficiency273
(black line in Figure 2a). Figure 2g shows that 𝜂𝑎𝑚 increases with 𝑘𝑔, and the added mass274
energy becomes larger than the mean flow energy (that is, 𝜂𝑎𝑚 > 2) at 𝑘𝑔 > 4 to 4.5. There275
are small increases in 𝜂𝑙 and 𝜂𝑎𝑚 with increasing amplitude ℎ0.276

The remaining discrepancies in foil performance between the AD models and LES are277
likely due to the factors not accounted for in the former, such as viscous effects and bulk278
flow oscillations. The LES results also capture strong vortex instabilities in the near wake279
when the Strouhal number is above the optimum range of 0.2 < 𝑆𝑡 < 0.5 (Zurman-Nasution280
et al. 2020) as shown in the flow field inserts in Figure 2b, which may partly explain the281
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Figure 2: a) Global propulsive efficiency. b) Power coefficient with visualisations of LES
results (aerofoil in green and isosurfaces of 𝜆2-criterion coloured by spanwise vorticity).
c) Thrust coefficient. d) Acceleration parameter at the foil. e) Acceleration parameter at

the exit face. f) Local foil efficiency. g) Added mass parameter.

discrepancies at higher frequencies. Furthermore, in all LES cases the aerofoil motion was282
found to result in the generation of leading-edge vortices (LEV), which increased in strength283
with the oscillation amplitude. In a recent comparative study of low-order models for flapping284
foil propulsion by Faure et al. (2022), models implementing dynamic stall or LEV corrections285
are shown to give improved agreement with experiments and high-order simulations over286
inviscid models. Considering their results, it is likely that the remaining discrepancies in287
Figures 2a-c are largely due to the absence of stall effects in the Garrick-AD models. The288
form drag induced by trailing edge vortex rollup is also not included, which may affect the289
prediction of both lift and thrust (Ayancik et al. 2019).290

Despite these discrepancies, the coupled Garrick-AD theory provides a fully analytical291
solution for inviscid foil propulsors that correctly represents efficiency trends, and is a292
substantial improvement on the original Garrick theory. The trends of the coupled models293
are similar to those of the numerical inviscid panel method evaluated by Faure et al. (2022):294
Figure 5 in their paper shows the panel method giving an error in 𝜂𝑔 of about 50% at 𝑘𝑔=3295
(the Garrick theory error is about 200%) relative to high-order simulations of heaving foils.296
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The present method has similar accuracy but at a fraction of the computational time, without297
requiring a numerical panel solver. More generally, the AD coupling method also opens the298
possibility for further analytical modelling of unsteady foils, and for using small-amplitude299
inviscid models to evaluate finite-amplitude viscous problems to first-order accuracy.300

4. Conclusions301

We have developed a method for coupling a linear unsteady aerofoil theory (Garrick 1937)302
and an inviscid AD theory, analogous to the BEM theory for wind turbines and propellers,303
to improve analytical prediction of the propulsive performance of oscillating foils. By cycle-304
averaging the integral forms of the inviscid momentum and energy conservation equations305
for three different control volumes, we have derived concise analytical expressions linking the306
mean foil thrust and power to the local flow acceleration at the foil. The cycle-averaged AD307
model deviates from steady AD theory through only two additional parameters, 𝜂𝑙 and 𝜂𝑎𝑚.308
The former accounts for the ”non-ideal” energy input by the foil, and the latter for the added309
mass energy in the wake, both of which are obtained from the Garrick theory. Both the steady310
and cycle-averaged AD models coupled to the Garrick theory were shown to substantially311
improve agreements with LES, although some discrepancies remained especially in the312
thrust prediction. It is likely that these discrepancies are largely due to the effects of LEV313
formation, which is not accounted for in the present model. The results demonstrate the314
applicability of small-amplitude inviscid unsteady aerofoil theory to finite-amplitude foil315
propulsion problems, as long as the local flow acceleration at the foil is taken into account.316
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