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Abstract—The performance of offset-quadrature-amplitude-
modulated filter bank multi-carrier (FBMC/OQAM) waveform
based on massive multiple-input multiple-output (MIMO) sys-
tems is investigated considering not only the transceiver’s classic
metrics, but also the health concerns associated with exposure
to electromagnetic fields (EMF). Closed-form expressions are
obtained for the lower-bounds on the uplink spectral efficiency
(SE) for FBMC/OQAM-based Massive MIMO systems with
both the maximum ratio combiner (MRC) and zero-forcing
(ZF) receivers, in the face of realistic imperfect channel state
information (CSI). Subsequently, by employing our closed-form
SE expressions, a framework is developed for maximizing the
global energy efficiency (GEE) of the proposed FBMC/OQAM-
based system subject to both power and EMF exposure con-
straints. A nested quadratic-transform (NQT)-based approach
is proposed next for maximizing the non-convex GEE objective
by first approximating it as a concave-convex function and
then by applying the quadratic transform. Subsequently, a low-
complexity iterative algorithm is developed that sequentially
applies the Lagrangian dual transform, quadratic transform and
Dinkelbach’s transform to obtain a closed-form solution of the
GEE optimization problem formulated. Our simulation results
verify the analytical SE expressions and also demonstrate the
improved GEE of the proposed FBMC-based massive MIMO
systems subject to the EMF exposure limits.

Index Terms—multi-carrier modulation, FBMC/OQAM, in-
trinsic interference, EMF exposure, massive MIMO, energy effi-
ciency, nested quadratic-transform, Lagrangian dual transform.

I. INTRODUCTION

Offset-quadrature-amplitude-modulation-based filter bank

multicarrier (FBMC/OQAM) signaling is one of the candidate

waveforms for next-generation wireless systems [1]. The main

difference between FBMC/OQAM and the popular orthogonal
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frequency division multiplexing (OFDM) waveform lies in

the choice of the synthesis and analysis filters used at the

transmitter and receiver, respectively [2]. Contrary to OFDM,

FBMC/OQAM employs bespoke frequency-time (FT) filters

for subcarrier shaping, which make it resilient to both time

and frequency dispersions [3]. As a result, FBMC/OQAM

results in significantly lower out-of-band (OOB) leakage in

comparison to OFDM that shapes each of its subcarriers

using a rectangular time-domain pulse having a sinc-shaped

spectrum [4]. Moreover, FBMC/OQAM signals do not require

guard interval, i.e., cyclic prefix, which improves their spec-

tral efficiency (SE) [5]. Due to the above-mentioned proper-

ties, FBMC/OQAM waveform has been extensively studied

in conjunction with single-input single-output (SISO) [5],

[6], multiple-input multiple-output (MIMO) [7]–[12], massive

MIMO [13]–[21] and millimeter wave [22] technologies.

The authors of [3] demonstrated the superiority of the

FBMC waveform in comparison to the OFDM waveform

using both simulations and real-world test-bed results. Since

FBMC/OQAM obeys only real-domain orthogonality, it is

vulnerable to interference in the imaginary domain, which

termed intrinsic interference. This renders channel estimation

and equalization of FBMC/OQAM challenging. To address

this, the interference approximation method (IAM) has re-

ceived extensive research attention toward the estimation of

the channel in FBMC/OQAM systems [7], [8]. The authors

of [23] proposed a novel approach for intrinsic interference

cancellation by enabling the transmission of QAM symbols in

an FBMC/OQAM system using the repeated frame structure.

Similarly, the authors of [6] proposed low-complexity symbol

reconstruction techniques based on the interference avoidance

method relying on dual pilot symbols.

Many solutions have been proposed in the literature to

mitigate the virtual interference in an FBMC waveform in

order for it to be seamlessly coupled with MIMO technology in

both uplink and downlink transmissions. These studies mainly

focused on i) MIMO-FBMC/OQAM systems [9]–[12]; and ii)

FBMC/QAM systems [24]. The authors of [11] proposed an

FFT-FBMC system that performs the IDFT and DFT opera-

tions at the transmitter and receiver, respectively, to render the

FBMC compatible with MIMO technology. Nissel et al., [9],

proposed a computationally efficient scheme for mitigating the

intrinsic interference arising in a MIMO-FBMC/OQAM sys-

tem by spreading symbols in the time domain via Hadamard

precoding matrix. Recently, the authors of [12], designed

MIMO schemes for FBMC/OQAM systems by designing
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the singular value decomposition (SVD)-and subband-based

precoding schemes by relying on repeated blocks with the

reverse arrangement of symbols at the transmitter. In ad-

dition, another variant of FBMC modulation, FBMC/QAM

has also gained research attention for its ability to mitigate

inherent interference and support MIMO transmission [24].

The FBMC/QAM system comprises two prototype filters, one

for even-numbered and the other for odd-numbered subcarrier

symbols. The intelligent combinations of these filters satis-

fies complex-domain orthogonality and, therefore, cancels the

intrinsic interference, which allows for the transmission of

complex-valued symbols [24].

The rapid technological advances in the field of wireless

networks along with the evolution of consumer electronics

technology have given rise to new applications, such as Ar-

tificial Intelligence (AI), Extended Reality, Internet of Things

(IoT) etc., which have lead to the proliferation of wireless

devices [25], [26]. These devices emit electromagnetic (EM)

radiation that poses a potential health risk to human users.

Hence, such devices must adhere to tight regulations to limit

the EM exposure level of users [27]. Needless to say, exposi-

tion to the EM field during the operation of wireless devices

is a critical issue for future wireless networks and has to be

investigated to address the safety concerns of users [28].

To this end, the specific absorption rate (SAR), which

expresses the absorbed power per unit mass of human tissues

in terms of the unit W/kg, has become a standard metric

for determining the EM exposure level in a frequency range

of 100 KHz - 10 MHz [29]. Various studies have been

conducted to assess the SAR to protect against adverse health

effects. The adverse effect of a high SAR value can be

seen as a rise in the temperature of the body part exposed.

Experimental investigations verify that exposure to intense

EM field, which results in 1 degree Celsius rise in body

temperature, leads to detrimental health impacts. The fac-

tors that influence the evaluation of the SAR value include

operating frequency, antenna design (type/size/number), di-

electric properties (homogeneous/heterogeneous) of body parts

(Head/Torso/Wrist/ankles), body-worn device vs handheld de-

vice and use case (Voice/Data/Machine-type communication),

etc [30]. The acceptable SAR limits have been widely stan-

dardized by regulatory bodies throughout the world, such as

the Federal Communications Commission (FCC) in the United

States (US) and the International Commission on Non-Ionizing

Radiation Protection (ICNIRP) in other parts of the world

[31]. The focus of this treatise is to investigate the spectral

and energy efficiency of FBMC-based massive MIMO systems

with a special emphasis on meeting the SAR constraints.

A. Review of existing works

The amalgamation of massive MIMO technology with the

FBMC waveform was first investigated in [13], which nu-

merically showed that multipath distortion can be avoided by

exploiting the self-equalization property of massive MIMO-

FBMC systems without the requirement of a flat fading chan-

nel at the individual sub-carrier level. Subsequently, Rotten-

berg et al., in [14] validated the characterized massive MIMO-

FBMC systems in their theoretical analysis. The authors of

[15] derived an analytical expression for the asymptotic signal-

to-interference-plus-noise-ratio (SINR) and demonstrated that

a single tap equalizer is unable to completely eliminate the

channel-induced dispersion in massive MIMO-FBMC systems.

Aminjavaheri et al. designed a novel prototype filter in [16], to

mitigate the residual inter-symbol interference (ISI) in FBMC-

aided massive MIMO systems. To further advance, the authors

of [17] explored the performance of a two-stage equalizer

designed for massive MIMO-FBMC systems employing re-

alistic imperfect channel state information (CSI). The authors

of paper [18] exploit Jensen’s inequality to derive the closed-

form expressions for the uplink sum-rates of massive MIMO-

FBMC systems. The authors of [20] designed a sophisticated

FBMC receiver for a multi-user (MU)-massive MIMO system

considering different channel impairments, and demonstrated

remarkable robustness against time/frequency offsets, which is

in stark contrast to its OFDM counterpart. More recently, QI

et al. [21] proposed a multi-stage equalization technique for

the design of a multi-tap equalizer for FBMC/OQAM-based

massive MIMO systems communicating over highly-frequency

selective channels. The contributions surveyed above show

that FBMC is well-suited for massive MIMO-aided next-

generation wireless systems.

Due to the recent exponential growth of wireless devices

and applications, it is now necessary to build energy-efficient

resource allocation algorithms for wireless networks. Conse-

quently, it is essential to investigate the energy efficiency (EE)

of the FBMC-based massive MIMO systems. The authors in

[32] investigated the EE of cognitive radio-inspired FBMC

networks. This work, however, did not consider the massive

MIMO-based design. Recently, the mitigation of EM exposure

has received significant attention in the design and analysis of

cellular systems [33]–[40]. In particular, research in this field

is classified into two categories: optimization of system perfor-

mance subject to the stringent regulatory guidelines to limit the

exposure [30], [33]–[35], [37], [39], [41] and minimizing the

total EM exposure, while maintaining the system performance

required [35], [36], [38], [40], [42]. The aim is to avoid the

health risks arising due to radio frequency (RF) radiation from

cellular networks, which can be accomplished by designing a

cellular network in compliance with EMF constraints [39],

[40]. The authors of [33] proposed an EE maximization tech-

nique for the uplink MU-MIMO system subject to both power

and SAR constraints per user. The authors of [34] have studied

the trade-off between SE and EE in the uplink of a MU-MIMO

system subject to specific SAR constraints. The authors of

[35] formulated an optimization framework for minimizing

the EMF exposure subject to specific quality of service (QoS)

constraints for tethered unmanned aerial vehicles (TUAVs).

The authors of [36] have investigated a machine learning-based

user clustering technique and proposed an EMF-aware power

allocation strategy for power domain non-orthogonal multiple

access (PD-NOMA) systems. More recently, Jiang et al., in

[37] developed an architecture constituted by a reconfigurable

intelligent surface (RIS) and a dynamic metasurface antenna-

assisted MU-MIMO system operating under SAR constraints.

Héliot and Brown [38] designed an MU-MIMO OFDM system

that minimizes the EM exposure of the users carrying wireless
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devices equipped with multiple antennas.

Our contributions are contrasted at a glance to the literature

in Table I. Observe that only a few treatises have investigated

the SE and EE of massive MIMO-FBMC systems analytically

[18], [32]. The authors of [18] derived analytical SE bounds

and evaluated the performance for an asymptotically large

number of base station (BS) antennas, an assumption that

does not hold in practice. The existing literature on FBMC-

based massive MIMO systems has not harnessed the use-and-

then-forget (UatF) procedure to develop SE bounds that are

valid for any number of BS antennas [43], [44, Theorem 4.4].

Furthermore, work in [32] is the only available treatise that

investigated the EE of FBMC systems and there is no existing

work that has investigated the EE of FBMC-based mas-

sive MIMO systems. In addition, the optimization of FBMC

waveform aided massive-MIMO systems under EM exposure

constraints has not been studied in the existing literature. In

view of the above knowledge-gaps in the existing literature,

this treatise aims for designing, analyzing and optimizing the

SE and EE of EMF-aware massive MIMO-FBMC systems. In

this context, the key contributions of this treatise are listed

below.

1) Exploiting the UatF bounding technique, closed-form

lower-bounds are derived on the uplink sum-rate for the

FBMC-based massive MIMO system considering both

the maximum ratio combiner (MRC) and the zero-forcing

(ZF) receivers relying on realistic imperfect CSI.

2) Next, the global energy efficiency (GEE) of the consid-

ered FBMC-based massive MIMO system is maximized

using the closed-form sum-rate expressions derived, sub-

ject to both user power and SAR constraints, with the

latter being invoked to prevent the harmful effect of EM

radiation. A nested quadratic-transform (NQT) technique

is developed to solve the above SAR-restricted GEE

optimization problem for FBMC-based massive MIMO

systems.

3) Subsequently, a low-complexity Lagrangian dual-

transform (LDT)-based iterative algorithm is proposed

for solving the above optimization problem, which is

seen to yield a closed-form solution. The computational

complexities of both the NQT and LDT-based

optimization techniques are explicitly determined,

which reveals that the complexity of the latter increases

only linearly with the number of users, rendering it

ideally suited for practical systems.

4) Finally, our simulation results verify the accuracy of the

closed-form SE expressions derived and also demonstrate

that the proposed optimal power allocation (OPA) yields

substantially higher GEE than the equal-power allocation

(EPA). Furthermore, the results also show that the opti-

mized GEE can meet the stringent limits imposed by the

ICNIRP for EMF exposure, which renders the FBMC-

based massive MIMO system eminently suitable for next-

generation wireless networks.

II. SYSTEM MODEL

Consider a single-cell multi-user massive MIMO system

based on the FBMC/OQAM waveform relying on M sub-

carriers. There are K-single antenna users in the cell, who

are simultaneously transmitting their signals to a BS equipped

with an array of N antennas. Let Ts denote the duration of the

QAM symbols ckm,n. Furthermore, let dkm,n represent the real

offset-QAM symbol transmitted by the kth user at the mth

subcarrier index and nth symbol time index in a rectangular

FT lattice. The OQAM symbols dkm,2n and dkm,2n+1, each of

duration Ts

2 , are generated by splitting the real and imaginary

parts of the complex-valued QAM symbols ckm,n with an offset

of Ts

2 as follows

dkm,2n =

{
ℜ
(
ckm,n

)
, if m is even

ℑ
(
ckm,n

)
, if m is odd,

dkm,2n+1 =

{
ℑ
(
ckm,n

)
, if m is even

ℜ
(
ckm,n

)
, if m is odd.

The transmitted OQAM symbols are assumed to be temporally

and spatially independent and identically distributed (i.i.d)

with average power E
[
dkm,n(d

k
m,n)

∗
]
= Pk. This also implies

that E
[
ckm,n(c

k
m,n)

∗
]
= 2Pk. The uplink channel between the

BS and users is considered to be quasi-static and constant over

an interval of T = TcBc, where Tc and Bc are the channel’s

coherence time and coherence bandwidth, respectively [48].

The coherence interval T is comprised of the training duration

τp and data duration τd = T−τp. The next sub-section presents

the data transmission model followed by the proposed channel

estimation technique.

A. Data transmission model

In the data transmission period, the lth sample of the

discrete-time baseband FBMC signal for the kth user is

expressed as [17]

sk
[
l
]
=

M−1∑

m=0

∑

n∈Z

dkm,nχm,n

[
l
]
, (1)

where χm,n

[
l
]

represents the FBMC signalling pulse defined
as

χm,n

[
l
]
= p
[
l − n

M

2

]
ejφm,ne

j2πml
M . (2)

The variable p
[
l
]

denotes the impulse response of a symmetric
real-valued prototype filter of length Lp = koM with ko
being the number of adjacent FBMC/OQAM symbols that

overlap in the time domain (TD). This is in contrast to

OFDM systems, wherein the symbols do not overlap in the

TD due to using rectangular pulse shaping filters of length

equal to the OFDM symbol duration. In an FBMC system,

the length of the prototype filter is higher than that of the

symbol interval, which can therefore shape each subcarrier by

a prototype filter that is well localized in the FT domain. The

term φm,n = π
2 (m + n) − πmn in (2) is the phase factor

introduced between adjacent subcarriers and adjacent symbols

to guarantee real-domain orthogonality between the FBMC

basis functions [15]. The cross-correlation between the two

basis functions ξm̄,n̄
m,n =

∑∞
l=−∞ χm,n

[
l
]
χ∗

m̄,n̄

[
l
]
, defined

over the FT lattice points (m,n) and (m̄, n̄), can be expressed

as follows:

ξm̄,n̄
m,n =

{
1, if

(
m,n

)
=
(
m̄, n̄

)

Imaginary, if
(
m,n

)
6=
(
m̄, n̄

)
.

(3)

The result in (3) implies that ℜ
{
ξm̄,n̄
m,n

}
= δm,m̄δn,n̄, where
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Table I: Contrasting our contributions to the literature.

[5], [6] [13]–[15] [18] [17], [21] [45], [46] [32] [47] Proposed

FBMC/OQAM X X X X X X X X

Massive-MIMO X X X X X

Channel Estimation X X X X

EMF Exposure X

Spectral Efficiency (SE) X X X X X

Closed-form SE X X

Energy Efficiency Optimization X X

the term δm,m̄ = 1 for m = m̄ and 0 for m 6= m̄. The signal

received on the rth antenna at the BS can be written as

yr[l] =

K∑

k=1

(
sk[l] ∗ gr,k[l]

)
+ ηr[l], (4)

where gr,k(l), for l = 1, 2, · · · , Lh − 1, denotes the impulse
response of the Lh tap frequency selective channel between

the kth user and rth antenna of the BS. The scalar ηr[l]
is the additive white Gaussian noise (AWGN) at the rth

antenna which follows the CN (0, σ2
η) distribution. To detect

the symbol transmitted at the index {m̄, n̄}, yr[l] in (4) is

matched with the FBMC basis function χm̄,n̄ as

yrm̄,n̄ =
∞∑

l=−∞

yr[l]χ
∗
m̄,n̄[l]. (5)

Assuming that the maximum delay spread Lh is considerably

lower than the FBMC symbol interval Ts, as is typically

the case, it follows that p
[
l − nM

2 − τ
]
≈ p

[
l − nM

2

]
, for

τ = 0, 1, · · · , Lh − 1 [5]. Consequently, the prototype filter

varies slowly within the maximum channel delay spread. Thus,

similar to [14], (5) can be written as

yrm̄,n̄ =

K∑

k=1

Gr,k
m̄

(
dkm̄,n̄+

∑
(
m,n
)
6=
(
m̄,n̄
)
Gr,k

m

Gr,k
m̄

dkm,nξ
m̄,n̄
m,n

︸ ︷︷ ︸
Intrinsic Interference

)
+ηrm̄,n̄, (6)

where Gr,k
m̄ represents the channel’s frequency response (CFR)

between the kth user and the rth BS antenna at the m̄th sub-

carrier, which is expressed as Gr,k
m̄ =

∑Lh−1
τ=0 gr,k[τ ]e

−j2πm̄τ
M .

The term ηrm̄,n̄ =
∑∞

l=−∞ ηr[l]χ
∗
m̄,n̄[l] denotes the filtered

version of the complex noise received at the rth BS antenna.

The total interference at the receiver is comprised of the

ISI and the inter-carrier interference (ICI) at the point (m̄, n̄)
in the FT lattice. Thanks to the well-localized FT prototype

FBMC filter, only the first-order neighbor points of (m̄, n̄)
within the FT lattice contribute significantly to the total

interference, since the quantity ξm̄,n̄
m,n is negligible outside this

first order neighborhood [5]. Additionally, the CFR is assumed

to be constant over the first-order neighbor points of the FT

lattice, which implies Gr,k
m̄ ≈ Gr,k

m . By exploiting the above

properties, (6) can be simplified to

yrm̄,n̄ =

K∑

k=1

Gr,k
m̄ bkm̄,n + ηrm̄,n̄, (7)

where bkm̄,n̄ = dkm̄,n̄ + jIkm̄,n̄ is the virtual symbol corre-
sponding to the kth user with its imaginary part representing

the intrinsic interference Ikm̄,n̄ =
∑(

m,n
)
6=
(
m̄,n̄
) dkm,nξ

m̄,n̄
m,n

[15]. The average power of the virtual symbol is expressed

as E
[
bkm,n

(
bkm,n

)∗] ≈ 2Pk [18]. By concatenating the signals

from all the received antennas at the BS, the vector represen-

tation of the FBMC/OQAM signal model is expressed as

ym̄,n̄ = Gm̄bm̄,n̄ + ηm̄,n̄, (8)

where the entries of the vector ym̄,n̄ =[
y1m̄,n̄, y

2
m̄,n̄, · · · , yNm̄,n̄

]T ∈ C
N×1 represent the received

signal across all the BS antennas and the (r, k)th element

of the matrix Gm̄ is denoted by Gr,k
m̄ . The matrix

Gm̄ = Hm̄D1/2 =
[
g1
m̄,g2

m̄, · · · ,gK
m̄

]
∈ C

N×K is the

uplink channel between the BS and users, where Hm̄

accounts for the small-scale fading having i.i.d elements

and following the CN (0, 1) distribution. Furthermore, the

diagonal matrix D = diag(β1, β2, · · · , βK) accounts for

the large-scale fading component [44]. The elements of the

vector bm̄,n̄ =
[
b1m̄,n̄, b

2
m̄,n̄, · · · , bKm̄,n̄

]T ∈ C
K×1 denote

the virtual symbols of all the K users. The noise vector

ηm̄,n̄ =
[
η1m̄,n̄, η

2
m̄,n̄, · · · , ηNm̄,n̄

]T ∈ C
N×1 at the BS follows

the distribution CN (0, σ2
ηIN ).

To detect the kth user signal, the BS combines its received

signal ym̄,n̄ using the linear combiner wk
m̄. In this section, the

BS is assumed to estimate the channel matrix Gm̄ and then

uses it to design the receive combiner (RC) wk
m̄. The vectors

ĝk
m̄ and ekm̄ denote the estimated version of gk

m̄ and the channel

estimation error, respectively. Upon exploiting gk
m̄ = ĝk

m̄+ekm̄,

the equivalent received signal after applying the RC in (8) can

be expressed as

(
wk

m̄

)H
ym̄,n̄ =

(
wk

m̄

)H
ĝk
m̄bkm̄,n̄ +

K∑

j=1
j 6=k

g̃jm̄bjm̄,n̄

+
K∑

j=1

ẽjm̄bjm̄,n̄ + η̃m̄,n̄, (9)

where g̃jm̄ = (wk
m̄)H ĝ

j
m̄, ẽjm̄ = (wk

m̄)He
j
m̄ and η̃m̄,n̄ =

(wk
m̄)Hηm̄,n̄. The estimated version of the OQAM transmitted

signal for the kth user, over index (m̄, n̄) at the receiver, can

be expressed as

d̂km̄,n̄=ℜ{
(
wk

m̄

)H
ym̄,n̄}=ℜ

{(
wk

m̄

)H
ĝk
m̄bkm̄,n̄

}
+ ϑk

m̄,n̄, (10)

where the first and second terms in (10) represent the desired

and interference-plus-noise signal at the receiver, respectively.

The expression ϑk
m̄,n̄ = ℜ

{∑K
j=1
j 6=k

g̃jm̄bjm̄,n̄ +
∑K

j=1 ẽ
j
m̄bjm̄,n̄ +

η̃m̄,n̄

}
represents the combined effect of multi-user inter-

ference, channel estimation error and AWGN noise at the

receiver.
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Fig. 1: FBMC/OQAM frame structure for the kth user

B. Channel estimation

Since the basis functions of FBMC/OQAM systems are

only orthogonal in the real-domain, the procedure of channel

estimation is different from that of OFDM, owing to the

associated intrinsic interference [49]. This section determines

the MMSE estimate of the CFR matrix Gm̄. It can be readily

observed from (8) that to estimate the N × K CFR matrix

Gm̄, each user is required to transmit at least K non-zero

pilot symbols. The frame structure of each user is shown

in Fig. 1. Let L = (z + 1)K + D denote the number of

symbols transmitted by each user at each subcarrier, where K
denotes the number of training symbols and D is the number

of data symbols. In contrast to OFDM, the adjacent FBMC

symbols overlap with each other in the TD because of the

overlapping nature of the prototype filter. Hence, z zeros are

placed between the adjacent training symbols to mitigate the

ISI [49].

For channel estimation, (8) is evaluated at the pilot locations

n̄ = 0, (z + 1), · · · , (z + 1)(K − 1) and the corresponding

observation vectors ym̄,0,ym̄,(z+1), · · · ,ym̄,(K−1)(z+1)

are collected in the observation matrix Ym̄ =[
ym̄,0,ym̄,(z+1), · · ·ym̄,(z+1)(K−1)

]
∈ C

N×K , which is

expressed as
Ym̄ = Gm̄Bm̄ + ηm̄, (11)

where ηm̄ = [ηm̄,0,ηm̄,(z+1), · · · ,ηm̄,(z+1)(K−1)] ∈ C
N×K

represents the noise matrix. The pilot matrix is represented as

Bm̄ = [b̃1
m̄, b̃2

m̄, · · · , b̃K
m̄]T , where (b̃k

m̄)T denotes the pilot

vector for the kth user so that we have (b̃k
m̄)T (b̃j

m̄)∗ = Pp

for j = k and it is equal to 0 for j 6= k, because Bm̄ is the

orthogonal, i.e, we have Bm̄BH
m̄ = PpIK [50]. To estimate

the channel vector gk
m̄ of the kth user at the m̄th subcarrier,

the output matrix Ym̄ is multiplied by
(
b̃k
m̄

)∗
to obtain yk

m̄ ∈
C

N×1 as shown below

yk
m̄ = Ym̄

(
b̃k
m̄

)∗
= Ppg

k
m̄ + ηk

m̄, (12)

where gk
m̄ = (βk)

1

2hk
m̄ and ηk

m̄ = ηm̄(b̃k
m̄)∗ upon using

(12), the MMSE channel estimate of gk
m̄ is derived as [50]

ĝk
m̄ = Rgk

m̄yk
m̄
R−1

yk
m̄yk

m̄

yk
m̄, where Rgk

m̄yk
m̄

= PpβkIN and

Ryk
m̄yk

m̄
= (Pp

2βk + ppση
2)IN are the cross-covariance

and auto-covariance matrices. By exploiting these properties,

the channel estimate for the kth user can be obtained as

ĝk
m̄ = βk

(Ppβk+ση
2)y

k
m̄. The covariance matrices of the chan-

nel estimate ĝk
m̄ and the estimation error ekm̄ are calculated

as E
[
ĝk
m̄(ĝk

m̄)H
]

=
Pp(βk)

2

(Ppβk+ση
2)IN and E

[
ekm̄(ekm̄)H

]
=

βkσ
2

η

(Ppβk+ση
2)IN .

III. ACHIEVABLE SPECTRAL EFFICIENCY

This section derives the closed-form SE expressions charac-

terizing the FBMC/OQAM uplink of massive MIMO systems.

The expressions derived are applicable for any number of BS

antennas and depend only on the large-scale characteristics.

This helps the system designer calculate the SE without the

need to perform time consuming system level simulations. To

begin with, the uplink ergodic SE expressions are explicitly

determined for the MRC and ZF receivers.

1) MRC receiver

For the MRC combiner vector wk
m̄ = ĝk

m̄ in (10)

that is constructed using the estimated CSI, the esti-

mate of the transmitted OQAM signal of the kth user

at the (m̄, n̄) index can be expressed as d̂km̄,n̄ =

ℜ{(ĝk
m̄)Hym̄,n̄} = ℜ{‖ĝk

m̄‖2bkm̄,n̄} + ϑk,MRC
m̄,n̄ , where

ϑk,MRC
m̄,n̄ = ℜ{∑K

j=1
j 6=k

(ĝk
m̄)H ĝ

j
m̄bjm̄,n̄ +

∑K
j=1(ĝ

k
m̄)He

j
m̄bjm̄,n̄ +

(ĝk
m̄)Hηm̄,n̄} represents the interference-plus-noise at the re-

ceiver. The uplink ergodic SE achieved with MRC combining

at the BS can be expressed as

RMRC
m̄ =

τd
T

K∑

k=1

E
[
log2

(
1 + SINRMRC

m̄,k

)]
, with (13)

SINRMRC
m̄,k =

Pk

∥∥ĝk
m̄

∥∥4
K∑
j=1
j 6=k

Pj

∣∣(ĝk
m̄

)H
ĝ
j
m̄

∣∣2+
K∑
j=1

Pj

∣∣(ĝk
m̄

)H
e
j
m̄

∣∣2+‖ĝk
m̄‖2

σ2
η

2

,

(14)

where SINRMRC
m̄,k denotes the SINR expression of the kth

user at the BS. The detailed steps of deriving the power of

ϑk,MRC
m̄,n̄ , which forms the denominator of (14), are provided

in Appendix A (refer to (42)). The pre-log factor τd
T in (13)

denotes the pilot overhead arising due to channel estimation.

2) ZF receiver

The output signal upon applying the ZF combiner ma-

trix Wk
m̄ = (Ĝ†

m̄)H = Ĝm̄(ĜH
m̄Ĝm̄)−1 ∈ C

N×K can

be expressed as Ĝ
†
m̄ym̄,n̄ = bm̄,n̄ + Ĝ

†
m̄Em̄bm̄,n̄ +

Ĝ
†
m̄ηm̄,n̄, where Ĝm̄ =

[
ĝ1
m̄, ĝ2

m̄, · · · , ĝK
m̄

]
∈ C

N×K and

Em̄ =
[
e1m̄, e2m̄, · · · , eKm̄

]
∈ C

N×K represent the chan-

nel estimate and channel estimation error matrices, respec-

tively. The estimate of the OQAM signal vector dm̄,n̄ =[
d1m̄,n̄, d

2
m̄,n̄, · · · , dKm̄,n̄

]T ∈ C
K×1 at the BS can be expressed

as d̂m̄,n̄ = ℜ{Ĝ†
m̄ym̄,n̄} = dm̄,n̄ + ϑZF

m̄,n̄, where the vector

ϑZF
m̄,n̄ = ℜ{Ĝ†

m̄Em̄bm̄,n̄ + Ĝ
†
m̄ηm̄,n̄} ∈ C

K×1 represents the

interference-plus-noise vector at the BS. The ergodic uplink

SE, therefore, is given by

RZF
m̄ =

τd
T

K∑

k=1

E
[
log2

(
1 + SINRZF

m̄,k

)]
, with (15)
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SINRZF
m̄,k =

Pk



[
(ĜH

m̄Ĝm̄)−2

]

k,k

(
(ĝk

m̄)H




K∑

j=1

Pje
j
m̄(ejm̄)H


̂gk

m̄

)

+

[
(ĜH

m̄Ĝm̄)−1

]

k,k

σ2
η

2





,

(16)

where SINRZF
m̄,k denotes the SINR expression of the kth user

at the BS. The detailed derivation of the covariance matrix

of ϑZF
m̄,n̄, which is required for obtaining (16), is provided in

Appendix B (refer to (44)). Note that due to the expectation

operator outside the logarithm, it is difficult to further simplify

the SE expressions in (13) and (15). Exploiting the UatF bound

[44], a closed-form expression for the proposed FBMC-based

massive MIMO system has been derived, which holds for an

arbitrary number of BS antennas. To achieve this aim, (9) can

be re-written as follows

(
wk

m̄

)H
ym̄,n̄=E

[(
wk

m̄

)H
gk
m̄

]
bkm̄,n̄+

((
wk

m̄

)H
gk
m̄−E

[(
wk

m̄

)H
gk
m̄

])
bkm̄,n̄

+

K∑

j=1
j 6=k

(
wk

m̄

)H
g
j
m̄bjm̄,n̄+

(
wk

m̄

)H
ηm̄,n̄. (17)

The received signal in (10) can be expressed as

d̂km̄,n̄ = ℜ
{(

wk
m̄

)H
ym̄,n̄

}

= ℜ
{
E
[(
wk

m̄

)H
gk
m̄

]
bkm̄,n̄

}
︸ ︷︷ ︸

Desired Signal

+ ϑ
k

m̄,n̄︸ ︷︷ ︸
Effective Noise

,

where

ϑ
k

m̄,n̄=ℜ
{((
wk

m̄

)H
gk
m̄−E

[(
wk

m̄

)H
gk
m̄

])
bkm̄,n̄

}
︸ ︷︷ ︸

Beamforming Uncertainty

+ℜ
{ U∑

j=1
j 6=u

(
wk

m̄

)H
g
j
m̄bjm̄,n̄

}

︸ ︷︷ ︸
Multi-user interference

+ℜ
{(

wk
m̄

)H
ηm̄,n̄

}
︸ ︷︷ ︸

Noise

. (18)

The desired signal term and all the other terms of the effec-

tive noise ϑ
k

m̄,n̄ can be shown to be uncorrelated. For massive

MIMO systems, since the effective noise is comprised of the

sum of a large number of terms, upon invoking the central

limit theorem, it can be approximated by Gaussian noise [43].

The closed-form expressions derived next in Theorem 1 and

Theorem 2, provide a tight lower bound on the ergodic SE, as

shown numerically in Section V.

Theorem 1. The ergodic SE of an uplink FBMC/OQAM

system for a finite number of antennas at the BS, relying on the

MMSE channel estimate based MRC receiver (i.e. wk
m̄ = ĝk

m̄),

is lower-bounded as

R
MRC

m̄ =
τd
T

K∑

k=1

log2
(
1 + SINR

MRC

m̄,k

)
, with (19)

SINR
MRC

m̄,k=
Pk

∣∣E
[(
ĝk
m̄

)H
gk
m̄

]∣∣2




PkVar
[(
ĝk
m̄

)
Hgk

m̄

]
+

K∑

j=1
j 6=k

PjE
[∣∣(ĝk

m̄

)
Hg

j
m̄

∣∣2]

+ E
[
‖ĝk

m̄‖2
]σ2

η

2





,
NMRC

m̄,k (p)

DMRC
m̄,k (p)

.

(20)

where SINR
MRC

m̄,k denotes the SINR expression for the kth user

at subcarrier index m̄ and can be obtained by using (18), with

wk
m̄ = ĝk

m̄. The vector p is the collection of power variables[
p1, p2, · · · , pK

]
for all the users.

Proof. The detailed derivation of the above expression is

provided in Appendix C (refer to (49)). Unlike the SINRMRC
m̄,k

in (14), the terms of SINR
MRC

m̄,k in (20) are statistical quantities

that can be derived in closed-form. The detailed procedure of

deriving the closed-form expression of SINR
MRC

m̄,k is given in

Appendix C.

Theorem 2. The ergodic SE of an uplink FBMC/OQAM

system for a finite number of antennas at the BS, relying on

the MMSE channel estimate based ZF receiver (i.e. Wk
m̄ =

(Ĝ†
m̄)H = Ĝm̄(ĜH

m̄Ĝm̄)−1), is lower-bounded by

R
ZF

m̄ =
τd
T

K∑

k=1

log2
(
1 + SINR

ZF

m̄,k

)
, with (22)

SINR
ZF

m̄,k =
Pk




( K∑

j=1

PjE
[
ejm̄(ejm̄)∗

]
+

σ2
η

2

)

× E
[
{(ĜH

m̄Ĝm̄)−1}k,k
]





,
NZF

m̄,k(p)

DZF
m̄,k(p)

.

(23)

where SINR
ZF

m̄,k denotes the SINR of the kth user at subcarrier

index m̄.

Proof. The detailed derivation of the result in (23) is provided

in Appendix D (refer to (60)). Unlike (16), the terms of

SINR
ZF

m̄,k in (23) are statistical quantities. After further simpli-

fication, they result in the closed-form expression of SINR
ZF

m̄,k

for which the detailed procedure is shown in Appendix D.

IV. EMF AWARE GLOBAL ENERGY EFFICIENCY (GEE)

OPTIMIZATION

This section proposes an algorithm for maximizing the

GEE of an FBMC massive MIMO system. Furthermore, to

account for the health risks associated with EMF emissions,

the EMF exposure constraints are taken into consideration for

the energy-efficient design. The GEE, measured in bits/Joule,

is a network-centric metric that is defined as the fraction of

the network throughput (product of SE and bandwidth) to

the total power consumed [44]. Recall that the closed-form

SE expressions described in Theorem 1 and 2 only require

long-term statistics of the channel. The GEE can therefore be

formulated as

fGEE =

B × τd
T

K∑
k=1

log2
(
1 + SINR

∆

m̄,k

)

τd
T

∑K
k=1 υ

−1
PA,kPk +

τp
T

∑K
k=1 υ

−1
PA,kPp,k + Pc

. (24)
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Here B denotes the bandwidth, and the constant υPA,k ∈ (0, 1]
represents the power amplifier (PA) efficiency at the user.

The first and second terms in the denominator denote the

power consumption during the data transmission and channel

estimation phases, respectively, and the third term denotes the

total circuit power dissipation [44].

Power Consumption: The quantity Pc represents the circuit

power comprised of the power consumed by the analog

and digital circuitry of the transceiver. It is calculated as

Pc = PFIX +PTX +PCE +PSP [44]. The term PFIX denotes the

fixed component of the circuit power required for baseband

signal processing, controlling, and site-cooling. The term PTX

denotes the power consumed by the transceiver blocks and it

is expressed as PTX = PLO +NPBS +KPUE, where the terms

PLO, PBS and PUE denote the power required by the local

oscillator, the circuit connected to each antenna at the BS and

the user equipment, respectively. The remaining power terms

PSP and PCE, computed similarly to [44, sec. 5.4], denote

the power dissipated by the signal processing and channel

estimation modules at the user/BS, respectively.

Existing works on massive MIMO-FBMC system de-

sign [45], [46], allocate equal power to the users and do not

include the effect of electromagnetic exposure. By contrast,

this work maximizes the GEE considering both the transmit

power and SAR constraints, which ensure that there is no

health risk posed by EM radiation. Therefore, the optimization

problem to maximize the GEE can be formulated as

P1: Max
p

B × τd
T

K∑
k=1

log2
(
1 + SINR

∆

m̄,k

)

Ptot

(
p
) (25a)

s.t. 0 ≤ Pk ≤ Pmax
k , ∀k, (25b)

SARrefPk ≤ qk, ∀k. (25c)

The quantity Ptot

(
p
)

= τd
T

∑K
k=1 υ

−1
PA,kPk +

τp
τ υ−1

PA

∑K
k=1 Pp,k + Pc represents the total network power

consumption. The constraint in (25b) limits the transmit

power of each user to Pmax
k . The transmit power is also

restricted to limit the uplink EM exposure of the user by

imposing the SAR constraint in (25c), where {qk}Kk=1 and

{SARref}Kk=1 denote the SAR thresholds and the SAR

reference values, respectively [35], [39]. The scalars {qk}Kk=1,

measured in Watt/kg, limit the maximum allowed exposition

to EM radiation, as imposed by the regulatory agencies

(FCC, ICNIRP) [29], [31]. The quantities {SARref}Kk=1

measure the rate at which the EM energy is absorbed by

the human body per unit watt of transmitted power. This

work adopted the standard exposure model proposed in [30]

for the assessment of EMF exposure at each user device.

The above-said model takes into account various factors that

determine exposure, such as population age group, duration

of exposure, usage type (voice/data), exposed body part

(head for voice users, wrist/torso for data users), and network

type (Global System for Mobile Communications/Long-Term

Evolution/WiFi).

The GEE objective in P1 is a single-ratio fractional pro-

gram, with the numerator denoting the networks SE and the

denominator denoting the networks total power consumption.

It can be observed that the SE is the sum of the log-ratios

that are rational functions of the optimization variables, which

renders the aforementioned GEE maximization problem non-

convex. Consequently, it is challenging to solve P1, which

is further complicated by the constraints in (25b) and (25c).

In the next two sub-sections, novel techniques are proposed

relying on the nested quadratic transform and Lagrangian dual

transform (LDT) frameworks to attain the optimal solution of

the above GEE maximization problem. The NQT framework

applies a quadratic transform to recast the multiple ratio net-

work SE nested with a single-ratio GEE objective as quadratic

concave function. A fixed-point closed-form solution of the

GEE maximization problem is presented next using the LDT

framework.

A. GEE optimization via nested quadratic transform (NQT)

The QT framework is typically applied to problems com-

prising ratios of optimization variables, and it is based on

replacing the non-convex ratio terms in the original problem

by concave functions [51]. The QT was originally stated in

the following lemma [51, Corollary 2].
Lemma 1. Given a sequence of non-decreasing functions fk
and sequence of ratios Ak (x) /Bk (x) such that Ak (x) :
R

d → R+ and Bk (x) : Rd → R++ for k = 1, 2, · · · ,K,

the sum of the functions of the ratio problem is

Max
x

K∑

k=1

fk

(
Ak (x)

Bk (x)

)
s.t. x ∈ X .

The above optimization problem can, therefore, be equiva-

lently reformulated as

Max
x,y

K∑

k=1

fk

(
2yk
√

Ak (x)− y2kBk (x)

)

s.t. x ∈ X , yk ∈ R, for ∀k,
where x is an optimization variable, X is a convex set and y

is the collection of the auxiliary variables
{
y1, y2, · · · , yK

}

that decouple the numerator and denominator of the inner

ratio Ak (x) /Bk (x) of the original optimization problem.

Interestingly, the equivalent problem can be solved iteratively

over the optimization variable x and auxiliary variable y.

For a fixed x, the auxiliary variable y can be updated as

y∗k =

√
Ak(x)

Bk(x)
.

The constant B is ignored in (25a), and the problem

P1 is recast using Lemma 1. The numerator of the GEE

objective R
∆

m̄ = τd
T

∑K
k=1 log2

(
1 + SINR

∆

m̄,k

)
is a non-

decreasing function defined over R+, while the denominator

Ptot(p) is an affine function defined over R++. The numerator

and denominator of the GEE objective, using the QT, are

decoupled by introducing the auxiliary variable z∆m̄. Thus, the

optimization problem P1 can be rewriten as follows

P2: Max
p,z∆

m̄

fQ1

(
p, z∆m̄

)
=2z∆m̄ ×

√√√√τd
T

K∑

k=1

log2
(
1 + SINR

∆

m̄,k

)

− z∆m̄
2(Ptot

(
p
))
, (26a)

s.t. z∆m̄∈ R, 0≤Pk ≤ min

(
Pmax
k ,

qk
SARref

)
, ∀k, (26b)
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where the second constraint in (26b) represents the single

power constraint obtained by combining (25b) and (25c). It

can be verified that when p is fixed, the objective in P2

is a concave function of z∆m̄. The optimal value of z∆m̄ can,

therefore, be obtained by setting ∂fQ1

(
p, z∆m̄

)
/∂z∆m̄ to zero

as

z∆m̄ =

√
τd
T

K∑
k=1

log2
(
1 + SINR

∆

m̄,k

)

Ptot

(
p
) . (27)

The first term of the objective in P2 is a concave func-

tion, provided that the terms inside the square-root, i.e.,∑K
k=1 log2

(
1 + SINR

∆

m̄,k

)
, are also concave functions. Since

the quantities SINR
∆

m̄,k in (20) and (23) are in fractional

form, the optimization problem P2 is still non-convex over p.

Applying Lemma 1 once again to each of the SINR
∆

m̄,k terms

of P2, the equivalent optimization problem can be recast as

P3: Max
pk,y∆

m̄,z∆
m̄

fQ2

(
p,y∆

m̄, z∆m̄
)
= 2z∆m̄

×

√√√√τd
T

K∑

k=1

log2
(
1 + 2y∆m̄,k

√
N∆

m̄,k(p)− (y∆m̄,k)
2
D∆

m̄,k(p)
)

− z∆m̄
2(Ptot

(
p
))
, (28a)

s.t. y∆m̄,k ∈ R, (26b). (28b)

The auxiliary variables y∆
m̄ =

[
y∆m̄,1, y

∆
m̄,2, · · · , y∆m̄,k

]T
decou-

ple the ratio of the SINR
∆

m̄,k terms in fQ1

(
p, z∆m̄

)
in (26a).

The optimal value of the y∆m̄,k is updated iteratively as

y∆m̄,k =

√
N∆

m̄,k(p)

D∆
m̄,k(p)

. (29)

For fixed auxiliary variables (z∆m̄, y∆
m̄), the problem P3 is

concave over p and can be readily solved to determine the

optimal p using any standard toolbox, such as the popular

CVX [52]. The auxiliary variables are calculated using (27)

and (29). This process is repeated until the objective in P3

converges to a stationary point of P1. The various steps of

the NQT approach for EMF aware GEE maximization are

summarized in Algorithm 1, which computes
{
y∆m̄,k

}K

k=1
and z∆m̄ in step 2 and solves problem P3 in step 3. The

worst-case computational complexity of the Algorithm 1 is

dominant by computing power variable p. Since a convex

problem needs to be solved at each iteration, this approach

ends up with large computational complexity (refer to Sub-

section IV-C), which renders it impractical. To reduce this

complexity, a computationally efficient closed-form solution

for EMF aware GEE optimization algorithm is proposed next

that exploits the Lagrangian dual transform to iteratively

update the optimization variables [53].

B. GEE optimization via Lagrangian dual transform (LDT)

An iterative algorithm is now developed to obtain a closed-

form solution for the fixed point GEE optimization problem.

The Lagrangian dual transform is applied to the objective in

P1 to convert the sum of the log-ratios to the sum of ratios

by moving the ratio out of the logarithm function, as shown

Algorithm 1: EMF aware GEE maximization Algorithm

using the NQT

Input: Given a tolerance ǫ > 0, SAR Threshold {qk}Kk=1

and reference SAR {SARref}Kk=1. Initialize{
Pk

}K
k=1

with equal power allocation i.e.,{
Pk

(0)
}K
k=1

=
Pmax

k

K . Initialize

fGEE
(0) = fGEE(p

(0)). Set i = 0.

Output: p∗ =
{
Pk

∗
}K
k=1

as the solutions.

while ‖fGEE
(i+1) − fGEE

(i)‖ > ǫ1

Given a feasible p(i), compute the auxiliary variables2

z∆m̄
(i)

and
{
y∆m̄,k

(i)
}K

k=1
, using (27) and (29).;

Compute p(i+1) by solving P3.;3

Evaluate GEE: fGEE
(i+1) = fGEE

(
p(i+1)

)
in P1.;4

i← i+ 1.;5

end function6

in [53]. Therefore, the GEE maximization problem P1 can be

rewritten as

P4: Max
p,t∆m̄

τd
T

K∑
k=1

log2
(
1 + t∆m̄,k

)

Ptot

(
p
) , (30a)

s.t. t∆m̄,k ≤
N∆

m̄,k(p)

D∆
m̄,k(p)

, ∀k, (30b)

(26b). (30c)

Here
{
t∆m̄,1, t

∆
m̄,2, · · · , t∆m̄,k

}
is the set of auxiliary variables

which can replace each ratio SINR
∆

m̄,k inside the logarithm in

P1. We now apply the LDT to the objective in P4 next [53,

Theorem 3] to obtain the following equivalent problem.

Theorem 3. Invoking the LDT, the problem P4 can be recast

as follows

P5: Max
p,t∆m̄

fL
(
p, t∆m̄

)
=

1

Ptot

(
p
)×τd

T

K∑

k=1

(
log2

(
1+t∆m̄,k

)
−

t∆m̄,k

loge(2)︸ ︷︷ ︸
K1

+

(
1 + t∆m̄,k

)
N∆

m̄,k(p)

loge(2)
(
N∆

m̄,k(p) + D∆
m̄,k(p)

)
︸ ︷︷ ︸

K2

)
,

(33a)

s.t. (26b). (33b)
Proof. The detailed proof of the above result is provided in

Appendix E.

It is observed that, for a given t∆m̄, the first term K1 in

the numerator of fL
(
p, t∆m̄

)
is constant, while the second

term K2 consists of a sum of ratios. Using the results in

Lemma 1, QT can now be applied by introducing the set of

auxiliary variables
{
y∆Q,m̄,1, y

∆
Q,m̄,2, · · · , y∆Q,m̄,k

}
to decouple

the optimization variables in K2. The problem P5 can therefore

be recast as follows
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P6: Max
p,t∆m̄,y∆

Q,m̄

fQ
(
p, t∆m̄,y∆

Q,m̄

)
=

1

Ptot

(
p
)×τd

T

K∑

k=1

(
log2

(
1+t∆m̄,k

)
− 1

loge(2)

×
(
t∆m̄,k−2y∆Q,m̄,k

√(
1+t∆m̄,k

)
N∆

m̄,k(p)

+ y∆Q,m̄,k

2(
N∆

m̄,k(p)+D∆
m̄,k(p)

)))
,

(34a)

s.t. (26b), y∆Q,m̄,k ∈ R, ∀k. (34b)

It can be verified that for a given p and t∆m̄, the objective

in P6 is concave over y∆Q,m̄,k. The optimal value of y∆Q,m̄,k

is computed by setting ∂fQ
(
p, t∆m̄,y∆

Q,m̄

)
/∂y∆

Q,m̄ to zero as

follows

y∆Q,m̄,k =

√(
1 + t∆m̄,k

)
N∆

m̄,k(p)

N∆
m̄,k(p) + D∆

m̄,k(p)
. (35)

Note that P6 is still a single-ratio non-convex optimization

problem. Applying Dinkelbach’s transformation [54], the prob-

lem P6 can be recast as

P7: Max
p,t∆m̄,y∆

Q,m̄
,z∆

D,m̄

fD
(
p, t∆m̄,y∆

Q,m̄, z∆D,m̄

)
=
τd
T

K∑

k=1

(
log2

(
1+t∆m̄,k

)
− 1

loge(2)

×
(
t∆m̄,k−2y∆Q,m̄,k

√(
1+t∆m̄,k

)
N∆

m̄,k(p)

+y∆Q,m̄,k

2(
N∆

m̄,k(p)+D∆
m̄,k(p)

)))

− z∆D,m̄

(
Ptot

(
p
))
, (36a)

s.t. (26b), y∆Q,m̄,k ∈ R, z∆D,m̄ ∈ R. (36b)

It can be verified from (36) that the objective in P7 is

linear over (p, z∆D,m̄) and quadratic over y∆
Q,m̄, where z∆D,m̄

is an auxiliary variable used for decoupling the numerator and

denominator in P6. Therefore, the optimal value of z∆D,m̄ for

a given
(
p,y∆

Q,m̄

)
is updated iteratively as

z∆D,m̄ =
1

Ptot

(
p
) × τd

T

K∑

k=1

(
log2

(
1+t∆m̄,k

)
− 1

loge(2)

(
t∆m̄,k

−2y∆Q,m̄,k

√(
1 + t∆m̄,k

)
N∆

m̄,k(p)

+ y∆Q,m̄,k

2(
N∆

m̄,k(p) + D∆
m̄,k(p)

)))
. (37)

It is observed that for a given (z∆D,m̄,y∆
Q,m̄), the objec-

tive in P7 is concave over p, since as can be seen from

(20) and (23) respectively, N∆
m̄,k(p) and D∆

m̄,k(p), are affine

functions of p. Therefore, the closed-form update equations

of the optimal user transmit powers are obtained by setting

∂fD
(
p, t∆m̄,y∆

Q,m̄, z∆D,m̄

)
/∂pm̄,k to zero as shown in (31) and

(32) (shown at the bottom of this page).

To summarize, GEE optimization using the LDT framework

is carried out by sequentially following the steps below: i)

Lagrangian dual transform [53]; ii) Quadratic transform [51];

Algorithm 2: EMF aware GEE maximization using the

LDT

Input: Given a tolerance ǫ > 0, SAR thresholds {qk}Kk=1

and reference SAR values {SARref}Kk=1.

Initialize
{
Pk

}K
k=1

with equal power allocation

i.e.,
{
Pk

(0)
}K
k=1

=
Pmax

k

K . Initialize

fGEE
(0) = fGEE(p

(0)). Set i = 0.

Output: p∗ =
{
Pk

∗
}K
k=1

as the solutions.

while ‖fGEE
(i+1) − fGEE

(i)‖ > ǫ1

Given a feasible p(i), compute the auxiliary variables2

{t∆m̄,k

(i)}Kk=1 from (30b).;

Compute auxiliary variable
{
y∆Q,m̄,k

(i)}K
k=1

and3

z∆D,m̄
(i)

, using (35) and (37).;

Compute t∆m̄,k

∗(i)
using (61) in Appendix C.;4

Compute p(i+1), using (31) and (32).;5

Evaluate GEE: fGEE
(i+1) = fGEE

(
p(i+1)

)
in P1.;6

i← i+ 1.;7

end function8

and iii) Dinkelbach’s transform [54] to transform P1 into P7

and iteratively update the power variables. The step-by-step

procedure of EMF-aware GEE optimization via LDT is suc-

cinctly described in Algorithm 2, which computes {t∆m̄,k}Kk=1

in Step 2; auxiliary variables
{
y∆Q,m̄,k

}K

k=1
and z∆D,m̄ in Step

3; and the optimal transmit power p in Step 5.

C. Computational Complexity of the proposed algorithms:

• Complexity of Algorithm 1: The overall complexity of

Algorithm 1 is calculated by quantifying the complexity

of the auxiliary variables

(
z∆m̄, {y∆m̄,k}Kk=1

)
in Step-2

and solving P3 in Step-3.

– The calculation of z∆m̄ in (27) requires K real additions

once the SINR
∆

m̄,k value is obtained. The complexity of

calculating SINR
MRC

m̄,k is determined by its closed from

expression in Appendix C, which is dominated by the

expression in (54) and it is on the order of O(K).

Similarly, the complexity of calculating SINR
ZF

m̄,k in

(16) is determined in Appendix D, which is equal

to O(K) as it is dominated by the expression in

(60). Thus, the overall complexity of computing z∆m̄
is O(K2) for both the MRC and ZF techniques.

– Similarly, computing y∆m̄,k requires the calculation of

the terms N∆
m̄,k(p) and D∆

m̄,k(p) having complexities

of O(1) and O(K) respectively, for both the MRC

and ZF receivers. Thus, the complexity of computing

PMRC
k

∗
= min

{
qk

SARref
, Pmax

k ,
NPpβ

2
ky

∆
Q,m̄,k

2(
t∆m̄,k + 1

)
(
τd
T z∆D,m̄υ−1

U loge(2) + y∆Q,m̄,k

2(
(N + 1)Ppβ2

k + βkσ2
η

))2
}
, and (31)

P ZF
k

∗
= min

{
qk

SARref
, Pmax

k ,
(N −K)Ppβ

2
ky

∆
Q,m̄,k

2(
t∆m̄,k + 1

)
(
τd
T z∆D,m̄υ−1

U loge(2) + y∆Q,m̄,k

2(
(N −K)Ppβ2

k + βkσ2
η

))2
}
. (32)
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Table II: System Parameters.

Parameter Specification Parameter Specification

Noise variance , σ2
η −94 dBm Shadow fading, σ2

z 10 dB

Number of users, K 8 Path loss Exponent, ν 3.76
Number of BS antenna, N 128 Reference SAR, {SARref}Kk=1 0.0047 W/kg

Number of subcarriers, M 256 Channel coherence time, Tc 1ms = 196 symbols (1ms / 66.7µs)

Constellation 4-QAM Number of channel taps, L 3 with uniform power delay profile

Subcarrier spacing 15kHz Training symbols per subcarrier K
Symbol duration, T 66.7µs Prototype filter Isotropic orthogonal transform algorithm (IOTA) with duration 4T

y∆m̄,k is O(K), and therefore the overall complexity of

computing {y∆m̄,k}Kk=1 is O(K2).
– The interior-point method is used for solving the con-

vex problem P3, resulting in a complexity order of

O
[
(K)3.5

]
.

Thus, Algorithm 1 solves the GEE maximization problem

involving 2K + 1 real variables and 2K constraints

which has the overall computational complexity order of

O
[
µπ

(
(K)3.5 + 2K2

)]
, where µπ is the number of

iterations required for the convergence of Algorithm 1.

• Complexity of Algorithm 2: This computes the

auxiliary variables

(
{t∆m̄,k}Kk=1,

{
y∆Q,m̄,k

}K

k=1
, z∆D,m̄

)

in Step-2 and Step-3, and the power variables(
{PMRC

k }Kk=1, {P ZF
k }Kk=1

)
over each iteration using the

update equations (61), (35), (37), (31), and (32).

– The computational complexity of t∆m̄,k =
N∆

m̄,k(p)

D∆

m̄,k
(p)

in (61) is determined by the number of operations

required for calculating N∆
m̄,k(p) and D∆

m̄,k(p) which

are of order O(1) and O(K), respectively. Therefore,

the complexity of evaluating t∆m̄,k

∗
is O(K).

– The complexity of computing the auxiliary variable

y∆Q,m̄,k in (35) that requires the calculation of t∆m̄,k,

N∆
m̄,k(p) an D∆

m̄,k(p) is equal to O(K).
– Similarly, the computation of the auxiliary variable

z∆D,m̄ in (37) requires the calculation of t∆m̄,k, N∆
m̄,k(p)

and D∆
m̄,k(p). Furthermore, it also requires K real

additions, and has an overall complexity of O(K2).
– It is observed from the PMRC

k

∗
and P ZF

k
∗

expressions in

(31), and (32) that an identical number of operations

is required to derive the optimal power variables for

both the MRC and ZF receivers, respectively. The

computational complexity of evaluating P∆
k

∗
for ∆ =

{MRC, ZF}, is dominated mainly by the calculation

of z∆D,m̄ and equals O(K2).

Thus, the overall complexity of Algorithm 2 is

O
[
κπ

(
2K + 2K2

)]
. The term κπ denotes the number

of iterations required for Algorithm 1 to converge.

It is important to note here that the complexity of Algo-

rithm 2 is extremely low in comparison to that of Algorithm 1.

This is therefore well-suited for GEE maximization in real-

world systems.

V. SIMULATION RESULTS

This section presents the results of a simulation study to

validate the various analytical expressions derived for the

FBMC-based massive MIMO systems and also to illustrate

the performance of the proposed techniques. The effectiveness

of the GEE optimization algorithm and the effect of the EM

exposure index (EI) on the GEE performance is also studied.

The users are considered to be located uniformly at random

within a disc around the BS. The users are placed at distances

dk in the range 35m ≤ d ≤ 1000m from the BS. The

large-scale fading parameters for the kth user is modelled

as βk[dB] = −37.3 − 10ν log10
(
dk

1m

)
+ zk, where ν is the

path-loss exponent and zk denotes the shadow fading factor

having the pdf of N (0, σ2
z). The large-scale fading parameters

are normalized relative to the noise variance σ2
η [44]. The

parameters of circuit power consumption PFIX, PBS and PUE

are set as 10 W, 0.4 W and 0.2 W, respectively. The remaining

components of the power consumption model are set as given

in [44, ch. 5, Table 5.3]. The MMSE estimator based on the

IAM framework is utilized for channel estimation. The number

of zeros between adjacent training symbols in the preamble is

set as z = 3. The other simulation parameters are given in

Table II, unless stated otherwise.

A. Validation of the SE lower-bounds

The closed-form expressions of the uplink sum-rate derived

in Theorem 1 and 2 are validated in this subsection by

comparing them to their respective ergodic SE expressions in

(13) and (15). Equal power allocation (EPA) is used among

the users, i.e., Pmax = PT

K with Pmax being the maximum

allowed transmit power of each user. Fig. 2a demonstrates

the uplink sum-rate versus transmit power PT performance

for different number of BS antennas. It is observed that the

simplified closed-form expressions of both the MRC and ZF

receivers closely follow their respective ergodic SE plots. This

clearly validates the accuracy of the closed-form lower-bounds

derived for both the MRC and ZF receivers. Since the ZF

receiver mitigates the MUI, it outperform the MRC receiver

in the high-power regime.

B. Impact of pilot pattern on SE performance analysis

Recall that the MMSE estimator of Section II-B is based on

the IAM framework. Many pilot patterns have been described

in the FBMC literature for the IAM framework to improve the

quality of channel estimates [8]. Fig. 2b shows the impact of

two popular pilot patterns, namely the IAM and IAM-complex

(IAMC) on the SE of the ZF and MRC receivers. It is observed

that the SE achieved using the IAMC training structure is

higher than that of its IAM counterpart for both the MRC

and ZF receivers. This is due to the fact that the power of

the virtual training symbols at the receiver is higher for the

IAMC training sequence than that of the IAM sequence [8]. A



11

20 30 40 50 60

Transmit Power [dBm]

0

20

40

60

80

100

U
p
li
n
k
 S

u
m

-R
a
te

 (
b
it
s
/s

/H
z
) MRC (Ergodic)

MRC (Lower Bound)

ZF (Ergodic)

ZF (Lower Bound)

N = 64

N = 512

N = 256

(a)

50 100 150 200 250 300

No. of BS antenna, N

0

20

40

60

80

U
p

li
n

k
 S

u
m

-R
a

te
 [
b

it
s
/s

/H
z
]

Ergodic : IAM

Lower bound : IAM

Ergodic : IAM C

Lower bound : IAM C

MRC

ZF

(b) (c)

Fig. 2: (a) Uplink sum rate vs transmit power PT for a given number of BS antennas with number of users K = 12; (b) Uplink sum rate vs
the number of BS antenna N for IAM and IAMC channel estimation with PT = 55 dBm and K = 12; (c) Uplink sum rate vs the number
of users K for a given number of zeros z used for channel estimation with PT = 55 dBm.
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Fig. 3: (a) GEE vs transmit power PT with K = 4 users and N = 64 BS antennas; (b) GEE as function of Transmit power PT and SAR constraint q; (c)
GEE - SE trade off for PT = [15 : 2 : 55] dBm, user pairs K = 4 and BS antenna N = 64.

trend similar to that of Fig. 2a has been observed here also for

both the IAM and IAMC based channel estimation schemes,

wherein the closed-form SE expressions serve as lower-bounds

for the achievable SE. The plots in Fig. 2c compare the SE

versus the number of users K for different values of the

number of zeros z inserted between the adjacent pilot symbols

to estimate the channel using the FBMC frame structure of

Fig. 1. For this study, the total transmit power of PT = 55
dBm is divided equally among the users and number of BS

antennas which is N = 128. It can be seen that the analytical

plots corresponding to the closed-form SE expressions closely

match with the ergodic SE values for both the MRC and ZF

receivers. As expected, the SE decreases with an increase in

the number of zeros, because the latter increases the pilot

overhead required for channel estimation, as also shown in

the frame structure of Fig. 1. For a large number of users

(K > 50), it is noticed that the rate of decrease in the SE

of the ZF receiver is higher than that of the MRC receiver.

This is because the transmit power per user decreases with an

increase in the value of K. Due to this the noise power starts

dominating the MUI power. As a result, maximizing the SNR

is more effective than suppressing the MUI. This leads to a

sharp decrease in the SE of the ZF receiver in comparison to

its MRC counterpart.

C. GEE optimization

Fig. 3a plots the GEE versus transmit power PT for the

MRC and ZF receivers by choosing K = 4 and N = 64. For

this study, the user transmit power constraints in (25b) are

considered without any SAR constraints. The impact of the

SAR constraint is investigated in Fig. 3b. It is observed that

for PT ≤ 40 dBm, the GEE obtained using the EPA increases

with PT , whereas for PT > 40 dBm, the denominator in (24)

starts to dominate, which leads to a decrease in the GEE.

The GEE obtained using the proposed algorithms for both the

MRC and ZF receivers first increases with the transmit power

for PT < 40 dBm and saturates for PT > 40 dBm. It is also

observed that the GEE obtained using Algorithm 1 closely

matches the GEE attained using Algorithm 2.

D. Impact of SAR constraints on GEE optimization

Fig. 3b plots the GEE by varying the transmit power and

SAR thresholds. For this study, MRC combining is considered

at the BS. The SAR threshold is set to be equal for all the

users, i.e., {qk}Kk=1 = q. The GEE obtained in Fig. 3b can be

divided into two regimes i) the low transmit power regime:

Pmax ≤ q
ξ and ii) the high transmit power regime: Pmax > q

ξ .

It can be seen that in the low transmit power regime, the GEE
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with and without SAR constraint.

performance is restricted by the transmit power constraint only.

By contrast, in the high transmit power regime, the GEE first

increases with q and then saturates. It is worth noting that,

for q ≥ 2 × 10−2 W/kg, PT ≥ 40 dBm, the GEE becomes

invariant to the choice of PT as well as q and attains a constant

value. These observations inform the system designer about

the minimum SAR threshold and transmit power required for

maximizing the GEE. It is also inferred from Fig. 3b that

the GEE performance is not negatively impacted by the SAR

limit of 0.08 W/kg specified by the international regulation

(ICNIRP) to avoid any potential deleterious impact that can

arise due to EM exposure [35]. Similar observations can be

made for the ZF receiver.

E. Impact of SAR constraints on the GEE versus SE trade-off

Fig. 3c plots the GEE versus SE by varying the transmit

power PT from 15 dBm to 55 dBm. For this study, the

values of the SAR threshold are set as q ∈ {1W/kg, 5 ×
10−3W/kg, 5 × 10−4W/kg} [35]. These values correspond to

negligible, relaxed and tight SAR constraints, respectively. The

GEE obtained with OPA by using the proposed algorithms is

also compared to its EPA counterpart for both the MRC and

ZF receivers. For PT ≤ 39 dBm in case of the MRC receiver

and PT ≤ 42 dBm in case of the ZF receiver, both the GEE

with EPA and the SE monotonically increase with PT . After

that, the SE keeps improving with PT at the cost of a drop

in the GEE. Moreover, it is worth noting that for the OPA

scheme, the GEE versus SE curve monotonically increases by

varying PT and reaches its peak for both the MRC and the ZF

receivers at PT = 39 dBm and PT = 42 dBm, respectively.

This is because the optimal transmit power stops increasing

once the GEE saturates to a finite value. It can also be observed

that as the SAR threshold decreases, the GEE versus SE curve

reaches its maximum value at lower transmit power. This is

because the optimal transmit power required to satisfy the tight

SAR constraint is lower, which in turn leads to a degradation

of both the GEE and SE.

Fig. 4a characterizes the performance of the proposed GEE

optimization Algorithms 1 and 2 by comparing them with

the i) exhaustive search approach [32], which obtains the

global optimal solution by exhaustively searching over the

entire variable space; ii) existing SE optimization in [55],

which allocates the power to optimize the network SE; iii)

EPA scheme and iv) random power allocation (RPA), where

the users are allocated random power values. This study is

performed by setting N = 128, and K = 2 for the MRC

receiver and the same setup can also be easily applied to the

ZF receiver. The SAR threshold for each user is set as q = 0.05
W/kg which is strictly lower than the limits set by the ICNIRP

(i.e. 0.08 W/kg). It is first discovered that the performance of

the GEE obtained using the proposed optimization algorithms

is approximately equal to that of the global optimal solu-

tion obtained by the exhaustive search technique, therefore,

validating the effectiveness of the proposed algorithm. Note

that the complexity order of the exhaustive search scheme is

O(NK), which is significantly higher than that the proposed

algorithms and grows exponentially with the number of users.

Next, it is observed that the GEE obtained using the proposed

optimization frameworks is superior to the GEE obtained using

the SE optimization technique of [55]. This is because the SE

optimization scheme maximizes the network SE by allocating

a significant proportion of the available power, but the GEE

maximization approach curtails allocating additional power

once the GEE is maximized. As a result, the GEE obtained

using SE optimization begins to decrease after attaining its

peak. As a result, the GEE saturates at a high transmit power.

It is also observed that the RPA schemes follow trends similar

to those of the EPA scheme.

Fig. 4b plots the GEE versus the number of BS antennas

N for both the MRC and ZF receivers at the SAR thresholds

q ∈ {1W/kg, 5× 10−2W/kg, 5× 10−4W/kg} and the transmit

power PT = 40 dBm. It is observed that when no SAR

constraint is imposed, the GEE increases with N , for N ≤ 60,

and N ≤ 50 corresponding to the ZF, and MRC receivers,

respectively. This is because in this regime, the increase in

SE dominates the related increase in the network’s power

consumption. Subsequently, for N > 60 and N > 50, the GEE

starts decreasing with N for the ZF and MRC, respectively.

This can be attributed to the fact that the increase in SE for this

range of values of the parameter N is not significant enough

to compensate for the increased network power consumption.

F. Convergence analysis

Fig. 4c investigates the convergence of the proposed NQT-

based and LDT-based algorithms. The convergence of Algo-



13

rithms 1 and 2 with respect to the CPU time for both the

MRC and ZF receivers are presented by considering K = 4,

N = 50, and PT = 55 dBm. The convergence threshold for

both the algorithms is set as ǫ = 10−6. It is observed that

Algorithm 1 requires 60 seconds to converge to a station-

ary point, while Algorithm 2 requires roughly 1 second for

convergence. This is because Algorithm 2 has a significantly

lower cost per iteration than Algorithm 1 due to closed-

form updates over each iteration, whereas Algorithm 1 has

to solve a convex problem over each iteration. The respective

computational complexities of both the algorithms have been

explicitly evaluated in Sections IV-A and IV-B.

G. Impact of SAR constraints on the power allocation policy

Fig. 4d investigates the impact of SAR constraints by plot-

ting the transmit power via the optimal power allocation (on

y-axis) and equal power allocation (on x-axis) schemes with

the MRC receiver. This study is focused on the optimal power

allocation of the user that experiences the strongest large-

scale coefficient β. This is owing to the fact that when the

power allocated to a user with the strongest β satisfies both the

transmit power and SAR constraints, the power allocated to all

the other users also satisfies both the constraints. The bar plot

clearly shows the effect of employing only power constraints

on the optimal power allocation vis-à-vis employing both the

transmit power and SAR constraints. It can be seen that for

PT < 0 dBW, the SAR constraints do not impact the optimal

power allocation due to the fairly small transmit power that is

potentially harmless for the human body. Therefore, the GEE

algorithm exploits the full power budget, which leads to the bar

plots overlapping completely with each other. In this regime,

the optimal power is controlled only by the power constraints.

On the other hand, for PT > 0 dBW, a significant drop is

recorded in the optimal power, which has to be reduced from

its maximum possible value to avoid any harmful effects of

EM exposure. Therefore, the power constraints are slack and

the optimal power is controlled by the SAR constraints only.

This is termed the power back-off regime in the context of

EMF-aware cellular networks [33].

VI. CONCLUSION

The SE and EE of the FBMC based multi-user massive

MIMO uplink systems has analyzed considering also the

health concerns associated with EMF exposure. Closed-form

lower-bound expressions were derived for the uplink spectral

efficiency for both the MRC and ZF receivers relying on im-

perfect CSI. Furthermore, the asymptotic SE performance was

also investigated for large values of the transmit power. Two

novel algorithms based on the NQT and LDT frameworks were

proposed for optimizing the non-convex GEE metric under

power and SAR constraints. Our numerical results validated

the various SE expressions developed and also demonstrated

the enhanced GEE performance of the proposed optimization

approaches. Finally, it was also seen that a higher GEE can

be achieved while meeting the users EMF exposure constraints

using the algorithms presented, which paves the way for their

safe deployment in next-generation networks.

APPENDIX A

Upon replacing wk
m̄ by ĝk

m̄ in (9), the power of the each

term of the quantity d̂km̄,n̄ can be simplified as

E
[(
d̂km̄,n̄

)2]
= E

[(
ℜ
{
‖ĝk

m̄‖2bkm̄,n̄

} )2]
+ Var

[
ϑk,MRC
m̄,n̄

]
,
(38)

where the first term in (38) is the desired signal term

that can be simplified as E
[(
ℜ
{
‖ĝk

m̄‖2bkm̄,n̄

} )2]
=

‖ĝk
m̄‖2E

[(
ℜ
{
bkm̄,n̄

} )2]
= Pk‖ĝk

m̄‖2.
The second term in (38) denotes the variance of the

interference-plus-noise ϑk,MRC
m̄,n̄ that can be expressed as

Var
[
ϑk,MRC
m̄,n̄

]
=E
[(
ℜ
{ K∑

j=1
j 6=k

(
ĝk
m̄

)H
ĝ
j
m̄bjm̄,n̄ +

K∑

j=1

(
ĝk
m̄

)H
e
j
m̄bjm̄,n̄

+
(
ĝk
m̄

)H
ηm̄,n̄

})2]
, (39)

Var
[
ϑk,MRC
m̄,n̄

] (a)
=E

[(
ℜ
{ K∑

j=1
j 6=k

(
ĝk
m̄

)H
ĝ
j
m̄bjm̄,n̄

})2]

+ E
[(
ℜ
{ K∑

j=1

(
ĝk
m̄

)H
e
j
m̄bjm̄,n̄

})2]

+ E
[(
ℜ
{(

ĝk
m̄

)H
ηm̄,n̄

})2]
. (40)

The equality in (a) holds because the terms in (39) are inde-

pendent. The power of the first term above can be simplified

as

E
[(
ℜ
{ K∑

j=1
j 6=k

(
ĝk
m̄

)H
ĝ
j
m̄bjm̄,n̄

})2]

= E
[( K∑

j=1
j 6=k

(
ℜ
{(

ĝk
m̄

)
H ĝ

j
m̄

}
ℜ
{
bjm̄,n̄

}
−ℑ
{(
ĝk
m̄

)H
ĝ
j
m̄

}
ℑ
{
bjm̄,n̄

}))2]

(a)
=

K∑

j=1
j 6=k

((
ℜ
{(

ĝk
m̄

)H
ĝ
j
m̄

})2
E
[(
ℜ
{
bjm̄,n̄

})2]

+
(
ℑ
{(

ĝk
m̄

)H
ĝ
j
m̄

})2
E
[(
ℑ
{
bjm̄,n̄

})
2
])

(b)
=

K∑

j=1
j 6=k

Pj

((
ℜ
{(

ĝk
m̄

)H
ĝ
j
m̄

})2
+
(
ℑ
{(

ĝk
m̄

)H
ĝ
j
m̄

})2)

=
K∑

j=1
j 6=k

Pj

∣∣(ĝk
m̄

)H
ĝ
j
m̄

∣∣2. (41)

The equality (a) is obtained by considering i)

E
[
ℜ{bim̄,n̄}ℑ{bim̄,n̄}

]
= 0; ii) E

[
ℜ{bim̄,n̄}ℜ{bjm̄,n̄}

]
= 0; and

iii) E
[
ℑ{bim̄,n̄}ℑ{bjm̄,n̄}

]
= 0. Equality (b) refers to the fact

that the power of the intrinsic interference is approximately

equal to the OQAM symbol power, i.e. E
[
|Ikm̄,n̄|2

]
≈ Pk.

Therefore, one can write E
[(
ℑ
{
bjm̄,n̄

})2] ≈ E
[(
ℜ
{
bjm̄,n̄

})2]
.

Along similar lines, one can simplify the variance of the

remaining terms of ϑk,MRC
m̄,n̄ . Thus, the final expression for the
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variance of the quantity ϑk,MRC
m̄,n̄ can be written as

Var
[
ϑk,MRC
m̄,n̄

]
=

K∑

j=1
j 6=k

Pj

∣∣(ĝk
m̄

)H
ĝ
j
m̄

∣∣2 +
K∑

j=1

Pj

∣∣(ĝk
m̄

)H
e
j
m̄

∣∣2

+ ‖ĝk
m̄‖2

σ2
η

2
. (42)

APPENDIX B

The covariance matrix of the effective noise ϑZF
m̄,n̄ can be

simplified as

Cov
[
ϑZF
m̄,n̄

]
=E
[
ϑZF
m̄,n̄(ϑ

ZF
m̄,n̄)

H
]

=Cov
[
ℜ{Ĝ†

m̄Em̄bm̄,n̄}
]
+ Cov

[
ℜ{Ĝ†

m̄ηm̄,n̄}
]
.

(43)

The second term of the covariance of ϑ
k,ZF
m̄,n̄ in (43) can be

simplified as

Cov
[
ℜ{Ĝ†

m̄ηm̄,n̄}
]

= Cov
[
ℜ{(ĜH

m̄Ĝm̄)−1ĜH
m̄ηm̄,n̄}

]

=Cov
[
ℜ{(ĜH

m̄Ĝm̄)−1
[
(̂g1

m̄)Hηm̄,n̄,(̂g
2
m̄)Hηm̄,n̄,· · ·,(ĝK

m̄)Hηm̄,n̄

]T}
]
.

=




E
[
(ℜ{
[
(ĜH

m̄Ĝm̄)
−1
]
1,1
(̂g1

m̄)Hηm̄,n̄})2
]
· · · 0

...
. . .

...

0 · · · E
[
(ℜ{
[
(ĜH

m̄Ĝm̄)
−1
]
K,K

(̂gK
m̄)Hηm̄,n̄})2

]


.

(44)

The kth diagonal entry of (44) can be simplified as follows

E
[
(ℜ{

[
(ĜH

m̄Ĝm̄)−1
]
k,k

(ĝk
m̄)Hηm̄,n̄})2

]

= E
[(
ℜ{
[
(ĜH

m̄Ĝm̄)−1
]
k,k
}
)2(ℜ{(ĝk

m̄)Hηm̄,n̄}
)2

+
(
ℑ{
[
(ĜH

m̄Ĝm̄)−1
]
k,k
}
)2(ℑ{(ĝk

m̄)Hηm̄,n̄}
)2]

. (45)

Using E
[(
ℜ{(ĝk

m̄)Hηm̄,n̄}
)2]

= E
[(
ℑ{(ĝk

m̄)Hηm̄,n̄}
)2]

=
[
(ĜH

m̄Ĝm̄)
]
k,k

σ2

η

2 , (45) can therefore be finally expressed as
[

Cov
[
ℜ{Ĝ†

m̄ηm̄,n̄}
]]

k,k

=E
[
(ℜ{
[
(ĜH

m̄Ĝm̄)
−1
]
k,k

(ĝk
m̄)

Hηm̄,n̄})2
]

=
[
(ĜH

m̄Ĝm̄)−1
]
k,k

σ2
η

2
. (46)

Along similar lines, the first term of (43) is simplified as[
Cov

[
ℜ{Ĝ†

m̄Em̄bm̄,n̄}
]]

k,k

=
[
(ĜH

m̄Ĝm̄)−2
]
k,k

× (̂gk
m̄)

H

( K∑

j=1

Pje
j
m̄(e

j
m̄)

H

)
ĝk
m̄. (47)

Therefore, using (46) and (47), the covariance of ϑ
ZF

m̄,n̄ in (43)

can be written as[
Cov

[
ϑZF
m̄,n̄

]]

k,k

=
[
(ĜH

m̄Ĝm̄)−2
]
k,k

(
(ĝk

m̄)H
( K∑

j=1

Pje
j
m̄(ejm̄)H

)
ĝk
m̄

)

+
[
(ĜH

m̄Ĝm̄)−1
]
k,k

σ2
η

2
. (48)

APPENDIX C

Similar to Appendix A, the power of the ϑ
k,MRC

m̄,n̄ , which

forms the denominator of (20), obtained by replacing wk
m̄ with

ĝk
m̄ in (18), can be determined as

Var
[
ϑ
k,MRC

m̄,n̄

]
=PkVar

[(
ĝk
m̄

)H
gk
m̄

]
+

K∑

j=1
j 6=k

PjE
[∣∣(ĝk

m̄

)H
g
j
m̄

∣∣2]

+ E
{
‖ĝk

m̄‖2
}σ2

η

2
. (49)

The terms of Var
[
ϑ
k,MRC

m̄,n̄

]
in (49) can be further simplified to

derive the closed-form expression of (20).

Exploiting the statistical property that the estimated channel

ĝkm̄,n ∼ CN
(
0,

Pp(βk)
2

(Ppβk+ση
2)

)
, the desired signal power in

the numerator of (20) can be further simplified to obtain the

closed-form expression as

∣∣E
[(
ĝk
m̄

)H
gk
m̄

]∣∣2 =

(
N

Pp (βk)
2

(Ppβk + ση
2)

)2

. (50)

It is important to note here that the channel estimate ĝk
m̄ and

channel estimation error ekm̄ are independent of each other.

It therefore follows that E
[(
ĝk
m̄

)H
ekm̄
]
= 0. Consequently,

E
[(
ĝk
m̄

)H
gk
m̄

]
can be computed as E

[(
ĝk
m̄

)H
ĝk
m̄

]
.

The first term in the denominator of (20) can be further

simplified using the joint statistics of ĝk
m̄ and gk

m̄ as

Var
[(
ĝk
m̄

)H
gk
m̄

]
=E
[∣∣(ĝk

m̄

)H
gk
m̄

∣∣2]−
(
E[
(
ĝk
m̄

)H
gk
m̄]
)2

(a)
=E

[∣∣(ĝk
m̄

)H
ĝk
m̄

∣∣2]+ E
[
|
(
ĝk
m̄

)H
ekm̄|2

]

−
(
E[
(
ĝk
m̄

)H
gk
m̄]
)2

(b)
=E
[ N∑

i=1

∣∣ĝkm̄,i

∣∣4+2
(N2 )∑

i=1
j>i

(
|ĝkm̄,i|2|ĝkm̄,j |2

)]

+E
[
|
(
ĝkm̄
)H
ekm̄|2

]
−
(
E[
(
ĝkm̄
)H
gk
m̄]
)2
. (51)

The equality (a) is obtained by using the relationship gk
m̄ =

ĝk
m̄ + ekm̄, whereas equality (b) is obtained by further simpli-

fying the first term of equality (a). Exploiting the statistical

properties of the estimated channel and using E
[
|ĝkm̄,n|4

]
=

2
(
E
[(
ĝkm̄,n

)2])2
= 2

(
Pp(βk)

2

(Ppβk+ση
2)

)2

, the above expression

can be simplified as

Var
[(
ĝk
m̄

)H
gk
m̄

]
=2N

(
Pp

(
βk

)2
(
Ppβk+ση2

)
)2

+N
(
N−1

)( Pp

(
βk

)2
(
Ppβk+ση2

)
)2

+
NPp

(
βk

)3
σ2
η(

Ppβk+ση2
)2 −

(
NPp

(
βk

)2
(
Ppβk+ση2

)
)2

. (52)

Simplifying this yields the closed-form expression of

Var
[(
ĝk
m̄

)H
gk
m̄

]
given as

Var
[(
ĝk
m̄

)H
gk
m̄

]
=

N
(
Pp (βk)

2
)2

+NPp (βk)
3
σ2
η

((Ppβk + ση
2))

2 . (53)

Along similar lines, the power of the inter-user interference

E
[∣∣(ĝk

m̄

)H
g
j
m̄

∣∣2] can be simplified by using the joint statistics

of ĝk
m̄ and g

j
m̄ formulated as
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K∑

j=1
j 6=k

E
[∣∣(ĝk

m̄

)H
g
j
m̄

∣∣2]=
K∑

j=1
j 6=k

N (Pp)
2
(βkβj)

2
+NPp(βk)

2
βjσ

2
η

(Ppβk + ση
2) (Ppβj + ση

2)
.

(54)

The last term in the denominator of (20) is the power of the

resultant noise after applying the combiner at the BS and can

be simplified by exploiting the property that the noise added at

the BS is statistically independent of the combiner. Using the

statistical properties of the estimated channel in Section II-B,

the power of the resultant noise can be simplified as

E
{
‖ĝk

m̄‖2
}σ2

η

2
= N

Pp (βk)
2

(Ppβk + ση
2)
× σ2

η

2
. (55)

APPENDIX D

Using Wm̄ = (Ĝ†
m̄)H = Ĝm̄(ĜH

m̄Ĝm̄)−1 in (17), the

received signal can be simplified as follows

Ĝ
†
m̄ym̄,n̄ =E

[
Ĝ

†
m̄Gm̄

]
bm̄,n̄

+
(
Ĝ

†
m̄Gm̄−E

[
Ĝ

†
m̄Gm̄

])
bm̄,n̄+Ĝ

†
m̄ηm̄,n̄. (56)

The estimate of the OQAM transmitted signal, in terms of

the desired signal and the effective noise components over the

index (m̄, n̄), can be written as

d̂m̄,n̄ = ℜ
{
Ĝ

†
m̄ym̄,n̄

}
= ℜ

{
bm̄,n̄

}
︸ ︷︷ ︸
Desired Signal

+ ϑ
ZF

m̄,n̄︸ ︷︷ ︸
Effective Noise

, (57)

where the term ϑ
ZF

m̄,n̄ is expressed as

ϑ
ZF

m̄,n̄ = ℜ
{(

Ĝ
†
m̄Gm̄ − E

[
Ĝ

†
m̄Gm̄

])
bm̄,n̄

}
︸ ︷︷ ︸

Beamforming Uncertainty

+ℜ
{
Ĝ

†
m̄ηm̄,n̄

}
︸ ︷︷ ︸

Noise

.

(58)

Using Gm̄ = Ĝm̄+Em̄, the term ϑ
ZF

m̄,n̄ in (58) can be further

simplified as ϑ
ZF

m̄,n̄ = ℜ
{(

Ĝ
†
m̄Em̄ − E

[
Ĝ

†
m̄Em̄

])
bm̄,n̄

}
+

ℜ
{
Ĝ

†
m̄ηm̄,n̄

}
. Therefore, the covariance matrix of the effec-

tive noise can be expressed as

Cov
[
ϑ

ZF

m̄,n̄

]
=E
[
ϑ

ZF

m̄,n̄(ϑ
ZF

m̄,n̄)
H
]

=Cov
[
ℜ{Ĝ†

m̄Em̄bm̄,n̄}
]
+ Cov

[
ℜ{Ĝ†

m̄ηm̄,n̄}
]
.

(59)

The simplified expression of the power of

[
Cov

[
ϑ

ZF

m̄,n̄

]]

k,k

,

which forms the denominator of (23), is given by
[

Cov
[
ϑ

ZF

m̄,n̄

]]

k,k

=

( K∑

j=1

PjE
[
ejm̄(ejm̄)∗

]
+

σ2
η

2

)

× E
[{
(ĜH

m̄Ĝm̄)−1
}
k,k

]
, (60)

where we have E
[
ejm̄(ejm̄)∗

]
= E

[
{ejm̄(ejm̄)H}i,i

]
, for i =

1, , 2, · · · , N .

The denominator of SINR
ZF

m̄,k in (23) contains quantities

that can be further simplified by using the channel estimation

error statistics and the identity E
[
Tr(W−1)

]
= l

n−l [56],

where W ∈ C
n×n is a central complex Wishart matrix

with n (n > l) degrees of freedom. Therefore, substituting

E
[{
(ĜH

m̄Ĝm̄)−1
}
k,k

]
=

Ppβk+1

(N−K)Ppβ2

k

, the terms of the quan-

tity SINR
ZF

m̄,k in (23) are simplified to obtain the closed-from

expression.

APPENDIX E

The problem P4 can be seen as an outer optimization over

the power variables Pk and an inner optimization over t∆m̄,k for

a fixed Pk. It follows from (30a) that the inner optimization

problem can be solved by satisfying the constraint (30b) with

equality as

t∆m̄,k

∗
=

N∆
m̄,k(p)

D∆
m̄,k(p)

. (61)

The corresponding Lagrangian function associated with the

inner optimization problem in P4 can be written as

L
(
t∆m̄,k, λ

∆
m̄,k

)
=

(
τd
T

) K∑
k=1

log2
(
1+t∆m̄,k

)

Ptot

(
p
) −

K∑

k=1

λ∆
m̄,k

(
t∆m̄,k−

N∆
m̄,k(p)

D∆
m̄,k(p)

)
,

(62)

where
{
λ∆
m̄,1, λ

∆
m̄,2 · · · , λ∆

m̄,k

}
are the Lagrangian multi-

pliers associated with the inequality constraints in (30b). The

problem P4 is convex and Slater’s condition holds. Therefore,

strong duality exists for (62). The dual of the optimization

problem in (62) can be written as Min
λ∆

m̄,k

Max
t∆
m̄,k

L
(
t∆m̄,k, λ

∆
m̄,k

)
.

Let
{
t∆m̄,k

∗
, λ∆

m̄,k

∗}
denote the saddle point of the above

problem. Therefore, the optimal λ∆
m̄,k

∗
can be calculated by

setting
∂L
(
t∆m̄,k,λ

∆

m̄,k

)

∂t∆
m̄,k

= 0 as

λ∆
m̄,k

∗
=

1

loge(2)Ptot

(
p
)(
1 + t∆m̄,k

∗) . (63)

Substituting λ∆
m̄,k

∗
and t∆m̄,k

∗
in (62) and (63),

L
(
Pk, t

∆
m̄,k, λ

∆
m̄,k

∗)
can be expressed as

L
(
t∆m̄,k, λ

∆
m̄,k

∗)
=





(
τd
T

) K∑

k=1

log2
(
1 + t∆m̄,k

)

− 1

loge(2)

K∑

k=1

D∆
m̄,k(p)

t∆m̄,k

−
N∆

m̄,k(p)

t∆m̄,k





Ptot(p)
.

(64)

After some mathematical manipulations and combining with

the outer maximization over Pk in P4, the above expression

is simplified to fL
(
p, t∆m̄

)
as given in P5.
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