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ABSTRACT	
In	 this	 study,	 we	 introduce	 an	 innovative	 speech	 enhancement	 methodology	 that	 ingeniously	
combines	unsupervised	pre-training	with	supervised	 fine-tuning.	This	hybrid	approach	directly	
addresses	 the	 prevalent	 data	 mismatch	 challenge	 inherent	 in	 traditional	 supervised	 speech	
enhancement	methods.	Our	technique	distinctly	utilizes	unpaired	noisy	and	clean	speech	data	and	
incorporates	varied	noises	during	the	pre-training	phase.	This	strategy	effectively	simulates	the	
benefits	 of	 supervised	 learning,	 eliminating	 the	 need	 for	 paired	 data.	 Inspired	 by	 contrastive	
learning	 techniques	 prevalent	 in	 computer	 vision,	 our	 model	 is	 adept	 at	 preserving	 essential	
speech	features	amidst	noise	interference.		
	
At	 the	 heart	 of	 our	 method	 lies	 a	 sophisticated	 Generative	 Adversarial	 Network	 (GAN)	
architecture.	This	includes	a	generator	that	proficiently	processes	both	magnitude	and	complex-
domain	 features,	 alongside	 a	 discriminator	 designed	 to	 optimize	 specific	 evaluation	 metrics.	
Through	 rigorous	 experimental	 evaluations,	 we	 validate	 the	 robustness	 and	 versatility	 of	 our	
approach.	It	consistently	delivers	superior	speech	quality,	demonstrating	remarkable	efficacy	in	
real-world	 scenarios,	 which	 are	 often	 characterized	 by	 complex	 and	 unpredictable	 noise	
environments.		

Index	Terms	—	Speech	enhancement,	unsupervised	pre-training,	supervised	fine-tuning	strategy,	data	mismatch.	 

1. INTRODUCTION	
	

Speech	 enhancement	 is	 crucial	 for	 applications	 such	 as	 speech	 recognition	 and	
telecommunication	 systems	 where	 background	 noise	 often	 disrupts	 the	 quality	 and	
intelligibility	of	incoming	speech	[1,	2].	While	traditional	neural	speech	enhancement	relies	on	
supervised	 learning	 and	 simulated	 paired	 noisy-clean	 speech	 samples,	 this	 approach	 has	
limitations,	primarily	due	to	the	mismatch	between	real-world	data	and	simulated	data	[3,	4].		
	
To	address	 this,	 there	has	been	a	 shift	 toward	unsupervised	and	 semi-supervised	methods,	
which,	however,	have	yet	to	achieve	the	performance	of	supervised	techniques	[4,	5,	6,	9].	Our	
study	 diverges	 from	 traditional	 approaches	 and	 introduces	 an	 innovative	 algorithm	 that	
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combines	 unsupervised	 pre-training	 and	 fine-tuning.	 The	 core	 of	 our	 method	 is	 a	 unique	
Generative	Adversarial	Network	(GAN)	architecture,	designed	to	address	data	mismatch	and	
performance	degradation	[9].		
	
In	 the	 initial	 training	 phase,	we	 employ	 large	 volumes	 of	 unpaired	 noisy	 and	 clean	 speech	
samples.	 Inspired	by	 the	 contrastive	 learning	used	 in	 computer	vision	and	 the	Noise2Noise	
paradigm,	we	add	supplementary	random	noise	to	create	what	we	term	’deeper	noisy	speech’	
(DNS)	 [7,	 8].	 Both	 DNS	 and	 the	 original	 noisy	 speech	 are	 utilized	 in	 the	 training	 process,	
ensuring	 distinct	 outputs.	 The	 model	 is	 then	 fine-tuned	 using	 selected	 simulated	 paired	
samples.	A	 key	 strength	 of	 our	method	 is	 its	 focus	 on	 real-world	data,	 avoiding	 the	pitfalls	
commonly	associated	with	simulated	datasets.		
	
The	main	contributions	of	this	study	are	summarized	as	follows:	
– Our	methodology	 effectively	 addresses	 data	mismatch	 challenges	 commonly	 found	 in	

traditional	supervised	speech	enhancement,	especially	in	real-world	settings,	by	utilizing	
unpaired	noisy	and	clean	speech.			

– We	simulate	a	supervised	training	paradigm	by	ingeniously	adding	variant	noises	to	noisy	
speech	during	the	pre-training	phase,	despite	lacking	paired	data.	

– A	novel	architecture	is	introduced	to	fully	exploit	the	advantages	of	using	unpaired	noisy	
and	clean	speech.	

– We	employ	a	tailored	loss	function	to	ensure	the	model	focuses	on	the	characteristics	of	
the	target	speaker’s	speech.	

	
2.		 Methodology				
2.1.	 Training	method	and	model	structure	
	
As	 shown	 in	 Fig.	 1,	 our	 speech	 enhancement	 approach	 utilizes	 a	 Generative	 Adversarial	
Network	(GAN)	with	a	generator	and	a	discriminator.	The	generator	enhances	noisy	speech,	
while	the	discriminator	evaluates	the	quality	based	on	perceptual	metrics.	Our	model	training	
involves	two	phases:	initial	unsupervised	pre-training	with	unpaired	noisy	and	clean	speech,	
and	subsequent	 fine-tuning	using	 selected	paired	data.	Both	 identity	and	characteristic	 loss	
functions	 are	 employed	 in	 the	 initial	 phase	 to	 optimize	 the	model,	which	 is	 further	 refined	
during	 the	 fine-tuning	 phase.	 Details	 of	 our	 methodology	 are	 elaborated	 in	 the	 following	
sections.		
	
An	overview	of	the	generator	architecture	of	the	proposed	model	is	shown	in	Fig.	2a.	For	a	noisy	
speech	waveform,	an	STFT	operation	first	converts	the	waveform	into	a	complex	spectrogram	
𝑋!"#$%&' ∈ 𝑅(∗*∗+ and	 corresponding	 magnitude	 spectrogram	 𝑋#,- ∈ 𝑅(∗* ,where	 𝑇 	and	
𝐹	denote	the	time	and	frequency	dimensions,	respectively.	The	real	and	imaginary	parts	𝑋.&,% 	
and		𝑋/#,-		are	then	concatenated	with	the	magnitude		𝑋#,-		as	an	input	to	the	generator.	The	
generator	takes	the	encoder-decoder	as	a	backbone.		
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Figure	 1:	 The	 speech	 enhancement	 model’s	 architecture	 features	 two	 main	 steps:	 pre-
training(left)	and	fine-tuning(right).	In	the	pre-training,	Noisy	Speech	pairs	with	Deep	Noisy	
Speech,	whereas	Noisy	Speech	and	Clean	Speech	are	unpaired.	The	 flows	 for	Noisy	Speech,	
Deep	 Noisy	 Speech,	 and	 Clean	 Speech	 are	 represented	 by	 blue,	 purple,	 and	 green	 lines,	
respectively.		
	

	
Figure	2:	The	overview	of	the	proposed	GAN	model.	

(a)	 Encoder:	 Given	 the	 input	 feature	𝑋 ∈𝑅0∗(∗*∗1 ,	 where	 B	 represents	 the	 batch	 size,	 the	
encoder	 is	 architecturally	 structured	 to	 encompass	 two	 convolutional	 blocks	 with	 an	
intervening	dilated	Res2Net	[10].	Each	of	these	blocks	integrates	a	convolution	layer,	followed	
by	 instance	normalization	[11],	culminating	with	a	PReLU	activation	 function	[12].	The	 first	
convolution	block	functions	to	expand	the	triad	of	input	features	into	an	intermediary	feature	
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map.	The	terminal	convolution	block	is	strategically	designed	to	halve	the	frequency	dimension,	
thus	optimizing	computational	efficiency.	 

(b)	Middle	layer:	Attention	mechanism	[13]	has	achieved	great	success	in	many	fields,	such	as	
“speech	 recognition”	 and	 “Natural	 language	 Processing”	 as	 they	 can	 capture	 long	 distance	
dependencies.	We	create	a	resolution-former	block	containing	2	feed	forward	neural	networks	
(FFNN).	 Like	 transformers	 in	 [13],	 we	 add	 a	multi-head	 attention	 block	 followed	 by	 Layer	
Normalization	 layer	 between	 2	 FFNNs.	 Here	 we	 employ	 two	 resolution-former	 blocks	
sequentially	to	capture	the	time	dependency	in	the	first	stage	and	the	frequency	dependency	in	
the	 second	 stage.	After	 the	 residual	 connection,	 the	output	will	 be	 reshaped	as	 the	original	
shape.		
	
(c)	Decoder:	Our	decoding	mechanism	uses	N	resolution-former	blocks	and	operates	via	two	
distinct	pathways:	the	mask	decoder	and	the	complex	decoder.	The	mask	decoder	generates	a	
mask	that	is	element-wise	multiplied	with	the	input	magnitude	𝑋_𝑚𝑎𝑔	to	predict	𝑋′_𝑚𝑎𝑔.	On	
the	 other	 hand,	 the	 complex	 decoder	 predicts	 both	 real	 and	 imaginary	 components.	 Both	
decoders	feature	a	Res2Net	Block,	consistent	with	the	encoder	design,	and	employ	a	subpixel	
convolution	layer	to	restore	the	original	frequency	dimension.	The	mask	decoder	culminates	in	
a	final	mask	prediction	using	a	convolutional	block	followed	by	an	adaptive	PReLU	activation.	
The	 architecture	 of	 the	 complex	 decoder	 mirrors	 that	 of	 the	 mask	 decoder	 but	 omits	 an	
activation	function.	We	combine	the	masked	magnitude	𝑋′#,-with	the	noisy	phase	to	create	an	
enhanced	complex	spectrogram,	which	is	then	summed	with	the	output	of	the	complex	decoder	
to	produce	the	final	complex	spectrogram	like	[15].		
	
For	evaluation,	traditional	quality	metrics	like	PESQ	[16]	and	STOI	[17]	can’t	guide	the	learning	
process	 due	 to	 their	 non-differentiable	 nature.	 To	 address	 this,	 our	 model’s	 discriminator	
mimics	 these	 metrics,	 adopting	 a	 MetricGAN	 approach	 [18].	 It	 aims	 to	 estimate	 optimal	
PESQ&STOI	 scores	 when	 given	 clean	 sounds	 and	 strives	 to	 improve	 these	 scores	 when	
presented	with	both	clean	and	processed	sounds.	The	generator,	meanwhile,	aims	to	produce	
enhanced	speech	that	closely	resembles	clean	speech,	targeting	an	ideal	PESQ&STOI	score	of	
[1,	1].		
	
2.2.	 Pre-training	phase	

The	proposed	unsupervised	pre-training	adopts	unpaired	noisy	speech	𝑥	and	clean	speech 𝑦	
as	 training	data.	Firstly,	we	add	random	noise	 to	noisy	speech	at	a	random	continuous	SNR	
ranging	from	-5	dB	to	10	dB,	so	as	to	get	deep	noisy	speech	𝑋.	𝑥	and	𝑋	are	respectively	fed	into	
generator	outputting	their	own	enhanced	speeches	𝑦'	and	𝑌' .	To	optimize	this	enhancement	
network,	the	discriminator	is	also	included	to	calculate	adversarial	loss.	In	addition,	a	character	
loss	and	an	identity	loss	are	also	explored	in	this	work.	 

(a)	Identity	loss:	Unlike	the	identity	loss	function	described	in	references	[5,	10],	which	is	based	
on	 the	 original	 input	 of	 noisy	 speeches	 combined	with	 the	 sum	 of	 enhanced	 speeches	 and	
enhanced	noise,	our	proposed	identity	loss	function	adopts	a	different	approach.	It	comprises	
enhanced	speeches	derived	from	Deep	Noisy	Speeches	(DNS)	as	well	as	Original	Noisy	Speeches	
(ONS).	This	novel	composition	aims	to	bridge	 the	gap	 in	speaker	 identification	between	the	
input	 and	 output	 of	 the	model,	 enhancing	 its	 effectiveness	 in	 noise	 elimination	 and	 speech	
clarity.		
(b)	Characteristic	loss:	The	characteristic	loss	function	plays	a	pivotal	role	in	refining	enhanced	
speeches	 so	 that	 they	 closely	 resemble	 the	 characteristics	 of	 real-world	 human	 speech.	 Its	
primary	 advantage	 lies	 in	 mitigating	 content	 mismatches	 between	 unpaired	 data.	 This	 is	
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achieved	 by	 comparing	 the	 differences	 in	 their	 mel-spectrograms,	 rather	 than	 directly	
computing	differences	in	the	speech	content	itself.	This	approach	ensures	a	more	accurate	and	
natural	alignment	of	the	enhanced	speech	with	the	true	characteristics	of	human	speech.	The	
characteristic	loss	function	can	be	defined	as:		
	

𝐿!2,. = 𝐸',4 23𝑀𝑒𝑙7𝐺(𝑋567); − 𝑀𝑒𝑙(𝑌)3+ + 3𝑀𝑒𝑙7𝐺(𝑋867); − 𝑀𝑒𝑙(𝑌)3+> (1)	
	

Where	𝑀𝑒𝑙(𝑋)	denotes	the	operation	converting	audio	to	mel-spectrogram.	𝑋	and	𝑌	represent	
input	noisy	speeches	as	well	as	pure	speeches	and	they	are	unpaired.		

(c)	Adversarial	 loss:	we	use	a	 linear	combination	of	magnitude	 loss	and	complex	 loss	 in	TF-
domain:		
	

𝐿(* = 𝐸9 2(1 − 𝜗) A3𝑋.&,%567 − 𝑋.&,%8673
+
+ 3𝑋/#,-567 − 𝑋/#,-867 3

+
B + 𝜗3𝑋#,-567 − 𝑋#,-8673

+
> (2)	

	
Where	𝜗	is	weighting	 factor,	which	 is	 set	 to	0.6	 in	 this	 experiment.	Meanwhile,	𝑋D#,-567 ,	𝑋D.&,%567 ,	
𝑋D/#,-567 denote	 DNS	 magnitude,	 complex	 domain	 output	 of	 generator	 fed	 with	 their	
corresponding	 ONS	 magnitude,	 complex	 domain.	 Similar	 to	 least-square	 GANs	 [19],	 the	
adversarial	training	is	following	a	minimal	optimization	task	over	the	discriminator	loss	𝐿5and	
the	corresponding	generator	loss	𝐿:;6	expressed	as	follows:		
	

𝐿:;6 = 𝐸4 23𝐷7𝑌#,-, 𝑋D#,-; − 13+> (3)	

																	𝐿5/<! = 𝐸9,4 23𝐷7𝑌#,-, 𝑌#,-; − 13+ + 3𝐷7𝑌#,-, 𝑋
D#,-867; − 𝑆𝑐𝑜𝑟𝑒=>7?&7(8A3+ 																				

+ 3𝐷7𝑌#,-, 𝑋D#,-567; − 𝑆𝑐𝑜𝑟𝑒=>7?&7(8A3+>																																																																							(4)	
	
Where	𝐷 	refers	 to	 the	 discriminator,	𝑆𝑐𝑜𝑟𝑒=>7?&7(8A 	refers	 to	 the	 normalized	 PESQ&STOI	
score,	ranging	from	0	to	1,	between	unpaired	clean	speeches	and	enhanced	speeches.	The	final	
generator	loss	function	is	expressed	as	follows:		
	

𝐿-&B = 	𝛼 ∗ 𝐿(* + 𝛽𝐿:;6 (5)	
Where	𝛼, 𝛽	are	weight	factors	of	their	corresponding	loss	functions	and	set	to	0.4,	0.6	and	0.1	
in	this	experiment.		
	
2.3.	 Fine-tuning	phase	
	
Although	the	model’s	parameters	are	initially	set	during	the	pretraining	phase,	we	observed	
that	its	performance	in	real-	world	scenarios	falls	short	of	expectations.	In	this	phase,	the	model	
predominantly	concentrates	on	isolating	the	audio	identity	of	target	speakers	from	background	
noise.	However,	it	exhibits	a	deficiency	in	accurately	matching	the	audio	content.	To	address	
this	 shortfall,	 it	 becomes	 imperative	 to	 further	 refine	 the	 enhancement	 network.	 This	 is	
achieved	 through	 fine-tuning	with	a	 limited	 set	of	 simulated	paired	noisy	and	 clean	 speech	
samples,	employing	supervised	learning	techniques.	Such	fine-tuning	is	crucial	for	reducing	the	
mismatch	between	the	simulated	data	and	the	real-world	unpaired	data,	thereby	improving	the	
model’s	 applicability	 in	 practical	 scenarios.	 The	 same	 as	 [9],	 we	 take	 a	 small	 amount	 of	
simulated	paired	data	for	the	fine-tuning	step.	The	simulated	paired	data	is	used	to	optimize	
the	 generator	 hyperparameters	 from	 the	 noisy	𝑋 	to	 clean	 speech	𝑌 	by	 supervised	 learning.	
With	 the	 fine-tuning	 training,	 the	 capability	 of	 the	 enhancement	 network	 learned	 from	 the	
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unsupervised	pre-training	stage	is	further	strengthened.	The	loss	function	for	the	fine-tuning	
step	is	defined	as	follows:		
	

𝐿-&B = 𝐸94 2𝛼 ∗ 𝜗 ∗ 3𝑋D#,- − 𝑌#,-3+ + 𝛼 ∗ (1 − 𝜗) ∗ 3𝑋
D!"#$%&' − 𝑌!"#$%&'3+> (5)	

𝐿5/<! = 𝐸94 23𝐷7𝑌#,-, 𝑌#,-; − 13+ + 3𝐷7𝑌#,-, 𝑋
D#,-; − 𝑆𝑐𝑜𝑟𝑒=>7?&7(8A3+> (6)	

	
3.		 Experiment	setup	and	analysis			
3.1.	 Datasets	and	implement	details	
	
In	our	experimental	framework,	we	constructed	synthetic	datasets	following	the	methodology	
of	previous	 research	 [10].	During	 the	pretraining	phase,	we	utilized	 clean	 speech	 segments	
from	the	ICASSP	DNS3	dataset	[14],	which	we	then	combined	with	noise	sources	from	NoiseX-
92	[20]	and	Musan-2	[21].	These	mixtures	were	created	at	varying	sound	levels,	ranging	from	
-5	to	10	dB.	For	the	fine-tuning	stage,	we	curated	a	bespoke	paired	dataset,	named	FT-SMALL.	
This	dataset	was	composed	of	clean	audio	extracts	from	the	5-hour	Librispeech	corpus	[19]	
mixed	with	 noise	 from	Musan-3	 [21].	 The	 deliberate	 variation	 in	 noise	 types	 between	 the	
paired	and	unpaired	datasets	supports	our	hypothesis:	simulated	paired	data	won’t	perfectly	
mimic	real-world	unpaired	samples.	Our	evaluation	was	conducted	using	a	2	hours	long	test	
dataset	 that	 included	 clean	 speeches	 from	eight	unique	 speakers,	 each	blended	with	noises	
from	Musan-1.	Notably,	these	speakers	were	distinct	from	those	featured	in	both	the	FT-SMALL	
and	 the	 pre-training	 dataset.	 For	 both	 Musan-1,	 Musan-2	 and	 Musan-3,	 we	 used	 an	 equal	
division	of	the	complete	Musan	dataset	[21].	
	
For	our	training	set,	we	cut	the	utterances	into	2-second	segments.	But	for	the	test	set,	we	didn’t	
make	any	cuts,	so	the	lengths	vary.	We	used	a	Hamming	window	with	a	25	ms	window	length	
(equivalent	to	400-point	FFT)	and	a	hop	size	of	200	points.	In	the	generator,	we	set	the	number	
of	resolution-former	blocks,	N,	to	2	and	the	channel	number,	C,	to	64.	When	training,	we	used	
the	AdamW	optimizer	[22]	for	both	the	generator	and	the	discriminator	and	trained	them	for	
10	 epochs.	 The	 learning	 speed,	 or	 rate,	 was	 set	 at	 0.0005	 for	 the	 generator	 and	 the	
discriminator.	We	also	adjusted	the	learning	rate	as	we	went,	reducing	it	by	half	every	2	epochs.		
	
To	evaluate	the	quality	of	the	denoised	speech,	we	picked	a	range	of	standard	metrics.	We	used	
PESQ,	which	has	a	score	range	from	-0.5	to	4.5.	We	also	used	a	set	of	metrics:	(1)	prediction	for	
signal	distortion	(CSIG);	(2)	background	noise	intrusiveness	(CBAK);	(3)	overall	speech	quality	
(COVL)	[23].	All	these	MOS-based	scores	range	from	1	to	5.	For	judging	how	clear	the	speech	
sounds,	we	used	STOI,	which	 scores	between	0	 and	1.	 For	 all	 these	metrics,	 a	higher	 score	
means	better	speech	quality.		
	
3.2.	 Results	

	
Table	1:	Comparisons	between	the	proposed	method	and	other	supervised	fine-tuned	models	
initialized	by	state-of-the-	art	unsupervised	methods.	Selected	SNR	in	test	data	ranges	from	0dB	
to	15	dB.		

	
	

Method Fine-tuning data Test data
PESQ SDR CSIG CBAK COVL

CycleGAN 1.58 12.1 2.17 2.63 1.83
NETT 1.64 12.5 2.26 2.71 1.91
NyTT 1.59 12.1 2.13 2.63 1.81
M-4 1.52 12.4 2.32 2.61 1.87

Proposde model 1.91 12.7 2.82 2.68 2.12

Evaluation metrics

FT-SMALL TEST-MUSAN1
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We	compared	our	results	with	established	methods	such	as	CycleGAN	[4],	NeTT	[24],	NyTT	
[25],	and	M-4	[9],	drawing	data	from	the	study	[9].	The	comparative	findings	can	be	seen	in	
Table	 1.	 Our	 method	 generally	 outperformed	 other	 state-of-the-art	 (SOTA)	 techniques,	
especially	with	unseen	data.	This	suggests	that	the	initial	settings,	achieved	through	our	unique	
pre-training	strategy,	significantly	enhance	the	performance	of	the	speech	enhancement	model	
during	 the	 subsequent	 fine-tuning	 phase.	 Additionally,	 our	 approach	 expedited	 the	model’s	
convergence	 speed.	 For	 instance,	 a	 model	 with	 a	 modest	 2.94	 M	 parameters	 neared	
convergence	in	just	10	epochs	without	compromising	its	efficacy.	To	validate	the	effectiveness	
of	our	design	choices,	we	conducted	an	ablation	study,	the	results	of	which	are	detailed	in	Table	
2.		
	
Table	 2.	 Ablation	 experiment	 comparisons	 among	 the	 proposed	method	 based	 on	 different	
training	data.	Selected	SNR	in	test	data	ranges	from	0dB	to	15dB.		

	
	
Our	baseline	model	was	structurally	identical	to	the	proposed	model,	with	one	key	difference:	
instead	of	incorporating	a	pre-training	step,	it	was	trained	directly	using	the	fine-tuning	data	
set.	 Furthermore,	 we	 introduced	 a	 variant	 termed	 𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑_𝑚𝑜𝑑𝑒𝑙_𝐵 which	 omits	 the	
𝑆𝑐𝑜𝑟𝑒=>7?&7(8A 	loss	function	during	the	fine-tuning	phase.	For	generating	unpaired	pretraining	
data,	we	utilized	all	speech	samples	from	ICASSP	DNS3	and	combined	them	with	noise	from	
NoiseX-92	 and	 Musan-2.	 Our	 findings	 reveal	 that,	 despite	 having	 identical	 structural	
configurations,	 the	 proposed	 model	 outperforms	 the	 baseline,	 underscoring	 its	 enhanced	
robustness	and	superior	ability	to	generalize	to	new,	unseen	data.	This	improvement	is	likely	
attributable	to	the	initial	weight	configuration	derived	from	the	pre-	training	phase.	It’s	also	
noteworthy	 that	 augmenting	 the	 volume	 of	 fine-tuning	 data	 significantly	 bolstered	 the	
proposed	 model’s	 performance.	 Importantly,	 the	 implementation	 of	 𝑆𝑐𝑜𝑟𝑒=>7?&7(8A 	
demonstrated	a	remarkable	enhancement,	particularly	in	terms	of	the	PESQ	and	STOI	metrics,	
indicating	its	efficacy	in	the	overall	model	architecture.	When	we	draw	a	comparison	between	
the	results	presented	 in	Table	1	and	Table	2,	a	notable	observation	emerges.	Our	proposed	
model,	which	employs	a	combined	training	approach,	significantly	outperforms	the	baseline	
model,	 even	 though	 both	 utilize	 the	 same	 fine-tuning	 dataset.	 This	 highlights	 the	 critical	
importance	of	weight	initialization	through	pre-training	in	enhancing	the	overall	efficacy	of	the	
model.	It	effectively	addresses	the	challenge	posed	by	the	scarcity	of	real-world	paired	data	and	
substantially	narrows	the	disparity	between	simulated	data	and	actual	real-world	scenarios.	
Furthermore,	 this	 comparison	 validates	 the	 superior	 performance	 of	 our	 proposed	 model	
under	conditions	involving	real-world,	unseen	data.		
	
Additionally,	we	conducted	a	subjective	experiment	to	assess	the	real-world	performance	of	
our	 proposed	model	 by	 evaluating	 the	 clarity	 of	 enhanced,	 noisy,	 and	 pure	 speech	 among	
various	participant	groups.	Using	the	 ’Librispeech’	speeches	and	environmental	noises	 from	
public	areas,	participants	were	divided	based	on	hearing	ability	(hearing-impaired	or	over	60)	
and	English	proficiency	(native	or	non-native	speakers).	The	evaluation	comprised	two	parts:	
first,	a	“Listening	and	Repeating”	task	where	participants	echoed	heard	speech,	and	second,	a	
“Scoring	 Speech	 Quality”	 task	 where	 they	 rated	 speech	 quality.	 Results	 combined	
“Word_Right_Rate”	(WRR)	and	“Speech_Quality_Score”	(SQS)	to	accommodate	comprehension	
differences	 among	 non-native	 English	 speakers	 and	 the	 general	 challenge	 of	 accurately	
reproducing	speech.		
	

Method Test Data
Speech (Librispeech) Noise PESQ STOI CSIG CBAK COVL

Baseline train-clean-100 NoiseX-92 1.41 0.86 2.33 2.54 2.05
Proposed Model train-clean-100 NoiseX-92 1.64 0.91 2.44 2.59 2.17

Baseline train-clean-100 + dev-clean NoiseX-92+Musan3 1.89 0.89 2.89 2.58 2.37
Proposed Model train-clean-100 + dev-clean NoiseX-92+Musan3 2.01 0.95 3.2 2.62 2.55

Fine-tuning Data

TEST-MUSAN1

Evaluation Metrics
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Table	3:	The	subjective	experiment	result	and	bold	shows	the	average	scores.	There	are	totally	
11	participants	joining	in	this	experiment.	5	native	English	speakers	as	well	as	6	non-	native	
English	 speakers.	 5	 participants	with	 hearing	 impaired	 or	 aged	 over	 60	 and	 6	 participants	
without	hearing	impaired	and	aged	under	60.		

	
	

	
	

Figure	2:	The	summary	of	Table	3,	the	participants	order	remains	unchanged.		
	
Based	on	the	collected	data	(expressed	in	Table	3	and	Figure	3),	the	model	notably	increased	
the	“Word_Right_Rate”	and	“Speech_Quality_Score”	for	the	hearing-impaired	and	elderly	(over	
60),	with	average	 rates	 jumping	 from	49.5%	to	71.55%	and	37.5%	to	63%	respectively	 for	
enhanced	speech.	This	underscores	the	model’s	potential	in	aiding	auditory	challenges	in	these	
demographics.	 Both	 native	 and	 non-native	 English	 speakers	 experienced	 improved	
comprehension	and	quality	with	enhanced	speech,	regardless	of	their	English	proficiency.	This	
universal	 benefit	 highlights	 the	 model’s	 wide	 applicability	 across	 different	 listener	
backgrounds.	Overall,	 the	model	demonstrated	a	significant	boost	 in	“Speech_Quality_Score”	
across	 all	 listener	 categories,	 indicating	 its	 general	 effectiveness	 in	 enhancing	 speech	
perception	in	various	contexts.	The	“Word_Right_Rate”	improvement	across	all	demographics	
illustrates	the	model’s	capacity	not	only	to	enhance	speech	quality	but	also	to	make	content	
more	understandable,	vital	in	critical	communication	situations.		
	

Native English Speaker Hearing Impaired or Aged over 60 Noisy_speech Enhanced_speech Pure_speech Noisy_speech Enhanced_speech Pure_speech
No No 55.64% 68.23% 74.94% 37.50% 73.75% 93.40%
No No 53.66% 65.40% 70.20% 44% 75% 100%
No No 38.72% 50.07% 62.06% 21.33% 66.36% 100%
No No 40.44% 51.64% 55.53% 21.25% 65.55% 91.43%
No No 48.52% 54.39% 61.02% 32% 68.33% 89.17%
Yes Yes 39.33% 59.41% 66.20% 36.56% 80% 98.89%
Yes Yes 45.88% 56.47% 83.20% 38.75% 52.22% 86.96%
Yes Yes 71.57% 80.66% 88.74% 40.70% 50.90% 92.70%
Yes Yes 65.30% 82.98% 90.07% 52.22% 63.08% 98%
Yes No 64.57% 77.21% 84.70% 43.33% 55.56% 99.13%
No Yes 42.97% 54.81% 61.11% 33.33% 64.44% 100%

Participant Word_Right_Rate Speech Quality Score
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4.		 Conclusion	
	
In	 this	 study,	 we	 introduce	 a	 cutting-edge	 speech	 enhancement	 technique	 designed	 to	
effectively	 bridge	 the	 gap	 between	 simulated	 speech	 and	 real-world	 scenarios.	 This	 is	
particularly	crucial	in	contexts	where	obtaining	genuine	pairs	of	clean	and	corresponding	noisy	
speech	is	challenging.	Our	technique	begins	with	a	hybrid	approach,	leveraging	unpaired	noisy	
speech	 for	 unsupervised	 pre-training	 and	 paired	 noisy/clean	 speech	 for	 supervised	 fine-
tuning.	We	further	innovate	by	integrating	an	attention	mechanism	with	contrastive	learning	
strategies,	 enabling	 our	model	 to	 adeptly	 capture	 both	 long-range	 and	 immediate	 features	
across	the	time	and	frequency	dimensions.		
	
Further	distinguishing	our	method	is	the	inclusion	of	a	metric	discriminator,	which	refines	non-
differentiable	evaluation	scores	and	mitigates	metric	mismatches.	Our	extensive	experiments	
validate	 the	model’s	 superior	performance	and	adaptability	across	various	noise	 conditions	
and	 speech	 enhancement	 tasks.	 Through	 our	 comprehensive	 experiments,	we	 demonstrate	
that	our	method	not	only	elevates	system	performance	and	speech	quality	but	also	exhibits	
remarkable	adaptability	when	applied	to	various	speech	enhancement	techniques.	Crucially,	it	
shows	exceptional	resilience	against	unfamiliar	noises	and	distortions,	a	claim	substantiated	
by	 our	 detailed	 ablation	 study.	 This	 robustness	 is	 pivotal	 for	 applications	 in	 real-world	
scenarios,	where	the	divergence	between	simulated	and	actual	noisy	conditions	is	a	significant	
challenge.		
	
Subjectively,	 our	 model	 markedly	 improves	 speech	 clarity	 and	 intelligibility,	 benefiting	
listeners	of	diverse	ages,	hearing	abilities,	and	English	proficiency	levels.	These	advancements	
indicate	our	model’s	vast	potential	in	enhancing	speech	quality	across	numerous	applications.	
Ongoing	and	future	efforts	aim	to	further	refine	and	extend	these	promising	capabilities.		
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