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Abstract

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING
ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

Quantitative Analysis of Bone Microarchitecture in HR-pQCT Images for Fracture
Discrimination

by Shengyu Lu

Osteoporosis is the pathological disorder of bones, characterised by decreased bone
mineral density (BMD) and microarchitectural deterioration of bone tissue, leading
to increased fracture risk. Early observation and treatment of fracture risk from po-
tential patients can reduce the incidence and medical expenses. While much of clini-
cal fracture risk assessment is carried out through dual-energy X-ray absorptiometry
(DXA) imaging, high-resolution peripheral quantitative computed tomography (HR-
pQCT) is becoming increasingly available, providing more detailed analysis of bone
microarchitecture at the peripheral skeleton. Traditional analysis of HR-pQCT images
requires manual operation and results in a multitude of cortical and trabecular param-
eters which would be potentially cumbersome to interpret for clinicians. Automated
quantitative analysis of HR-pQCT scans to ascertain fracture risk, would be far simpler
and more efficient.

Our research work primarily focuses on the dataset from the Hertfordshire Cohort
Study (HCS), which comprises 2997 men and women born in Hertfordshire from 1931-
1939 and who still lived there in 1998-2004. 376 participants of the HCS attended re-
search visits at which clinical covariates were measured; fracture history was deter-
mined via self-report and vertebral fracture assessment. Bone microarchitecture was
assessed via HR-pQCT scans of the non-dominant distal tibia, and BMD measurement
and lateral vertebral assessment were performed using DXA. In addition, our study
utilises the dataset from the Global Longitudinal Study of Osteoporosis in Women
(GLOW) which involves 723 physicians and 60,393 women aged 55 years and older
in 10 countries. In this cohort, 501 participants completed self-administered question-
naires and underwent HR-pQCT scans of the non-dominant distal radius and tibia, as
well as DXA scans of whole body, proximal femur and lumbar spine.

Building upon the correlation between bone microarchitecture and fracture risk, we
develop an automatic approach to discriminate previous fractures by using HR-pQCT
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measures of bone microarchitecture. We propose a method based on local binary pat-
tern (LBP) to characterise the texture patterns of HR-pQCT images and to quantify
bone microarchitecture via statistical distributions. Further, we decouple the relative
contributions of cortical and trabecular compartments in fracture discrimination. Our
method includes a deep neural network-based segmentation algorithm for separating
the cortical and trabecular regions to enable texture features to be extracted separately
and their statistical distributions quantified.

In addition to volumetric texture analysis, we present a novel discriminative system
to automatically identify individuals with previous fractures from HR-pQCT images
using a combination of multi-view convolutional neural networks (CNNs) and the ran-
dom forest algorithm. Unlike conventional deep learning architectures that require a
massive amount of training data, our method based on transfer learning extracts image
features from representative views of HR-pQCT scans to characterise bone microarchi-
tecture and then integrate the features for fracture discrimination.

Last but not least, we propose an adaptive threshold strategy to further enhance the ac-
curacy and robustness of our discriminative system for previous fracture. Our method
generates adaptive thresholds based on DXA-measured T-scores of the participants
within the population to filter out healthy subjects with traumatic fractures and osteo-
porotic non-fractured subjects. Then we adopt multi-view CNNs to characterise bone
microarchitecture in HR-pQCT images to distinguish between non-fractured healthy
subjects and subjects with osteoporotic fractures. Furthermore, we evaluate the perfor-
mance of our discriminative system on an independent cohort.
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Chapter 1

Introduction

1.1 Background

Osteoporosis is characterised by a reduction in bone mineral density (BMD) and mi-
croarchitectural deterioration of bone tissue, leading to a predisposition to fracture
(Christodoulou and Cooper (2003)). This skeletal disease is associated with substan-
tial morbidity and mortality (Katsoulis et al. (2017), Haentjens et al. (2010)). It has been
reported that fractures often occur in the elderly and about 50% of women suffer from
osteoporosis in their lifetime (Löffler et al. (2021)). The global prevalence of individuals
at high risk of fragility fracture is greater than 158 million and is set to double by the
year 2040 (Oden et al. (2015)). This will lead to a substantial increase in economic costs
associated with osteoporotic fractures. However, identifying those at high risk of frac-
ture means that they can be treated with effective medications to reduce their fracture
risk and improve outcomes (Hoff et al. (2021)).

Traditionally fracture risk prediction to target preventative measures has rested upon
clinical risk factors and BMD (Kanis et al. (2008), Nguyen et al. (2008), Hippisley-Cox
and Coupland (2009)). Currently, the gold standard for radiologists to assess fracture
risk is the measurement and quantitative assessment of areal bone mineral density
(aBMD) through dual-energy X-ray absorptiometry (DXA). However, as a two dimen-
sional (2D) imaging modality, DXA cannot provide detailed information about cortical
and trabecular bone microarchitecture (Mikolajewicz et al. (2020)). More recently high-
resolution peripheral quantitative computed tomography (HR-pQCT) has been pro-
posed, previous studies have demonstrated bone microarchitecture phenotypes associ-
ated with a high risk of fracture (Edwards et al. (2016), Westbury et al. (2019)), which
suggests that this imaging modality might help predict fracture occurrence. However,
HR-pQCT requires manual operation and results in a large number of clinical vari-
ables. There is no available way in which information from HR-pQCT images can be
adequately integrated into a convenient fracture risk assessment tool. Novel artificial
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intelligence techniques have the potential to assist.

Machine learning has become increasingly popular because it can automatically learn
the features from current instances and provide predictions for new cases (Kaissis et al.
(2020)). Machine learning methods have demonstrated success in many medical tasks
such as lesion detection and risk assessment (Tjoa and Guan (2020), De Bruijne (2016)),
some researchers have proposed the use of computer-assisted diagnostic algorithms to
diagnose osteoporosis or predict fracture risk (Wani and Arora (2020), Cruz et al. (2018),
Kruse et al. (2017), Kilic and Hosgormez (2016)). However, in the field of imaging
these studies have been limited to specific imaging features (for example finite element
analysis) (Nishiyama et al. (2014)) or conventional computed tomography (CT) (Valen-
tinitsch et al. (2019), Muehlematter et al. (2019)), and have not utilised the detailed,
textural information on bone microarchitecture which can be gleaned from HR-pQCT.

1.2 Motivations

Identifying subjects at substantial risk of fracture is crucial for preserving bone health.
One of the most substantial determinants of sustaining a fracture is indeed a history
of having had a fracture in the past (Johansson et al. (2017)). Individuals who have
experienced fractures in the past are more likely to have decreased bone strength and
compromised bone health, making them more susceptible to future fractures. By dis-
criminating the previous fracture history of individuals, healthcare professionals can
identify those at substantial risk of fracture and design tailored prevention plans to re-
duce healthcare costs.

Over the decades, a number of prediction models have been developed to automati-
cally measure fracture risk. However, these approaches primarily rely on clinical risk
factors and DXA-measured BMD, and their diagnostic performance is not perfect (Bol-
land et al. (2011), Cummins et al. (2011)). HR-pQCT is an advanced and noninvasive
imaging instrument that captures detailed bone microarchitectural information and
produces volumetric images to visualize and quantify bone structure. However, there
is currently no automated tool available for quantitative analysis of HR-pQCT images
to assess fracture risk. Traditional analysis of HR-pQCT requires manual operation and
results in a multitude of cortical and trabecular parameters which would be potentially
cumbersome to interpret for clinicians. Existing HR-pQCT-based fracture risk predic-
tion models have four limitations, and there is still room for improvement.

The first weakness is that existing approaches cannot capture comprehensive bone mi-
croarchitectural information from HR-pQCT images for automated fracture risk assess-
ment. They function like black boxes and rely on cortical and trabecular parameters
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that provide limited bone microarchitectural information.

The second weakness is that there is a lack of fair comparison and analysis between
HR-pQCT and traditional measurements such as DXA and clinical risk factors for frac-
ture risk assessment.

The third weakness is that they do not investigate the individual contributions of cor-
tical and trabecular compartments in HR-pQCT images to fracture risk assessment.

Finally, existing approaches are developed for specific populations and are not tested
on independent cohorts (Sornay-Rendu et al. (2017), Langsetmo et al. (2018)). Evalua-
tion of prediction models on a single population is insufficient to ensure their robust-
ness.

By using computer vision techniques to characterise bone microarchitecture, decou-
pling the relative contributions of cortical and trabecular compartments, and enhanc-
ing model robustness, we can better understand fracture risk prediction models and
improve discriminative accuracy. In relation to fracture risk assessment, there are three
questions of interest:

1. Can fracture risk be identified through automated quantitative analysis of HR-pQCT
images?

2. Does image information obtained from HR-pQCT outperform DXA-measured BMD
and clinical risk factors in fracture risk assessment?

3. What are the relative contributions of cortical and trabecular compartments in pre-
dicting fracture risk?

In HR-pQCT images, each voxel represents a nominal resolution of 82 µm. The vari-
ation in grayscale values between adjacent voxels reflects changes in bone microar-
chitecture. The presence of such variations can be captured by image processing for
quantitatively assessing bone health. Since texture features capture spatial patterns
and statistical properties of pixel intensities within a local neighborhood, they have the
potential to quantify bone microarchitecture and provide richer information beyond
traditional bone density measurements to improve fracture risk assessment. Although
traditional deep learning models have demonstrated remarkable capabilities in image
feature extraction, their success heavily relies on the availability of large and diverse
training datasets (Aljabri et al. (2022)). In clinical practice, it is challenging to acquire a
large number of bone HR-pQCT images and the corresponding fracture status of those
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participants. Therefore, instead of the traditional deep learning framework, we de-
velop two approaches to encode image features to characterise bone microarchitecture
in HR-pQCT images for fracture classification, as described in Chapter 4 and Chapter
6. Furthermore, we decouple the relative contributions of cortical and trabecular com-
partments for fracture discrimination in Chapter 5, and enhance the robustness of our
discriminative system in Chapter 7.

Our research is based on the hypothesis that there are differences in bone microarchitec-
ture in HR-pQCT images between fracture and non-fracture groups. Therefore, we use
computer vision approaches to extract image features to characterise bone microarchi-
tecture and employ machine learning techniques to distinguish between subjects with
and without previous fractures.

1.3 Goals

In order to address the issues shown above, we conduct a series of studies. Specifically,

Aim 1: to assess the association between information obtained from HR-pQCT and
fracture risk. To achieve this objective, we first develop an automated approach based
on three dimensional (3D) texture representations to quantify bone microarchitecture
measured by HR-pQCT to identify previous fractures. In addition, we propose a method
based on deep learning techniques to automatically encode feature representations of
bone HR-pQCT images to discriminate between subjects with and without previous
fractures.

Aim 2: to compare the performance of HR-pQCT with traditional methods of DXA
and clinical risk factors for fracture risk assessment. We use the same data partition
method for these three approaches and conduct a comparative analysis for fracture
discrimination.

Aim 3: to assess the relative contributions of cortical and trabecular compartments in
fracture discrimination. We develop a deep neural network-based segmentation algo-
rithm to automatically separate various regions in HR-pQCT images. This enables us
to quantify texture patterns from cortical and trabecular regions separately for fracture
classification.

Aim 4: to improve the accuracy and robustness of our approach for fracture classifica-
tion. We propose an efficient strategy to filter out incorrectly labeled data from original
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cohorts. Subsequently, we employ multi-view CNNs to characterise bone microarchi-
tecture in HR-pQCT images for discriminating between non-fractured healthy subjects
and subjects with osteoporotic fractures.

1.4 Contributions

The primary contribution of our research is to develop discriminative systems to auto-
matically quantify bone microarchitecture in HR-pQCT images using texture represen-
tations and deep learning techniques for fracture classification. Therefore, we highlight
the following contributions:

Firstly, considering the prior knowledge that fracture occurrences are associated with
microarchitectural deterioration of bone tissue, we propose a 3D local binary pattern
(LBP) model to characterise the texture patterns of bone HR-pQCT images. Then his-
tograms are constructed to quantify bone microarchitecture through statistical distribu-
tions. Our discriminative system can automatically identify individuals with previous
fractures from HR-pQCT images. Furthermore, our approach applied to HR-pQCT im-
ages improves fracture discrimination compared to DXA-measured BMD and clinical
risk factors.

Secondly, we decouple the relative contributions of cortical and trabecular compart-
ments in fracture discrimination. Our method includes a deep neural network for au-
tomatic segmentation of cortical and trabecular regions in HR-pQCT images, and then
extracts texture features separately and quantifies their statistical distributions. We find
that the cortical compartment outperforms the trabecular compartment in terms of frac-
ture discrimination.

Thirdly, we propose an automatic approach based on deep learning techniques to char-
acterise bone microarchitecture and combine it with the random forest classifier for
fracture discrimination. Unlike traditional neural networks that require a massive
amount of training data, our approach can automatically discriminate between people
with and without previous fractures based on a few of HR-pQCT images. Furthermore,
our method outperforms DXA measurement and clinical risk assessment methods in
fracture classification.

Last but not least, we introduce a learning system that exploits DXA BMD and HR-
pQCT images to further improve fracture discrimination. Our approach generates
adaptive DXA-measured T-score thresholds to separate non-fractured healthy subjects
from osteoporotic fracture subjects in the fracture group and to take out osteoporotic
non-fractured patients from the healthy individual group within the original cohort.
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By effectively filtering out incorrectly labeled data, we improve the discriminative ca-
pacity of our approach to accurately identify osteoporotic fractures. Furthermore, we
evaluate the performance of our prediction model on an independent cohort, and it
maintains high accuracy in fracture classification.

1.5 Thesis Outline

The structure of this thesis is organized as follows: Chapter 2 reviews the related lit-
erature about fracture risk assessment, volumetric texture analysis and deep learning
methods; The study design, data collection and data processing for the HCS and GLOW
cohorts, are then presented in Chapter 3. In Chapter 4, we develop an automatic dis-
criminative system to identify previous fractures from HR-pQCT images using a com-
bination of volumetric texture analysis and machine learning techniques; Chapter 5 in-
troduces a novel approach that automatically segments cortical and trabecular regions
in HR-pQCT images and separately extracts texture features from these two regions
for fracture discrimination; An automatic method based on deep learning techniques
is proposed in Chapter 6 to characterise bone microarchitecture in HR-pQCT images
for fracture classification; Chapter 7 presents an enhanced fracture discriminative sys-
tem and evaluates it on an independent cohort. Finally, in Chapter 8, we conclude this
study and describe future work.

1.6 Publications

Publications based on this research include:

P1. Nicholas R Fuggle, Shengyu Lu, Michael O Breasail, Leo D Westbury, Kate A Ward,
Elaine Dennison, Sasan Mahmoodi, Mahesan Niranjan and Cyrus Cooper. OA22 ma-
chine learning and computer vision of bone microarchitecture can improve the fracture
risk prediction provided by DXA and clinical risk factors. Rheumatology, 61 (Supple-
ment 1):keac132–022, 2022b.

P2. Shengyu Lu, Nicholas R Fuggle, Leo D Westbury, Michael O Breasail, Gregorio
Bevilacqua, Kate A Ward, Elaine M Dennison, Sasan Mahmoodi, Mahesan Niranjan
and Cyrus Cooper. Machine learning applied to HR-pQCT images improves fracture
discrimination provided by DXA and clinical risk factors. Bone, page 116653, 2022a.

P3. Shengyu Lu, Sasan Mahmoodi and Mahesan Niranjan. Robust 3D rotation invari-
ant local binary pattern for volumetric texture classification. In 2022 26th International
Conference on Pattern Recognition (ICPR), pages 578–584. IEEE, 2022b.
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P4. Nicholas R Fuggle, Shengyu Lu, Michael O Breasail, Leo D Westbury, Kate A
Ward, Elaine Dennison, Sasan Mahmoodi, Mahesan Niranjan and Cyrus Cooper. Ma-
chine learning and computer vision of bone microarchitecture can improve the fracture
risk prediction provided by DXA and clinical risk factors. In Aging Clinical and Exper-
imental Research, volume 34, pages S43–S43, 2022a.

P5. Nicholas R Fuggle, Shengyu Lu, Michael O Breasail, Leo D Westbury, Kate A
Ward, Elaine Dennison, Sasan Mahmoodi, Mahesan Niranjan and Cyrus Cooper. A
deep learning, computer vision approach to segmentation of bone microarchitecture
highlights the role of the cortical compartment in fracture discrimination, In prepara-
tion.

P6. Shengyu Lu, Sasan Mahmoodi, Mahesan Niranjan, Nicholas R Fuggle, Leo D
Westbury, Kate A Ward, Elaine M Dennison and Cyrus Cooper. Enhanced fracture
discrimination from HR-pQCT images using deep learning with adaptive thresholds,
In preparation.
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Chapter 2

Literature Review

2.1 Osteoporosis and Fracture

Osteoporosis was initially defined as a skeletal disorder characterised by a reduction in
BMD, leading to an increased risk of fracture by the World Health Organisation (WHO)
(Kanis et al. (1994)). Then, the National Institutes of Health (NIH) updated the defini-
tion of osteoporosis as a skeletal disorder characterised by compromised bone strength,
which predisposes individuals to fractures (Klibanski et al. (2001)). The latter definition
considers not only bone mass but also the reflection of bone structure in the loss of tra-
becular connectivity and thickness. Bone consists of a hard outer shell called cortex
and a spongy tissue called trabecular. These two components combine to make bone
strong but relatively flexible. Figure 2.1 illustrates examples of normal bone and bone
with osteoporosis.

BMD, which characterises the amount of bone mass, is commonly used to assess bone
quality and evaluate fracture risk. The decrease in BMD is common in people over 50
years of age and menopausal women who experience a decline in reproductive hor-
mones (Finkelstein et al. (2008)). As a result, these populations often suffer from os-
teoporosis and fractures. Apart from BMD, osteoporosis is also affected by other risk
factors such as physical activity, body mass index (BMI), height, weight and dietary cal-
cium. Among these factors, BMI, advancing ages and BMD, play major roles in bone
health assessment. The Dubbo Osteoporosis Epidemiology Study reported that bone
loss increased with low BMD or low body weight, physical inactivity and advancing
age (Ho (2018)).

Fracture, defined as a break at any skeletal site, is the ultimate consequence of os-
teoporosis. The distal forearm and spine are common sites affected by osteoporosis,
and they have a higher risk of fracture. Fracture is affected by multiple risk factors
(Litwic (2020)), as shown in Table 2.1. Modifiable risk factors, which can be changed



10 Chapter 2. Literature Review

FIGURE 2.1: A diagram comparing normal bone and bone with osteoporosis. Low
bone mass and microarchitectural deterioration of bone tissue predispose to

fractures. Source: https://myfamilyphysio.com.au/osteoporosis/

TABLE 2.1: Risk factors for fracture.

Modifiable Non-modifiable

Low BMD A history of fracture
Low BMI Ageing

Insufficient calcium intake Being a woman
Physical inactivity A high-risk genetic profile

High alcohol consumption
Smoking

through intervention, mainly include low BMD, low BMI, insufficient calcium intake,
physical inactivity, high alcohol consumption and smoking. Non-modifiable factors are
unchangeable makers such as a history of fracture and ageing. Once someone suffers a
fracture, it will be challenging for the patient to recover completely. Therefore, there is
increasing focus on identifying subjects at high risk of fracture to prevent such events.

The tibia and fibula are integral components of the human skeletal system, located
in the lower leg. The tibia is the larger, weight-bearing bone on the inside, while the
fibula is the smaller bone on the outside (Bardeen (1905)). Both bones are susceptible to
fractures, commonly resulting from traumatic injuries. Tibia fractures are more preva-
lent than fibula fractures due to the tibia’s weight-bearing role. By utilizing advanced
clinical imaging techniques, healthcare providers can accurately assess the condition of

https://myfamilyphysio.com.au/osteoporosis/
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TABLE 2.2: T-score values for different categories of osteoporosis.

No. Categories T-score

1 Normal >-1
2 Osteopenia Between -2.5 and -1
3 Osteoporosis <-2.5

the tibia, facilitating early diagnosis and effective treatment.

The gold standard for radiologists to diagnose osteoporosis is the quantitative assess-
ment of the amount of X-ray absorption by minerals inside the bone through DXA
(Watts (2004)). The results are then interpreted according to the T-score, with diag-
nostic criteria shown in Table 2.2. Furthermore, DXA-measured BMD combined with
clinical factors such as age, gender and BMI is used for fracture risk assessment. How-
ever, the application of DXA has some limitations. DXA as a 2D measurement, areal
BMD is a composite of cortical and trabecular bone that may be affected by cortex and
hyperosteogeny (degenerative age-related change such as osteoarthritis) during BMD
measurement and underestimate the loss of bone mass (Sukumar et al. (2011), Tsujii
et al. (2017), Zhang et al. (2020)); meaning many individuals with fracture do not have
osteoporosis by definition (Kanis et al. (1994)). In addition, as a two dimensional (2D)
imaging technology, it may not fully capture spatial information regarding bone geom-
etry and microarchitecture.

The use of 3D imaging techniques has the potential to overcome the limitations of DXA
measurements and improve the accuracy of fracture risk assessment. In a related study,
Löffler et al. (2021) compared routine CT with DXA in discriminating 192 patients who
had suffered vertebral fractures. They used a CNN model to automatically segment
vertebrae in CT scans and extracted various volumetric measures from vertebral bod-
ies. The results demonstrated that CT-based measures performed significantly better
than DXA in identifying patients with vertebral fractures. However, this study was
limited to vertebral fracture assessment.

HR-pQCT is a non-invasive 3D imaging modality that provides detailed cortical and
trabecular bone microarchitecture. In clinical practice, it is very difficult to capture bone
microarchitectural information from HR-pQCT images via visual inspection. Although
a multitude of cortical and trabecular parameters provide an opportunity to quantify
bone microarchitecture (Mikolajewicz et al. (2020)), these clinical parameters would be
potentially cumbersome to interpret for clinicians. Therefore, there is a need to develop
convenient tools that capture bone microarchitectural information from HR-pQCT im-
ages and enable fully automated fracture risk assessment.
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FIGURE 2.2: Comparing clinical imaging of the distal tibia with DXA and HR-pQCT.
HR-pQCT provides more detailed information about the bone microarchitecture of

cortical and trabecular compartments. Modified from source (Popp et al. (2014)):
https://doi.org/10.1371/journal.pone.0088946.g002

2.2 Instruments to Measure Bone Health

Bone health assessment is critical for the diagnosis, management and prevention of
fragility fracture. Various instruments and imaging techniques have been developed to
measure different aspects of bone health such as bone density, microarchitecture and
strength. Among the commonly utilised instruments, DXA provides precise measure-
ments of bone density (see Figure 2.2), while HR-pQCT offers detailed 3D images of
bone microarchitecture (Popp et al. (2014)). In our research, the femoral neck of the
hip is measured using DXA, and BMD values are derived to quantify bone density in-
formation of subjects. In traditional DXA measurements, femoral neck BMD values
are used as input data for fracture risk assessment. The distal tibia in the leg is mea-
sured using HR-pQCT to provide 3D reconstructions of bone microarchitecture. Our
methods are applied to tibial HR-pQCT images to extract features and quantify bone
microarchitecture for fracture classification.

2.2.1 Dual-Energy X-ray Absorptiometry

DXA is the gold standard method to measure BMD. The good accuracy of DXA makes
it a reliable tool for evaluating bone health, assisting clinicians in identifying individu-
als at high risk of fracture and guiding medical decisions. DXA employs a high-energy
X-ray beam and a low-energy X-ray beam directed from the radiation source to the ra-
diation detector to assess BMD (Litwic (2020)). During the DXA scan, these two X-ray

https://doi.org/10.1371/journal.pone.0088946.g002
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TABLE 2.3: Common HR-pQCT parameters for fracture risk assessment.

Parameters Descriptions

Cortical area The cross-sectional area of the cortical bone
Cortical thickness The thickness of the cortical bone
Cortical density The mineral density within the cortical bone
Cortical porosity The presence of pores or openings within the cortical bone
Trabecular area The cross-sectional area of the trabecular bone

Trabecular density The mineral density within the trabecular bone
Trabecular number The number of trabeculae within a given volume

Trabecular thickness The thickness of the trabecular bone
Trabecular separation The distance between individual trabeculae

beams with different energies pass through the body of the participants. Some photons
are absorbed while others that pass through the body are detected by the X-ray de-
tectors. The absorption levels of each X-ray beam by bone mineral and soft tissues are
calculated. The scanner then calculates crucial clinical parameters, including bone min-
eral content (BMC), bone area (BA) and aBMD. aBMD is defined as the bone mineral
mass per unit image area (Litwic (2020)). The T-score is the standardised BMD mea-
surement calculated for each individual by subtracting the population mean (Mean)
and dividing by the standard deviation (SD) of the reference population (Ward et al.
(2023)):

T-score =
aBMD−Mean

SD
(2.1)

2.2.2 High-Resolution Peripheral Quantitative Computed Tomography

HR-pQCT is an advanced imaging technique designed to capture detailed 3D images
of the skeletal structure (Nishiyama and Shane (2013)). This instrument employs a
360-degree rotating X-ray tube that generates two X-ray beams with different energies
to pass through the body of the participant and assess bone microarchitecture. After
passing through the soft tissues, the X-ray beams are measured by detectors, forming a
profile of transmitted radiation. The spatial distribution of radiation absorption is then
calculated based on the profile and reconstructed into an image as a 2D slice. These
plane slices are combined to form a 3D image that visualizes microscopic details of
the participant’s skeletal structure (Litwic (2020)). In addition, HR-pQCT provides a
multitude of clinical parameters through manual operation and complex processing to
quantify bone microarchitecture. Common HR-pQCT parameters utilised for fracture
risk assessment are cortical area, cortical thickness, cortical density, cortical porosity,
trabecular area, trabecular density, trabecular number, trabecular thickness and trabec-
ular separation, as shown in Table 2.3.
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2.3 Artificial Intelligence for Fracture Risk Assessment

With the development of artificial intelligence, clinical experts are increasingly inter-
ested in utilising computer-aided diagnosis techniques to analyse and interpret pa-
tients’ medical data for fracture risk assessment. Various types of medical data such
as medical images, clinical variables and gene sequences are collected, and relevant
features are extracted to train models for fracture risk prediction (Cruz et al. (2018)).
They aim to leverage advanced techniques to establish a relationship between medical
data and fracture risk to enhance early identification and prevention of fractures.

Over the decades, machine learning has become increasingly popular because it can au-
tomatically learn features from current instances and make predictions for new cases.
Referring to the success of machine learning techniques in many medical tasks such
as disease diagnosis (Criminisi (2016)), numerous computer-aided diagnosis methods
based on machine learning have been developed to identify individuals at high risk of
fracture.

Compared with clinical variables and gene sequences, medical imaging with visual
bone structure and clinical interpretation has demonstrated better outcomes and has at-
tracted more attention (Wani and Arora (2020)). For instance, in a study by Nishiyama
et al. (2014), a method was proposed that utilised finite element analysis based on quan-
titative computed tomography (QCT) images to distinguish between 50 women with
and without previous hip fractures. Both bone material and structural properties were
captured through QCT images. Bone stiffness and bone failure load under various
loading conditions were estimated using finite element analysis. The support vector
machine (SVM) was used to classify subjects with and without pooled fractures, achiev-
ing an area under the curve (AUC) of 0.83. Similarly, in another study by Muehlematter
et al. (2019), bone texture analysis was combined with machine learning classifiers in
standard CT images to identify vertebral insufficiency fractures. The trabecular bone
of vertebrae on CT scans was manually segmented, and image features were extracted
using the MaZda software to build prediction models for classifying vertebral insuffi-
ciency fractures. Bone texture analysis involved six different types of feature descrip-
tors calculated by image histogram, absolute gradient, gray level co-occurrence matrix,
gray level run length matrix, autoregressive model and wavelet transformation. Classi-
fication of fractured and remained intact vertebrae from 58 patients using SVM shows
an AUC of 0.64. Nonetheless, the methods proposed in both studies required manual
operation and did not enable fully automated assessment of fracture risk.

In addition to CT measurements, artificial intelligence techniques have also been ap-
plied to other imaging modalities for fracture risk assessment. Ferizi et al. (2019) con-
ducted a comparison of various machine learning algorithms to identify patients who



2.3. Artificial Intelligence for Fracture Risk Assessment 15

had suffered from fragility fractures based on magnetic resonance imaging (MRI) data.
The study systematically explored the application of artificial intelligence in osteoporo-
sis diagnosis and emphasized image features extracted from MRI images that con-
tributed to predicting fragility fractures. However, it lacked comparison with clinical
methods such as DXA measurement and clinical risk assessment. Meanwhile, Kilic
and Hosgormez (2016) developed a novel method that leveraged ensemble learning
techniques to detect osteoporosis and assist in estimating osteoporotic fractures. Six
bone densitometry parameters were extracted from DXA and fed to ensemble classi-
fiers to accurately distinguish between osteoporosis, osteopenia and healthy subjects.
This study demonstrated the efficacy of combining multiple learning models to im-
prove accuracy in osteoporosis diagnosis. However, the proposed method did not have
the capability to directly identify osteoporotic fracture subjects.

Although deep learning techniques have been applied to fracture risk assessment, their
performances largely depend on the availability of sufficient training data (Lee et al.
(2020)). Therefore, traditional deep neural networks may not be suitable for some cases,
particularly when dealing with small or imbalanced datasets. Texture analysis and few-
shot learning, which are suitable for small datasets, have the potential to outperform
traditional deep-learning models in our tasks. Therefore, in our study, we adopt these
methods to encode image features to characterise bone microarchitecture in HR-pQCT
images for fracture discrimination.

2.3.1 Texture Feature Extraction

Texture is an important property of medical images, and texture analysis has been
widely used in various medical image tasks (Riaz et al. (2015)), especially when re-
gional textures are the diagnostic criterion for experts. Over the past two decades,
texture analysis techniques have been applied to bone imaging, providing a valuable
reference for clinical experts.

Texture features extracted from X-ray images have been applied to quantify bone den-
sity information. For example, Le Corroller et al. (2012) extracted three bone texture
parameters including the fractal parameter Hmean, co-occurrence and run-length ma-
trices from 21 digital X-ray images. These parameters were then combined with BMD
measurements to predict fracture load in human femurs. The results demonstrated that
the combination of bone texture parameters and BMD measurements significantly out-
performed BMD alone in fracture load prediction. Zheng and Makrogiannis (2016) pro-
posed a novel method that computed various texture descriptors such as wavelet and
LBP using digital radiography from 116 patients to diagnose osteoporosis and prevent
fracture. Feature selection was then employed to find the most discriminant subset, and
classification techniques were adopted to separate healthy subjects from osteoporotic
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patients. The study showed that texture features provided an opportunity to capture
the deterioration of trabecular bone. Nonetheless, these methods that used 2D texture
analysis on X-ray images could not capture spatial bone structure information, and
there was still room for the improvement of fracture risk assessment.

Texture analysis has therefore been extended for quantitative analysis of 3D clinical
imaging of bone. In a study, Valentinitsch et al. (2019) proposed an automatic method
that combined global and local texture features extracted from multi-detector CT im-
ages to identify osteoporotic vertebral fractures from 154 patients. Histogram of gradi-
ents, gray level co-occurrence matrix Haralick, LBP and wavelet transformation were
used to extract texture features from CT scans. This study demonstrated that texture
information obtained from CT images outperformed vBMD for fracture discrimination.
However, it was limited to identifying osteoporotic vertebral fractures and did not con-
sider other types of fractures. In another study, Valentinitsch et al. (2013) developed an
algorithm to quantify trabecular microarchitecture characteristics via texture features in
HR-pQCT scans. They utilised 3D gray level co-occurrence matrices and partial deriva-
tives to extract texture features from HR-pQCT images of 36 postmenopausal women.
This study demonstrated that clustering of trabecular bone by 3D-texture analysis for
HR-pQCT images was feasible. Nonetheless, it did not investigate the discriminative
performance of texture information obtained from HR-pQCT scans for fracture classi-
fication.

2.3.2 Medical Image Segmentation

Image segmentation plays a crucial role in the field of medical imaging, facilitating the
localisation of the regions of interest and reducing error rates (Minaee et al. (2021)).
Since the introduction of deep convolutional neural networks (CNNs) with powerful
feature extraction capabilities, medical image segmentation has witnessed significant
progress (Tajbakhsh et al. (2020)).

The U-Net model, initially proposed by Ronneberger et al. (2015), is a popular frame-
work for semantic segmentation. Its main novelty lies in the upsampling operation,
which enables the network to propagate contextual information to higher layers, thus
reducing information loss. With its advantages of high accuracy and fast training on
small datasets, U-Net is widely applied in medical image tasks such as brain tumor
and lung lesion segmentation. In recent years, various U-Net variants have been pro-
posed to enhance segmentation performance. Typical representations include attention
U-Net, residual U-Net, recurrent U-Net, dense U-Net and U-Net++ (Siddique et al.
(2021)).
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Several studies have proposed the use of U-Net to segment skeletal regions of in-
terest in clinical imaging to assist expert decision-makers. For instance, Fang et al.
(2021) introduced an automatic approach using deep neural networks to analyse multi-
detector CT images to identify osteoporosis, osteopenia and normal subjects. The U-
Net model was employed to segment the lumbar vertebral body, and the DenseNet-121
was then utilised for calculating BMD via regression prediction. The results demon-
strated that the proposed model could provide high accuracy in vertebral body seg-
mentation and generate BMD values highly correlated with those derived from QCT.
Similarly, Noguchi et al. (2020) developed a deep neural network based on the U-Net
architecture to segment bone regions in whole-body CT images. The incorporation of
data augmentation techniques enhanced the accuracy and robustness of the model. The
proposed method showed high segmentation accuracy on whole-body CT and exhib-
ited generalisability under different scan conditions.

The relative contributions of cortical and trabecular compartments measured by HR-
pQCT to fracture discrimination have not yet been investigated. In Chapter 5, we em-
ploy the 2D U-Net model to automatically segment cortical and trabecular regions in
HR-pQCT slices. Subsequently, we separately quantify cortical and trabecular bone
microarchitecture through statistical distributions.

2.4 Volumetric Texture Analysis

Texture analysis has been an active topic in a wide variety of applications such as face
recognition, remote sensing and medical image analysis (Pan et al. (2021)). High dis-
criminative power, strong model robustness and low computational complexity are
three crucial properties of efficient texture representations. Over the decades, numer-
ous local and global descriptors have been proposed to characterise the texture infor-
mation of natural images, in which wavelets and LBP are commonly used.

However, it’s important to note that most current texture analysis methods are de-
signed for 2D images, and there are only a few approaches proposed for volumetric
texture analysis. Volumetric textures, composed of a series of 2D slices, provide richer
object information. However, treating volumetric texture as 2D slices using conven-
tional 2D approaches results in the loss of spatial information and reduced classifica-
tion accuracy. Therefore, developing volumetric texture analysis methods to charac-
terise 3D images is pretty valuable, but such an extension faces many challenges such
as significant increases in computational cost. Among various texture descriptors, LBP
has received extensive attention due to its efficiency and low computational complexity
(Pan et al. (2021)).
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FIGURE 2.3: An example of the original local binary pattern. The centre pixel is
compared to its neighboring pixels to generate binary values.

2.4.1 Local Binary Pattern

LBP, invented by Ojala et al. (2002), compares the difference between the centre pixel
and its neighbors in a local region to encode texture patterns. Figure 2.3 shows the orig-
inal LBP operator which works in a 3× 3 neighborhood. The centre grayscale value is
regarded as the threshold to encode binary codes (0 or 1). Then this LBP code and corre-
sponding weights are converted into a decimal number to represent the local structural
information. The formulas are shown as follows:

LBPP,R =
P−1

∑
p=0

s(gp − gc)× 2p (2.2)

and

s(x) =

1 x ≥ 0

0 x < 0
(2.3)

where, R represents the radius of the circle neighborhood, and P is the number of sam-
pled points. gc and gp correspond to the grayscale values of the centre pixel and the
neighbor pixels respectively.

Then the rotation invariant property was considered in the LBP framework. Pietikäinen
et al. (2000) first proposed to apply a circular bitwise right shift and search for minimum
LBP to achieve rotation invariance:

LBP ri
P,R = min{ROR(LBPP,R, i) | i = 0, 1, ..., P− 1} (2.4)

where, ROR(LBPP,R, i) is the circular bitwise right shift operation. Superscript ri rep-
resents the use of rotation invariant patterns.
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However, this method does not provide an excellent discriminative performance. Ac-
cording to the statistical results of texture patterns, Ojala et al. (2002) found that uni-
form LBP patterns occurred more frequently than others. To improve rotation invari-
ance, they proposed the LBP riu2

P,R , which is defined as:

LBP riu2
P,R =

∑P−1
p=0 s(gp − gc) if U ≤ V

P else U > V
(2.5)

and

U = |s(gP−1 − gc)− s(g0 − gc)|+
P−1

∑
p=1
| f (gp − gc)− s(gp−1 − gc)| (2.6)

where, U represents the measurement that counts the number of bit transitions from
1 to 0 or vice versa. V is the threshold that defines the LBP as “uniform” or “non-
uniform” patterns. Superscript riu2 represents the use of rotation invariant “uniform”
patterns with V set to 2.

2.4.2 Local Binary Pattern Variants

The original LBP texture descriptor only considers the joint distribution of the neigh-
borhood, and other information is discarded. To address this issue, researchers have
suggested using a combination of multiple detectors to enhance the discriminative ca-
pability of LBP. Over the last two decades, various LBP variants have been proposed
(Li et al. (2011)).

Guo et al. (2010) proposed a completed local binary pattern (CLBP) model that con-
sisted of the centre pixel and a local difference sign-magnitude transform. The centre
pixel, namely CLBP C, represents the image grayscale level, which is converted to a
binary code through global thresholding. The local differences are decomposed into
the sign operator CLBP S and the magnitude operator CLBP M (See Figure 2.4). These
three operators are defined as:

CLBP C = s(gc −m) (2.7)

CLBP S =
P−1

∑
p=0

s(gp − gc)× 2p (2.8)

CLBP M =
P−1

∑
p=0

s(mp − n)× 2p (2.9)

with
mp = |gp − gc| (2.10)
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FIGURE 2.4: An example to illustrate the completed local binary pattern. The sign
operator equals the original LBP, while the magnitude and centre pixel operators are

incorporated to enrich the texture representation.

where, m denotes the threshold, set as the average grayscale value of the entire image.
n represents the mean value of mp from the entire image. gc, gp and P are defined as in
Equation 2.2.

The CLBP C, CLBP S and CLBP M operators are combined to form the feature map,
and a histogram is then constructed to represent the texture image. Unlike the original
LBP descriptor, which only contains the sign component, the inclusion of the magni-
tude component and image intensity provides efficient contrast information and en-
hances the discriminative power.

Similarly, Liu et al. (2012) developed an extended local binary pattern (ELBP) descriptor
that consisted of two intensity-based operators and two difference-based operators to
generalise the conventional LBP. The intensity-based features represent the intensity of
the centre pixel (CI-LBP) and the neighbor pixels (NI-LBP), while the difference-based
features consider the radial-difference (RD-LBP) and the angular-difference (AD-LBP).
The CI-LBP, NI-LBP, RD-LBP and AD-LBP descriptors are defined as follows:

CI − LBP = s(gc −m) (2.11)

NI − LBP =
P−1

∑
p=0

s(gp −
∑P−1

p=0 gp

P
)× 2p (2.12)

RD− LBP =
P−1

∑
p=0

s(gR
p − gR−1

p )× 2p (2.13)
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FIGURE 2.5: An example that local binary pattern is susceptible to noise. The centre
pixel value is used as a threshold to generate binary values and encode the descriptor.

AD− LBP =
P−1

∑
p=0

s(gp − gmod(p+d,P−1))× 2p (2.14)

where, gc, gp, m, r and P are defined as in Equation 2.2 and Equation 2.7. d is an integer,
d ∈ [1, P/2]. The function mod(x, y) represents the modulus x of y.

The histograms of these four LBP operators are calculated separately and then con-
catenated into a joint histogram to represent the image. Combining these four types of
features can extract complementary texture information of local regions and enhance
the classification performance of LBP.

2.4.3 Robust Local Binary Pattern

The original LBP is highly susceptible to noise in the image due to its thresholding
mechanism. As illustrated in Figure 2.5, even a minor change in the centre pixel value
(from 80 to 85) significantly affects the LBP value. To enhance its noise tolerance, several
robust LBP frameworks have been proposed (Guo et al. (2015)). For example, Zhao
et al. (2013) proposed the robust local binary pattern (RLBP) descriptor that replaced
the grayscale value of the centre pixel with its average local grayscale value to reduce
noise. The RLBPP,R is presented as:

RLBPP,R =
P−1

∑
p=0

s(gp −
∑P−1

p=0 gp + gc

P + 1
)× 2p (2.15)

where, gc, gp, P and R are defined as in Equation 2.2.

Moreover, some other approaches have been developed to enhance model robustness
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against noise (Qiang et al. (2021)). Tabatabaei and Chalechale (2020) presented a di-
rectional thresholded local binary pattern (DTLBP) that replaced the centre pixel value
with the average values of directional neighboring pixels. The information of neigh-
boring pixels was used to reduce noise and enhance the discriminative capacity of the
texture descriptor. The proposed method demonstrated high classification accuracy
both in noisy and noise-free images. Analogously, Liu et al. (2016) proposed a median
robust extended local binary pattern (MRELBP) that compared regional image medians
instead of raw image intensities to enhance noise robustness. A novel sampling scheme
was introduced to capture both microstructure and macrostructure texture informa-
tion. Experimental results on benchmark datasets showed that the proposed method
was highly robust to noise and outperformed other state-of-the-art LBP variants in tex-
ture classification. However, these methods were limited to the 2D LBP framework.

2.4.4 3D Local Binary Pattern

Zhao and Pietikäinen (2006) first introduced the concept of 3D LBP and proposed the
volume local binary pattern (VLBP) to extract texture features in a local neighborhood
of the centre volume. Figure 2.6 illustrates the generation process of the VLBP texture
descriptor. Its key point is to stack several consecutive frames and select neighboring
points to encode binary codes. The VLBPQ,R,L is defined as follows:

VLBPQ,R,L =
3×Q+1

∑
q=0

(vq − vc)× 2q (2.16)

where, vc and vq represent the grayscale values of the centre voxel and the neighbor
voxels respectively. Q is the number of sampled neighbors on a circle of radius R in
consecutive L frames.

LBP faces the challenge of high computational cost in 3D space due to the large number
of texture units. Compared to other 3D LBP variants based on the sphere, the VLBP tex-
ture descriptor, without interpolation operation, has a lower computational cost while
preserving raw image information.

LBP has not yet been applied to analyse bone microarchitecture measured by HR-
pQCT. In Chapter 4, we develop a 3D LBP method to characterise bone microarchi-
tecture in HR-pQCT images for automated fracture discrimination. In Chapter 5 and
Appendix C, we present a robust framework of 3D LBP to enhance the noise tolerance
of our discriminative system.
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FIGURE 2.6: The generation process of the volume local binary pattern. Neighbors in
the volume are sampled to encode the binary values with the centre voxel value as

the threshold.

2.5 Convolutional Neural Networks

CNN is one of the most popular deep learning architectures, and has been success-
fully used in various computer vision tasks such as image classification, segmentation,
registration and object detection. The success of CNN can be primarily attributed to
its capability to automatically learn hierarchical features from low-level to high-level
abstractions (Yan et al. (2015)). Moreover, the use of local receptive fields and weight
sharing enables it to effectively capture intricate patterns in data and optimize param-
eter efficiency.

Initially, LeCun et al. (1998) proposed the LeNet-5, which demonstrated great success
in handwritten digit recognition. Then the deep CNN architecture AlexNet was pre-
sented by Krizhevsky et al. (2012). This innovative work significantly outperformed
traditional methods and established a new benchmark in image recognition. Subse-
quent architectures such as VGGNet, GoogLeNet and ResNet, further promoted the de-
velopment of CNNs. These architectures built upon earlier models, introducing deeper
network structures and innovative architectural designs to enhance feature representa-
tion.

Figure 2.7 illustrates the basic architecture of the CNN, which comprises convolutional
layers, pooling layers and fully connected layers (Albelwi and Mahmood (2017)). The
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FIGURE 2.7: Basic architecture of the convolutional neural network. Alternating
convolutional layers and pooling layers are followed by the fully connected layer to

learn hierarchical representations of the input data. Source:
https://www.mdpi.com/1099-4300/19/6/242

convolutional layer uses multiple filters to learn various features from the data in par-
allel. Subsequently, the pooling layer downsamples the feature map to reduce the com-
putational complexity while retaining important information. Finally, the fully con-
nected layer connects each neuron in the layer to every neuron in the previous layer to
integrate global information and produce the final output.

Over the past decade, CNNs have demonstrated remarkable success in medical im-
age analysis tasks such as disease diagnosis and lesion localisation (Criminisi (2016)).
With powerful feature extraction capabilities, CNNs can automatically learn and iden-
tify pathological features in medical images that might be challenging via visual in-
spection. This assists clinicians in enhancing the accuracy and efficiency of medical
decision-making.

Nevertheless, CNNs encounter some challenges (Litjens et al. (2017)). One of the most
concerning issues is that CNNs require a large amount of training data to prevent over-
fitting. In recent years, the complex architecture and massive parameters of CNN mod-
els have increased their reliance on rich and diverse data. To address this issue, several
strategies have been proposed (Han et al. (2018)). Transfer learning with pre-trained
CNN models has become a prevalent strategy. This approach leverages knowledge
gained from large datasets to enhance the classification performance of prediction mod-
els on limited data. Another strategy is data augmentation, which increases the size
and diversity of training data through transformations such as rotation, flipping and
scaling. This approach enables CNNs to learn a broader range of patterns from data
and enhance model generalisability and robustness.

CNNs have not yet been applied to analyse bone microarchitecture measured by HR-
pQCT. In Chapter 6, we propose a deep learning framework to automatically extract

https://www.mdpi.com/1099-4300/19/6/242
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bone microarchitectural features from HR-pQCT images to discriminate previous frac-
tures.

2.6 Summary

This chapter gives an overview of osteoporosis and fracture risk, methods to measure
bone health and artificial intelligence techniques. Current fracture risk prediction mod-
els primarily focus on DXA measurements, which have some limitations. Although
HR-pQCT provides a more detailed bone microarchitecture in three dimensions, there
is no automated tool available for bone HR-pQCT images to measure fracture risk.
Volumetric texture analysis and deep learning techniques have the potential to auto-
matically identify bone fragility from HR-pQCT images and to improve fracture dis-
crimination provided by DXA and clinical risk factors.
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Chapter 3

Datasets

3.1 Study Design

Our research project primarily focuses on the Hertfordshire Cohort Study (HCS). The
HCS is an extraordinary and nationally unique research initiative of 3225 participants
who were born in the English county of Hertfordshire between 1931 and 1939 and were
still resident there at the end of the 20th century (Syddall et al. (2019)). This longitudi-
nal study primarily focuses on investigating the relationship between early life factors,
ageing and chronic disease risk in later life, and has provided valuable insights into the
understanding of age-related diseases (Clynes et al. (2014)). The HCS was supported
by the Medical Research Council, British Heart Foundation, Versus Arthritis UK, Inter-
national Osteoporosis Foundation, NIHR Southampton Biomedical Research Centre,
NIHR Oxford Biomedical Research Centre, and the University of Southampton.

The HCS is a comprehensive research endeavor that encompasses a wide range of
chronic diseases related to the musculoskeletal system, including sarcopenia, osteo-
porosis, osteoarthritis and metabolic syndrome. In particular, the study has been a
pioneering investigation into bone health, exploring risk factors influencing skeletal
well-being throughout the life course. It revealed that early-life factors such as birth
weight and childhood nutrition played important roles in determining BMD and later
fracture risk (Dennison et al. (2005)). Lifestyle choices, especially physical activity, were
identified as crucial determinants of bone density, while smoking and alcohol con-
sumption were linked to lower bone density (Moinuddin et al. (2008)). In addition,
the study reported genetic contributions to individual variations in BMD and fracture
susceptibility (Lips et al. (2007)). These findings underscore the significance of early-
life interventions, healthy lifestyle choices and personalized approaches for improving
bone health and preventing age-related musculoskeletal disorders.
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The expanded objective of this study is to investigate the influence of bone microar-
chitecture on fracture risk. To achieve this goal, our research characterises bone mi-
croarchitecture in HR-pQCT images using computer vision techniques and develops
automatic approaches for fracture discrimination.

The Global Longitudinal Study of Osteoporosis in Women (GLOW) is a comprehensive
and prospective research initiative designed to delve into the intricacies of osteoporo-
sis in women (Hooven et al. (2009)). Globally, GLOW enrolled 60,393 women aged 55
years and older through 723 physicians in 10 countries in Australia, Europe and North
America, with an annual follow-up conducted for up to 5 years. This wide-ranging
enrollment not only ensures the representation of diverse populations but also facili-
tates the exploration of regional differences in osteoporosis prevalence, risk factors and
fracture outcomes. Our study utilises the GLOW dataset from an independent cohort
as testing data to evaluate the model robustness of our discriminative systems.

TABLE 3.1: Participant characteristics of the Hertfordshire Cohort Study.

Characteristics Mean (std) Number of non-missing subjects

Age (years) 76.3 (2.6) 376
Height (cm) 167.0 (9.2) 376
Weight (kg) 77.0 (13.6) 376

BMI (kg/m2) 27.6 (4.2) 376
Dietary calcium (g) 8.3 (2.4) 376

Physical activity time (minutes) 212.2 (116.2) 325
Number of comorbidities 1.6 (1.4) 350

Femoral neck BMD (g/cm2) 0.9 (0.1) 361

Characteristics Number (%) Number of non-missing subjects

Men 198 (52.7%) 376
Women 178 (47.3%) 376

Smoking history (ever) 171 (48.9%) 350
High alcohol consumption 32 (9.1%) 350

Bisphosphonate (since baseline) 37 (10.6%) 350
Social class (manual) 207 (55.1%) 376

Previous fracture 97 (28.1%) 345

High alcohol consumption (per week): more than 21 units for men and more than 14 units for women.
Social class was categorised into the manual group (classes IIIM, IV and V) and the non-manual group
(classes I, II and IIINM).
Previous fracture: the participant had a vertebral fracture or a self-reported fracture.
Std: standard deviations.
Non-missing subject: the subject has no missing value for that characteristic.
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3.2 Data Collection

3.2.1 Hertfordshire Cohort Study

The baseline recruitment for the HCS took place between 1998 and 2004 (Syddall et al.
(2019)). 2997 participants in Hertfordshire agreed to a home interview, and subse-
quently attended a clinic for a detailed health survey. In 2011–2012, 376 participants
agreed to take part in a further follow-up study, and DXA and HR-pQCT scans were
taken at this time point. The data used in our study was part of the HCS, which in-
cluded HR-pQCT scans of the radius and tibia, clinical covariates, femoral neck BMD
values and fracture history of participants, as shown in Table 3.1. The case index of sub-
jects included in our study is provided by Table A.1 in Appendix A. This research was
approved by the Hertfordshire and Bedfordshire Local Research Ethics Committee and
the East and North Hertfordshire Ethical Committees. All procedures performed in
studies involving human participants were in accordance with the ethical standards of
the institutional and/or national research committee and with the 1964 Helsinki Decla-
ration and its later amendments or comparable ethical standards. The written informed
consent was given and signed by all subjects.

HR-pQCT scans (XtremeCTi Scanco Medical AG, Switzerland) of the non-dominant
distal radius and tibia were performed. Dominant limbs were scanned if the non-
dominant limb had fractured. 110 parallel CT slices were obtained, representing a vol-
ume of bone 9 mm in the z-axis, with a nominal resolution (voxel size) of 82 µm in both
the x and y axes. The scan protocol was in accordance with manufacturer’s guidelines
and as described by Boutroy et al. (2005). Using the method of Pauchard et al. (2012),
scans with excessive motion artefact (grade 5) were excluded. Manufacturer standard
evaluation and cortical porosity scripts were used for image analysis. Representative
2D slices of the distal radius and tibia are shown in Figure 3.1.

Clinical covariates of participants include age, sex, height, weight, BMI, dietary cal-
cium, smoking history, alcohol consumption, physical activity, bisphosphonate usage,
number of comorbidities and occupational social class. Among them, dietary calcium,
time since menopause and occupational social class were ascertained through a home
interview at baseline recruitment (1998-2004), while all other variables were ascertained
in 2011–2012. Height (cm) was measured using a wall-mounted SECA stadiometer
along with weight (kg) using calibrated SECA 770 digital floor scales (SECA Ltd, Ham-
burg). These measurements were then used to derive BMI (kg/m2) (Nuttall (2015)).
Social class was coded from the 1990 OPCS Standard Occupational Classification unit
group for occupation (of Population Censuses and Surveys (1995)). More detail about
data acquisition has been described in Syddall et al. (2005) and Syddall et al. (2019).



30 Chapter 3. Datasets

FIGURE 3.1: Representative 2D slices taken from the HR-pQCT scans of the
non-dominant distal radius (a) and tibia (b). The radius is positioned in the forearm,

while the tibia is situated in the lower leg.

Total hip and femoral neck BMD (g/cm2) were measured for each participant follow-
ing conventional procedures. Both the left and right sides of the hip were scanned, and
the minimum femoral neck BMD value between the two sides was used for analysis.
The T-score was derived using NHANES III data and Equation 2.1 in Chapter 2 (Ward
et al. (2023)). The scans were performed using a Lunar Prodigy Advance DXA scanner
manufactured by GE Medical Systems (Westbury et al. (2019)). A representative DXA
image of the hip is depicted in Figure 3.2.

Fracture history was determined via self-report and vertebral fracture assessment. Par-
ticipants with a vertebral or self-reported fracture were regarded as having had a previ-
ous fracture. Fractures since aged 45 years were ascertained through self-report. Mor-
phometric vertebral fractures were diagnosed from a lateral spine view imaged using a
Lunar Prodigy Advance DXA scanner (GE Medical Systems) and graded according to
the Genant semi-quantitative method (Genant et al. (1993)).

3.2.2 Global Longitudinal Study of Osteoporosis in Women

The baseline surveys for the GLOW were distributed via mail to more than 140000 po-
tential subjects between October 2006 and February 2008 (Hooven et al. (2009)). After
excluding 3,265 individuals who were ineligible or had died, 60,393 subjects agreed to
participate in the study, and were followed annually for up to 5 years. After complet-
ing 5 years of follow-up, 1367 participants with baseline data and follow-up question-
naires in Southampton were invited for a follow-up study. Between April 2014 and
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FIGURE 3.2: A representative DXA image of the hip. The total hip refers to the area
within the blue lines, while the femoral neck corresponds to the area the diameter

across the smallest part of the top rectangle.

December 2017, participants were scanned with HR-pQCT and DXA. The data used in
our research work was part of the collected data from Southampton, which included
HR-pQCT scans of the radius and tibia, clinical risk factors, femoral neck BMD values
and fracture history of participants, as shown in Table 3.2. The case index of subjects
included in our study is provided by Table A.2 in Appendix A. All procedures per-
formed in studies involving human participants were in accordance with the ethical
standards of the institutional and/or national research committee and with the 1964
Helsinki Declaration and its later amendments or comparable ethical standards. The
written informed consent was given and signed by all subjects.

HR-pQCT scans (XtremeCTi Scanco Medical, Basserdorf, Switzerland) of the non-dominant
distal radius and tibia were performed (Cappelle et al. (2021)). If there was a fracture on
the non-dominant limb, the non-fractured limbs were scanned. 110 parallel HRpQCT
slices were acquired with a nominal resolution (voxel size) of 82 µm in both the x and
y axes and 9 mm in the z-axis, according to the manufacturer’s guideline. The motion
artefact of each scan was assessed on a scale of 1 (no artefact) to 5, and scans rated as
Grade 5 were excluded. Manufacturer standard evaluation and Image Processing Lan-
guage (Version 6.1, ScancoMedical) were carried out for image analysis.
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Clinical risk factors include age, sex, BMI, current smoker, alcoholic drinks, cortisone
or prednisone usage, rheumatoid history, colitis history, diabetes history, coeliac his-
tory and premature menopause. Participant information was collected through self-
administered questionnaires (Litwic et al. (2021)).

TABLE 3.2: Participant characteristics of the Global Longitudinal Study of Osteoporo-
sis in Women.

Characteristics Mean (std) Number of non-missing subjects

Age (years) 70.9 (5.5) 501
BMI (kg/m2) 26.8 (5.0) 491

Alcoholic drinks per week (levels) 1.2 (1.0) 493
Femoral neck BMD (g/cm2) 0.7 (0.1) 466

Characteristics Number (%) Number of non-missing subjects

Women 501 (100.0%) 501
Current smoker 30 (6.1%) 493

Cortisone or prednisone usage 10 (2.0%) 493
Rheumatoid history 47 (9.8%) 481

Colitis history 10 (2.0%) 490
Diabetes history 10 (2.1%) 486
Coeliac history 7 (1.4%) 492

Premature menopause 47 (9.7%) 486
Previous fracture 106 (22.8%) 464

Alcoholic drinks per week were categorised into five levels: level 0 (none), level 1 (1-6 units), level 2 (7-13
units), level 3 (14-20 units) and level 4 (more than 20 units).
Previous fracture: the participant had a self-reported fracture.
Std: standard deviations.
Non-missing subject: the subject has no missing value for that characteristic.

Total hip, lumbar spine and femoral neck BMD (g/cm2) were measured for each partic-
ipant using DXA Hologic Horizon W (Litwic et al. (2021)). The left side of the hip was
scanned; the right side was only scanned if there was a hip replacement or a fracture on
the left side. The femoral neck BMD value was used for analysis, and the correspond-
ing T-score was derived using NHANES III data and Equation 2.1 in Chapter 2 (Ward
et al. (2023)).

Fracture history was obtained at baseline, and further information on fractures was
ascertained after 5-year follow-up. Participants from age 45 to 5-year follow-up with a
self-reported fracture were regarded as having had a previous fracture.
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3.3 Data Processing

The raw data collected from the HCS and GLOW cohorts, including tibial HR-pQCT
scans of participants and their corresponding clinical covariates, DXA-measured femoral
neck BMD and fracture history, are used for fracture analysis. We process the raw data
from both cohorts to construct the HCS and GLOW datasets.

The raw HR-pQCT scans from the HCS and GLOW contain 110 parallel slices, in which
a volume of bone with a nominal resolution of 82 um. Although each HR-pQCT image
is in high resolution 1536× 1536, the limb in the image is very tiny and most regions
actually are soft tissues. To optimize the memory usage and computational cost, the
KHKs MicroCT tool is used to crop the radius and tibia in the image and remove the
fibula and surrounding soft tissues (Kilic and Hosgormez (2016)). The preprocessed
HR-pQCT images are archived in HDF5 format for further analysis. Typical examples
of tibial CT slices from participants with and without previous fractures are shown in
Figure 3.3.

FIGURE 3.3: Typical examples of tibial HR-pQCT slices from fracture (a) and non-
fracture (b) cases. There is a difference in bone microarchitecture between (a) and (b).

3.3.1 The HCS and Segmentation Datasets

In the HCS, no subject has more than one tibial HR-pQCT scan, and 193 subjects have
tibial HR-pQCT scans. Referring to the method of Pauchard et al. (2012), two tibial
CT scans of quality five are excluded, and only the scans of quality four and above
are included. 24 subjects who lack DXA-measured BMD or fracture history are also
excluded. Finally, the HCS dataset includes 167 subjects with tibial HR-pQCT images,
DXA-measured BMD, clinical risk factors and fracture history.
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TABLE 3.3: Participant characteristics of the Hertfordshire Cohort Study for fracture
analysis.

Characteristics
Mean (standard deviations)
Men (n=86) Women (n=81)

Age (years) 76.0 (2.3) 76.5 (2.7)
Height (cm) 174.4 (6.6) 160.8 (5.4)
Weight (kg) 84.3 (13.8) 72.6 (13.4)

BMI (kg/m2) 27.7 (4.1) 28.1 (5.0)
Dietary calcium (g) 8.6 (2.1) 7.8 (2.2)

Physical activity time (minutes) 206.9 (110.0) 215.5 (120.8)
Number of comorbidities 1.5 (1.1) 1.7 (1.5)

Femoral neck BMD (g/cm2) 0.9 (0.1) 0.8 (0.1)

Characteristics
Number (%)

Men (n=86) Women (n=81)

Smoking history (ever) 45 (52.3%) 32 (39.5%)
High alcohol consumption 10 (11.6%) 1 (1.2%)

Bisphosphonate (since baseline) 4 (4.7%) 16 (19.8%)
Social class (manual) 43 (50.0%) 46 (56.8%)

Previous fracture 23 (26.7%) 23 (28.4%)

High alcohol consumption was defined as drinking more than 21 units per
week for men and more than 14 units per week for women.
Participants with a vertebral fracture or a self-reported fracture since age 45
years were regarded as having had a previous fracture.

Participant characteristics of the HCS dataset are illustrated in Table 3.3. Overall, 86
males and 81 females with detailed previous fracture status are included; all partici-
pants are over 72 years old. Women have lower height, weight, dietary calcium intake,
femoral neck BMD values, smoking and alcohol consumption compared to men. How-
ever, women tend to have higher age, BMI, physical activity, comorbidities, bisphos-
phonate usage and social class compared to men. In addition, fractures occur more
frequently in older women, especially after menopause, consistent with previous stud-
ies (Areeckal et al. (2018)).

A segmentation dataset with pixel-level annotations in CT slices is constructed. The
open annotation tool LabelMe is used to manually mark the position of various regions
in a series of HR-pQCT slices and generate corresponding pixel-level labels (Russell
et al. (2008)). Figure 3.4 illustrates the surrounding soft tissue, cortical and trabecular
regions in the CT transverse slice. Within the HCS cohort, 24 subjects lack a fracture
history or DXA-measured BMD, and their tibial HR-pQCT scans are used to construct
the segmentation dataset. A total of 30 tibial CT scans are manually marked with pixel-
level annotations, and each HR-pQCT image contains 110 parallel slices. Therefore,
3300 CT transverse slices with pixel-level annotations are produced.
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FIGURE 3.4: Cross section of bone taken from a tibial CT image, showing different
regions: surrounding soft tissue (a), cortex (b) and trabecular (c).

TABLE 3.4: Participant characteristics of the Global Longitudinal Study of Osteoporo-
sis in Women for fracture analysis.

Characteristics
Mean (standard deviations)

Women (n=381)

Age (years) 70.9 (5.5)
BMI (kg/m2) 26.7 (5.0)

Alcoholic drinks per week (levels) 1.2 (1.0)
Femoral neck BMD (g/cm2) 0.7 (0.1)

Characteristics
Number (%)

Women (n=381)

Current smoker 20 (5.2%)
Cortisone or prednisone usage 6 (1.6%)

Rheumatoid history 36 (9.4%)
Colitis history 7 (1.8%)

Diabetes history 9 (2.4%)
Coeliac history 6 (1.6%)

Premature menopause 35 (9.2%)
Previous fracture 84 (22.0%)

Alcoholic drinks per week were categorised into five levels: level 0 (none),
level 1 (1-6 units), level 2 (7-13 units), level 3 (14-20 units) and level 4 (more
than 20 units).
Previous fracture: the participant had a self-reported fracture.

3.3.2 The GLOW Dataset

In the GLOW, no subject has more than one tibial HR-pQCT scan, and our study in-
cludes tibial HR-pQCT scans from all subjects. 15 tibial CT scans are excluded either
due to poor scan quality or the absence of scan quality (Pauchard et al. (2012)). In
addition, 105 subjects who lack DXA-measured BMD or fracture history are excluded.
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Finally, the GLOW dataset comprises 381 subjects with tibial HR-pQCT images, clinical
risk factors, DXA-measured BMD and fracture history.

Participant characteristics of the GLOW dataset are presented in Table 3.4. Overall,
the GLOW dataset includes 381 females with detailed previous fracture status, and all
participants are over 62 years old.

3.4 Summary

In this chapter, we provide an overall review of the HCS and extend its scope to investi-
gate the relationship between bone microarchitecture and fracture risk. In addition, we
present details of data collection and data processing for the HCS and GLOW cohorts,
including HR-pQCT scans of the distal tibia, clinical risk factors, DXA-measured BMD
values and fracture history of participants. Our study utilises the HCS and GLOW
datasets to perform fracture analysis and derive meaningful findings.
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Chapter 4

Volumetric Texture Analysis for
Fracture Discrimination

4.1 Inspirations and Introduction

HR-pQCT is a 3D imaging modality capable of assessing vBMD and bone microarchi-
tecture (Mikolajewicz et al. (2020)). Compared to DXA and clinical risk assessment
methods, HR-pQCT has the potential to provide higher accuracy in predicting frac-
ture risk, especially in patients with deterioration in bone microarchitecture. However,
traditional analysis of HR-pQCT imaging requires manual operation, and HR-pQCT
interpretation remains a challenge. A computer vision approach to ascertain fracture
risk from CT scans would be far simpler.

In this chapter, we propose a method that automatically extracts texture features from
HR-pQCT images and exploits the random forest classifier to identify previous frac-
tures. Our research objective is to deploy a computer vision approach to HR-pQCT
images in order to predict those at risk of fracture and to compare the discriminative
performance of this approach against the traditional methods of clinical risk factors
and femoral neck BMD. The study of this chapter is nested in the HCS, a group of
community-dwelling older adults. The results of our work demonstrate that using a
computer vision method to HR-pQCT scanning improves fracture discrimination com-
pared to clinical risk factors and DXA-measured BMD. This approach has the potential
to make the information offered by HR-pQCT more accessible (and therefore) appli-
cable to healthcare professionals in the clinic if the technology becomes more widely
available.



38 Chapter 4. Volumetric Texture Analysis for Fracture Discrimination

FIGURE 4.1: A combination of volumetric texture analysis and machine learning for
fracture classification. Texture information obtained from HR-pQCT images is used

to characterise bone microarchitecture.

4.2 Method

4.2.1 Design and Overview

The present study here is designed to test the hypothesis that fracture risk is deter-
mined in part by texture representations of HR-pQCT images. Therefore, if texture
features are derived from tibial HR-pQCT images of individuals, those with previous
fractures can be identified.

The framework of our method is illustrated in Figure 4.2. We propose a 3D LBP model
to characterise texture patterns of HR-pQCT images and to quantify bone microar-
chitecture through statistical distributions. These texture features extracted from HR-
pQCT images are then fed into the random forest classifier to distinguish between sub-
jects with and without previous fractures. The HCS dataset is used to evaluate the
discriminative performance of our method. Data collection and data processing are de-
tailed in Chapter 3.
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FIGURE 4.2: A centre volume and its surrounding voxels. The texture descriptor is
encoded by comparing the difference between the centre voxel vc and sampled points

vi in the neighborhood.

4.2.2 3D Texture Feature Extraction

As depicted in Figure 3.3, there are differences in bone microarchitecture in HR-pQCT
images between typical fracture and non-fracture subjects. Since texture features cap-
ture spatial patterns and statistical properties of pixel intensities within a local neigh-
borhood, they have the potential to quantify bone microarchitecture in HR-pQCT im-
ages to automatically ascertain fracture risk. Inspired by the successful application of
LBP in many tasks (Tang et al. (2013)), we extend the LBP method to extract volumetric
texture features from HR-pQCT images. Several 3D rotation invariant LBP descriptors
have been developed (Citraro et al. (2017), Fehr and Burkhardt (2008)), which construct
a sphere through linear interpolation and automatically adjust the angle to encode tex-
ture patterns. However, this process destroys the raw bone microarchitecture to a cer-
tain extent and also leads to high computational costs. For these defects, we develop a
3D LBP texture descriptor to characterise bone microarchitecture for fracture discrimi-
nation.

Ωv =
{

vi,j,k |1 ≤ i ≤W, 1 ≤ j ≤ H, 1 ≤ k ≤ Z
}

represents a set of points in a W×H×
Z image. Based on each voxel vi,j,k in the image, we construct a cube with the size of
E× E× E to encode the local patterns. We let r denote the Euclidean distance between
the centre location vc and sampled points vi on the cube surface. The configuration of
voxels in the neighborhood is shown in Figure 4.2. As observed in this figure, the sam-
pled voxels are positioned at the centre on each side of the neighborhood cube and are
shown in bold points. For each voxel vc in the image, vi represents the sampled neigh-
boring point of vc. Therefore, the 3D LBP descriptor can be encoded as in the following
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FIGURE 4.3: Multi-scale 3D local binary pattern descriptors. Texture information
from various scales is integrated to enrich feature representation.

equation:

LBPp,r =
p−1

∑
i=0

F(vi − vc)× wi (4.1)

F(x) =

1 x ≥ 0

0 x < 0
(4.2)

where, p is the number of sampled points around the centre voxel, and wi denotes the
weight parameter given to the corresponding neighborhood voxel vi. We give a thresh-
old to the E× E× E neighbourhood voxels in accordance with the value of vc to encode
binary codes and calculate the LBP operator (Ojala et al. (2002)).

Multi-scale feature extraction, which contains the descriptors from various scales, can
capture richer information about local patterns and increase classification performance
(Ojala et al. (2002)). In this study, we extend the multi-scale strategy to 3D space and
propose the multi-scale 3D LBP texture descriptor. Through extensive experiments, we
employ LBP descriptors from three different scales, as detailed in Section 4.3.2. The
multi-scale 3D LBP framework is illustrated in Figure 4.3. We construct multiple cubes
for each voxel in the solid image, and select its neighbors from various scales. Then
the LBP values of the entire image are calculated, and multiple 3D feature maps are
generated. Finally, we combine the texture features from different scales for image
classification. The histogram is adopted to characterise the distribution of local pat-
terns in the image, and the texture features are represented as a vector Hr. We calculate
the histograms of various feature maps separately and concatenate them together to
form the fused feature vector H. The equation is defined as follows:

H = H1 ⊕ H2 ⊕ ...⊕ Hr (4.3)

where ⊕ represents the concatenation operation.
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4.2.3 Classification

Among all classification algorithms, we adopt the random forest to group participants
according to whether or not they have experienced a previous fracture (Valentinitsch
et al. (2019)). The random forest classifier is an ensemble learning algorithm that con-
sists of a number of decision trees (Paul et al. (2018)). Decision trees are constructed
using random bootstrap samples from the training dataset. Each decision tree votes
for the possible options, and the random forest classifier selects the option that has the
highest number of votes. Compared to the single decision tree and other machine learn-
ing classifiers such as k-nearest neighbour and multilayer perceptron, random forest is
less prone to overfitting because the integrated results from multiple weak classifiers
result in fewer errors. Therefore, it is used to deal with small and unbalanced datasets,
and demonstrates superior performance to a single classifier (Sagi and Rokach (2018)).

In our study, there are fewer participants with previous fractures compared to those
without. Therefore, an under-sampling strategy is used for individuals without previ-
ous fractures to balance the data (Lin et al. (2017)). Then 80% of tibial HR-pQCT images
from the balanced data are selected randomly as the training set, while the remaining
data is equally divided into the validation and testing sets. The experiments are re-
peated ten times to evaluate performance. All analyses to assess the discriminative
performance of the random forest classifier are based on the testing set.

4.2.4 Statistical Analysis

Participant characteristics between fracture and non-fracture groups are compared.
The receiver operator characteristic (ROC) curve, sensitivity, specificity, accuracy and
AUC are used to assess the discriminative capability of our approach for previous frac-
ture. In addition, a 95% confidence interval (CI) for the AUC is calculated, representing
a range of values where the true parameter value is expected to lie with a 95% prob-
ability. It uses bootstrap resampling to estimate the parameter and then constructs a
distribution of results to determine the interval (Robin et al. (2011)). Sensitivity, speci-
ficity and accuracy are defined as follows:

Sensitivity =
TP

TP + FN
(4.4)

Specificity =
TN

FP + TN
(4.5)

Accuracy =
TP + TN

TP + TN + FP + FN
(4.6)

where, TP, TN, FP and FN represent the true positive, true negative, false positive and
false negative respectively.
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A participant is considered to have a previous fracture if the predicted fracture prob-
ability exceeds the threshold. The optimal threshold is determined by the Youden’s
Index (Youden (1950)) defined as in Equation 4.7, which summarises the overall per-
formance of a diagnostic test or classifier across all threshold values.

Youden′s index = Sensitivity + Specificity− 1 (4.7)

The Youden’s index is calculated for each value of the threshold on the validation set.
The threshold that corresponds to the highest Youden’s index is selected as the optimal
threshold.

The discriminative capacity of different fracture risk assessment techniques is com-
pared. Of particular interest is whether the AUC for our approach is substantially
greater than the AUC for DXA measurement and clinical risk assessment. Therefore,
the statistical significance of the difference in these two AUCs is examined using De-
Long’s test (DeLong et al. (1988)). DeLong’s test is chosen due to its effectiveness in
handling the correlation between the AUCs of two ROC curves. This non-parametric
method is widely applied in medical statistics for evaluating the performance differ-
ences between diagnostic tests. The p-value represents the probability of observing a
difference in AUC values as extreme as the one observed in the data, assuming that the
null hypothesis of no difference between the two methods is true. A significance level
of 0.05 is used; a p-value <0.05 is considered strong evidence against the null hypoth-
esis, indicating a statistically significant difference in the AUCs obtained by the two
methods.

Sensitivity analyses involve stratifying the analyses by sex, including distal tibial HR-
pQCT scans, clinical risk factors and DXA-measured BMD. Clinical risk factors include
age, sex, height, weight, BMI, dietary calcium, smoking history, alcohol consumption,
physical activity, bisphosphonate usage, number of comorbidities and occupational so-
cial class. The ascertainment of these clinical factors in HCS has been described pre-
viously (Fuggle et al. (2021)). Bone microarchitecture variables have been previously
demonstrated to relate to fracture risk independently of DXA-measured BMD (Samel-
son et al. (2019)).

The analysis sample comprises 167 participants with data on previous fractures. Python
3.7 is used to extract image features from participants and train the random forest clas-
sifier. All statistical analysis for predicted results is implemented in R, version 4.0. All
analyses are performed on Intel (R) Core (TM) i5-6600 CPU 3.30GHz with HD Graphics
530.
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4.3 Results

4.3.1 Parameter Settings

When encoding the local patterns in tibial HR-pQCT images, we construct three dif-
ferent cubes with 3 × 3 × 3, 4 × 4 × 4 and 5 × 5 × 5, and set the corresponding Eu-
clidean distance r to 1, 2 and 3 separately to sample neighboring points. Considering
the amount of calculation and feature dimensions in 3D space, we assign the number
of sampling points N in a cube to 6. The histogram bins of each texture operator are 64.

4.3.2 Performance of Fracture Risk Assessment

Three different measurements are used to assess fracture risk and make a fair compari-
son. The standard DXA measurement uses femoral neck BMD values as input data. In
the clinical risk assessment approach, 12 clinical covariates are normalized and used as
input features for the random forest classifier to discriminate previous fractures. Our
method extracts texture features from tibial HR-pQCT image data and then feeds them
into the random forest classifier for fracture discrimination.

The sensitivity, specificity and AUC (95% CI) results from various measurements are
presented in Table 4.1, according to the participant input information used; the corre-
sponding ROC curves are shown in Figure 4.4. Specificity, sensitivity and accuracy are
calculated using the predicted probability of fracture at the optimal threshold as de-
scribed in Section 4.2.4, summarised in Table 4.1 and Figure 4.5.

All measurements capture valuable information regarding fracture risk. Compared
to DXA-measured BMD (AUC: 0.63, 95% CI: 0.54-0.69) and clinical data (AUC: 0.60,
95% CI: 0.52-0.67), HR-pQCT image data demonstrate a higher classification accuracy
(AUC: 0.73, 95% CI: 0.65-0.79). Furthermore, there is a statistically significant difference
between the AUCs obtained from tibial HR-pQCT image data and both DXA-measured
BMD (p-value<0.05) and clinical data (p-value<0.03). When the FPR is allowed to be
20%, the standard DXA detects only 25% of individuals with previous fractures. How-
ever, HR-pQCT measurement significantly improves the TPR to 50%. In addition to
the random forest classifier and the optimal threshold, classification results for various
machine learning algorithms and thresholds are given in Table B.1 and Table B.2 of Ap-
pendix B.
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FIGURE 4.4: Receiver operating characteristic (ROC) curves for previous fracture from
DXA-measured BMD, clinical data and HR-pQCT image data. HR-pQCT image data
from tibial scans are used. Notably, at a false positive rate of 20%, the true positive
rate of the gold standard DXA is poor. HR-pQCT shows substantial improvement

compared to DXA (depicted by the yellow line).

FIGURE 4.5: Classification accuracy of DXA-measured BMD, clinical data and HR-
pQCT image data for previous fracture. HR-pQCT image data from tibial scans are

used.
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TABLE 4.1: Discriminative performance of DXA-measured BMD, clinical data and HR-
pQCT image data for previous fracture.

Input data AUC (95% CI) Sensitivity Specificity

DXA-measured BMD 0.63 (0.54-0.69) 0.42 0.73
Clinical data 0.60 (0.52-0.67) 0.40 0.66

HR-pQCT image data 0.73 (0.65-0.79) 0.46 0.81

BMD: femoral neck BMD.
Clinical data includes 12 clinical covariates such as age and gender.
HR-pQCT image data from tibial scans are used.
The Youden’s Index is used to determine the optimal threshold.
The highest values in each column are highlighted in bold.

TABLE 4.2: Discriminative performance of DXA-measured BMD, clinical data and HR-
pQCT image data for previous fracture (sex-specific analyses).

Input data
Males

AUC (95% CI) Sensitivity Specificity

DXA-measured BMD 0.64 (0.53-0.71) 0.13 0.78
Clinical data 0.58 (0.50-0.67) 0.23 0.79

HR-pQCT image data 0.67 (0.57-0.79) 0.37 0.86

Input data
Females

AUC (95% CI) Sensitivity Specificity

DXA-measured BMD 0.67 (0.55-0.75) 0.30 0.83
Clinical data 0.61 (0.50-0.71) 0.30 0.80

HR-pQCT image data 0.70 (0.58-0.79) 0.43 0.78

BMD: femoral neck BMD.
Clinical data includes 12 clinical covariates such as age and gender.
HR-pQCT image data from tibial scans are used.
The Youden’s Index is used to determine the optimal threshold.
The highest values in each column are highlighted in bold.

4.3.3 Sensitivity Analyses

Similar results are observed in the stratification of analyses by sex (Table 4.2). In this
scenario, the use of HR-pQCT image data results in a statistically significant improve-
ment (p-value<0.05) in fracture classification as measured using AUCs compared to
the use of clinical data and BMD.

4.4 Discussion

In this study, we propose an automatic discriminative algorithm that uses tibial HR-
pQCT image data to discriminate between people with and without previous fractures.
The AUC obtained from HR-pQCT image data (0.73, 95% CI: 0.65-0.79) is higher than
clinical data (0.60, 95% CI: 0.52-0.67) and DXA-measured BMD (0.63, 95% CI: 0.54-0.69);



46 Chapter 4. Volumetric Texture Analysis for Fracture Discrimination

volumetric texture analysis of image data significantly improves fracture discrimina-
tion compared to the use of clinical data and DXA-measured BMD (p-value<0.05). This
suggests that valuable information regarding fracture risk is utilised by image process-
ing methods which is not captured by DXA measurement and clinical risk factors. In
addition, our approach shows higher accuracy than comparative methods for discrim-
inating previous fractures in either men or women separately (see Table 4.2).

Imaging plays an important role in osteoporosis, with DXA BMD incorporated in the
definition of the condition (Organization et al. (1994)) and with the advent of computer
vision techniques, a body of image-related machine learning research has started to
develop. This has largely centred on using deep learning to assess for osteoporosis
on routine CT scans via automated vertebral body segmentation and then training an
algorithm to predict aBMD or a measure of vBMD (Valentinitsch et al. (2019), Löffler
et al. (2021), Valentinitsch et al. (2019)). A similar approach has also been used with
hip radiographs to assess BMD (Yamamoto et al. (2020)). The only previous work us-
ing HR-pQCT utilised radial trabecular texture in 18 post-menopausal women with
fragility fractures and 18 post-menopausal women without fragility fractures (a small
number of participants compared to our study cohort) (Valentinitsch et al. (2013)), but
did not investigate the discriminative performance of texture features for fracture clas-
sification. Our study also leverages recent computer vision developments in texture
analysis and further exploits the random forest classifier to discriminate previous frac-
tures.

We propose a 3D LBP method to capture bone microarchitectural information from
HR-pQCT images, making full use of the three-dimensionality of the HR-pQCT images
and the bone tissue they depict. 2D textural analysis is used in clinical practice in the
form of trabecular bone scores (TBS) on lumbar spine DXA images (Silva et al. (2014)).
However, these lack spatial information regarding bone geometry and microarchitec-
ture. (Murala and Wu (2015), Abbasi and Tajeripour (2017)). To address this issue, we
develop a method that constructs a 3D spatial cube for each voxel in the 3D images to
calculate the feature descriptor. Statistical distributions of texture patterns in HR-pQCT
images are used to quantify bone microarchitecture for fracture discrimination. The re-
sults presented in Table 4.1 and Table 4.2 confirm our hypothesis that fracture risk is
determined in part by texture representations of HR-pQCT images.

This study has some limitations. Firstly, although random forest classifiers have ad-
vantages for analysing small datasets (Zhang and Ma (2012)) and similar sample sizes
have been used in previous musculoskeletal research publications which have imple-
mented this technique (Hussain and Han (2019), Mehta and Sebro (2019), Gornale et al.
(2016)), a major limitation of our study is that the sample size is small. Secondly, our
method relies on data analysis of HR-pQCT images rather than existing knowledge for
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fracture classification. As a result, the generalisability and reproducibility of these find-
ings may be limited. Thirdly, previous (rather than incident) fracture history is used as
the outcome. Fourthly, further information on self-reported fractures, such as their lo-
cation and type, is not available; at the 2011-2012 follow-up, participants were only
asked whether they had broken any bones since age 45 years.

In addition, the HCS dataset is unbalanced which affects the discriminative perfor-
mance of the random forest classifier (Bader-El-Den et al. (2018)). Therefore, under-
sampling techniques are applied to the group of participants without previous frac-
tures to balance the data. In this study, 3D texture features are extracted from the entire
CT scans. Samples with global texture information of CT scans lead to more statistically
meaningful and stable outcomes. Oversampling techniques have also been attempted
to balance the data (Lu et al. (2022a)). Specifically, tibial CT scans are assumed to be
homogeneous. A sample of 22 consecutive slices is selected for each HR-pQCT image,
and different numbers of samples are selected from the scans with and without pre-
vious fractures. However, in this scenario, samples with local texture information of
images are used to train the classifier, and the outcomes are not stable (the best AUC
result is 0.86 when tibial HR-pQCT image data is used as input data to the discrimina-
tive system).

4.5 Summary

Volumetric texture analysis combined with machine learning provides an exciting op-
portunity to utilise HR-pQCT imaging to identify individuals at high risk of fracture.
This will potentially allow timely treatment and improved clinical outcomes; however,
prior to deployment, this work needs to be applied to datasets associated with other
cohorts.
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Chapter 5

Decoupling Relative Contributions
of Cortical and Trabecular Bone in
Fracture Discrimination

5.1 Inspirations and Introduction

HR-pQCT measurements are volumetric, providing an assessment of physiological
cross section of the bones and providing separate assessments of bone compartments
and vBMD (Hansen et al. (2014), Engelke et al. (2013)). The accurate semantic seg-
mentation and quantitative analysis of cortical and trabecular bone compartments in
HR-pQCT images have received increasing attention in recent years (Whittier et al.
(2020)). Initially, HR-pQCT slices were manually segmented by human operators (Laib
et al. (1998)). Subsequently, a dual-thresholding algorithm emerged as the current gold
standard for the automatic segmentation of cortical and trabecular compartments (Buie
et al. (2007), Burghardt et al. (2010)). However, this approach proved to be less robust
for specific populations such as osteoporotic patients, and still required manual inspec-
tion and corrections. Neeteson et al. (2023) recently developed an automated method
based on U-Net for the segmentation of cortical and trabecular compartments in HR-
pQCT images of the radius and tibia. However, they did not quantitatively analyse the
bone microarchitecture of these two compartments in CT scans.

In Chapter 4, we reveal that texture information obtained from the entire HR-pQCT
images is associated with fracture risk. However, the relative contributions of cortical
and trabecular compartments are unknown. Based on our work in Chapter 4 and that
of others (Fuggle et al. (2022), Valentinitsch et al. (2019)), we hypothesise that cortical
and trabecular regions at the distal tibia possess important information separately re-
garding fracture risk. Therefore, we propose to extract texture features from the cortical
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and trabecular regions in HR-pQCT images separately.

In this chapter, we develop an automatic approach that segments cortical and trabec-
ular regions in HR-pQCT scans for texture feature extraction to discriminate previous
fractures. First, we construct a dataset with annotated cortical and trabecular regions
in HR-pQCT slices, and employ a deep CNN for automatic and accurate segmentation
of these two regions. Second, we use the LBP model to characterise the texture patterns
of cortical and trabecular regions separately to quantify bone microarchitecture. Fur-
ther, we investigate the relative contributions of cortical and trabecular compartments
in fracture discrimination. Lastly, we evaluate the noise tolerance of our discriminative
system and propose an efficient strategy to enhance its robustness against noise in HR-
pQCT images.

5.2 Method

5.2.1 Design and Overview

The present study here is designed to test the hypothesis that both cortical and trabec-
ular regions in tibial HR-pQCT images possess important information about fracture
risk. Therefore if features are extracted from cortical or trabecular regions, previous
fractures can be discriminated.

The framework of our method is illustrated in Figure 5.1. First, we employ a 2D U-
Net model to segment cortical and trabecular regions in tibial HR-pQCT slices. Sub-
sequently, we utilise the 3D LBP model to characterise cortical and trabecular bone
microarchitecture in CT images. Texture features extracted from cortical and trabecular
regions are then separately used to train the random forest classifier for fracture dis-
crimination.

The segmentation and HCS datasets, detailed in Chapter 3, are utilised to evaluate the
performance of our method in image segmentation and fracture discrimination. The
cortical and trabecular regions in tibial HR-pQCT scans of 167 subjects from the HCS
dataset are automatically segmented by the U-Net model, which was trained on the
segmentation dataset.

5.2.2 Image Segmentation

The automatic segmentation of cortical and trabecular regions in HR-pQCT scans is
our method’s first and crucial step because the subsequent task is based on the located
regions. To achieve accurate and efficient segmentation of regions in tibial HR-pQCT
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FIGURE 5.1: Automatic segmentation of cortical and trabecular regions for fracture
classification. 3D texture analysis is separately conducted on segmented cortical and

trabecular regions in tibial HR-pQCT scans.

images, referring to the success of deep CNNs in many tasks, we employ a U-Net model
to perform this procedure (Fang et al. (2021)). Before training the model, we first resize
the tibial CT transverse slices into 224× 224 pixel resolutions.

The U-Net model contains an encoder and a decoder (Ronneberger et al. (2015)), as
shown in Figure 5.2. The encoder extracts the features of input CT slices by repeat-
edly using 3 × 3 convolutional layers followed by rectified linear unit (ReLU) acti-
vation functions and 2× 2 max pooling operations with stride 2. The decoder maps
the high-level semantic features of images to the segmentation results through 2× 2
up-convolution (up-conv) operations. In addition, there is a concatenation operation
through skip connections between the feature map from the encoder to the decoder to
reduce the information loss of border pixels in the convolution operations. In the final
layer, each feature vector is mapped to three groups using 1× 1 convolutions. There
are 23 convolutional layers in the network.

The segmentation dataset comprises 3300 CT transverse slices with pixel-level anno-
tations. Among these, 2310 tibial CT slices are used as the training set, 330 CT slices are
used as the validation set, and the remaining CT slices are used as the testing set. The
U-Net model, trained on this segmentation dataset, is subsequently employed to de-
termine the position of the cortical and trabecular regions in other CT scans for further
texture analysis.
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FIGURE 5.2: Architecture of the U-Net for image segmentation of tibial HR-pQCT
slices. The skip connection involves cropping feature maps from the encoder, copying

them and connecting them to the feature maps from the decoder.

5.2.3 3D Texture Analysis

Considering that microarchitectural deterioration of bone tissue is associated with frac-
ture risk, we adopt the 3D LBP method to characterise the texture patterns of cortical
and trabecular regions separately. Histograms are then constructed to quantify the sta-
tistical distributions for further classification.

Let Ωv =
{

vi,j,k |1 ≤ i ≤W, 1 ≤ j ≤ H, 1 ≤ k ≤ Z
}

represent a set of voxels in a solid
image with W × H × Z. The neighborhood scheme here is that samples N voxels over
a cube with E× E× E (see Figure 4.2). We let r denote the Euclidean distance between
the centre location vc and sampled points vi on the cube surface. The detailed proce-
dure for 3D texture feature extraction is introduced in Section 4.2.2 of Chapter 4. We
also adopt the multi-scale strategy that calculates a set of LBP descriptors from various
scales and concatenates the corresponding texture feature vectors to quantify bone mi-
croarchitecture.
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5.2.4 Classification

We use the random forest classifier to discriminate between subjects with and with-
out previous fractures. After image segmentation of cortical and trabecular regions,
there are 167 tibial CT scans with segmentation masks for fracture classification. How-
ever, the class distribution is unbalanced in our study. There are 121 images with non-
fractures and 46 images with fractures. No participant has more than one tibial scan.
The unbalanced data usually leads to a biasing problem that the classifier performs
badly in the class with fewer samples. In order to overcome this issue, we use an
under-sampling strategy for non-fracture images to balance the data. Then 80% of tib-
ial HR-pQCT images from the balanced data are selected randomly as the training set,
while the remaining data is equally divided into the validation and testing sets. We
repeat the experiments 10 times and calculate the average of the classification results.

5.2.5 Statistical Analysis

Participant characteristics are described using summary statistics in Section 3.3.1 of
Chapter 3. The Intersection over Union (IoU) is utilised to measure the segmentation
performance of our U-Net model. It is the ratio of the overlapping area of ground truth
and predicted area to the union area. In terms of fracture risk assessment, we use eval-
uation metrics such as TPR (sensitivity), FPR, TNR (specificity), AUC and accuracy to
assess the discriminative performance (Singh et al. (2017)). These metrics are described
in Chapter 4. In addition, a confidence interval (CI) which is a range with an upper and
lower value is calculated from samples to take account of the uncertainty. A significant
level of 0.05 is also used in this study, and we regard a statistically significant difference
when the p-value is less than 0.05.

Model robustness analysis involves evaluating the noise tolerance of our approach on
tibial CT scans. Zero mean Gaussian noise with various standard deviations is added
to HR-pQCT images. We use the signal-to-noise ratio (SNR) to characterise the ratio of
signal power to noise power (Ling and Bovik (2002)). It is defined as:

SNR = 10 log10

∑I
i=1 ∑J

j=1 ∑K
k=1 s(i, j, k)2

∑I
i=1 ∑J

j=1 ∑K
k=1 [s(i, j, k)− n(i, j, k)]2

(5.1)

where, s(i, j, k) and n(i, j, k) separately represent the grayscale value of noise-contaminated
and noise-free images at the point (i, j, k).

We compare the discriminative performance of HR-pQCT-based measures (including
the entire tibia, cortical region and trabecular region) with clinical risk factors and DXA-
measured BMD for previous fracture. DXA measurement utilises femoral neck BMD
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values for fracture classification. Clinical risk factors include age, sex, height, weight,
BMI, dietary calcium, smoking history, alcohol consumption, physical activity, bispho-
sphonate usage, number of comorbidities and occupational social class. These two
measurements are described in Chapter 4.

5.3 Results

5.3.1 Parameter Settings

U-Net is used as the segmentation network, and hyperparameters are set as follows:
the Adam optimizer is utilised in the training process, with a learning rate of 0.0002
and 50 epochs, and the batch size is set to 4. The U-Net architecture is illustrated in
Section 5.2.3, and the details are described in Table 5.1. 3D LBP is employed to extract
texture features from tibial HR-pQCT images, and the details are described in Section
4.3.1 of Chapter 4.

5.3.2 Performance of Image Segmentation

Figure 5.3 illustrates the examples of original tibial HR-pQCT images, manual annota-
tions and automated results of the U-Net model. IoU quantifies how well the manual
marking matches automatic segmentation by dividing the intersection of two segments
by their union. According to the results, a predicted segmentation and the correspond-
ing ground-truth annotation correlate very well that the mean IoU of CT scans on the
testing set is 0.96. Furthermore, manual and automatic segmentation of various re-
gions in tibial HR-pQCT slices are used separately to measure the IoU. The segmenta-
tion results for cortical and trabecular regions, as well as surrounding soft tissue, are
presented in Table 5.2. Therefore, our U-Net model can achieve state-of-the-art perfor-
mance on automatically segmenting cortical and trabecular regions at the distal tibia.

5.3.3 Performance of Fracture Risk Assessment

We separate cortical and trabecular regions in tibial HR-pQCT scans and input different
components into the LBP model to compare the discriminative performance of fracture
risk assessment. Furthermore, we compare our method with traditional BMD mea-
surement and participants’ clinical covariates (Edwards et al. (2016)). The discrimina-
tive performance of HR-pQCT-based measures, clinical risk factors and DXA-measured
BMD is summarised in Table 5.3. Specificity, sensitivity and accuracy are calculated us-
ing the predicted probability of fracture at the optimal threshold. The optimal threshold
is determined by the Youden’s Index (Youden (1950)). The classification accuracy and
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TABLE 5.1: Detailed description of the U-Net architecture.

Layer name
Encoder

Output size Operations

Conv1 224 × 224
[

3× 3, 64
3× 3, 64

]
Conv2 112 × 112

[
3× 3, 128
3× 3, 128

]
Conv3 56 × 56

[
3× 3, 256
3× 3, 256

]
Conv4 28 × 28

[
3× 3, 512
3× 3, 512

]
Conv5 14 × 14

[
3× 3, 1024
3× 3, 1024

]

Layer name
Decoder

Output size Operations

Up4 28 × 28 Upsample

Up-conv4 28 × 28
[

3× 3, 512
3× 3, 512

]
Up3 56 × 56 Upsample

Up-conv3 56 × 56
[

3× 3, 256
3× 3, 256

]
Up2 112 × 112 Upsample

Up-conv2 112 × 112
[

3× 3, 128
3× 3, 128

]
Up1 224 × 224 Upsample

Up-conv1 224 × 224
[

3× 3, 64
3× 3, 64

]
Output layer 224 × 224 [1× 1, 3]

TABLE 5.2: Segmentation performance of the U-Net model.

Regions IoU (standard deviations)

Cortical region 0.84 ± 0.04
Trabecular region 0.96 ± 0.02

Surrounding soft tissue 0.97 ± 0.01

ROC curves of HR-pQCT-based measures, including the entire tibia, cortical region and
trabecular region, are presented in Figure 5.4 and Figure 5.5.

As the classification results illustrated in Table 5.3, our volumetric texture analysis
method applied to tibial HR-pQCT image data shows a stronger signal in identifying
individuals with previous fractures than DXA measurement and clinical risk assess-
ment. The standard DXA and clinical risk assessment approaches, used to discriminate
between people with and without previous fractures, yield AUCs of 0.63 (95% CI: 0.54-
0.69) and 0.60 (95% CI: 0.52-0.67) respectively. When the texture features of the entire
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FIGURE 5.3: Examples of image segmentation: input CT slices from tibial scans (a),
and manual (b) and automatic (c) segmentations.

tibia in HR-pQCT images (without segmentation) are extracted for fracture classifica-
tion, the AUC improves to 0.73 (95% CI: 0.65-0.79). The sensitivity of this method is
0.46, and the specificity is 0.81. After image segmentation, the cortical and trabecu-
lar regions in HR-pQCT images are automatically localised, and texture features are
extracted separately for fracture discrimination. The AUCs of the segmented compart-
ments are 0.75 (95% CI: 0.67-0.81) for the cortical compartment and 0.66 (95% CI: 0.56-
0.71) for the trabecular compartment. Therefore, both cortical and trabecular compart-
ments contain valuable information regarding fracture risk. The cortical compartment
significantly outperforms the trabecular compartment in terms of fracture discrimina-
tion (p-value <0.05).

The statistical analysis shows that there is a significant difference between the AUCs
obtained from HR-pQCT-based measures (including the entire tibia and cortical region)
and both clinical risk factors and DXA-measured BMD (p-value <0.05). However, no
statistically significant difference is found between the AUCs obtained from the trabec-
ular region and both clinical risk factors and DXA-measured BMD (p-value >0.05).
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FIGURE 5.4: Classification accuracy of tibial HR-pQCT scans from automatic segmen-
tation for previous fracture. 3D texture analysis is separately conducted on the entire
tibia, cortical regions and trabecular regions in CT scans to discriminate previous frac-

tures.

FIGURE 5.5: Receiver operating characteristic (ROC) curves for previous fracture from
HR-pQCT-based measures. The entire tibia, cortical regions and trabecular regions in
tibial HR-pQCT scans are used. Notably, at low false positives, the cortical region
shows substantial improvement (higher positive predictive performance) compared

to the trabecular region.
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TABLE 5.3: Discriminative performance of HR-pQCT-based measures, DXA-
measured BMD and clinical data for previous fracture.

Input data AUC (95% CI) Sensitivity Specificity

Entire tibia 0.73 (0.65-0.79) 0.46 0.81
Cortical region 0.75 (0.67-0.81) 0.56 0.77

Trabecular region 0.66 (0.56-0.71) 0.48 0.69
DXA-measured BMD 0.63 (0.54-0.69) 0.42 0.73

Clinical data 0.60 (0.52-0.67) 0.40 0.66

The entire tibia, cortical regions and trabecular regions are from tibial HR-pQCT scans.
BMD: femoral neck BMD.
Clinical data includes 12 clinical covariates such as age and gender.
The Youden’s Index is used to determine the optimal threshold.
The highest values in each column are highlighted in bold.

5.3.4 Result Analysis

Here, we analyse the predictions when cortical regions in tibial HR-pQCT scans are
segmented and used as input data for our algorithm. By inspecting the classification
results in details, we find that most samples in the testing set are correctly identified,
while a few samples are assigned incorrectly. Many samples have no apparent ap-
pearance of bone mass, and visual inspection to identify fractures is not feasible from
images of the tibia as these may have occurred elsewhere in the skeleton.

Figure 5.6 and Figure 5.7 displays some examples of tibial HR-pQCT image classifi-
cation results. Figure 5.6 (a) and (b) show that there is no apparent visual difference
between two bone sections, especially in cortical bone. Our approach can analyse
beyond the limitations of the standard image analysis method using the texture fea-
tures extracted from cortical regions to achieve the correct identification of fracture and
non-fracture cases. Figure 5.7 (a) and (b) show HR-pQCT images of fracture and non-
fracture cases with incorrect predictions. These incorrect predictions may be an artefact
of the fact that there is a substantial stochastic element to fracture occurrence which
is independent of bone fragility and therefore will not be captured by the HR-pQCT
image. By similar token, bone fragility (and therefore increased fracture risk) can be
observed in the HR-pQCT image but may not have led to a fracture as the individual
may not have fallen or been subject to any trauma.

5.3.5 Model Robustness Analysis

HR-pQCT images are, as with most medical images, subject to issues such as noise and
movement artefact which may impact quality and cause issues with image processing
methods. These uncertainties are likely to degrade the image quality and result in a
lower discriminative performance for assessments, in this fracture classification. Here,



5.3. Results 59

FIGURE 5.6: Examples of bone sections with correct classification results: fracture (a)
and non-fracture (b) cases. Visual inspection does not discriminate between the two,

while our discriminative system can achieve accurate predictions.

FIGURE 5.7: Examples of bone sections with incorrect classification results: fracture
(a) and non-fracture (b) cases. The fracture in (a) may be caused by an accident, and

the bone fragility in (b) may not have led to a fracture.
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FIGURE 5.8: Performance of image segmentation against noise contamination. With
noise-free images (a), U-Net produces good segmentation (b), while with additive
Gaussian noise at SNR=20 (c) and SNR=15 (e), it shows gradual degradation in per-

formance (d) and (f).
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we present the performance of our discriminative system against image perturbations.

The training set consists of noise-free tibial HR-pQCT images, and zero mean Gaus-
sian noise with various standard deviations is added to the images in the testing set.
Gaussian noise is introduced to simulate noise scenarios in clinical practice and evalu-
ate the noise-tolerant property of our approach. Noise contaminates HR-pQCT images
and affects subsequent image analysis, including image segmentation and texture anal-
ysis.

First, the performance of cortical and trabecular region segmentation is influenced.
Figure 5.8 (b), (d) and (f) illustrates the automatic segmentation results of normal and
noisy CT slices. In noise-free HR-pQCT images, the U-Net model shows excellent per-
formance (IoU, 0.96) in localising cortical and trabecular regions. However, when the
image is contaminated with noise, segmentation performance gradually decreases, pri-
marily in the voxel classification of boundary regions. The IoUs of image segmentation
are 0.95 and 0.93 for noisy HR-pQCT images with SNR of 20 and 15 respectively. The
results indicate that the U-Net model retains good performance in the automatic seg-
mentation of cortical and trabecular regions even at the presence of noise in HR-pQCT
images. The imperfect segmentation of boundaries between cortical and trabecular re-
gions could also impact model performance. However, this aspect is not within the
scope of robustness analysis in this study. Our robustness analysis focuses on evaluat-
ing the performance variations of our approach when Gaussian noise is introduced to
HR-pQCT images.

Noise interference also changes the texture patterns of images (Lu et al. (2022b)) and
has a negative influence on fracture classification. Although the LBP texture descriptor
exhibits high discriminative power, it is susceptible to noise in the image, as described
in Section 2.4.3 of Chapter 2. Figure 5.9 (a) depicts the classification performance of
our approach with various Gaussian noise levels in HR-pQCT images. Cortical regions
automatically segmented from CT images are used as input data for our approach. In
noise-free HR-pQCT images, our proposed 3D LBP model achieves an AUC of 0.75 for
fracture discrimination. However, when the images are contaminated with noise, the
discriminative performance of our approach sharply decreases. To address this issue,
we propose an efficient and robust texture descriptor to enhance the noise tolerance
of our discriminative system. The details of our method are described in Appendix
C. Figure 5.9 (b) demonstrates that the proposed robust completed local binary pat-
tern (RCLBP) method can enhance the model robustness of our discriminative system
against noise in HR-pQCT images.
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FIGURE 5.9: Classification performance with increasing levels of noise contamination.
The proposed RCLBP method (b) in Appendix C shows a lower degradation in dis-

criminative performance in comparison to the 3D LBP (a).

5.4 Discussion

This study presents an approach to automatically segment cortical and trabecular re-
gions in tibial HR-pQCT images and separately quantify their bone microarchitecture
for fracture discrimination. Specifically, we construct a segmentation dataset, and em-
ploy a deep neural network U-Net to extract semantic features of CT slices to tackle the
image segmentation task. Further, a 3D LBP model is used to capture bone microarchi-
tectural information from HR-pQCT scans to discriminate between subjects with and
without previous fractures. Our study suggests that the cortical region (AUC: 0.75, 95%
CI: 0.67-0.81) outperforms the trabecular one (AUC: 0.66, 95% CI: 0.56-0.71) in fracture
discrimination. The results presented in Table 5.3 confirm our hypothesis that cortical
and trabecular regions possess important information separately about fracture risk.

To the best of our knowledge, our work is the first to automatically segment cortical
and trabecular regions at the distal tibia for fracture discrimination. In recent years,
a combination of CT screening and computer-aided diagnosis has attracted extensive
attention in fracture risk assessment, and some approaches have been proposed based
on bone CT images such as spinal CT scans (Löffler et al. (2021)). Our research lever-
ages the tibial HR-pQCT images from the HCS for fracture classification, and cortical
and trabecular region localisation is the basis for our measurements. We employ a U-
Net model for image segmentation that captures the context information of bone in CT
slices and successfully trains the neural network with limited annotated training sam-
ples. Automatic segmentation of cortical and trabecular regions is highly correlated
with manual annotation, and the average IoU is 0.96. Furthermore, we explore the
individual contributions of cortical and trabecular compartments in fracture discrimi-
nation.
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The 3D texture analysis method plays an important role in capturing bone fragility from
HR-pQCT scans. It quantifies the regional variations and characterises the grayscale
distribution. It is difficult to capture bone microarchitectural information from tibial
CT images via visual inspection and interpret the clinical diagnosis. However, our pro-
posed 3D LBP model provides an opportunity to quantify cortical and trabecular bone
microarchitecture through statistical distributions. These distributions help identify
patterns and variations in bone texture that are indicative of bone fragility, facilitating
the differentiation between subjects with and without previous fractures. Compared to
conventional deep learning methods that require massive training samples with man-
ual annotations (Badgeley et al. (2019)), the 3D LBP model enables automated identifi-
cation of previous fractures with only a small training set.

The occurrence of some uncertainties in practice such as noise and movement artefact
may degrade the quality of CT images. Our segmentation model maintains excellent
performance against noise present in HR-pQCT images. However, the 3D LBP model
for image texture analysis is susceptible to noise. To address this, we develop an effi-
cient and robust RCLBP descriptor (see Appendix C) to enhance the robustness of our
discriminative system against noise present in HR-pQCT images.

As both cortical and trabecular regions in bone HR-pQCT images contribute to dis-
criminating previous fractures, we also investigate the combination of texture features
extracted from these two bone regions for fracture classification. Specifically, we pro-
pose two strategies to integrate the texture features of cortical and trabecular regions.
The first one involves concatenating the feature vectors of cortical and trabecular re-
gions and feeding them into the random forest classifier to discriminate previous frac-
tures. The other strategy is to train two separate random forest classifiers using the tex-
ture features extracted from these two bone regions and then combining their outputs
to produce the result. However, the highest AUC (0.75) for previous fracture results
from using cortical regions as input data for our approach. Combining the texture fea-
tures of cortical and trabecular regions does not improve the discriminative accuracy
further. This may be because cortical features play a dominant role in fracture classi-
fication, overshadowing the contributions from trabecular features. In addition, there
may be dependencies between cortical and trabecular features, potentially leading to
redundancy rather than complementary information in the classification task.

There are also several limitations to this study. Firstly, the cortical regions in HR-pQCT
scans are thin due to the distal site of measurement, and the manual annotations are
not perfect with the current LabelMe tool. Especially around periosteal and endosteal
surfaces in tibial CT slices, an accurate annotation is very difficult. As a result, this de-
fect may affect the optimization of the U-Net model in the training process, potentially
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lowering the discriminative performance of our approach for cortical regions. In the
future, we aim to improve the automatic segmentation of cortical and trabecular re-
gions and enhance model interpretability for fracture risk assessment. Also, this study
only validates our approach in the elderly and British population. Future work should
replicate our method in other cohorts and extend it to a larger and more diverse popu-
lation, including young generations and subjects from other regions worldwide.

5.5 Summary

In this chapter, we propose an accurate and efficient method to segment cortical and
trabecular regions of slices taken across CT scans of bones. The segmentation, cou-
pled with 3D texture analysis performed separately on cortical and trabecular regions
for feature extraction, shows the existence of discriminant information in both regions.
Our work also shows the importance of significantly more information contained in
the cortical-rich (compared to distal trabecular bone) sites. We also demonstrate the
robustness of the segmentation and classification methods we proposed against signif-
icant levels of additive noise in HR-pQCT images.
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Chapter 6

Multi-View Convolutional Neural
Networks for Fracture
Discrimination

6.1 Inspirations and Introduction

In Chapter 4, we demonstrate that volumetric texture analysis can be used to charac-
terise bone microarchitecture based on a few of HR-pQT images for fracture discrimi-
nation. However, the proposed method may have limited generalisability to large pop-
ulations. CNNs typically exhibit superior generalisability and robustness compared to
statistical analysis methods when applied to large datasets (Krizhevsky et al. (2012)).
Based on our work in Chapter 4 and that of others (Nishiyama et al. (2013), Mikola-
jewicz et al. (2020)), we investigate whether deep CNNs allow for characterising bone
microarchitecture to identify previous fractures from HR-pQCT images in this chapter.

Over the decades, CNNs have been applied to clinical imaging to diagnose osteoporo-
sis and assess fracture risk (Smets et al. (2021), Hsieh et al. (2021)). These algorithms
can learn complex patterns and relationships in the image data that may not be easily
discernible by human observers. By incorporating deep learning, it is possible to de-
velop accurate and personalized fracture risk prediction models applied to HR-pQCT
images, thereby reducing the burden of fractures on the healthcare system. Neverthe-
less, successful training of CNNs typically requires a large amount of annotated data
(Tajbakhsh et al. (2016), Lu et al. (2022b)). Thus, automatic and accurate detection of
bone fragility from HR-pQCT images remains challenging. Currently, CNNs have not
yet been applied to bone HR-pQCT images for fracture risk prediction.

Transfer learning is an effective strategy to address the overfitting problem, especially
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when the amount of labeled data is small. Pre-trained CNNs are generated from large-
scale natural datasets with thousands of annotated samples, which have superior gen-
eralisation performance (Han et al. (2018)). Some studies suggest using pre-trained
CNNs that learn features from large datasets and transfer them to the medical domain
to enable automated diagnosis of diseases with limited data (Júnior et al. (2021), Huang
et al. (2020)). Therefore, pre-trained CNNs have the potential to capture bone microar-
chitectural information from HR-pQCT images for fracture classification.

In this chapter, we propose an automatic method that employs multi-view CNNs to
capture bone microarchitectural information from HR-pQCT images and then use the
random forest classifier to identify previous fractures. Furthermore, we conduct nu-
merical experiments to evaluate the discriminative performance of our method on the
HCS dataset. The results of our study demonstrate that the image features extracted
from tibial HR-pQCT scans via CNNs outperform DXA-measured BMD and clinical
risk factors in fracture discrimination. This finding underscores the potential of our
approach for application in clinical practice to enhance fracture risk prediction.

6.2 Method

6.2.1 Design and Overview

The present study here is designed to test the hypothesis that fracture risk is deter-
mined in part by feature representations of HR-pQCT images obtained from CNNs.
Therefore, if image features are extracted from tibial HR-pQCT images of individuals
using CNNs, those with previous fractures can be identified.

The framework of our method is illustrated in Figure 6.1. We employ a pre-trained
CNN model on the ImageNet dataset with global average pooling across different fea-
ture maps to encode feature representations of CT slices. The high-level image features
from multiple views of tibial HR-pQCT scans are integrated and fed into the random
forest classifier to discriminate between subjects with and without previous fractures.
The HCS dataset is used to evaluate the discriminative performance of our method.
Data collection and data processing are detailed in Chapter 3.

6.2.2 Slice Selection

There are two common deep learning models for achieving 3D image classification (Su
et al. (2015)). The first one is 3D CNNs, which can directly extract features from 3D
volume data, but require high computational cost and large memory burden. In ad-
dition, not all parts of 3D data provide valuable signals for image classification tasks.
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FIGURE 6.1: Multi-view convolutional neural networks for fracture classification.
HR-pQCT slices taken from different views are encoded as feature representations

and integrated to characterise bone microarchitecture.

The second model, multi-view CNNs, was proposed to address those issues by divid-
ing 3D image data into multiple views. It uses the 2D CNN model to learn features
from those slices for image classification. In this study, we adopt the latter model and
propose to select nine CT slices of 3D volume data from various directions to extract
image features and build a comprehensive feature representation. The procedure of
slice selection is articulated in Algorithm 1.

Algorithm 1: Slice selection
Require: N: total number of 3D images having size K×W × H
Enquire: Data[1:N, 1:M]: selected slices from 3D image data, M: number of views

Xi is the ith 3D image
1: for i← 1 to N do:
2: get Xi
3: Data[i, 1]← Xi[1, :, :]
4: Data[i, 2]← Xi[K/2, :, :]
5: Data[i, 3]← Xi[K, :, :]
6: Data[i, 4]← Xi[:, 1, :]
7: Data[i, 5]← Xi[:, W/2, :]
8: Data[i, 6]← Xi[:, W, :]
9: Data[i, 7]← Xi[:, :, 1]
10: Data[i, 8]← Xi[:, :, H/2]
11: Data[i, 9]← Xi[:, :, H]
12: end for
13: get Data
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6.2.3 Feature Extraction

CNN acts as a feature extractor in image recognition, with low layers learning basic
image features and high layers learning to identify the object in the image. Pre-trained
CNNs based on transfer learning have been widely used and demonstrated excellent
performance in many tasks (Han et al. (2018)). However, some studies indicate that the
latter layers of pre-trained CNNs such as the softmax layer may exhibit inferior gen-
eralisation performance (Huang et al. (2020)). This problem is more serious in medical
image analysis tasks due to the lack of sufficient labeled data to guide the network fo-
cusing on the local region of interest (Hu et al. (2021)). In addition, some valuable image
information may be lost as the convolutional layers increase. To overcome these two
obstacles, we adopt the ResNet-18 architecture pre-trained on the ImageNet dataset.
Furthermore, we propose a multi-pooling strategy that combines image features from
different feature maps, to effectively represent the features of CT slices, as shown in
Figure 6.2.

For each selected slice of 3D images, we resize it into 224× 224 and then use the 2D
CNN model to extract image features. The CNN starts from a 7 × 7 convolutional
layer, followed by batch normalization (BN), rectified linear unit (ReLU) and a max
pooling layer. There are four basic modules in the network to extract image features,
each of which comprises convolutional layers followed by BN and ReLUs. The output
of each convolutional layer consists of a bank of feature maps. The feature map of the
l-th convolutional layer is computed as:

Fc
l = σ(

M

∑
m=1

(Wm
l × Fc

l−1) + bc
l ) (6.1)

where, Fc
l−1 and Fc

l represent the input and output maps in the c-th channel respectively.
M denotes the number of filters. Wm

l is the weight matrix of the m-th filter, and bc
l is the

bias. Function σ(.) represents the ReLU function which is defined as:

σ(x) =

x x ≥ 0

0 x < 0
(6.2)

Then a max-pooling layer following the convolutional layer is introduced to select fea-
tures. The output map of the k-th max-pooling layer is defined as follows:

Y(m,n),c
k = max h(m,n),c

Ω (6.3)

where, Y(m,n),c
k represents the neuron at position (m, n) in the output map. hc

Ω is the
input map. Ω denotes the pooling region.
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FIGURE 6.2: The architecture of the convolutional neural network for encoding feature
representations of tibial HR-pQCT scans. Multi-pooling and concatenation operations

are introduced to integrate feature maps from different convolutional layers.

In order to enrich global feature representations of 2D slices and reduce valuable infor-
mation lost, we take full advantage of features extracted from different modules and
integrate them to characterise the image. Here, we propose a multi-pooling strategy
that uses the global average pooling operation to process the output feature maps of
various modules. The global average pooling is defined as:

Ac
t =

∑(p, q)∈Ω sc
p,q

|Ω| (6.4)

where, Ac
t denotes the output of the pooling operation in the c-th channel of the t-th

module. |Ω| is the size of the pooling region. sc
p,q represents the element at position

(p, q) in the input map.

We let At=[A0
t , ..., Ac

t , ...] represent the image features derived from the t-th module
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of the CNN model. As seen in Figure 6.2, we concatenate the feature vectors from
different modules to form a vector f to characterise the 2D slice. Through extensive
experimentation, we choose the image features derived from the latter three modules
to produce f as follows:

f = A2 ⊞ A3 ⊞ A4 (6.5)

where, ⊞ represents the concatenation operation.

6.2.4 Classification

In Figure 2.7 of Chapter 2, we illustrate the traditional CNN architecture, which utilises
convolutional operations and the backpropagation algorithm to automatically learn im-
age features for classification. When the training sample size is small, the softmax layer
in the traditional CNN framework generally performs badly in identifying objects in
the image. Some studies suggest utilising alternative strong classifiers, such as the
SVM and conditional random field, instead of the softmax layer, to process the feature
vectors from the fully connected layer to improve classification performance (Niu and
Suen (2012)). In this study, we propose to use the ensemble learning classifier, random
forest, for 3D image classification to reduce overfitting. Random forest can also reduce
prediction variance by dividing the data into multiple subsets (Speiser et al. (2019)).

The detailed steps for dividing the training set, validation set and testing set are in-
troduced in Section 4.2.3 of Chapter 4. Here, these feature vectors {V1, ...Vi, ..., VN}
produced by the CNN model are regarded as input data to the random forest classifier,
where N is the number of samples. The feature vector Vi of 3D image Si contains nine
subsets V1

i , V2
i , ..., V9

i , each of which characterises the image feature of the selected CT
slice. During training, the feature vectors of all training samples are used to train the
random forest classifier, and model parameters are updated. During testing, a partic-
ipant is considered to have a fracture if the predicted fracture probability exceeds the
threshold. The optimal threshold is determined by the Youden’s Index (Youden (1950))
on the validation set.

6.2.5 Statistical Analysis

Participant characteristics are described using summary statistics in Section 3.3.1 of
Chapter 3. The ROC curve and metrics such as AUC, sensitivity, specificity and ac-
curacy, are utilised to evaluate the discriminative performance of our approach for
previous fracture (Singh et al. (2017)). The 95% confidence interval (CI) for AUC is
calculated to evaluate the uncertainty. The statistical significance difference in AUCs
obtained from various methods is examined, and a p-value <0.05 is considered statis-
tically significant.
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We compare the discriminative performance of our approach with current fracture risk
assessment techniques, including clinical risk assessment and DXA measurement. Our
method, based on the HR-pQCT measurement, employs deep CNNs to extract features
from tibial CT scans to characterise bone microarchitecture. The DXA measurement
utilises femoral neck BMD values for fracture risk assessment. The clinical risk as-
sessment uses 12 clinical covariates including age, sex, height, weight, BMI, dietary
calcium, smoking history, alcohol consumption, physical activity, bisphosphonate us-
age, number of comorbidities and occupational social class. These two measurements
are described in Chapter 4. Sensitivity analyses involve stratifying the analyses by sex
for these three techniques.

6.3 Results

6.3.1 Parameter Settings

Our method and comparisons are implemented in Python (version 3.8) with Pytorch
as the platform for deep learning models, running on a Windows 10 operating system
with 8 GB RAM, Intel (R) Core (TM) i5-6600 3.30 GHz CPU. The architecture and pa-
rameter settings of our multi-view CNN model are described in Section 6.2.3 of this
chapter. For each random forest, 50 decision trees using the Gini criterion are con-
structed.

6.3.2 Performance of Fracture Risk Assessment

Table 6.1 summarises the results of sensitivity, specificity and AUC (95% CI) from HR-
pQCT measurement, clinical risk assessment and DXA measurement for fracture dis-
crimination. The Youden’s Index (Youden (1950)) is used to determine the optimal
threshold and calculate specificity, sensitivity and accuracy using the predicted prob-
ability of fracture. Figure 6.3 and Figure 6.4 illustrate the classification accuracy and
ROC curves of these three fracture risk assessment methods.

As shown in Table 6.1, compared to DXA measurement (AUC: 0.63, 95% CI: 0.54-0.69)
and clinical risk assessment (AUC: 0.60, 95% CI: 0.52-0.67), HR-pQCT measurement
demonstrates a higher discriminative performance (AUC: 0.75, 95% CI: 0.67-0.82) for
previous fracture. The statistical analysis shows that there is a significant difference
between the AUCs obtained from HR-pQCT measurement and both clinical risk as-
sessment and DXA measurement (p-value <0.05). When the FPR is allowed to be 20%,
clinical risk assessment and DXA measurement detect only 20% and 25% of individuals
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TABLE 6.1: Discriminative performance of different fracture risk assessment methods
for previous fracture.

Methods AUC (95% CI) Sensitivity Specificity

DXA measurement 0.63 (0.54-0.69) 0.42 0.73
Clinical risk assessment 0.60 (0.52-0.67) 0.40 0.66
HR-pQCT measurement 0.75 (0.67-0.82) 0.56 0.84

DXA-measured femoral neck BMD is used.
Clinical risk assessment uses 12 clinical covariates such as age and gender.
HR-pQCT-measured tibial scans are used.
The Youden’s Index is used to determine the optimal threshold.
The highest values in each column are highlighted in bold.

FIGURE 6.3: Receiver operating characteristic (ROC) curves for previous fracture from
different fracture risk assessment methods. HR-pQCT-measured tibial scans are used.
Notably, at a false positive rate of 20%, the true positive rate of the gold standard DXA
is poor. HR-pQCT shows substantial improvement compared to DXA (depicted by

the yellow line).

with previous fractures. However, HR-pQCT measurement significantly improves the
TPR to 58%.

Figure 6.5 illustrates the classification results of our method compared to conventional
deep learning architectures, including ResNet-18 (He et al. (2016)), VGG-19 (Simonyan
and Zisserman (2014)) and 3D ResNet-18 (Hara et al. (2018)). These architectures are
end-to-end deep neural networks that automatically learn image features using the
backpropagation algorithm during training. It can be clearly seen that our model signif-
icantly outperforms other deep learning architectures in fracture discrimination. Con-
ventional deep learning models, when trained on a few of HR-pQCT images, exhibit a
severe overfitting problem, resulting in poor performance.
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FIGURE 6.4: Classification accuracy of HR-pQCT measurement for previous fracture
compared with clinical risk assessment and DXA measurement. HR-pQCT-measured

tibial scans are used.

FIGURE 6.5: Discriminative performance of different deep learning models for previ-
ous fracture based on small samples. HR-pQCT-measured tibial scans are used.
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FIGURE 6.6: An ablation study of our method with different components for fracture
classification. HR-pQCT-measured tibial scans are used.

Our proposed method contains two important components, and it is meaningful to
analyse their contributions separately to the results. Therefore, we study the effects of
replacing or removing components to provide additional insight into what makes the
discriminative performance. In detail, we evaluate the effects of

• No multi-pooling: extracting image features of CT slices using only the feature
maps from the final convolutional layer.

• No multi-view: removing the multiple views of 3D images and using the image
feature extracted from the single view as input data to the random forest classifier.

Here we present an ablation study on fracture classification, and the discriminative
performance of different methods is illustrated in Figure 6.6. We can find that each
component of our method contributes to the overall performance. Our approach com-
bines these two strategies to extract image features from HR-pQCT images, resulting
in the highest AUC in fracture discrimination.

6.3.3 Sensitivity Analyses

Table 6.2 illustrates similar results in the stratification of analyses by sex. In this sce-
nario, the use of HR-pQCT measurement improves discriminative accuracy for previ-
ous fracture compared to the use of DXA measurement and clinical risk assessment
methods.
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TABLE 6.2: Discriminative performance of different fracture risk assessment methods
for previous fracture (sex-specific analyses).

Methods
Males

AUC (95% CI) Sensitivity Specificity

DXA measurement 0.64 (0.53-0.71) 0.13 0.78
Clinical risk assessment 0.58 (0.50-0.67) 0.23 0.79
HR-pQCT measurement 0.69 (0.59-0.77) 0.30 0.90

Methods
Females

AUC (95% CI) Sensitivity Specificity

DXA measurement 0.67 (0.55-0.75) 0.30 0.83
Clinical risk assessment 0.61 (0.50-0.71) 0.30 0.80
HR-pQCT measurement 0.72 (0.61-0.82) 0.43 0.83

DXA-measured femoral neck BMD is used.
Clinical risk assessment uses 12 clinical covariates such as age and gender.
HR-pQCT-measured tibial scans are used.
The Youden’s Index is used to determine the optimal threshold.
The highest values in each column are highlighted in bold.

6.4 Discussion

Accurate and reliable fracture risk assessment can facilitate the early diagnosis and
treatment of bone fragility and reduce healthcare costs. In this study, we develop an
automatic method for fracture discrimination from HR-pQCT images. Firstly, we em-
ploy a pre-trained CNN on the ImageNet dataset to extract multi-scale image features
from CT slices. Then we integrate image features from multiple views of HR-pQCT
scans and use the random forest classifier to discriminate between individuals with and
without previous fractures. This study suggests that automated quantitative analysis
of HR-pQCT imaging (AUC: 0.75, 95% CI: 0.67-0.82) improves discriminative accuracy
for previous fracture compared to traditional methods of DXA measurement (AUC:
0.63, 95% CI: 0.54-0.69) and clinical risk assessment (AUC: 0.60, 95% CI: 0.52-0.67).

The discriminative performance of our approach is evaluated on the clinical dataset
from the HCS. Numerical experiments demonstrate that our method which combines
multi-view CNNs and random forest is feasible for automated fracture discrimination
from HR-pQCT imaging. CNNs exhibit reliability and effectiveness in quantifying
bone microarchitecture in HR-pQCT images. The results shown in Table 6.1 confirm
our hypothesis that information obtained from HR-pQCT images through CNNs is as-
sociated with fracture risk.

An ablation study is conducted to evaluate the contribution of each component of our
method, and it demonstrates that both of them contribute to the overall performance.
Compared to traditional deep learning architectures (see Figure 6.5), our method demon-
strates superior results in fracture classification based on a few of HR-pQCT images.
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TABLE 6.3: Discriminative performance of different image feature extraction methods
for previous fracture.

Methods AUC (95% CI) Sensitivity Specificity

Multi-view CNNs 0.75 (0.67-0.82) 0.56 0.84
LBP-entire tibia 0.73 (0.65-0.79) 0.46 0.81

LBP-cortical regions 0.75 (0.67-0.81) 0.56 0.77
LBP-trabecular regions 0.66 (0.56-0.71) 0.48 0.69

The entire tibia, cortical regions and trabecular regions are from tibial HR-pQCT scans, and 3D LBP
is conducted separately on each of them.
The Youden’s Index is used to determine the optimal threshold.
The highest values in each column are highlighted in bold.

Our model integrates multi-scale image features from multiple views of HR-pQCT
scans to enhance feature representation of bone microarchitecture. In addition, our
model adopts the random forest classifier to handle high-dimensional image features
from the fully connected layer and performs better than the softmax in the few-shot
image scenario.

In Chapter 4 and Chapter 5, we propose to use 3D LBP to extract features from the
entire tibia, cortical regions and trabecular regions in HR-pQCT scans separately for
fracture discrimination. Table 6.3 compares the discriminative performance of multi-
view CNNs proposed in this chapter with LBP in the above three scenarios. Unlike LBP,
which focuses on local texture characteristics, multi-view CNNs require contextual and
global information of the image to encode feature representations. Therefore, we utilise
the entire tibial HR-pQCT scans as input data for multi-view CNNs to avoid losing
valuable information. The corresponding results are presented in Table 6.3. Multi-view
CNNs demonstrate a similar AUC result to LBP when using cortical regions segmented
from CT scans as input data. However, when the entire tibia or trabecular regions are
used as input data for 3D LBP, multi-view CNNs yield a higher AUC for fracture clas-
sification. This comparison also highlights that besides bone texture features, other im-
age features are associated with previous fractures. LBP is effective in capturing bone
texture features, while multi-view CNNs capture comprehensive image features from
HR-pQCT scans. As a result, multi-view CNNs can leverage diverse image features to
enhance the feature representations of bone microarchitecture and have the potential
to improve fracture classification accuracy. However, since incorrectly labeled samples
in the data could also impact model performance, we further conduct a comparison
analysis between multi-view CNNs and LBP in Section 7.4 of Chapter 7.

However, our study also has several limitations. One limitation is that the clinical
dataset collected from the HCS is small, which may affect the generalisation and clas-
sification performance of our model. Another limitation is the imbalance in the num-
ber of participants with previous fractures (n=46) compared to those without (n=121).
Therefore, we have to employ an under-sampling strategy for the non-fracture group to
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balance the data. In addition, the dataset contains incorrectly labeled samples, such as
instances where fracture occurrence is not caused by bone fragility, potentially leading
the classifier to learn incorrect patterns between fracture and non-fracture groups.

6.5 Summary

In this chapter, we propose to use deep CNNs to characterise bone microarchitecture
from multiple views of HR-pQCT images and then integrate these high-level image
features to identify subjects with previous fractures. Our proposed automated method
is able to capture richer information from HR-pQCT imaging beyond BMD and clinical
risk factors for fracture discrimination. This approach has the potential to improve the
accuracy and reliability of bone fragility detection in clinical practice and reduce the
clinical workloads.
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Chapter 7

An Enhanced and Robust Fracture
Discrimination System

7.1 Inspirations and Introduction

Our work in Chapter 4 and Chapter 6 shows that computer vision approaches (where
the entire HR-pQCT scan is ’read’ by computer algorithms) to determine fracture dis-
crimination provide benefits above the use of clinical risk factors or DXA-measured
BMD. However, as introduced in Chapter 2, fracture is affected by multiple factors
aside from bone fragility (Litwic (2020)). Our current datasets lack the ground truth to
label non-fractured healthy and osteoporotic fracture subjects correctly. Fracture his-
tory was determined via self-report or vertebral fracture assessment, and HR-pQCT
scans lacked manual review by clinicians. Two groups of individuals included in our
datasets cannot be accurately identified through image analysis, potentially lowering
the performance of our discriminative systems. One group comprises healthy subjects
who have suffered from traumatic fractures. The other group includes subjects with
bone fragility who have not experienced a fracture. Samples from these two groups
are referred to as incorrectly labeled samples or incorrectly labeled data in this thesis.
Therefore, there is still room for improvement in the accuracy of fracture discrimina-
tion.

We hypothesise that there are differences in bone microarchitecture in HR-pQCT im-
ages between fracture and non-fracture groups. Therefore in order to discriminate
fragility fractures, in our dataset, we require two distinct groups: i) fractured patients
due to fragility and ii) non-fractured healthy individuals. In this study, our objective
is to filter out incorrectly labeled samples to enhance the accuracy and robustness of
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our discriminative system in the quantitative analysis of HR-pQCT imaging. DXA-
measured BMD is widely utilised for assessing bone health and provides an opportu-
nity to label non-fractured healthy individuals and those with osteoporotic fractures
within the population.

We observe from Chapter 4 that specific DXA-measured BMD and T-score values can
be used for fracture discrimination. In the absence of clinical ground truth to form
our training dataset containing two groups with correctly labeled samples of fractured
patients with fragilities and non-fractured healthy individuals, we exploit T-scores to
form our training dataset. Therefore, we propose to employ adaptive T-score thresh-
olds to filter out incorrectly labeled samples from the raw dataset. Subsequently, we
use multi-view CNNs to characterise bone microarchitecture in HR-pQCT images to
discriminate between non-fractured healthy subjects and subjects with osteoporotic
fractures. Our numerical experiments demonstrate that using DXA BMD to filter out
incorrectly labeled samples significantly improves the accuracy and robustness of our
discriminative system. When evaluated on an independent cohort, our model can
maintain high discriminative performance. In the absence of clinical ground truth, our
approach that exploits DXA BMD and HR-pQCT images introduces a learning system
to improve fracture discrimination compared to HR-pQCT and DXA alone.

7.2 Method

7.2.1 Design and Overview

The framework of our method is illustrated in Figure 7.1. We quantitatively analyse
bone microarchitecture in HR-pQCT images using multi-view CNNs (as described in
Chapter 6) and generate adaptive optimal T-score thresholds to categorise individuals
into non-fractured healthy and osteoporotic fracture groups. After filtering out incor-
rectly labeled data, image features are extracted from CT scans and fed into the random
forest classifier to discriminate osteoporotic fractures.

The HCS dataset is used to evaluate the discriminative performance of our method.
The GLOW dataset from an independent cohort is also used to evaluate the robust-
ness of our discriminative system. The data collection and data processing of these two
datasets are detailed in Chapter 3.
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FIGURE 7.1: An adaptive threshold strategy to enhance fracture discrimination.
DXA-measured T-scores are used as the ground truth to select samples in the raw

data.

7.2.2 Image Feature Extraction

Building upon the correlation between microarchitectural deterioration of bone tissue
and fracture risk, we propose to use volumetric texture analysis and deep CNNs tech-
niques to characterise bone microarchitecture in HR-pQCT images for fracture classi-
fication. The details of these two approaches are described in Chapter 4 and Chapter
6. In this chapter, we adopt multi-view CNNs (as described in Chapter 6) to extract
image features from HR-pQCT scans and use DXA-measured T-score information to
select correctly labeled samples for a correct performance analysis of our system. In
addition, we compare the discriminative performance of multi-view CNNs and LBP
for fracture discrimination in both the HCS and GLOW datasets in Section 7.4.

7.2.3 Adaptive T-score Thresholds

Fracture occurrence is a binary random variable. Such a random variable would de-
pend on how careful an individual is to avoid a traumatic accident. For example, the
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discrimination of traumatic fractures through quantitative analysis of HR-pQCT imag-
ing is not feasible. This is due to the fact that the traumatic fractures of healthy individ-
uals are completely random. Moreover, even if bone fragility exists in the human body,
it may not cause a fracture if the individual has not experienced a traumatic incident.
Instances from these two scenarios are considered as incorrectly labeled data and can-
not be accurately discriminated due to the random nature of fracture occurrence. Fur-
thermore, including these incorrectly labeled samples in the training set may weaken
the classifiers’ capability to discriminate between fracture and non-fracture groups.

A high BMD indicates a healthy and strong bone structure, offering increased strength
and resistance to compression, thereby reducing the risk of fractures. Conversely, low
BMD suggests fragility in bone structure or loss of bone mass. As depicted in Figure
7.2, the raw data from the HCS and GLOW cohorts include some incorrectly labeled
samples. Some individuals with high T-scores experienced fractures, and others with
low T-scores did not. These instances are considered incorrectly labeled samples and
would lower the performance of our discriminative systems. Therefore, filtering out
incorrectly labeled data from the original cohorts has the potential to enhance the dis-
criminative performance of our model.

T-score is widely used as the gold standard to distinguish between osteoporosis, os-
teopenia and healthy subjects in clinical practice, with reference to the diagnostic thresh-
olds shown in Table 2.1 (Watts (2004)). However, to the best of our knowledge, there
are no established standards to categorise individuals into healthy and osteoporotic
fracture groups. Here, we propose to use the T-score as a tool to select non-fractured
healthy individuals and osteoporotic fracture patients in the raw data. However, the
specific thresholds for categorising are unknown.

Inspired by diagnostic criteria for osteoporosis, we propose two adaptive T-score thresh-
olds denoted as α and β to categorise individuals into non-fractured healthy and osteo-
porotic fracture groups. The steps followed to generate optimal thresholds are listed
in Algorithm 2. α and β are as hyperparameters added into our discriminative system
to filter out incorrectly labeled samples from the raw data. Our proposed image fea-
ture extraction method, as described in Chapter 6, is then applied to the filtered data
to discriminate between non-fractured healthy subjects and subjects with osteoporotic
fractures. Starting from the lowest value for the T-score, the T-score thresholds increase
incrementally to compute AUC for each value of the threshold. The T-score thresholds
that correspond to the highest AUC in fracture discrimination are selected as the opti-
mal thresholds.
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Algorithm 2: Adaptive thresholds
Require: N: total number of participants in the training and validation sets

Xi is the DXA-measured T-score of participant i
Yi is the fracture history of participant i (0: non-fracture, 1: fracture)
Si is the HR-pQCT image data of participant i
m, n : the lowest and highest values for the T-score

Enquire: α, β: T-score thresholds
Data: selected samples
bestauc: the best AUC result for fracture discrimination

1: bestauc ← 0.5
2: for β← m to n do:
3: for α← β to n do:
4: for i← 1 to N do:
5: get Xi, Yi, Si
6: if Yi=0:
7: if Xi > α:
8: calculate image features for Si
9: add this sample into Data
10: else:
11: remove this sample
12: if Yi=1:
13: if Xi ≤ β:
14: calculate image features for Si
15: add this sample into Data
16: else:
17: remove this sample
18: end for
19: divide Data into a training set and a validation set
20: train the classifier and calculate the AUC on the validation set
21: if AUC > bestauc
22: select α and β as the current optimal thresholds
23: bestauc ← AUC
24: end for
25: end for
26: get optimal thresholds

7.2.4 Classification

In the HCS dataset, there are fewer participants with previous fractures (n=46) com-
pared to those without (n=121). Each participant included in this dataset only has one
tibial scan. Unbalanced data typically biases the classifier towards the class with larger
samples. Therefore, an under-sampling strategy is utilised for participants without
previous fractures to balance the data (Lin et al. (2017)). Then 80% of tibial HR-pQCT
images from the balanced data are selected randomly as the training set, while the re-
maining data is equally divided into the validation and testing sets. The experiments
are repeated ten times to evaluate performance. The T-score thresholds that enable our
approach to produce the highest AUC in fracture classification on the validation set are
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determined as the adaptive optimal thresholds, which are then used as the criteria to
filter the HCS dataset. The discriminative performance of our approach for previous
fracture is evaluated on the testing set.

The GLOW dataset comprises 84 participants with previous fractures and 297 without.
Each participant included in this dataset only has one tibial scan. An under-sampling
strategy is also utilised for the non-fracture group to balance the data. The same data
partitioning method as that of the HCS dataset is used to divide the training set, valida-
tion set and testing set of the GLOW dataset. The adaptive optimal T-score thresholds
for the GLOW cohort are determined on the validation set. Both internal and external
tests are conducted on the testing set of the GLOW dataset to evaluate the discrimina-
tive performance of our approach for previous fracture. In the internal test, both the
training and testing sets are drawn from the GLOW dataset. In the external test, the
model is trained on the HCS dataset and then tested on the testing set of the GLOW.

7.2.5 Statistical Analysis

Participant characteristics are described using summary statistics in Section 3.3 of Chap-
ter 3. The ROC curve and metrics such as AUC, sensitivity, specificity and accuracy
are utilised to evaluate the discriminative performance of our approach for previous
fracture. The 95% confidence interval (CI) for AUC is calculated to evaluate the uncer-
tainty. The statistical significance difference in AUCs obtained from various fracture
risk assessment methods is examined, and a p-value <0.05 is considered statistically
significant.

In both the HCS and GLOW datasets, the discriminative performance of HR-pQCT
measurement is compared with traditional methods of clinical risk assessment and
DXA measurement. These two methods are described in Chapter 6. Clinical risk fac-
tors for the HCS dataset include age, sex, height, weight, BMI, dietary calcium, smoking
history, alcohol consumption, physical activity, bisphosphonate usage, number of co-
morbidities and occupational social class. Similarly, clinical risk factors for the GLOW
dataset comprise age, sex, BMI, current smoker, alcoholic drinks, cortisone or pred-
nisone usage, rheumatoid history, colitis history, diabetes history, coeliac history and
premature menopause.

In addition, the discriminative capacity of our approach with and without DXA BMD
is compared. Of particular interest is whether the AUC for our approach with the adap-
tive threshold strategy is substantially greater than the AUC for that without.
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FIGURE 7.2: Comparative analysis of T-score distributions between the Hertfordshire
Cohort Study and Global Longitudinal Study of Osteoporosis in Women. (a) and (b)
are the non-fracture and fracture groups from the former dataset, while (c) and (d) are

the non-fracture and fracture groups from the latter dataset.

7.3 Results

7.3.1 Comparative Analyses

Distributions of femoral neck BMD T-scores for the HCS and GLOW datasets are shown
in Figure 7.2. The T-scores for participants in both the HCS and GLOW cohorts were
derived using NHANES III data and Equation 2.1 in Chapter 2 (Ward et al. (2023)).
DXA measurement is considered the gold standard for assessing BMD and diagnosing
osteoporosis in clinical practice. In Figure 7.2, both the HCS and GLOW datasets re-
veal participants with previous fractures overall tend to have lower T-scores than those
without fractures. However, there is a discernible difference between the T-score distri-
butions of these two datasets. Participants in the HCS exhibit lower levels of bone loss
or bone deterioration compared to those in the GLOW. As a result, a variance would
exist in the feature distributions of HR-pQCT images between the HCS and GLOW
datasets, potentially lowering the discriminative performance of our model. Domain
adaption is used to address this issue, as described in Appendix D.
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FIGURE 7.3: Determining optimal T-score thresholds through quantitative analysis of
HR-pQCT images. The red point has the highest AUC on the validation set of the HCS

dataset, and its corresponding T-score thresholds of α=1.18, β=-0.02 are selected.

7.3.2 Performance of Fracture Risk Assessment in the Hertfordshire Cohort
Study

Our discriminative system employs T-score thresholds α and β (as described in Algo-
rithm 2 in Section 7.2.3) to select samples from the raw data and quantitatively analyse
HR-pQCT images to discriminate between non-fractured healthy subjects and subjects
with osteoporotic fractures. Figure 7.3 illustrates the AUC results of our approach on
the validation set according to specific T-score thresholds. When α=1.18 and β=-0.02,
our approach produces the highest AUC in fracture discrimination; therefore, these
values are considered the adaptive optimal T-score thresholds for the HCS dataset. We
apply optimal thresholds to select non-fractured healthy and osteoporotic fracture sub-
jects in the HCS dataset (see Figure 7.4), and present the discriminative performance of
different methods.

The sensitivity, specificity and AUC (95% CI) results from various fracture risk assess-
ment methods on the raw and filtered datasets from the HCS are summarised in Table
7.1. Specificity, sensitivity and accuracy are calculated using the predicted probabil-
ity of fracture at the optimal threshold, determined by the Youden’s Index (Youden
(1950)). The ROC curves of HR-pQCT measurements with and without using adaptive
T-score thresholds to filter out incorrectly labeled samples are illustrated in Figure 7.5.
A comparison of classification accuracy between HR-pQCT measurement and clinical
risk assessment using the filtered dataset is presented in Figure 7.6.
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FIGURE 7.4: Adaptive T-score thresholds for selecting non-fractured healthy and os-
teoporotic fracture subjects in the Hertfordshire Cohort Study dataset.

In the raw dataset from the HCS, traditional methods of DXA measurement and clini-
cal risk assessment approaches used to discriminate previous fractures yield AUCs of
0.63 (95% CI: 0.54-0.69) and 0.60 (95% CI: 0.52-0.67) respectively. The quantitative anal-
ysis of HR-pQCT images with our multi-view CNN model improves the AUC to 0.75
(95% CI: 0.67-0.82). Furthermore, after filtering the raw dataset with adaptive T-score
thresholds, the AUC of HR-pQCT measurement improves to 0.90 (95% CI: 0.82-0.97),
as shown in Figure 7.5. The sensitivity and specificity of this approach are 0.80 and
0.87. The statistical analysis reveals a significant difference between the AUCs obtained
from HR-pQCT measurements with and without DXA BMD filtering (p-value <0.001).
Samples in the filtered dataset are selected using DXA-measured T-scores as the ground
truth; therefore, DXA measurement should not be assessed for previous fracture. Table
7.1 and Figure 7.6 demonstrate that HR-pQCT measurement has a higher discrimina-
tive performance than clinical risk assessment in identifying individuals with previous
fractures in the filtered dataset.

7.3.3 Performance of Fracture Risk Assessment in the Global Longitudinal
Study of Osteoporosis in Women

Similar to the HCS dataset, our discriminative system employs adaptive T-score thresh-
olds α and β to analyse the GLOW dataset. When α=-0.95 and β=-2.35, our approach
produces the highest AUC on the validation set for fracture classification; therefore,
these values are considered the adaptive optimal T-score thresholds for the GLOW
dataset. As depicted in Figure 7.7, we apply optimal thresholds to filter out incorrectly
labeled data and retain non-fractured healthy and osteoporotic fracture subjects in the
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TABLE 7.1: Discriminative performance of different methods for previous fracture us-
ing the raw and filtered datasets from the Hertfordshire Cohort Study.

Methods
Raw dataset

AUC (95% CI) Sensitivity Specificity

DXA measurement 0.63 (0.54-0.69) 0.42 0.73
Clinical risk assessment 0.60 (0.52-0.67) 0.40 0.66
HR-pQCT measurement 0.75 (0.67-0.82) 0.56 0.84

Methods
Filtered dataset

AUC (95% CI) Sensitivity Specificity

Clinical risk assessment 0.78 (0.68-0.91) 0.47 0.97
HR-pQCT measurement 0.90 (0.82-0.97) 0.80 0.87

DXA-measured femoral neck BMD is used.
Clinical risk assessment uses 12 clinical covariates such as age and gender.
HR-pQCT measurement uses multi-view CNNs to capture bone microarchitectural information from
tibial scans.
The Youden’s Index is used to determine the optimal threshold.
The highest values in each column are highlighted in bold.

FIGURE 7.5: Comparative analysis of HR-pQCT measurements with and without
DXA BMD filtering for fracture classification. HR-pQCT measurements use multi-
view CNNs to capture bone microarchitectural information from tibial scans. Note,
while the AUC is the usual performance metric (shown in Table 7.1), the difference in
positive predictive performance at low false positives shows substantial improvement

by incorporating DXA BMD filtering.
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FIGURE 7.6: Classification accuracy of HR-pQCT measurement and clinical risk as-
sessment for previous fracture using the filtered dataset from the Hertfordshire Cohort
Study. HR-pQCT measurement uses multi-view CNNs to capture bone microarchitec-

tural information from tibial scans.

GLOW dataset. Subsequently, we present the discriminative performance of different
methods.

Both internal and external tests are conducted to evaluate the discriminative capability
of our approach on the testing set of the GLOW dataset. During training, the internal
test uses the training set of the GLOW, while the external test utilises the HCS dataset.

In the internal test, similar to the HCS, the sensitivity, specificity and AUC (95% CI)
results from various fracture risk assessment methods on the raw and filtered datasets
from the GLOW are summarised in Table 7.2. Specificity, sensitivity and accuracy are
calculated using the predicted probability of fracture at the optimal threshold, deter-
mined by the Youden’s Index (Youden (1950)).

Similar results to the HCS dataset are observed in Table 7.2. In the raw dataset from
the GLOW, compared to DXA measurement (AUC: 0.60, 95% CI: 0.53-0.67) and clinical
risk assessment (AUC: 0.57, 95% CI: 0.51-0.63), HR-pQCT measurement demonstrates
a higher classification accuracy (AUC: 0.65, 95% CI: 0.58-0.70) for fracture discrimina-
tion. Furthermore, after filtering out incorrectly labeled samples with DXA BMD, the
AUC of HR-pQCT measurement significantly improves to 0.94 (95% CI: 0.89-0.97).

The statistical analysis shows that there is a significant difference between the AUCs
obtained from HR-pQCT measurements with and without DXA BMD filtering (p-value
<0.001). In addition, when filtering out incorrectly labeled data from the original
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FIGURE 7.7: Adaptive T-score thresholds for selecting non-fractured healthy and
osteoporotic fracture subjects in the Global Longitudinal Study of Osteoporosis in

Women dataset.

TABLE 7.2: Discriminative performance of different methods for previous fracture us-
ing the raw and filtered datasets from the Global Longitudinal Study of Osteoporosis

in Women dataset (internal test).

Methods
Raw dataset

AUC (95% CI) Sensitivity Specificity

DXA measurement 0.60 (0.53-0.67) 0.70 0.51
Clinical risk assessment 0.57 (0.51-0.63) 0.56 0.54
HR-pQCT measurement 0.65 (0.58-0.70) 0.77 0.74

Methods
Filtered dataset

AUC (95% CI) Sensitivity Specificity

Clinical risk assessment 0.77 (0.67-0.83) 0.63 0.64
HR-pQCT measurement 0.94 (0.89-0.97) 0.77 0.86

DXA-measured femoral neck BMD is used.
Clinical risk assessment uses 12 clinical covariates such as age and BMI.
HR-pQCT measurement uses multi-view CNNs to capture bone microarchitectural information from
tibial scans.
The Youden’s Index is used to determine the optimal threshold.
The highest values in each column are highlighted in bold.
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FIGURE 7.8: An ablation study of our method with different components for fracture
classification in the external test scenario. HR-pQCT measurement uses multi-view

CNNs to capture bone microarchitectural information from tibial scans.

GLOW dataset using adaptive T-score thresholds, a statistically significant difference
is found between the AUCs obtained from HR-pQCT measurement and clinical risk
assessment (p-value <0.05).

In the external test, the AUC results of our method under different scenarios are pre-
sented in Figure 7.8. The prediction model (random forest) is trained on the entire HCS
dataset and subsequently evaluated for discriminative performance on the testing set of
the GLOW dataset. Two important techniques (DXA BMD filtering and domain adap-
tation) are included in our discriminative system to enhance its accuracy and robust-
ness for previous fracture. As described in Appendix D, domain adaptation involves
retraining the prediction model on the validation set of the GLOW dataset to adapt it
to the target domain. We further study the effects of removing techniques to provide
additional insight into what makes the discriminative performance. In detail, we eval-
uate the effects of

• Our method: using DXA BMD filtering for sample selection in the HCS and
GLOW datasets; training the prediction model on the filtered HCS dataset; re-
training the model on the validation set of the GLOW dataset.
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• No domain adaptation: using DXA BMD filtering for sample selection in the HCS
and GLOW datasets, and then training the prediction model only on the filtered
HCS dataset.

• No DXA BMD filtering: training the prediction model on the raw HCS dataset,
and then retraining the model on the validation set of the raw GLOW dataset.

• No DXA BMD filtering and domain adaptation: training the prediction model
only on the raw HCS dataset, and then testing the model on the raw GLOW
dataset.

Figure 7.8 illustrates that each technique within our method contributes to the overall
performance. Notably, the adaptive threshold strategy, which eliminates incorrectly la-
beled samples from the raw data, significantly enhances the classification performance
of our model. In the best-case scenario where all incorrectly labeled samples are re-
moved from the HCS and GLOW datasets and also domain adaptation is used, our
discriminative system achieves an AUC of 0.91 when evaluated on an independent co-
hort. However, the presence of incorrectly labeled instances in clinical practice would
diminish the discriminative accuracy of our approach. When considering all incorrectly
labeled samples, the AUC of our approach (no DXA BMD filtering) is only 0.63.

In incorrectly labeled samples, non-fractured healthy subjects who have experienced
traumatic fractures would be misclassified as the non-fracture group through quanti-
tative analysis of HR-pQCT images, hindering physicians in providing fracture pre-
vention and intervention for these subjects. In contrast, individuals with bone fragility
who have not experienced a fracture would be misclassified as the fracture group by
our model. It is important to note that these instances, where non-fracture patients
with bone fragility are misclassified as the fracture group, are not the errors of our sys-
tem. Instead, these misclassified samples can be considered as future predictions for
such patients to indicate that a fracture in the future is likely to happen, although such
a fracture has not occurred yet. Therefore, without filtering out such samples in the
testing set of the GLOW dataset, we evaluate the performance of our discriminative
system. The results demonstrate that our method achieves an AUC of 0.85, and the
sensitivity and specificity are 0.76 and 0.85.

7.4 Discussion

In this study, we propose an enhanced and robust discriminative algorithm that quan-
titatively analyses HR-pQCT images to discriminate between non-fractured healthy
subjects and subjects with osteoporotic fractures. The highest AUCs were obtained for
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both the HCS (0.90, 95% CI: 0.82-0.97) and GLOW (0.94, 95% CI: 0.89-0.97) datasets us-
ing a combination of HR-pQCT measurement and DXA BMD filtering; HR-pQCT mea-
surement has a higher discriminative accuracy for previous fracture than clinical risk
assessment and DXA measurement; inclusion of DXA BMD filtering significantly im-
proves fracture discrimination compared to HR-pQCT alone. This suggests that valu-
able information regarding fracture risk is utilised by combining HR-pQCT imaging
and DXA BMD, which provides benefits beyond performance with clinical risk factors,
BMD or HR-pQCT alone.

The results summarised in Table 7.1 and Table 7.2 indicate that using DXA-measured
T-scores as the ground truth for sample selection in the raw data significantly enhances
the discriminative capability of our model. To the best of our knowledge, there are cur-
rently no established standards for categorising individuals into non-fractured healthy
and osteoporotic fracture groups. Through quantitative analysis of HR-pQCT images
using our approach, optimal T-score thresholds can be determined. This reveals a cor-
relation exists between BMD and bone microarchitecture assessments. These findings
offer valuable references for clinicians in identifying individuals at high risk of osteo-
porotic fracture.

The adaptive threshold strategy plays an important role in our enhanced discriminative
system, which provides crucial training datasets in the absence of clinical ground truth.
Such a filtering system generates optimal T-score thresholds tailored to specific co-
horts, effectively separating non-fractured healthy subjects from the fracture group and
also removing osteoporotic non-fractured patients from the healthy individual group.
These incorrectly labeled instances cannot be accurately discriminated by quantitative
analysis of clinical imaging. Therefore, we propose to filter out incorrectly labeled sam-
ples from the raw data to enhance the discriminative capability and interpretability of
our model.

In Chapter 4, Chapter 5 and Chapter 6, we propose two methods based on i) 3D LBP
and ii) multi-view CNNs to capture bone microarchitectural information from HR-
pQCT images and then feed the extracted features into the random forest classifier to
discriminate previous fractures. Table 7.3 summarises the discriminative performance
of LBP and multi-view CNNs for previous fracture using the HCS and GLOW datasets.
We compare the discriminative performance of 3D LBP for fracture classification when
the entire tibia, cortical regions and trabecular regions in HR-pQCT images are used
separately as input data. The use of cortical regions segmented from CT scans yields
the highest AUC performance, and the corresponding results are presented in Table 7.3.
In the raw dataset of the HCS, multi-view CNNs and LBP demonstrate similar AUC re-
sults for fracture discrimination. However, in the raw dataset of the GLOW, multi-view
CNNs demonstrate a higher AUC than LBP. In addition, in both the HCS and GLOW
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TABLE 7.3: Comparison analysis of image feature extraction methods for fracture clas-
sification using the raw and filtered datasets.

Methods
AUC (95% CI)

Raw HCS dataset Filtered HCS dataset

Multi-view CNNs 0.75 (0.67-0.82) 0.90 (0.82-0.97)
LBP 0.75 (0.67-0.81) 0.86 (0.72-0.89)

Methods
AUC (95% CI)

Raw GLOW dataset Filtered GLOW dataset

Multi-view CNNs 0.65 (0.58-0.70) 0.94 (0.89-0.97)
LBP 0.62 (0.55-0.67) 0.85 (0.76-0.91)

HR-pQCT image data from tibial scans are used.
The highest values in each column are highlighted in bold.

datasets, when using DXA BMD to filter out incorrectly labeled samples, multi-view
CNNs significantly outperform 3D LBP in distinguishing between subjects with and
without previous fractures. This also highlights that multi-view CNNs can capture
more comprehensive bone microarchitecture information from HR-pQCT scans com-
pared to LBP, thereby improving fracture classification accuracy.

Our discriminative system is tested on an independent cohort to evaluate its robust-
ness. The model is trained using the HCS dataset (source domain), and its discrimina-
tive performance is then evaluated on the GLOW dataset (target domain). Using DXA
BMD filtering, our approach effectively mitigates the impact of incorrectly labeled sam-
ples and maintains robustness. When tested on the independent GLOW dataset, our
model demonstrates high classification accuracy. Therefore, our discriminative system
provides an opportunity to identify individuals at high risk of fracture across diverse
populations.

This study has some limitations. Firstly, BMD measured by 2D DXA imaging lacks
bone microarchitecture and vBMD information of participants. However, T-scores de-
rived from BMD are used as the ground truth for sample selection. As a result, some
samples in the raw data may be mistaken for incorrectly labeled samples and subse-
quently filtered out. Secondly, the generalisability of our model is limited. The pro-
posed enhanced discriminative system here is designed for identifying osteoporotic
fractures and may not accurately identify other types of fractures. Thirdly, both the
HCS and GLOW datasets are collected from older adult populations. The robustness
of our discriminative system has not yet been evaluated in cohorts from different age
groups, including young and middle-aged generations. Fourthly, the sample size for
both the HCS (n=167) and GLOW (n=381) datasets is small. There are differences in
the optimal T-score thresholds between them. It is worth mentioning that if the model
is evaluated in larger populations, the optimal thresholds may converge towards -2.5
and -1 (Watts (2004)).
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7.5 Summary

A combination of HR-pQCT imaging and DXA BMD demonstrates high accuracy in
identifying individuals with previous fractures. In the absence of clinical ground truth,
we propose to use adaptive T-score thresholds to filter out incorrectly labeled samples
from the raw data. This strategy not only significantly improves the discriminative
accuracy of our approach using HR-pQCT images for fracture discrimination but also
enhances the model’s robustness across diverse populations. Our work also contributes
insights toward understanding the relationship between BMD and bone microarchitec-
ture assessments.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

Bone microarchitecture is an important risk factor for assessing bone health and iden-
tifying individuals at high risk of fracture. HR-pQCT, providing detailed cortical and
trabecular bone microarchitecture, has the potential to capture richer information be-
yond BMD and improve the accuracy of fracture risk prediction. In this study, we
present automated fracture risk assessment tools applied to HR-pQCT images based
on volumetric texture analysis and deep learning techniques. We evaluate the pro-
posed discriminative systems here on the HCS and GLOW datasets. Numerical results
demonstrate that our approaches applied to HR-pQCT images improve fracture dis-
crimination compared to DXA-measured BMD and clinical risk factors.

In Chapter 4, considering that microarchitectural deterioration of bone tissue is asso-
ciated with fracture risk, we propose a method based on 3D LBP to characterise bone
microarchitecture in HR-pQCT images. Further, we present a discriminative system
that combines volumetric texture analysis and machine learning classifiers to distin-
guish between people with and without previous fractures. Our proposed approach
applied to HR-pQCT images yields a higher discriminative performance for previous
fracture compared to traditional methods of clinical risk factors and femoral neck DXA.

Chapter 5 focuses on developing an automatic approach to segment cortical and tra-
becular regions in HR-pQCT images and investigating their relative contributions to
fracture discrimination. Our method includes a deep CNN for image segmentation,
enabling texture features to be extracted separately and their statistical distributions
quantified for further classification. Our results demonstrate that both cortical and tra-
becular compartments possess important information regarding fracture risk. Notably,
the cortical compartment outperforms the trabecular compartment in fracture discrim-
ination.
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An automatic method based on deep learning techniques is presented in Chapter 6
to discriminate between participants with and without previous fractures. Our CNN
model employs a multi-pooling strategy to extract high-level image features from mul-
tiple views of HR-pQCT scans. These features are then integrated and fed into the
random forest classifier to discriminate previous fractures. Compared to the tradi-
tional deep learning framework, our model encodes richer feature representations of
CT scans and better handles high-dimensional image features, resulting in a higher
accuracy based on a few of bone HR-pQCT images. This approach also outperforms
traditional methods of clinical risk factors and femoral neck DXA in fracture discrimi-
nation.

We propose an adaptive threshold strategy in Chapter 7 to filter out incorrectly labeled
data from the original cohorts to further improve fracture discrimination. The pres-
ence of incorrectly labeled samples in the original cohorts diminishes the classifier’s
capability to discriminate between fracture and non-fracture groups. Our method em-
ploys multi-view CNNs to quantitatively analyse bone microarchitecture in HR-pQCT
images and generates optimal T-score thresholds to categorise individuals into non-
fractured healthy and osteoporotic fracture groups. The incorporation of DXA BMD
filtering significantly improves the accuracy and robustness of our discriminative sys-
tem, and the evaluation in an independent cohort further supports this.

Our research facilitates the development of quantitative analysis of bone HR-pQCT im-
ages and provides an opportunity to assist clinicians in fracture prevention and medical
decisions. We also expect that the proposed methods can provide motivation for bone
health measurement and be generalised to other domains such as osteoarthritis and
osteomyelitis diagnosis.

8.2 Future Work

The current work introduces novel computer-aided diagnosis methods for HR-pQCT
imaging, which contribute to improving fracture discrimination compared to BMD and
clinical risk factors. However, it also has several limitations. Looking to the future of
this work, we expect to advance the research and explore larger datasets in relation
to fracture risk assessment with potential ideas. Our future work not only focuses on
methodological improvements but also aims to address critical applications in clini-
cal settings. These efforts are poised to contribute to improving diagnostic accuracy,
treatment planning and enhancing robustness in fracture risk assessment using medi-
cal imaging techniques.
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8.2.1 Osteoporotic Fracture Prediction

HR-pQCT scans collected from both the HCS and GLOW cohorts lacked manual re-
view by clinicians. Consequently, healthy subjects who have experienced traumatic
fractures and those with bone fragility who have not experienced a fracture were er-
roneously classified into the fracture group and the non-fracture group respectively.
These samples introduce noise and diminish the discriminative capacity of our ap-
proaches. Although T-score values provide an opportunity for sample selection, DXA
imaging lacks 3D bone microarchitectural information and has limitations in labeling.
Manual exclusion of such samples through clinical observations can label the data cor-
rectly and guide the model to distinguish between non-fractured healthy individuals
and those with osteoporotic fractures. This not only improves the classification perfor-
mance and robustness of the prediction model but also enhances its interpretability. A
clinically correctly labeled dataset would also enable us to evaluate the performance of
our filtering system as an interesting future work.

8.2.2 Future Fracture Prediction

Although discriminating previous fractures based on medical records provides valu-
able insights into patients’ risk profiles, anticipating future fractures offers a broader
prospect for early intervention and bone health management. Future fracture predic-
tion not only identifies high-risk populations before bone deterioration but also assists
healthcare professionals in formulating personalized intervention plans, thereby mini-
mizing the likelihood of patients experiencing fractures.

8.2.3 Fracture Location Prediction

Our current approaches quantitatively analyse bone HR-pQCT images to discriminate
previous fractures from all parts of the patients’ body. However, the specific location
of fragility fractures cannot be detected, and overall preventive measures are needed
for those at high risk of fracture. We plan to extend our prediction model to localise
fragility fractures. By predicting the specific location of potential fractures in patients,
healthcare professionals can gain insights into patients’ bone microarchitecture and
precisely formulate prevention or treatment plans. This also contributes to optimiz-
ing the allocation of medical resources and improving healthcare efficiency.

8.2.4 Semi-Supervised Learning

Our proposed approaches here use supervised-learning methods that only select la-
beled data to train the risk model, while unlabeled data cannot be exploited to enhance
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the discriminative performance. In practice, collecting massive labeled data is very
expensive and time-consuming. Therefore, semi-supervised methods are desirable to
simultaneously reduce the costs of labeled data and leverage the unlabeled data to im-
prove the accuracy of fracture discrimination (Berthelot et al. (2019)). One common
approach is self-training, where the model initially trained on labeled data iteratively
uses its predictions (known as pseudo labels) on unlabeled data to expand the training
set and refine its discriminative capability.

8.2.5 Subspace Representation

In few-shot 3D image classification tasks, CNNs may ignore the spatial structure and
diversity of an image due to insufficient supervision signals guiding the model fo-
cusing on the region of interest. Motivated by subspace representation learning for
handling high-dimensional features (Hu et al. (2021)), our plan is to employ principal
component analysis (PCA) or singular value decomposition (SVD) to reduce the di-
mensionality of high-dimensional CNN features for further fracture classification.

8.2.6 Scale Invariant Local Binary Pattern

Our current 3D LBP model adopts a fixed scale to encode texture patterns, which de-
pends on prior knowledge. The statistical distribution of volumetric images may be
altered by the various resolutions of HR-pQCT imaging. To the best of our knowledge,
the scale invariant property of the 3D LBP framework has not been proposed. We plan
to develop a scale invariant 3D LBP descriptor to overcome this issue and apply it to
enhance the robustness of our discriminative system.
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Appendix A

Case Index of Subjects

TABLE A.1: The case index of the Hertfordshire Cohort Study.

Case Index Subject ID Fracture Status Case Index Subject ID Fracture Status

Case 1 15014 Fracture Case 2 15163 Fracture
Case 3 55041 Non-fracture Case 4 55059 Non-fracture
Case 5 55256 Fracture Case 6 55274 Non-fracture
Case 7 55289 Non-fracture Case 8 55311 Fracture
Case 9 55422 Unknown Case 10 55509 Fracture
Case 11 55534 Non-fracture Case 12 55559 Fracture
Case 13 55588 Fracture Case 14 55608 Unknown
Case 15 55631 Non-fracture Case 16 55677 Non-fracture
Case 17 55712 Non-fracture Case 18 55745 Fracture
Case 19 55810 Non-fracture Case 20 55875 Non-fracture
Case 21 55909 Unknown Case 22 55917 Fracture
Case 23 55938 Non-fracture Case 24 55956 Unknown
Case 25 56011 Fracture Case 26 56031 Non-fracture
Case 27 56044 Fracture Case 28 56085 Non-fracture
Case 29 56092 Fracture Case 30 56094 Fracture
Case 31 56133 Non-fracture Case 32 56204 Unknown
Case 33 56210 Non-fracture Case 34 56242 Non-fracture
Case 35 56250 Non-fracture Case 36 56270 Unknown
Case 37 56273 Non-fracture Case 38 56310 Fracture
Case 39 65039 Non-fracture Case 40 65045 Non-fracture
Case 41 75003 Fracture Case 42 75058 Fracture
Case 43 75078 Non-fracture Case 44 75084 Unknown
Case 45 95239 Non-fracture Case 46 95256 Non-fracture
Case 47 95277 Fracture Case 48 95301 Fracture
Case 49 95309 Unknown Case 50 95315 Non-fracture
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Case 51 95323 Non-fracture Case 52 95328 Non-fracture
Case 53 95352 Non-fracture Case 54 105039 Fracture
Case 55 105043 Non-fracture Case 56 105071 Non-fracture
Case 57 105123 Fracture Case 58 105146 Non-fracture
Case 59 105190 Non-fracture Case 60 105202 Non-fracture
Case 61 115050 Non-fracture Case 62 115051 Non-fracture
Case 63 125063 Fracture Case 64 135066 Fracture
Case 65 135070 Non-fracture Case 66 135083 Non-fracture
Case 67 135257 Non-fracture Case 68 135378 Fracture
Case 69 135434 Fracture Case 70 135455 Non-fracture
Case 71 135482 Non-fracture Case 72 135485 Fracture
Case 73 135524 Fracture Case 74 135529 Fracture
Case 75 135687 Non-fracture Case 76 135718 Unknown
Case 77 135784 Non-fracture Case 78 135837 Fracture
Case 79 135851 Non-fracture Case 80 135877 Unknown
Case 81 135892 Non-fracture Case 82 135896 Non-fracture
Case 83 135929 Non-fracture Case 84 135955 Non-fracture
Case 85 135960 Non-fracture Case 86 135986 Fracture
Case 87 135993 Non-fracture Case 88 145011 Unknown
Case 89 145045 Non-fracture Case 90 155016 Non-fracture
Case 91 155059 Fracture Case 92 155084 Non-fracture
Case 93 155116 Fracture Case 94 155123 Non-fracture
Case 95 175035 Non-fracture Case 96 175069 Fracture
Case 97 175239 Non-fracture Case 98 175275 Non-fracture
Case 99 175297 Unknown Case 100 175409 Non-fracture

Case 101 175442 Non-fracture Case 102 175455 Non-fracture
Case 103 175501 Unknown Case 104 175553 Non-fracture
Case 105 175858 Non-fracture Case 106 175890 Non-fracture
Case 107 175911 Fracture Case 108 176028 Non-fracture
Case 109 176029 Non-fracture Case 110 176051 Fracture
Case 111 176091 Unknown Case 112 176206 Unknown
Case 113 176328 Fracture Case 114 176530 Fracture
Case 115 176544 Non-fracture Case 116 176563 Fracture
Case 117 176631 Non-fracture Case 118 176691 Fracture
Case 119 185007 Fracture Case 120 185015 Non-fracture
Case 121 185018 Non-fracture Case 122 195016 Non-fracture
Case 123 225014 Non-fracture Case 124 225019 Fracture
Case 125 225115 Fracture Case 126 225162 Fracture
Case 127 235022 Fracture Case 128 235044 Fracture
Case 129 245230 Non-fracture Case 130 245252 Non-fracture
Case 131 245267 Non-fracture Case 132 245314 Unknown
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Case 133 255022 Non-fracture Case 134 255049 Non-fracture
Case 135 255058 Non-fracture Case 136 265045 Non-fracture
Case 137 295011 Non-fracture Case 138 295072 Fracture
Case 139 315019 Non-fracture Case 140 315032 Non-fracture
Case 141 325017 Fracture Case 142 335029 Non-fracture
Case 143 335034 Non-fracture Case 144 355008 Fracture
Case 145 355022 Non-fracture Case 146 355081 Non-fracture
Case 147 365008 Non-fracture Case 148 365018 Non-fracture
Case 149 415040 Non-fracture Case 150 445048 Non-fracture
Case 151 475013 Non-fracture Case 152 515017 Non-fracture
Case 153 525357 Non-fracture Case 154 565020 Fracture
Case 155 565079 Non-fracture Case 156 565080 Fracture
Case 157 565209 Non-fracture Case 158 575033 Non-fracture
Case 159 595564 Non-fracture Case 160 596737 Non-fracture
Case 161 597269 Unknown Case 162 597350 Non-fracture
Case 163 598134 Unknown Case 164 635009 Fracture
Case 165 635031 Non-fracture Case 166 635097 Fracture
Case 167 655209 Non-fracture Case 168 665380 Fracture
Case 169 665491 Non-fracture Case 170 666215 Non-fracture
Case 171 705075 Non-fracture Case 172 705130 Fracture
Case 173 735674 Non-fracture Case 174 785040 Non-fracture
Case 175 785091 Unknown Case 176 785097 Fracture
Case 177 785122 Non-fracture Case 178 785132 Non-fracture
Case 179 785134 Non-fracture Case 180 795028 Non-fracture
Case 181 855021 Fracture Case 182 855027 Unknown
Case 183 855038 Non-fracture Case 184 855046 Fracture
Case 185 855072 Non-fracture Case 186 855110 Fracture
Case 187 865008 Non-fracture Case 188 865011 Non-fracture
Case 189 865055 Fracture Case 190 865125 Unknown
Case 191 865198 Unknown Case 192 865261 Fracture
Case 193 865290 Non-fracture Case 194 865308 Non-fracture
Case 195 865337 Non-fracture Case 196 865355 Non-fracture
Case 197 865359 Non-fracture Case 198 865379 Non-fracture
Case 199 865427 Non-fracture Case 200 865430 Non-fracture
Case 201 865433 Non-fracture Case 202 865512 Fracture
Case 203 864547 Fracture Case 204 86550 Non-fracture
Case 205 865608 Fracture Case 206 865648 Non-fracture
Case 207 865668 Fracture Case 208 865671 Non-fracture
Case 209 865704 Non-fracture Case 210 865784 Unknown
Case 211 865885 Non-fracture Case 212 865983 Non-fracture
Case 213 866028 Non-fracture Case 214 866042 Fracture
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Case 215 866058 Non-fracture Case 216 866096 Fracture
Case 217 866109 Non-fracture Case 218 866185 Non-fracture
Case 219 866235 Fracture Case 220 866260 Non-fracture
Case 221 866325 Non-fracture Case 222 866400 Fracture
Case 223 866405 Non-fracture Case 224 866416 Fracture
Case 225 866448 Non-fracture Case 226 866457 Non-fracture
Case 227 866472 Non-fracture Case 228 866587 Non-fracture
Case 229 866615 Non-fracture Case 230 866617 Non-fracture
Case 231 866685 Non-fracture Case 232 866693 Non-fracture
Case 233 875068 Fracture Case 234 885020 Non-fracture
Case 235 895006 Non-fracture Case 236 898025 Non-fracture
Case 237 905024 Non-fracture Case 238 905035 Fracture
Case 239 905023 Non-fracture Case 240 925033 Non-fracture
Case 241 925044 Fracture Case 242 925055 Non-fracture
Case 243 935192 Fracture Case 244 935276 Non-fracture
Case 245 935377 Fracture Case 246 935393 Non-fracture
Case 247 935487 Fracture Case 248 935489 Non-fracture
Case 249 935492 Non-fracture Case 250 935612 Non-fracture
Case 251 935659 Non-fracture Case 252 935715 Non-fracture
Case 253 935723 Non-fracture Case 254 735749 Non-fracture
Case 255 935755 Non-fracture Case 256 95765 Non-fracture
Case 257 935794 Fracture Case 258 935819 Non-fracture
Case 259 935825 Fracture Case 260 935886 Fracture
Case 261 935923 Non-fracture Case 262 935934 Non-fracture
Case 263 945003 Non-fracture Case 264 945075 Non-fracture
Case 265 945123 Non-fracture Case 266 945128 Non-fracture
Case 267 945130 Non-fracture Case 268 955106 Non-fracture
Case 269 965016 Fracture Case 270 965037 Non-fracture
Case 271 965081 Non-fracture Case 272 965174 Non-fracture
Case 273 985014 Non-fracture Case 274 1005012 Non-fracture
Case 275 1005025 Non-fracture Case 276 1005041 Non-fracture
Case 277 1005060 Fracture Case 278 1005094 Non-fracture
Case 279 1005151 Fracture Case 280 1005159 Non-fracture
Case 281 1005205 Non-fracture Case 282 1005222 Non-fracture
Case 283 1006091 Fracture Case 284 855046 Unknown
Case 285 1006184 Fracture Case 286 1006408 Unknown
Case 287 1075646 Fracture Case 288 1125309 Non-fracture
Case 289 1206896 Non-fracture Case 290 1207395 Non-fracture
Case 291 1215522 Fracture Case 292 1235629 Unknown
Case 293 1335091 Fracture Case 294 1335105 Non-fracture
Case 295 1345422 Non-fracture Case 296 1345508 Non-fracture
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Case 297 1345781 Non-fracture Case 298 1347041 Fracture
Case 299 1347102 Non-fracture Case 300 1347474 Non-fracture
Case 301 1348431 Non-fracture Case 302 1348578 Non-fracture
Case 303 1348675 Non-fracture Case 304 1355061 Non-fracture
Case 305 1355935 Non-fracture Case 306 1356198 Non-fracture
Case 307 1356255 Non-fracture Case 308 1356471 Non-fracture
Case 309 1356511 Fracture Case 310 1356514 Non-fracture
Case 311 1356649 Non-fracture Case 312 1356863 Non-fracture
Case 313 1357081 Non-fracture Case 314 1357262 Non-fracture
Case 315 1347426 Non-fracture Case 316 1357702 Non-fracture
Case 317 1357995 Non-fracture Case 318 1358009 Fracture
Case 319 1358100 Non-fracture Case 320 1358357 Fracture
Case 321 1358408 Unknown Case 322 1406063 Fracture
Case 323 1406069 Non-fracture Case 324 1406089 Unknown
Case 325 1406124 Non-fracture Case 326 1406168 Unknown
Case 327 1406238 Non-fracture Case 328 1406319 Non-fracture
Case 329 1406337 Non-fracture Case 330 1406353 Non-fracture
Case 331 1406362 Fracture Case 332 1406368 Non-fracture
Case 333 1406493 Non-fracture Case 334 1406553 Unknown
Case 335 1406647 Non-fracture Case 336 1406699 Fracture
Case 337 1406930 Fracture Case 338 1406931 Non-fracture
Case 339 1406943 Non-fracture Case 340 1407019 Unknown
Case 341 1407069 Non-fracture Case 342 1407110 Fracture
Case 343 1407119 Non-fracture Case 344 1407149 Non-fracture
Case 345 1407150 Fracture Case 346 1407159 Non-fracture
Case 347 1407187 Non-fracture Case 348 1407208 Non-fracture
Case 349 1407389 Fracture Case 350 1407449 Non-fracture
Case 351 1407535 Non-fracture Case 352 1407552 Fracture
Case 353 1407561 Fracture Case 354 1407605 Fracture
Case 355 1407657 Non-fracture Case 356 1407659 Non-fracture
Case 357 1407685 Non-fracture Case 358 1407727 Non-fracture
Case 359 1407759 Fracture Case 360 1407771 Non-fracture
Case 361 1407827 Non-fracture Case 362 1407849 Non-fracture
Case 363 1407862 Non-fracture Case 364 1407877 Non-fracture
Case 365 1407902 Non-fracture Case 366 1407925 Fracture
Case 367 1407929 Non-fracture Case 368 1408063 Non-fracture
Case 369 1408086 Non-fracture Case 370 1408095 Non-fracture
Case 371 1408124 Non-fracture Case 372 1408215 Non-fracture
Case 373 1408217 Fracture Case 374 1408245 Non-fracture
Case 375 1408256 Fracture Case 376 1408409 Non-fracture
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Fracture: the participant had a vertebral fracture or a self-reported fracture.
Non-fracture: no fractures occurred in the participant.
Unknown: the fracture status of the participant was not collected.

TABLE A.2: The case index of the Global Longitudinal Study of Osteoporosis in
Women.

Case Index Subject ID Fracture Status Case Index Subject ID Fracture Status

Case 1 10001 Non-fracture Case 2 10003 Non-fracture
Case 3 10007 Non-fracture Case 4 10020 Non-fracture
Case 5 10025 Fracture Case 6 10040 Non-fracture
Case 7 10049 Non-fracture Case 8 10050 Non-fracture
Case 9 10061 Non-fracture Case 10 10067 Non-fracture
Case 11 10075 Non-fracture Case 12 10077 Fracture
Case 13 10080 Non-fracture Case 14 10081 Fracture
Case 15 10083 Non-fracture Case 16 10088 Fracture
Case 17 10092 Non-fracture Case 18 10095 Non-fracture
Case 19 10096 Non-fracture Case 20 10101 Non-fracture
Case 21 10108 Non-fracture Case 22 10109 Non-fracture
Case 23 10115 Non-fracture Case 24 10124 Non-fracture
Case 25 10134 Unknown Case 26 10138 Non-fracture
Case 27 10139 Fracture Case 28 10141 Non-fracture
Case 29 10156 Fracture Case 30 10158 Non-fracture
Case 31 10159 Fracture Case 32 10160 Non-fracture
Case 33 10166 Fracture Case 34 10168 Non-fracture
Case 35 10170 Fracture Case 36 10171 Non-fracture
Case 37 10172 Non-fracture Case 38 10181 Non-fracture
Case 39 10188 Non-fracture Case 40 10196 Non-fracture
Case 41 10197 Non-fracture Case 42 10200 Non-fracture
Case 43 10210 Fracture Case 44 10214 Non-fracture
Case 45 10218 Non-fracture Case 46 10222 Fracture
Case 47 10225 Fracture Case 48 10226 Non-fracture
Case 49 10239 Non-fracture Case 50 10240 Non-fracture
Case 51 10248 Non-fracture Case 52 10260 Non-fracture
Case 53 10289 Fracture Case 54 10291 Fracture
Case 55 10309 Non-fracture Case 56 10321 Non-fracture
Case 57 10326 Non-fracture Case 58 10344 Unknown
Case 59 10345 Fracture Case 60 10347 Fracture
Case 61 10355 Non-fracture Case 62 10356 Fracture
Case 63 10369 Unknown Case 64 10392 Fracture
Case 65 10394 Non-fracture Case 66 10396 Non-fracture
Case 67 10398 Unknown Case 68 10401 Non-fracture
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Case 69 10411 Fracture Case 70 10424 Fracture
Case 71 10433 Non-fracture Case 72 10442 Non-fracture
Case 73 10446 Non-fracture Case 74 10456 Fracture
Case 75 10483 Non-fracture Case 76 10484 Non-fracture
Case 77 10502 Non-fracture Case 78 10506 Non-fracture
Case 79 10762 Non-fracture Case 80 10767 Fracture
Case 81 10768 Non-fracture Case 82 10774 Unknown
Case 83 10776 Fracture Case 84 10777 Non-fracture
Case 85 10778 Non-fracture Case 86 10779 Fracture
Case 87 10780 Non-fracture Case 88 10781 Non-fracture
Case 89 10786 Non-fracture Case 90 10799 Fracture
Case 91 10803 Non-fracture Case 92 10807 Non-fracture
Case 93 10808 Non-fracture Case 94 10808 Fracture
Case 95 10812 Non-fracture Case 96 10815 Fracture
Case 97 10818 Non-fracture Case 98 10820 Fracture
Case 99 10822 Non-fracture Case 100 10828 Non-fracture

Case 101 10829 Non-fracture Case 102 10830 Fracture
Case 103 10839 Non-fracture Case 104 10841 Unknown
Case 105 10846 Non-fracture Case 106 10851 Fracture
Case 107 10853 Non-fracture Case 108 10863 Unknown
Case 109 10866 Non-fracture Case 110 10868 Non-fracture
Case 111 10872 Non-fracture Case 112 10879 Non-fracture
Case 113 10880 Fracture Case 114 10889 Non-fracture
Case 115 10900 Fracture Case 116 10901 Fracture
Case 117 10902 Non-fracture Case 118 10904 Non-fracture
Case 119 10905 Non-fracture Case 120 10906 Non-fracture
Case 121 10912 Non-fracture Case 122 10919 Non-fracture
Case 123 10921 Non-fracture Case 124 10922 Non-fracture
Case 125 10932 Non-fracture Case 126 10934 Non-fracture
Case 127 10938 Non-fracture Case 128 10944 Non-fracture
Case 129 10945 Non-fracture Case 130 10949 Non-fracture
Case 131 10950 Fracture Case 132 10952 Fracture
Case 133 10955 Fracture Case 134 10970 Fracture
Case 135 10972 Non-fracture Case 136 10977 Non-fracture
Case 137 10978 Unknown Case 138 10981 Non-fracture
Case 139 10985 Non-fracture Case 140 10989 Non-fracture
Case 141 10992 Non-fracture Case 142 10996 Fracture
Case 143 10997 Non-fracture Case 144 11002 Non-fracture
Case 145 11004 Fracture Case 146 11010 Fracture
Case 147 11013 Fracture Case 148 11014 Fracture
Case 149 11015 Non-fracture Case 150 11019 Non-fracture
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Case 151 11020 Non-fracture Case 152 11021 Non-fracture
Case 153 11023 Fracture Case 154 11027 Non-fracture
Case 155 11036 Fracture Case 156 11038 Non-fracture
Case 157 11039 Non-fracture Case 158 11042 Non-fracture
Case 159 11059 Non-fracture Case 160 11062 Non-fracture
Case 161 11064 Non-fracture Case 162 11067 Non-fracture
Case 163 11072 Fracture Case 164 11073 Non-fracture
Case 165 11076 Non-fracture Case 166 11077 Non-fracture
Case 167 11080 Fracture Case 168 11083 Non-fracture
Case 169 11084 Non-fracture Case 170 11085 Fracture
Case 171 11088 Non-fracture Case 172 11090 Non-fracture
Case 173 11091 Fracture Case 174 11092 Non-fracture
Case 175 11095 Non-fracture Case 176 11096 Non-fracture
Case 177 11099 Unknown Case 178 11111 Unknown
Case 179 11115 Non-fracture Case 180 11118 Non-fracture
Case 181 11121 Non-fracture Case 182 11126 Non-fracture
Case 183 11134 Non-fracture Case 184 11135 Non-fracture
Case 185 11141 Non-fracture Case 186 11145 Fracture
Case 187 11147 Non-fracture Case 188 11148 Non-fracture
Case 189 11149 Non-fracture Case 190 11153 Non-fracture
Case 191 11155 Fracture Case 192 11156 Non-fracture
Case 193 11159 Non-fracture Case 194 11164 Non-fracture
Case 195 11170 Unknown Case 196 11176 Non-fracture
Case 197 11178 Non-fracture Case 198 11180 Non-fracture
Case 199 11185 Fracture Case 200 11187 Non-fracture
Case 201 11190 Unknown Case 202 11193 Non-fracture
Case 203 11195 Non-fracture Case 204 11198 Non-fracture
Case 205 11199 Non-fracture Case 206 11210 Non-fracture
Case 207 11217 Non-fracture Case 208 11218 Non-fracture
Case 209 11223 Non-fracture Case 210 11225 Non-fracture
Case 211 11226 Fracture Case 212 11236 Unknown
Case 213 11242 Non-fracture Case 214 11246 Fracture
Case 215 11248 Non-fracture Case 216 11259 Non-fracture
Case 217 11261 Non-fracture Case 218 11264 Non-fracture
Case 219 11268 Non-fracture Case 220 11272 Non-fracture
Case 221 11280 Non-fracture Case 222 11285 Fracture
Case 223 11286 Non-fracture Case 224 11290 Non-fracture
Case 225 11291 Non-fracture Case 226 11318 Non-fracture
Case 227 11322 Fracture Case 228 11328 Fracture
Case 229 11334 Fracture Case 230 11646 Non-fracture
Case 231 11647 Non-fracture Case 232 11650 Non-fracture
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Case 233 11653 Fracture Case 234 11654 Non-fracture
Case 235 11655 Non-fracture Case 236 11656 Non-fracture
Case 237 11658 Non-fracture Case 238 11660 Non-fracture
Case 239 11662 Fracture Case 240 11664 Non-fracture
Case 241 11667 Fracture Case 242 11669 Non-fracture
Case 243 11672 Fracture Case 244 11676 Non-fracture
Case 245 11677 Fracture Case 246 11681 Non-fracture
Case 247 11683 Non-fracture Case 248 11687 Non-fracture
Case 249 11692 Non-fracture Case 250 11699 Non-fracture
Case 251 11702 Non-fracture Case 252 11705 Unknown
Case 253 11708 Non-fracture Case 254 11709 Non-fracture
Case 255 11712 Non-fracture Case 256 11713 Unknown
Case 257 11716 Fracture Case 258 11732 Non-fracture
Case 259 11734 Non-fracture Case 260 11737 Non-fracture
Case 261 11741 Non-fracture Case 262 11744 Non-fracture
Case 263 11753 Fracture Case 264 11756 Fracture
Case 265 11760 Non-fracture Case 266 11762 Fracture
Case 267 11773 Non-fracture Case 268 11777 Non-fracture
Case 269 11782 Non-fracture Case 270 11785 Non-fracture
Case 271 11786 Non-fracture Case 272 11787 Non-fracture
Case 273 11792 Non-fracture Case 274 11805 Non-fracture
Case 275 11809 Non-fracture Case 276 11810 Non-fracture
Case 277 11813 Non-fracture Case 278 11822 Non-fracture
Case 279 11823 Non-fracture Case 280 11826 Non-fracture
Case 281 11833 Non-fracture Case 282 11836 Non-fracture
Case 283 11838 Unknown Case 284 11841 Non-fracture
Case 285 11846 Non-fracture Case 286 11848 Non-fracture
Case 287 11851 Non-fracture Case 288 11853 Non-fracture
Case 289 11860 Non-fracture Case 290 11868 Non-fracture
Case 291 11869 Unknown Case 292 11870 Non-fracture
Case 293 11872 Unknown Case 294 11875 Non-fracture
Case 295 11876 Non-fracture Case 296 11880 Fracture
Case 297 11883 Non-fracture Case 298 12437 Non-fracture
Case 299 12512 Non-fracture Case 300 12515 Non-fracture
Case 301 12537 Non-fracture Case 302 12539 Non-fracture
Case 303 12555 Non-fracture Case 304 12571 Non-fracture
Case 305 12577 Non-fracture Case 306 12580 Fracture
Case 307 12588 Non-fracture Case 308 12597 Unknown
Case 309 12598 Non-fracture Case 310 12607 Non-fracture
Case 311 12614 Non-fracture Case 312 12627 Non-fracture
Case 313 12629 Non-fracture Case 314 12637 Non-fracture
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Case 315 12640 Non-fracture Case 316 12646 Unknown
Case 317 12655 Fracture Case 318 12656 Non-fracture
Case 319 12657 Unknown Case 320 12661 Fracture
Case 321 12662 Non-fracture Case 322 12663 Non-fracture
Case 323 12670 Non-fracture Case 324 12678 Non-fracture
Case 325 12679 Non-fracture Case 326 12685 Non-fracture
Case 327 12693 Non-fracture Case 328 12707 Fracture
Case 329 12711 Unknown Case 330 12719 Non-fracture
Case 331 12730 Non-fracture Case 332 12742 Non-fracture
Case 333 12742 Fracture Case 334 12746 Non-fracture
Case 335 12755 Non-fracture Case 336 12757 Non-fracture
Case 337 12767 Non-fracture Case 338 12774 Non-fracture
Case 339 12777 Fracture Case 340 12781 Fracture
Case 341 12785 Non-fracture Case 342 12788 Non-fracture
Case 343 12795 Fracture Case 344 12802 Fracture
Case 345 12809 Non-fracture Case 346 12820 Non-fracture
Case 347 12834 Fracture Case 348 12845 Non-fracture
Case 349 12850 Non-fracture Case 350 12859 Non-fracture
Case 351 12869 Fracture Case 352 12883 Fracture
Case 353 12888 Fracture Case 354 12889 Non-fracture
Case 355 12892 Non-fracture Case 356 12904 Non-fracture
Case 357 12908 Fracture Case 358 12913 Non-fracture
Case 359 12915 Non-fracture Case 360 12922 Fracture
Case 361 12925 Non-fracture Case 362 12936 Non-fracture
Case 363 12938 Non-fracture Case 364 12941 Non-fracture
Case 365 12942 Non-fracture Case 366 12947 Unknown
Case 367 12948 Non-fracture Case 368 12959 Non-fracture
Case 369 12964 Non-fracture Case 370 12977 Non-fracture
Case 371 12991 Non-fracture Case 372 13004 Non-fracture
Case 373 13019 Non-fracture Case 374 13023 Non-fracture
Case 375 13028 Fracture Case 376 13036 Non-fracture
Case 377 13045 Unknown Case 378 13047 Non-fracture
Case 379 13055 Fracture Case 380 13077 Non-fracture
Case 381 13092 Fracture Case 382 13097 Non-fracture
Case 383 13109 Unknown Case 384 13112 Non-fracture
Case 385 13120 Non-fracture Case 386 13126 Non-fracture
Case 387 13127 Non-fracture Case 388 13137 Non-fracture
Case 389 13138 Non-fracture Case 390 13140 Unknown
Case 391 13141 Non-fracture Case 392 13146 Non-fracture
Case 393 13152 Non-fracture Case 394 13153 Non-fracture
Case 395 13161 Non-fracture Case 396 13172 Non-fracture
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Case 397 13174 Non-fracture Case 398 13176 Fracture
Case 399 13177 Non-fracture Case 400 13178 Non-fracture
Case 401 13182 Non-fracture Case 402 13183 Unknown
Case 403 13197 Fracture Case 404 13201 Fracture
Case 405 13211 Unknown Case 406 13215 Non-fracture
Case 407 13225 Non-fracture Case 408 13227 Fracture
Case 409 13234 Non-fracture Case 410 13240 Non-fracture
Case 411 13244 Unknown Case 412 13250 Non-fracture
Case 413 13253 Non-fracture Case 414 13254 Fracture
Case 415 13259 Unknown Case 416 13270 Non-fracture
Case 417 13297 Fracture Case 418 13303 Unknown
Case 419 13311 Non-fracture Case 420 13328 Non-fracture
Case 421 13334 Fracture Case 422 13335 Non-fracture
Case 423 13392 Fracture Case 424 13397 Non-fracture
Case 425 13402 Non-fracture Case 426 13404 Fracture
Case 427 13410 Non-fracture Case 428 13423 Fracture
Case 429 13431 Non-fracture Case 430 13438 Non-fracture
Case 431 13442 Non-fracture Case 432 13450 Non-fracture
Case 433 13556 Non-fracture Case 434 13637 Non-fracture
Case 435 13642 Non-fracture Case 436 13762 Non-fracture
Case 437 13886 Non-fracture Case 438 14034 Non-fracture
Case 439 14097 Non-fracture Case 440 14100 Non-fracture
Case 441 14156 Non-fracture Case 442 14166 Non-fracture
Case 443 14291 Non-fracture Case 444 14559 Unknown
Case 445 14570 Fracture Case 446 14583 Fracture
Case 447 14601 Fracture Case 448 14615 Non-fracture
Case 449 14633 Unknown Case 450 14636 Non-fracture
Case 451 14637 Unknown Case 452 14646 Non-fracture
Case 453 14653 Non-fracture Case 454 14660 Non-fracture
Case 455 14678 Non-fracture Case 456 14680 Non-fracture
Case 457 14684 Non-fracture Case 458 14690 Non-fracture
Case 459 14693 Fracture Case 460 14695 Non-fracture
Case 461 14703 Fracture Case 462 14705 Non-fracture
Case 463 14709 Non-fracture Case 464 14713 Fracture
Case 465 14717 Non-fracture Case 466 14724 Non-fracture
Case 467 14726 Non-fracture Case 468 14731 Unknown
Case 469 14733 Non-fracture Case 470 14735 Non-fracture
Case 471 14741 Non-fracture Case 472 14742 Non-fracture
Case 473 14743 Non-fracture Case 474 14757 Fracture
Case 475 14760 Non-fracture Case 476 14764 Non-fracture
Case 477 14766 Fracture Case 478 14771 Non-fracture
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Case 479 14792 Non-fracture Case 480 14793 Non-fracture
Case 481 14794 Non-fracture Case 482 14797 Non-fracture
Case 483 14802 Fracture Case 484 14803 Non-fracture
Case 485 14811 Non-fracture Case 486 14822 Fracture
Case 487 14831 Non-fracture Case 488 14832 Non-fracture
Case 489 14833 Unknown Case 490 14834 Non-fracture
Case 491 14836 Fracture Case 492 14840 Non-fracture
Case 493 14852 Non-fracture Case 494 14853 Non-fracture
Case 495 14857 Fracture Case 496 14858 Non-fracture
Case 497 14862 Unknown Case 498 14877 Non-fracture
Case 499 14880 Non-fracture Case 500 14887 Non-fracture
Case 501 14890 Non-fracture

Fracture: the participant had a self-reported fracture..
Non-fracture: no fractures occurred in the participant.
Unknown: the fracture status of the participant was not collected.
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Appendix B

Comparison Studies

TABLE B.1: Comparison of various machine learning classifiers for fracture discrimi-
nation.

Classifiers AUC Sensitivity Specificity

Random forest 0.73 0.46 0.81
Gaussian Naive Bayes 0.69 0.52 0.74
Multilayer perceptron 0.72 0.36 0.89

Linear regression 0.70 0.43 0.78

Input data: tibial HR-pQCT scans.
The Youden’s Index is used to determine the optimal threshold.
The highest values in each column are highlighted in bold.

TABLE B.2: Discriminative performance of the random forest classifier for previous
fracture according to thresholds.

Thresholds AUC Sensitivity Specificity

0.38 0.73 0.50 0.75
0.40 0.73 0.46 0.81
0.42 0.73 0.40 0.84
0.44 0.73 0.30 0.89
0.50 0.73 0.12 0.96

Input data: tibial HR-pQCT scans.
The Youden’s Index is used to determine the optimal threshold.
The highest values in each column are highlighted in bold.
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Appendix C

Robust Completed Local Binary
Pattern Descriptor for Fracture
Discrimination

3D LBP shows significant performance in many domains such as solid textures analy-
sis, face recognition and tumor detection (Citraro et al. (2017)). Due to its outstanding
advantages of easy implementation and low computational complexity, LBP has re-
ceived increasing attention in the past decades, and various variants for LBP have been
put forward to improve its model capabilities (Zhao and Pietikainen (2007), Fehr and
Burkhardt (2008)). Although 3D LBP has high discriminative power, its sensitivity to
image noise remains a challenge.

Encoding high discriminant descriptors is essential to address specific tasks, but fea-
ture extraction may be affected by image perturbations such as noise (Maani et al.
(2013)). Over the decades, some strategies have been proposed to improve the noise
tolerance of LBP methods. For example, Fathi and Naghsh-Nilchi (2012) presented a
noise-tolerant LBP descriptor that used a circular majority voting filter and labeling
scheme to improve model robustness and discrimination ability. Based on the uniform
LBP, Chen et al. (2013) proposed a robust texture descriptor that changed the coding
of the three-bit substring to make the model more robust against noise. Nonetheless,
those approaches are only limited to 2D texture analysis.

Here, we propose an efficient strategy to improve the noise tolerance of our 3D LBP
descriptor, as presented in Chapter 4 and Chapter 5. For each voxel in the 3D image,
we employ a 3D weighted average filter that replaces its original voxel value with the
average local voxel value based on weights to reduce the influence of noise. In addition,
inspired by the CLBP variant (as described in Section 2.4.2 of Chapter 2), we combine
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Discrimination

the texture features of sign, magnitude and centre pixel operators to enhance the ro-
bustness and classification performance of 3D LBP (Liu et al. (2012)). Our experimental
results demonstrate that the proposed robust completed local binary pattern (RCLBP)
method can be applied to characterise bone microarchitecture in HR-pQCT images for
fracture discrimination and to enhance the noise tolerance of our discriminative system
(see Figure 5.9 of Chapter 5).

The details of 3D LBP are described in Section 4.3 of Chapter 4. p represents the num-
ber of sampled points around the centre voxel. r is the Euclidean distance between
the centre voxel vc and its sampled neighboring points vi in the cube. In order to re-
duce the influence of noise present in images, we consider a weighted average function
ϕ(vc|w, q) for each voxel vc in the image to make the model more robust against noise
(Zhao et al. (2013)) as presented in Equation (C.1):

ϕ(vc|w, q) =
∑

q−1
i=0 vi + vc × w

w + q
(C.1)

where, q denotes the number of neighboring points around the centre voxel, and w rep-
resents the weight of the centre voxel in the neighborhood. Such voxel contains more
valuable information than its neighbors. By calculating the average grayscale value
based on weights, instead of the original grayscale value of the central voxel, we can
reduce the influence of noise.

We use individual central voxel with regional representation in LBP value calculations
and consider three robust texture operators.

The robust centre pixel operator (RCLBP C) encodes the contrast information between
the centre voxel and the global threshold. It is defined as follows:

RCLBP Cp,r = f (ϕ(vc|w, q)− ∝) (C.2)

and

f (x) =

1 if x ≥ 0

0 else x < 0
(C.3)

where, ∝ represents the global threshold calculated by the mean voxel of the entire im-
age processed using the weighted average function ϕ(vc|w, q).

The robust sign operator RCLBP S of our method is encoded as presented in Equa-
tion (C.4). The introduced threshold ξ instead of the grayscale value of the centre voxel
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to encode texture patterns can enhance model robustness against noise.

RCLBP Sp,r =
p−1

∑
i=0

f (ϕ(vi |w, q)− ξ)× 2i−1 (C.4)

and

ξ =
∑

p−1
i=0 ϕ(vi|w, q) + ϕ(vc|w, q)×m

m + p
(C.5)

where, m represents the weight of the centre voxel in the sampling space.

Similarly, the robust magnitude operator RCLBP M uses the global threshold τ which
is set as the mean magnitude value of the entire image to encode the local structure,
i.e.:

RCLBP Mp,r =
p−1

∑
i=0

f (ℓ(vc, vi)− τ)× 2i−1 (C.6)

and
ℓ(vc, vi) = |ϕ(vi|w, q)− ϕ(vc|w, q)| (C.7)

After the LBP value of each voxel vi,j,k in the image is calculated, we compute a his-
togram H(b), b ∈ [0, B] to represent the texture descriptor.

H(b) =
I

∑
i=1

J

∑
j=1

K

∑
k=1

ψ(LBPi,j,k, b) (C.8)

and

ψ(α, β) =

1 if α = β

0 else
(C.9)

where, B denotes the maximum LBP value in a texture image.

We calculate the histograms of the RCLBP C, RCLBP S and RCLBP M descriptors re-
spectively, and then concatenate these three histograms to construct a feature vector of
a texture, as follows:

H = HRCLBP C ⊕ HRCLBP S ⊕ HRCLBP M (C.10)

where, ⊕ represents the concatenation operation.
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Appendix D

Domain Adaptation

Domain adaptation has become a pivotal approach in the machine learning field to
address the challenges posed by variations in data distributions (Guan and Liu (2021)).
It aims to enhance the adaptability and generalisation capabilities of models across
diverse domains. When the target domain varies from the source domain, it typically
leads to a potential degradation in model performance. Domain adaptation has been
proposed to solve this problem and improve model performance in the target domain.

As illustrated in Figure 7.2 of Chapter 7, a discernible difference exists in the T-score
distributions of the HCS and GLOW datasets. This indicates that participants in these
two cohorts had different levels of bone loss or bone deterioration. As a result, there
would be a variance in the feature distributions of HR-pQCT images between the HCS

FIGURE D.1: Schematic diagram of our model for domain adaption, where the source
domain and target domain exhibit different data distributions. The domain adaptive

classifier is more effective than the source domain classifier in the target domain.
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and GLOW, which may diminish the discriminative accuracy of our approach (see Fig-
ure D.1). To address this issue, we propose to use domain adaptation to enhance the
generalisation performance of our model. Specifically, we initially train our discrimi-
native system for previous fracture on the HCS dataset (source domain). Subsequently,
we adapt our model to the target domain by retraining it on the validation set of the
GLOW dataset. Finally, we evaluate the discriminative performance of our approach
on the testing set of the GLOW.
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binary pattern. In BMVC, 2013.

C Christodoulou and C Cooper. What is osteoporosis? Postgraduate medical journal, 79
(929):133–138, 2003.

Leonardo Citraro, Sasan Mahmoodi, Angela Darekar, and Brigitte Vollmer. Extended
three-dimensional rotation invariant local binary patterns. Image and vision Comput-
ing, 62:8–18, 2017.

Michael A Clynes, Camille Parsons, Mark H Edwards, Karen A Jameson, Nicholas C
Harvey, A Aihie Sayer, Cyrus Cooper, and Elaine M Dennison. Further evidence
of the developmental origins of osteoarthritis: results from the hertfordshire cohort
study. Journal of developmental origins of health and disease, 5(6):453–458, 2014.

Antonio Criminisi. Machine learning for medical images analysis, 2016.

Agnaldo S Cruz, Hertz C Lins, Ricardo VA Medeiros, MF José Filho, and Sandro G
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Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learn-
ing applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Ki-Sun Lee, Seok-Ki Jung, Jae-Jun Ryu, Sang-Wan Shin, and Jinwook Choi. Evaluation
of transfer learning with deep convolutional neural networks for screening osteo-
porosis in dental panoramic radiographs. Journal of clinical medicine, 9(2):392, 2020.



REFERENCES 127

Zhi Li, Guizhong Liu, Yang Yang, and Junyong You. Scale-and rotation-invariant local
binary pattern using scale-adaptive texton and subuniform-based circular shift. IEEE
Transactions on Image Processing, 21(4):2130–2140, 2011.

Wei-Chao Lin, Chih-Fong Tsai, Ya-Han Hu, and Jing-Shang Jhang. Clustering-based
undersampling in class-imbalanced data. Information Sciences, 409:17–26, 2017.

H Ling and Alan C Bovik. Smoothing low-snr molecular images via anisotropic
median-diffusion. IEEE transactions on medical imaging, 21(4):377–384, 2002.

Mirjam A Lips, Holly E Syddall, Tom R Gaunt, Santiago Rodriguez, Ian NM Day, Cyrus
Cooper, Elaine M Dennison, Southampton Genetic Epidemiology Research Group,
et al. Interaction between birthweight and polymorphism in the calcium-sensing
receptor gene in determination of adult bone mass: the hertfordshire cohort study.
The Journal of rheumatology, 34(4):769–775, 2007.

Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio,
Francesco Ciompi, Mohsen Ghafoorian, Jeroen Awm Van Der Laak, Bram Van Gin-
neken, and Clara I Sánchez. A survey on deep learning in medical image analysis.
Medical image analysis, 42:60–88, 2017.

AE Litwic, LD Westbury, Kathryn Ward, Cyrus Cooper, and EM Dennison. Adiposity
and bone microarchitecture in the glow study. Osteoporosis International, 32:689–698,
2021.

Anna Ewa Litwic. Bone microstructure and self-perception of fracture risk among women
participating in the UK arm of the GLOW study. PhD thesis, University of Southampton,
2020.

Li Liu, Lingjun Zhao, Yunli Long, Gangyao Kuang, and Paul Fieguth. Extended local
binary patterns for texture classification. Image and Vision Computing, 30(2):86–99,
2012.

Li Liu, Songyang Lao, Paul W Fieguth, Yulan Guo, Xiaogang Wang, and Matti
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