
Generating SROI− Ontologies via Knowledge Graph
Query Embedding Learning

Yunjie Heab,*, Daniel Hernandeza, Mojtaba Nayyeria, Bo Xionga, Yuqicheng Zhuab, Evgeny Kharlamovbd and
Steffen Staabac

aUniversity of Stuttgart
bBosch Center for Artificial Intelligence

cUniversity of Southampton
dUniversity of Oslo

ORCID (Yunjie He): https://orcid.org/0009-0005-4461-2863, ORCID (Daniel Hernandez):
https://orcid.org/0000-0002-7896-0875, ORCID (Steffen Staab): https://orcid.org/0000-0002-0780-4154

Abstract. Query embedding approaches answer complex logical
queries over incomplete knowledge graphs (KGs) by computing
and operating on low-dimensional vector representations of entities,
relations, and queries. However, current query embedding models
heavily rely on excessively parameterized neural networks and can-
not explain the knowledge learned from the graph. We propose a
novel query embedding method, AConE, which explains the knowl-
edge learned from the graph in the form of SROI− description
logic axioms while being more parameter-efficient than most exist-
ing approaches. AConE associates queries to a SROI− description
logic concept. Every SROI− concept is embedded as a cone in
complex vector space, and each SROI− relation is embedded as
a transformation that rotates and scales cones. We show theoreti-
cally that AConE can learn SROI− axioms, and defines an alge-
bra whose operations correspond one-to-one to SROI− descrip-
tion logic concept constructs. Our empirical study on multiple query
datasets shows that AConE achieves superior results over previous
baselines with fewer parameters. Notably on the WN18RR dataset,
AConE achieves significant improvement over baseline models. We
provide comprehensive analyses showing that the capability to rep-
resent axioms positively impacts the results of query answering.

1 Introduction

Knowledge Graphs (KGs) such as Wikidata [21], Freebase [4], and
YAGO [18] represent real-world facts as sets of triples of the form
(s, p, o) which encode atomic assertions as p(s, o). Graph database
engines can store and query KGs efficiently using query languages
such as SPARQL [1] that can express a variety of queries that result
of combining atomic queries called triple patterns.

The first step of querying KGs is answering triple patterns with
the stored triples. However, when querying incomplete KGs, some
triples are not explicitly available in the triple store and thus are
not included in the answers, nor into the intermediary results of
an answer. To provide plausible answers beyond what is known,
these missing triples must be inferred. Figure 1 shows an example,
where the available triples (L.Messi, playsFor,ArgentinaNFT), and

∗ Corresponding Author. Email: yunjie.he@ki.uni-stuttgart.de

C.Ronaldo

WorldCup

L.Messi R.Trashorras

ArgentinaNFT

Rosario

athleteWon

teamWon

playsFor

teamMate

teamMatebornAt

birthPlaceOf

teamMate

teamMate

Figure 1: An example of an incomplete KG. The nodes represent en-
tities, the edges with solid lines represent known atomic statements,
whereas the edges with dotted lines represent missing atomic state-
ments that must be inferred.

(ArgentinaNFT, teamWon,WorldCup) should suggest that triple
(L.Messi, athleteWon,WorldCup) is a missing triple. KG embed-
ding methods can predict these missing triples [5, 27, 13] by learn-
ing how to embed entities and relations into vector representations,
which can be points or more complex geometric objects. These meth-
ods use these embeddings to answer triple patterns by computing
plausibility scores by applying geometric operations.

Query embedding methods [16, 29, 15] go beyond querying triple
patterns. They provide plausible answers to queries that combine
triple patterns into first-order logic queries with logical connectives
(e.g., negation (¬), conjunction (∧), and disjunction (∨)). However,
current query embedding approaches are restricted to queries with a
single unquantified variable and are called tree-form queries because
their computation graph is a tree [17]. The tree-form queries corre-
spond to the SROI− description logic concepts that do not include
the symbols ⊤ (the concept for all entities) nor ⊥ (the concept for no
elements), nor concept names (e.g., Athlete or Team), but nominals
(i.e., concepts with a unique element like {C.Ronaldo}).

Example 1. The query asking for the birthplaces of the athletes who
have won either the World Cup or the Europe Cup, but do not play
in the same team as C.Ronaldo can be expressed as the SROI−

concept

C ≡ ∃birthPlaceOf.(¬(∃teamMate−.{C.Ronaldo}) ⊓
(∃athleteWon.{WorldCup} ⊔
∃athleteWon.{EuroCup})),

whose computation graph is depicted in Figure 2.

∃birthPlaceOf⊓

¬∃teamMate−{C.Ronaldo}

⊔
∃athleteWon{WorldCup}

∃athleteWon{EuroCup}

Figure 2: Computation graph for the concept C in Example 1.

Query embedding methods [16, 29, 15] learn a model M to pre-
dict the answers to queries by embedding entities and relations as
geometrical objects of a vector space. These geometrical objects are
used to recursively compute geometrical objects for all nodes in the
computation graph of the query. Finally, the query embeddings are
compared with the entity embeddings of the candidate answers to the
query by using a similarity function that represents the plausibility of
an answer.

The quality of query embedding methods depends on their abil-
ity to represent the logical patterns satisfied by a knowledge graph.
For example, some relations are symmetric (e.g., teamMate) while
others are antisymmetric (e.g., playsFor); some relations are the in-
verse of other relations (e.g., bornAt and birthPlaceOf) and some
relations may be composed by others (e.g., if an athlete x playsFor a
team y and y teamWon a cup z, then x athleteWon z). As these log-
ical patterns influence the interplay of entities and relations, several
works have studied their effect on KG embeddings [19, 12, 24] and
demonstrated that an embedding’s ability to support them improves
its link prediction quality. For query embeddings, similar support of
logical patterns in the embedding space is still lacking.

Given a model M of query embedding method, we can distinguish
two ways in which M can exploit a logical pattern P . The first is the
ability to predict answers that are entailed by P . The second is the
ability of model M to explain such predictions by inferring P as an
axiom that can be obtained from the geometrical relations between
the objects in the embedding space.

Although query embedding methods have achieved great success
in predicting query results over incomplete data, they fail to explain
the learned knowledge because, to achieve better results, they en-
dow geometric operations with neural network operations that im-
pede explainability. For example, the method BetaE [15] represents
queries q with multidimensional beta distributions q, and the set of
answers to q in M , denoted JqKM , consists of the entities e such that
e ∈ q. A query q(y) = ∃x(q1(x)∧r(x, y)), extending a given query
q1(x) with a relation r, is embedded as a beta distribution q that
results from applying a neural network over the distribution q1 for
query q1. The use of neural networks to represent relations hinders
the inference of axioms like playsFor ◦ teamWon ⊑ athleteWon.
On the other hand, BoxEL [23] and Box2EL [9] embed description
logic concepts, but are limited to reduced description logics (EL and
EL++).

In this paper, we propose a novel query embedding model, AConE,
that can explain several logical patterns expressed as SROI− ax-
ioms learned for query answering tasks. Being more parameter-
efficient than most existing approaches [29, 7, 30, 16], AConE re-

duces the dependency on neural networks by translating logical op-
erators to a simpler algebraic structure. To achieve this explainability,
AConE embeds each SROI− concept as a multidimensional cone
in the complex vector space, and relations as scaling and rotations
of cones. Then, each logical operator is translated into geometric op-
erations in embedding space. By doing so, our method can generate
SROI− ontologies by learning query embeddings.

In summary, this paper makes the following contributions:

1. We formalize the notions of tree-form logical query in terms of
SROI− concepts, and logical pattern in terms of SROI− ax-
ioms. We propose an algebra of cones in the complex plane, and
theoretically identify the subset of the SROI− axioms that can
be represented with the cone algebra models (Section 4).

2. We present criteria where a multicone embedding expresses six
different logical patterns, namely role containment, composition,
transitivity, inverse, symmetry, and asymmetry (Section 5).

3. We propose a novel method, AConE, which embeds SROI−

concepts as cones in the complex plane (Section 6). This technique
allows us to leverage the rotation operator through Euler’s formula
while maintaining the geometric representation of concepts and
concept operators to allow the explanation of logical patterns as
SROI− axioms that the embedding explicitly encodes.

4. We show that modeling cones in the complex plane, coupled with
the rotation operator as a complex product, is more parameter-
efficient than modeling cones in the 2D real space with multi-layer
neural operators (Section 8).

5. We create new datasets and dataset splits (Section 7.3) to conduct
a more detailed analysis of the influence of patterns in complex
query answering, providing a finer-grained evaluation, and more
in-depth insights into the often-overlooked problem of pattern in-
ference in complex query answering.

6. Our experiments show that AConE outperforms state-of-the-art
baselines that represent query regions using vectors, geometries,
or distributions, using geometric operations to model logical op-
erations one-to-one (Section 7.2).

2 Related Work
Logical patterns in knowledge graphs. KG embedding methods
aim to learn KG representations that capture latent structural and log-
ical patterns [5, 27, 20, 19, 22]. In particular, RotatE [19] captures
a broad range of logical patterns, such as symmetry, inversion, and
composition, among others. While these KG embedding methods ex-
cel at predicting links, they cannot answer first-order logical queries.

BoxEL [23] and Box2EL [9] embed description logic concepts,
but are limited to reduced description logics (EL and EL++).

Query answering. Path-based [26, 11], neural [7, 16, 29, 15, 10],
and neural-symbolic [2, 31, 30] methods have been developed to
answer (subsets of) queries. Among these methods, geometric and
probabilistic query embedding approaches [7, 16, 29, 15] provide
an effective way to answer tree-form queries over incomplete and
noisy KGs. This is done by representing entity sets as geometric ob-
jects or probability distributions, such as boxes [16], cones [29], or
Beta distribution [15], and performing neural logical operations di-
rectly on them. The Graph Query Embedding (GQEs) [7] was first
proposed to answer only conjunctive queries via modeling the query
q as single vector q through neural translational operators. However,
modeling a query as a single vector limits the model’s expressiveness
in modeling multiple entities. Query2Box [16] remedies this flaw by
modeling entities as points within boxes. This allows Query2Box to

predict the intersection of entity sets as the intersection of boxes in
vector space. ConE [29] was proposed as the first geometry-based
query embedding method that can handle negation via embedding
the set of entities (query embedding) as cones in Euclidean space.

All of the above query embedding methods commonly apply
multi-layer perceptron networks for selecting answer entities of
atomic queries by relation and performing logical operations. Such
methods suffer from two problems. Firstly, their ability to capture
logical patterns in KGs remains unclear due to the limited explain-
ability of neural networks. Secondly, a large number of parameters
need to be trained for an outstanding model performance. Our pro-
posed method, AConE, overcome these issues by providing a one-to-
one mapping between logical and geometrical operators.

3 Preliminaries

The Description Logic SROI−. We next present the standard
SROI− syntax and semantics and assume standard semantics as
defined in Baader et al. [3]. For these definitions, we assume three
pairwise disjoint sets C, R, and I, whose elements are respectively
called concept names, relation names, and individual names.

Definition 1 (SROI− Concept Descriptions). SROI− concept
descriptions C and relation descriptions R are defined by the fol-
lowing grammar

C ::= ⊤ | A | {a} | ¬C | C ⊓ C | ∃R.C

R ::= r | r−

where the symbol ⊤ is a special concept name, and symbols A, a, and
r stand for concept names, individual names, and relation names,
respectively. Concept descriptions {a} are called nominals.

Given two concept descriptions C and D, the expression C ⊑ D is
a concept-axiom. Given the relation descriptions R,S,R1, . . . , Rn

(with n ≥ 1), the expressions ρ1 ◦ · · · ◦ ρn−1 ⊑ ρn, Disj(R,S),
Trans(R), Ref(R), Irref(R), Sym(R), and Asym(R) are relation-
axioms. Given two individual names a, b ∈ I, a concept descrip-
tion C and a relation description ρ, a(C) is a concept-assertion and
ρ(a, b) is a relation-assertion.

We write C ≡ D as an abbreviation for two axioms C ⊑ D and
D ⊑ C, and likewise for ρ1 ≡ ρ2. We write ⊥, C ⊔ D, ∀ρ.C as
abbreviations for ¬⊤, ¬(¬C ⊓ ¬D) and ¬∃ρ.¬C, respectively.

An SROI− knowledge base (or ontology) K is a triple (R, T ,A)
where R is a finite set of relation-axioms called the RBox, T is a
finite set of concept-axioms called the TBox, and A is a finite set of
assertions called the ABox.

An interpretation I is a pair (∆I , ·I) consisting of a set ∆I ,
called the domain, and a function ·I such that we have for each in-
dividual name a ∈ I, an element aI ∈ ∆I ; for each concept name
A ∈ C, a subset AI ⊆ ∆I ; and for each relation name r ∈ R, a
relation rI ⊆ ∆I ×∆I . An interpretation I is a model of a knowl-
edge base K if and only if all the axioms and assertions in K are
satisfied according to the standard semantics defined in Baader et
al. [3]. Given two knowledge bases K1 and K2, K1 entails K2, de-
noted K1 |= K2, if and only if every model I of K1 is also a model
of K2.

Knowledge graphs and queries. We next define knowledge
graphs in terms of SROI− knowledge bases, and tree-form queries
in terms of SROI− concepts.

Definition 2 (Knowledge Graph). A knowledge graph G is a
SROI− knowledge base K whose RBox is empty, and its T con-
tains a unique axiom ⊤ ⊑ {a1} ⊔ · · · ⊔ {an}, where {a1, . . . , an}
is the set of all individuals names occurring in the ABox. This axiom
is called domain-closure assumption.

Definition 3 (Tree-form query). Given a knowledge graph G, and
an individual name x that does not occur in G, a tree-form query
q is an assertion C(x) where C is a SROI− concept description.
The answers to query q, are all individuals a occurring in G such
that G |= C(a).

Informally, the query answering task over incomplete data consists
of predicting answers to a query q over a knowledge graph pattern
G given only a subset G′ ⊂ G. Knowledge graph embeddings to
generalize the knowledge on G′ to predict answers on G.

4 SROI− concepts and Cone Algebra
In this section, we present an algebra of cones in the complex plane,
called the Cone Algebra, we show the correspondence between this
algebra and SROI− concepts, and we identify the subset of the
SROI− axioms that are expressible with this algebra.

Definition 4 (Cone). A cone C(α, β) is a region in the complex plane
C determined by a pair of angles (α, β) ∈ R2 as follows:

C(α, β) = {eiθ : α ≤ θ and θ ≤ β}.

The empty cone, denoted C⊥, is the cone such that α > β. A sin-
gleton cone with angle α, denoted Cα, is a cone such that α = β.
A proper cone, denoted Cα→β , is a cone where α + 2π > β. A full
cone, denoted C⊤, is the cone such that α+ 2π ≤ β.

Notice that eiθ = eiθ+2kπ , for every natural number k. Thus, the
same cone can be determined with multiple combination of angles.

Notice that the intersection is not closed on the set of cones. In-
deed, the region C(0, 3

2
π) ∩ C(π, 5

2
π) is not a cone. This hinders

the use of cones to represent SROI− concepts. To overcome this
limitation, we can embed concepts on sets of cones.

Definition 5 (Multicone algebra). A multicone MC(C) is a region
determined by a set of cones C as follows:

MC(C) =
⋃

C(α,β)∈C

C(α, β)

The multicone algebra is the algebra over the set of multicones de-
fined by the binary operations ∩ and ∪ that are defined as the set
operations over the multicon regions.

Proposition 1. The multicone algebra is a field with sum ∪ and
multiplication ∩, where the identity of ∪ is MC⊥ = MC({C⊥}),
the identity ∩ is MC⊤ = MC({C⊤}), and the additive and mul-
tiplicative inverse of a multicone MC(C), denoted ¬MC(C), is the
multicone MC⊤ \MC(C).

Definition 6 (Rotation algebra). Given a triple (θ, γ, δ) ∈ R3 where
0 ≤ γ ≤ 2π, a rotation R⟨θ, γ, δ⟩ is a function that maps every
singleton and proper cone C(α, β) to the cone C(α′, β′) such that

β′ + α′ = θ(β + α), β′ − α′ = γ(β − α) + δ,

and that maps the empty and the full cone to themselves:

R⟨θ, γ, δ⟩(C⊥) = C⊥, R⟨θ, γ, δ⟩(C⊤) = C⊤.

Table 1: Multicone Embedding Semantics.
Concept Semantics

⊤ MC⊤
{a} MC({Cθ}) where aE = eiθ

C ⊓D CE ∩DE

¬C MC⊤ \ CE

∃R.C RE(CE)
r− (rE)−

R ◦ S RE ◦ SE

A(a) aE ∈ AE

R(a, b) (aI , bE) ∈ RE

C ⊑ D CE ⊆ DE

R1 ◦ · · · ◦Rn ⊑ S (R1 ◦ · · · ◦Rn)E ⊆ SE

Disj(R,S) RE ∩ SE = ∅
Trans(R) (R ◦R)E ⊆ RE

Ref(R) {(a, a) | a ∈ I} ⊆ RE

Irref(R) {(a, a) | a ∈ I} ∩RE = ∅
Sym(R) for all a, b ∈ I, if (a, b) ∈ RE then (b, a) ∈ RE

Asym(R) for all a, b ∈ I, if (a, b) ∈ RE then (b, a) /∈ RE

The rotation parameters θ, γ, and δ are called the rotation angle
and the aperture factor, and the aperture adding. We call aperture-
multiplicative and aperture-additive rotations to rotations of the re-
spective forms R⟨θ, γ, 0⟩ and R⟨θ, 1, δ⟩.

We call rotation algebra to be the algebraic structure whose ground
set is the set of rotations over cones, and has a binary operation ◦
denoting function composition (i.e., (f ◦ g)(x) = g(f(x))).

We write R⟨θ, γ, δ⟩− = R⟨−θ, 1
γ
,−δ⟩, and with a slight abuse of

notation, given a multicone MC(C), we write

R⟨θ, γ, δ⟩(MC(C)) = MC({R⟨θ, γ, δ⟩(C(α, β)) : C(α, β) ∈ C}).

Definition 7 (Multicone Embedding). A multicone embedding is a
function E that maps each individual name a ∈ I to a complex num-
ber aE = eiθ ∈ C⊤, each concept name A ∈ C to a multicone
AE , and each relation name r ∈ R to a rotation rE = R⟨θ, γ, δ⟩.
The cone embedding of a knowledge graph G is a cone embedding
restricted to the individual names and relation names occurring in
knowledge graph G.

Given a multicone embedding E , Table 1 defines the multicone CE

corresponding to a SROI− concept description C. The definition
of the multicone semantics for relations, assertions and axioms is
straightforward. For example, the embedding of R ◦S is the relation
{(a, c) : (a, b) ∈ RE , (b, c) ∈ SE}, and an E |= C(a) if and only if
aE ∈ CE , E |= R(a, b) if and only if (aE , bE) ∈ RE , and C |= D if
and only if CE ⊆ DE .

The full cone. Since C⊤ is an absorbing element for the rotation
algebra, multicone embeddings infer wrong axioms ⊤ ⊑ ∃R.⊤.

The rotation commutativity. In certain cases, the order in which
rotations are applied does not affect the resulting cone.

Proposition 2. Given two aperture-multiplicative rotations
R⟨θ1, γ1, 0⟩ and R⟨θ2, γ2, 0⟩ such that γ1 ≤ 1 and γ2 ≤ 1, then

R⟨θ1, γ1, 0⟩ ◦ R⟨θ2, γ2, 0⟩ = R⟨θ2, γ2, 0⟩ ◦ R⟨θ1, γ1, 0⟩.

The issue with the commutativity is that if two relation
names r and s are embedded with aperture-multiplicative rotations
R⟨θr, γr, 0⟩ and R⟨θs, γs, 0⟩ with γr ≤ 1 and γs ≤ 1, then we can
infer that r ◦ s ≡ s ◦ r. So, the commutativity of these rotations may
introduce a bias into the models that can lead to wrong predictions.

This bias favoring commutativity does not hold if γ > 1, as the
following counter example shows.

(R⟨0, 2, 0⟩ ◦ R⟨0, 1
2
, 0⟩)(C(0, π)) = C⊤,

(R⟨0, 1
2
, 0⟩ ◦ R⟨0, 2, 0⟩)(C(0, π)) = C(0, π).

However, rotations with γ > 1 generate larger cones (sometimes full
cones), and thus can lead to a reduced prediction accuracy.

Aperture-additive rotations are not commutativity because, for ev-
ery δ ̸= 0, we can find a cone C such that R⟨θ, 1, δ⟩(C) is either
C⊤ or C⊥ (which are absorving elements). However, under certain
conditions, commutativity holds. For example, if u, v, and w are
three positive real numbers with u + v ≤ w, and R1 = R⟨θ1, 1, u⟩,
R2 = R⟨θ2, 1, v⟩, R3 = R⟨θ1, 1,−u⟩, R4 = R⟨θ2, 1,−v⟩, then

(R1 ◦ R2)(C(0, 2π − w)) = (R2 ◦ R1)(C(0, 2π − w)),

(R3 ◦ R4)(C(0, w)) = (R4 ◦ R3)(C(0, w)).

Under these circumstances, there is a bias that favored the inference
of axioms ∃R1(∃R2.C) ≡ ∃R2(∃R1.C). Hence, both aperture-
multiplicative and aperture-additive rotations are biased.

Distributivity of the existential over the disjunction. To guar-
antee that the operations are closed, we needed to extend the embed-
dings to multicones. However, multicones do not satisfy a basic prop-
erty. The full multicone MC⊤ can be understood as two possible mul-
ticones, namely MC({C⊤}) and MC({C(0, π),C(π, 2pi)}). How-
ever, the application of the rotation RE = R⟨θ, 1

2
, 0⟩ returns different

multicones for both representations of the multicone. Since a multi-
cone MC({C1,C2}) is equal to C1∪C2, the tautology ∃R.(C⊔D) ≡
∃R.C ⊔ ∃R.D does not hold in the embedding space.

Proposition 3. The axiom ∃R.(C ⊔D) ≡ ∃R.C ⊔ ∃R.D holds in
multicone embeddings for rotations R⟨θ, γ, δ⟩ if γ ≥ 1 and δ ≥ 0.

5 Expressing Logical Patterns

In this section, we present how logical patterns are expressed in the
multicone embedding space. Given the relation names r1, r2, r3 ∈
R, correspond to the following SROI− axioms:

r1 ⊑ r2 (role containment), r1 ◦ r2 ⊑ r3 (composition),
Trans(r1) (transitivity), r1 ≡ r−2 (inverse),
Sym(r1) (symmetry), Asym(r1) (asymmetry).

Role containment pattern. Given two rotations RE =
R⟨θ1, γ1, 0⟩ and SE = R⟨θ2, γ2, 0⟩ with θ1 ̸= θ2 and γ1 ̸= γ2,
it never hold that RE ⊑ SE . Indeed, we can always consider a cone
with a sufficiently small aperture angle (e.g., a singleton cone) to
show that this inclusion does not hold. On the other hand, for rota-
tions RE = R⟨θ1, 1, δ1⟩ and SE = R⟨θ2, 1, δ2⟩ the inclusion can
hold, even with distinct values for θ1 and θ2.

Proposition 4. Given two rotations RE = R⟨θ1, 1, δ1⟩ and SE =
R⟨θ2, 1, δ2⟩, the axiom R ⊑ S holds if θ2 + δ2

2
≥ θ1 + δ1

2
and

θ2 − δ2

2
≤ θ1 − δ1

2

Proposition 5. Given two rotations RE = R⟨θ1, γ1, δ1⟩ and SE =
R⟨θ2, γ2, δ2⟩, the axiom R ⊑ S holds if γ1 ≤ γ2 and δ1 ≤ δ2.

Composition and transitivity patterns. The rules for composi-
tion and transitivity are a corollary of Proposition 4 and Proposi-
tion 5. For space limitations we omit the conditions for the Transi-
tivity pattern. The conditions can be obtained from equivalence of
axioms Trans(R) and R ◦R ⊑ R.

Corollary 6. Given three rotations RE
1 = R⟨θ1, 1, δ1⟩, RE

2 =
R⟨θ2, 1, δ2⟩, and RE

3 = R⟨θ3, 1, δ3⟩, the axiom R1 ◦R2 ⊑ R3 holds
if |θ2 − (θ1 + θ2)| ≤ δ3 − (δ1 + δ2), δ1 ≥ 0, δ2 ≥ 0, and δ3 ≥ 0.

Corollary 7. Given RE
1 = R⟨θ1, γ1, δ1⟩, RE

2 = R⟨θ2, γ2, δ2⟩, and
RE

3 = R⟨θ3, γ3, δ3⟩, the axiom R1 ◦ R2 ⊑ R3 holds if γ1γ2 ≤ γ3,
δ1 + δ2 ≤ δ30, δ1 ≥ 0, and δ2 ≥ 0.

Inverse pattern. Because inverses cannot generally found, we can-
not define inverse patterns for relations. However, inverse patterns
still can be inferred under the circumstances where the commutativ-
ity is hold, which is discussed in Section 4.

Symmetry and asymmetry patterns. The symmetry pattern holds
on rotations that applied twice over a singleton cone produce the
same singleton cone. This happens when two rotations complete the
circle. Similarly, the asymmetry pattern holds when two rotations do
not coincide with a circle.

Proposition 8. Given a rotation RE = R⟨θ, γ, δ⟩ with γ ≥ 1 and
ρ ≥ 0, if there is a natural number k such that 2θ + γρ+ρ

2
≥ 2kπ

and 2θ − γρ+ρ
2

≤ 2kπ, then the axiom Sym(r) holds. Otherwise,
the axiom Asym(r) holds.

6 Tree-form Query Answering with AConE

To accommodate the learning of logical patterns in query answering
over KGs, we propose a new model, AConE, which embeds KGs
according to the multicone embedding (Definition 7). Our approach
distinguishes itself from ConE [29], which represents cone embed-
dings using two-dimensional vectors in real space. We reframe these
embeddings in the complex plane. By doing so, we introduce an in-
ductive bias that facilitates the learning of logical patterns. This bias
is achieved by combining the embeddings with relational rotations
on cones, enhancing the model’s ability to capture complex relation-
ships and patterns. In AConE, the embedding of a tree-form query
q = C(x) is parameterized by a pair q = (hU ,hL) ∈ Cd, where
d is the embedding dimension, |hU |2 = 1, |hL|2 = 1 with | · |2
being the L2 norm. The vectors hU and hL represent the counter-
clockwise upper and lower boundaries of the cone, such that

hU = eiθU = e
i
(
θax+

θap
2

)
, hL = eiθU = e

i
(
θax−

θap
2

)
, (1)

where θax ∈ [−π, π)d represents the angle of the symmetry axis of
the cone and θap ∈ [0, 2π]d represents the cone aperture.

For each index j with 1 ≤ j ≤ d, we write [v]j for the value of
the j-th component of a vector v. The i-th component of q represents
the proper cone C([θL]j , [θU]j) if [θap]j > 0 and [θap]j < 2π,
the full cone C⊤ if [θap]j = 2π, and the singleton cone C[θL]j if
θap = 0. Notice that we do not provide an encoding for the empty
cone because interesting queries are satisfiable. The queries are thus
modeled as multidimensional cones according to Definition 7, and
each entity answering the query is modeled as a vector h∗ = eiθ

∗

in
the cone parametrized with the query embedding.

Inversion

)#

)$

Symmetry

)

)

)#

)$

)%

Composition Transitivity

)

Asymmetry

)

)

Containment

)#

)$

Figure 3: Logical patterns captured by AConE in a single dimension

6.1 Geometric Operators

To answer tree-form queries, AConE translates the concept construc-
tors ∃, ⊓, ⊔, and ¬ into corresponding geometric operators, i.e. re-
lational rotation P∃, intersection P⊓, union P⊔, and negation P¬,
in the complex plane. AConE derives the final query embedding by
executing these geometric operators along the computation graph of
the query. We next describe these geometric operators.

Relational Rotation. Given a set of entities S ⊂ I and a re-
lation r ∈ R, the transformation operator for r selects the enti-
ties S ′ = {e′ ∈ I : G |= r(e, e′), e ∈ S}. To this end, we
model r with a vector r = (rU , rL) ∈ C2×d encoding a coun-
terclockwise rotation on query embeddings about the complex plane
origin such that |rU | = 1 and |rL| = 1. The rotation r trans-
forms a query embedding q = (hU ,hL) into a query embedding
P∃(q, r) = q′ = (hU

′,hL
′) where

hU
′ = hU ◦ rU , hL

′ = hL ◦ rL, (2)

where ◦ is the Hadamard (element-wise) product (i.e., for each com-
ponent j, [hU]′j = [hU]j · [rU]i and [hL]

′
j = [hL]j · [rL]i). If

a pair ([rU]j , [rL]j) is seen as a cone, with axis angle [θax ,r]j and
aperture angle [θap,r]j , then the rotation corresponds to the aperture-
additive rotation R⟨[θax ,r]j , 1, [θap,r]j⟩ (see Definition 6). That is,
the axis and aperture angles of q′ are θax

′ = θax + θax ,r , and
θap

′ = θap + θap,r . Figure 3 illustrates how does AConE model
the logical patterns described in Section 5 through the example on a
single dimension.

Intersection. The intersection of a set of query embeddings Q =
{q1, ..., qn}, denoted P⊓(Q) = q′ is defined with the permutation-
invariant functions SemanticAverage and CardMin [29], which
calculate the center θax

′ and the aperture θap
′ of the resulting cone

encoded by q′ as follows:

θax
′ = SemanticAverage({qk}nk=1),

θap
′ = CardMin({qk}nj=1).

(3)

SemanticAverage is expected to approximate the axis of the cone
resulting from the intersection of the input cones. CardMin pre-
dicts the aperture θap

′ of the intersection set such that [θap
′]j should

be no larger than the aperture of any cone qi ∈ Q, since the in-
tersection set is the subset of all input entity sets. Both functions,
SemanticAverage and CardMin, use a neural network to improve
the results. We extend the details of them in Appendix D.

Union. Given a set of query embeddings Q = {q1, . . . , qn}, the
union operator P⊔(Q) returns the set Q. Intuitively, for each k where
1 ≤ k ≤ d, the set Q encodes a multicone embedding for the query
(q1⊔· · ·⊔qn)(x), which represents the multicone MC(C1, . . . ,Cn)
where Ci is the cone encoded in [qi]k.

Notice that multicones cannot be further used as input of other
operations because all AConE operations are applied on cones. To
compute queries, we thus follow [16], translating queries into dis-
junctive normal form, so we only perform the disjunction operator in
the last step in the computation graph.

Negation. The negation of a cone q = (hU ,hL), denoted P¬(q),
is the cone q′ that contains the entities in the complement of q, that
is, q′ = (hL,hU).

6.2 Optimization

Learning Objective. Given a set of training samples, our goal is
to minimize the distance between the query embedding q and the
answer entity vector h∗, while maximizing the distance between q
and its negative samples. Thus, we define our training objective as

L = − log σ(γ−dcomb(h
∗, q))− 1

k

k∑
i=1

log σ(d(h′
i, q)−γ), (4)

where dcomb is the combined distance defined below, γ is a margin,
h∗ is a positive entity, and h′

i is the i-th negative entity, k is the
number of negative samples, and σ represents the sigmoid function.

Combined Distance. Inspired by [29, 16], the distance between q
and h∗ is defined as a combination of inside and outside distances,
dcom(q,h∗) = do(q,h

∗) + λdi(q,h
∗):

do(q,h
∗) = min{∥hU − h∗∥1, ∥hL − h∗∥1}, (5)

di(q,h
∗) = min{∥hax − h∗∥1, ∥hU − hax∥1}, (6)

where ∥ · ∥1 is the L1 norm, hax represents the cone center, and λ ∈
(0, 1). Note that dcomb can only be used for measuring the distance
between a single query embedding and an answer entity vector. Since
we represent the disjunctive queries in Disjunctive Normal Form as a
set of query embeddings Q, the distance between the answer vector
and such set of embeddings is the minimum distance:

dcomb(Q,h∗) = min{dcomb(q,h
∗) : q ∈ Q}. (7)

7 Experiments and Analysis
In this section, we answer the following research questions with ex-
perimental statistics and corresponding case analyses. RQ1: how
well does AConE improve query answering on incomplete KGs?
RQ2: How is the improvement of results related to the capturing of
logical patterns?

7.1 Experimental Setup

Dataset and Query Structure. For a fair comparison with the
baseline models, we use the same query structures and logical query
datasets from NELL-QA [26] and WN18RR-QA [8], and the open-
sourced framework created by [15] for logical query answering tasks.
Figure 4 illustrates all query structures in experiments. We trained
our model using 10 specific query structures and tested it on all 14
query structures to evaluate the generalization ability of our model
regarding unseen query structures. More experimental details can be
found in the supplementary file.

1p 2p 3p 2i 3i

inp pni pin 2in 3in

2u ip up

Train+Validation+Test

Validation+Test

: anchor node/constant : variable node : target node
: negation

: relational projection
: disjunction

pi

Figure 4: Fourteen types of queries used in the experiments. p repre-
sents an edge to another entity labelled with a relation name r (i.e.,
an operation ∃r), i represents the intersection (⊓), u represents the
disjunction (⊔), and n represents the negation (¬).

Evaluation Metrics. We use Mean Reciprocal Rank (MRR) as the
evaluation metric. Given a sample of queries Q, MRR represents the
average of the reciprocal ranks of results, MRR = 1

|Q|
∑|Q|

i=1
1

ranki
.

7.2 RQ1: how well does AConE improve query
answering on incomplete KGs?

We evaluate AConE on two logical query-answering benchmark
datasets that include a variety of complex logical patterns: NELL-QA
created by [15] and WN18RR-QA by [8]. AConE is compared with
various query embedding models that also define query regions as
vectors, geometries, or distributions, including GQE [7], Query2Box
(Q2B) [16], BetaE [15], ConE [29], and LinE [8]. To ensure a fair
comparison, we indeed referenced the results of all baseline mod-
els from corresponding papers. In the case of ConE’s performance
on the WN18RR dataset, we conducted our own experiments due to
the absence of previously reported results. This involved rerunning
ConE with an optimized search for hyperparameters to generate the
relevant data.

Main Results. Table 2 summarizes the performance of all meth-
ods on answering various query types. Compared with baselines that
can only model queries without negation. Overall, AConE (aperture-
additive) outperforms baseline methods on the majority of query
types in Figure 4 while achieving competitive results on the oth-
ers. Specifically, AConE consistently achieves improvements on non-
negation queries on all datasets. Furthermore, our model brings no-
table improvement over baseline models on the WN18RR dataset,
where the average accuracy of AConE is 18.35% higher than that of
the baseline models.

On the other hand, we observe that AConE performs closely to
the baseline models on answering query types involving negation
on dataset NELL, in spite of its consistently good performance on
WN18RR. This may be due to two factors: firstly, handling nega-
tion is a challenging research question for complex logical query-
answering tasks. When it comes to negation queries, all the current
models show inferior performance compared to their performance
on non-neg queries. Secondly, modeling negation as the complement
leads to bias in prediction and high uncertainty in a large number
of answers for negation queries. Thus, we leave the task of further
improving our model on negation queries for future research.

Table 2: MRR results (%) of AConE, LinE (the results of LinE are only available on WN18RR-QA), ConE, BETAE, Q2B, and GQE on
answering tree-form (∃,∧,∨,¬) queries on datasets NELL-QA, and WN18RR. The best statistic is highlighted in bold, while the second best
is highlighted in underline.

Dataset Model 1p 2p 3p 2i 3i pi ip 2u up 2in 3in inp pin pni

GQE 18.0 4.5 2.7 19.3 23.9 9.9 10.6 2.3 3.5 - - - - -
Q2B 22.4 4.6 2.3 25.6 41.2 13.2 11.0 2.9 3.4 - - - - -

WN18RR-QA BetaE 44.1 9.8 3.8 57.2 76.2 32.6 17.9 7.5 5.3 12.7 59.9 5.1 4.0 7.4
LinE 45.1 12.3 6.7 47.1 67.1 24.8 14.7 8.4 6.9 12.5 60.8 7.3 5.2 7.7
ConE 46.8 14.5 9.3 59.0 83.9 33.6 18.7 10.0 9.8 13.9 61.8 10.6 7.3 7.6
AConE 50.9 17.6 9.9 70.5 89.0 38.9 29.6 18.4 14.0 18.3 70.1 13.4 7.6 10.4

GQE 33.1 12.1 9.9 27.3 35.1 18.5 14.5 8.5 9.0 - - - - -
Q2B 42.7 14.5 11.7 34.7 45.8 23.2 17.4 12.0 10.7 - - - - -

NELL-QA BetaE 53.0 13.0 11.4 37.6 47.5 24.1 14.3 12.2 8.5 5.1 7.8 10.0 3.1 3.5
ConE 53.1 16.1 13.9 40.0 50.8 26.3 17.5 15.3 11.3 5.7 8.1 10.8 3.5 3.9
AConE 54.5 17.7 14.4 41.9 53.0 26.1 20.7 16.5 12.8 5.2 7.7 9.4 3.2 3.7

Table 3: Statistics on the percentage of queries that involve various logical patterns in the NELL test dataset
Relation 1p 2p 3p 2i 3i pi ip 2u up 2in 3in inp pin pni

Symmetry 20.3 29.7 38.6 25.3 29.9 34.4 31.9 31.2 34.6 27.6 26.2 38.6 37.1 36.7
Inversion 26.9 41.3 51.0 42.0 51.9 51.9 46.0 43.2 43.8 42.0 56.1 51.0 52.0 54.3
Composition 21.6 35.2 43.4 31.5 41.7 42.7 40.1 35.8 40.9 34.7 42.5 43.1 43.0 43.6
Containment 37.9 51.5 63.1 50.9 59.1 54.3 48.35 48.9 49.32 48.7 50.3 60.7 60.6 58.1
Transitivity 3.1 2.8 3.3 2.9 3.7 3.2 2.5 3.3 2.9 3.7 3.6 8.4 4.2 3.95

7.3 RQ2: How is the improvement of results related to
the capturing of logical patterns?

To investigate the influence of logical patterns learning on the query
answering model, we provide an ablation analysis considering both
model and data:

Model Perspective. We compared the performance of three
AConE’s variants: AConE (Base), AConE (aperture-multiplicative)
and AConE (aperture-additive). They utilize alternative relational
rotating transformation strategies for capturing the logical patterns
while keeping other modules unchanged. Note that AConE (Base)
represents AConE model with any neural relational transformation
module. This configuration operates similarly to ConE in terms of its
foundational approach. Consequently, we used the results of ConE as
a direct representation of "AConE (Base)". This decision was based
on their operational similarity, ensuring a fair and coherent presenta-
tion of our findings.

Table 4: Ablation study of AConE on NELL dataset.
Model 1p 2p 3p 2i 3i pi ip 2u up

AConE (Base) 53.1 16.1 13.9 40.0 50.8 26.3 17.5 15.3 11.3
AConE (Ap-Mul) 51.3 16.6 13.8 38.4 48.4 18.9 19.5 14.7 12.1
AConE (Ap-Add) 54.5 17.7 14.4 41.9 53.0 26.1 20.7 16.5 12.8

As Table 4 shows, the performance variation among AConE’s vari-
ants highlights the impact of relation transformation on the model’s
ability to capture logical patterns. In addition, the outperformance of
AConE confirms the efficiency of logical patterns in logical query
reasoning tasks.

Data Perspective. To better study the specific impact of AConE
on queries involving logical patterns, more in-depth analysis is made
on the query answering dataset NELL. We categorize the test dataset
into five categories based on the relations involved in the queries. For
each query in subgroups 1 Inverse, Symmetry, Composition, Contain-
ment and Transitivity, there is at least one relation encompassing the
corresponding logical pattern. Table 3 provides more details about

1 Note that Asymmetry is not included here because such type of relations are
missing from the selected rules mined from NELL.

these subgroups of queries and the classification process is elaborated
in Appendix B. The category Others corresponds to queries that do
not involve any of these logical patterns. Figure 5 shows the average
performances of AConE and neural baseline model (ConE) on these
subgroups. It is observed that AConE outperforms the neural base-
line model on queries that had logical patterns, especially inverse
relations. However, AConE does not generalize as well to queries
that were not influenced by logical patterns compared to the baseline
model. This analysis supports our hypothesis that AConE is better
suited for capturing logical patterns in tree-form query answering
tasks than purely neural models, with fewer model parameters and a
simpler model structure, which is elaborated in section 8.

Inverse Symmetry Composition Containment Transitivity Others
Queries with relation patterns

15

20

25

30

35

40

%
 A

cc
ur

ac
y

34.4%

31.4%

28.6%28.2%
26.2%25.5%

27.5%
25.4%

22.5%

19.3%

15.2%

18.5%

AConE
Baseline

Figure 5: Average performances of AConE and Baseline model over
query subgroups with different logical patterns.

8 Analysis on Model Parameters
The acquisition of logical patterns not only enhances the model
performance but also alleviates the reliance on excessively-
parameterized neural networks in existing methods. Table 5 summa-
rizes the number of parameters and the average performance of our
method AConE and other baseline models on non-negation queries
which can be handled by all methods. It shows that AConE has the

second-fewest number of parameters among these models, though it
achieves much better performances than the baseline models.
Table 5: Number of parameters in AConE and other baseline models.

Model AVG MRR Parameters

BetaE[15] 28.26 57,574,000
GQE[7] 10.52 52,290,400
ConE[29] 31.73 44,010,401
Q2B[16] 14.06 26,306,000
Ours 37.64 36,325,601

9 Conclusion and Future Work
In this work, we investigate the important yet understudied impact
of logical pattern inference on the query answering task. We propose
a new embedding method, the multicone embedding, and study its
algebraic structure and capability to express SROI− ontologies. We
show some limitations of the method, like breaking the tautology
∃R.(C ⊓D) ≡ ∃R.C ⊔∃R.D, the bias favoring the commutativity,
and the (general) non-existence of inverse rotations.

Our practical method, AConE, is motivated by the multicone al-
gebra, but it has differences. First, multicones consisting of multiple
cones are difficult to manage due to the unconstrained number of pa-
rameters they require. Hence, we limit the representation of queries
to single multicones (i.e., cones). Since this simplification makes the
cone intersection no longer closed, we define it as a neural operation
returning a single cone. We limit rotations to be aperture-additive be-
cause they outperform aperture-multiplicative rotations (see Table 4).

Although the experiment datasets had no concept names, multi-
cone embeddings support concept names. We use these datasets to
make a fair comparison with the existing methods, which do not sup-
port concept names. Since most real datasets include concept names,
and concept names are a key component of knowledge representa-
tion, we plan to extend our research to datasets with concept names.
Furthermore, we think that AConE can be extended for knowledge
graphs including also non-empty RBoxes and TBoxes.

Ethics Statement
The authors declare that we have no conflicts of interest. This article
does not contain any studies involving business and personal data.

Acknowledgements
This work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under the DFG Germany’s Ex-
cellence Strategy – EXC 2120/1 – 390831618, and the DFG Ex-
cellence Strategy – EXC 2075 – 390740016. We acknowledge the
support by the Stuttgart Center for Simulation Science (SimTech).
The authors thank the International Max Planck Research School for
Intelligent Systems (IMPRS-IS) for supporting Yunjie He. Mojtaba
Nayyeri is funded by the BMBF ATLAS project.

References
[1] SPARQL 1.1 Query Language. Technical report, W3C, 2013. URL

http://www.w3.org/TR/sparql11-query.
[2] E. Arakelyan, D. Daza, P. Minervini, and M. Cochez. Complex query

answering with neural link predictors. In ICLR. OpenReview.net, 2021.
[3] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-

Schneider, editors. The Description Logic Handbook: Theory, Imple-
mentation, and Applications. Cambridge University Press, 2003. ISBN
0-521-78176-0.

[4] K. D. Bollacker, C. Evans, P. K. Paritosh, T. Sturge, and J. Taylor. Free-
base: a collaboratively created graph database for structuring human
knowledge. In J. T. Wang, editor, Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data, SIGMOD 2008, Van-
couver, BC, Canada, June 10-12, 2008, pages 1247–1250. ACM, 2008.
doi: 10.1145/1376616.1376746. URL https://doi.org/10.1145/1376616.
1376746.

[5] A. Bordes, N. Usunier, A. García-Durán, J. Weston, and O. Yakhnenko.
Translating embeddings for modeling multi-relational data. In NIPS,
pages 2787–2795, 2013.

[6] L. Galárraga, C. Teflioudi, K. Hose, and F. M. Suchanek. Fast rule
mining in ontological knowledge bases with AMIE+. VLDB J., 24(6):
707–730, 2015.

[7] W. L. Hamilton, P. Bajaj, M. Zitnik, D. Jurafsky, and J. Leskovec. Em-
bedding logical queries on knowledge graphs. In NeurIPS, pages 2030–
2041, 2018.

[8] Z. Huang, M. Chiang, and W. Lee. Line: Logical query reasoning over
hierarchical knowledge graphs. In KDD, pages 615–625. ACM, 2022.

[9] M. Jackermeier, J. Chen, and I. Horrocks. Box2el: Concept and role box
embeddings for the description logic EL++. CoRR, abs/2301.11118,
2023. doi: 10.48550/ARXIV.2301.11118. URL https://doi.org/10.
48550/arXiv.2301.11118.

[10] B. Kotnis, C. Lawrence, and M. Niepert. Answering complex queries
in knowledge graphs with bidirectional sequence encoders. In AAAI,
pages 4968–4977. AAAI Press, 2021.

[11] X. V. Lin, R. Socher, and C. Xiong. Multi-hop knowledge graph rea-
soning with reward shaping. In EMNLP, pages 3243–3253. Association
for Computational Linguistics, 2018.

[12] M. Nayyeri, C. Xu, Y. Yaghoobzadeh, S. Vahdati, M. M. Alam, H. S.
Yazdi, and J. Lehmann. Loss-aware pattern inference: A correction
on the wrongly claimed limitations of embedding models. In PAKDD
(3), volume 12714 of Lecture Notes in Computer Science, pages 77–89.
Springer, 2021.

[13] M. Nickel, V. Tresp, and H. Kriegel. A three-way model for collective
learning on multi-relational data. In ICML, pages 809–816. Omnipress,
2011.

[14] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Z. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative
style, high-performance deep learning library. In NeurIPS, pages 8024–
8035, 2019.

[15] H. Ren and J. Leskovec. Beta embeddings for multi-hop logical reason-
ing in knowledge graphs. In NeurIPS, 2020.

[16] H. Ren, W. Hu, and J. Leskovec. Query2box: Reasoning over knowl-
edge graphs in vector space using box embeddings. In ICLR. OpenRe-
view.net, 2020.

[17] H. Ren, M. Galkin, M. Cochez, Z. Zhu, and J. Leskovec. Neural graph
reasoning: Complex logical query answering meets graph databases,
2023.

[18] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic
knowledge. In C. L. Williamson, M. E. Zurko, P. F. Patel-Schneider,
and P. J. Shenoy, editors, Proceedings of the 16th International Confer-
ence on World Wide Web, WWW 2007, Banff, Alberta, Canada, May 8-
12, 2007, pages 697–706. ACM, 2007. doi: 10.1145/1242572.1242667.
URL https://doi.org/10.1145/1242572.1242667.

[19] Z. Sun, Z. Deng, J. Nie, and J. Tang. Rotate: Knowledge graph embed-
ding by relational rotation in complex space. In ICLR (Poster). Open-
Review.net, 2019.

[20] T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, and G. Bouchard. Com-
plex embeddings for simple link prediction. In ICML, volume 48
of JMLR Workshop and Conference Proceedings, pages 2071–2080.
JMLR.org, 2016.

[21] D. Vrandecic and M. Krötzsch. Wikidata: a free collaborative knowl-
edgebase. Commun. ACM, 57(10):78–85, 2014.

[22] Z. Wang, J. Zhang, J. Feng, and Z. Chen. Knowledge graph embedding
by translating on hyperplanes. In AAAI, pages 1112–1119. AAAI Press,
2014.

[23] B. Xiong, N. Potyka, T. Tran, M. Nayyeri, and S. Staab. Faithful embed-
dings for EL++ knowledge bases. In ISWC, volume 13489 of Lecture
Notes in Computer Science, pages 22–38. Springer, 2022.

[24] B. Xiong, S. Zhu, M. Nayyeri, C. Xu, S. Pan, C. Zhou, and S. Staab.
Ultrahyperbolic knowledge graph embeddings. In KDD, pages 2130–
2139. ACM, 2022.

[25] W. Xiong, T. Hoang, and W. Y. Wang. Deeppath: A reinforcement learn-
ing method for knowledge graph reasoning. In EMNLP, pages 564–573.
Association for Computational Linguistics, 2017.

[26] W. Xiong, T. Hoang, and W. Y. Wang. DeepPath: A reinforcement
learning method for knowledge graph reasoning. In Proceedings of
the 2017 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 564–573, Copenhagen, Denmark, Sept. 2017. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/D17-1060. URL
https://aclanthology.org/D17-1060.

[27] B. Yang, W. Yih, X. He, J. Gao, and L. Deng. Embedding entities and re-
lations for learning and inference in knowledge bases. In ICLR (Poster),
2015.

[28] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. Salakhutdinov, and
A. Smola. Deep sets, 2017. URL https://arxiv.org/abs/1703.06114.

[29] Z. Zhang, J. Wang, J. Chen, S. Ji, and F. Wu. Cone: Cone embeddings
for multi-hop reasoning over knowledge graphs. In NeurIPS, pages
19172–19183, 2021.

[30] Z. Zhu, M. Galkin, Z. Zhang, and J. Tang. Neural-symbolic models for
logical queries on knowledge graphs. In ICML, volume 162 of Pro-
ceedings of Machine Learning Research, pages 27454–27478. PMLR,
2022.

[31] Z. Zhu, M. Galkin, Z. Zhang, and J. Tang. Neural-symbolic models for
logical queries on knowledge graphs. In ICML, volume 162 of Pro-
ceedings of Machine Learning Research, pages 27454–27478. PMLR,
2022.

A Experimental Details

The source code of AConE, the benchmark datasets, and the instruc-
tions for the reproduction of our experimental results are attached as
zip files.

Description on Benchmark Datasets For a fair comparison with
the baseline models, we use the same query structures and logical
query datasets from NELL-QA [26] and WN18RR-QA [8], and the
open-sourced framework created by [15] for logical query answering
tasks. Table 6 summarizes the statistics of benchmark datasets.

Table 6: Statistics of benchmark datasets.
Dataset Training Validation Testing

1p/2p/3p/2i/3i Neg 1p others 1p others
NELL 107,980 10,798 16,927 4,000 17,034 4,000
WN18RR 517,545 51,750 5,202 13,000 5,356 13,000

Hyperparameters and Computational Resources. All of our ex-
periments are implemented in Pytorch [14] framework and run on
four Nvidia A100 GPU cards. For hyperparameters search, we per-
formed a grid search of learning rates in {5×10−5, 10−4, 5×10−4},
the batch size in {256, 512, 1024}, the negative sample sizes in
{128, 64}, the regularization coefficient λ in {0.02, 0.05, 0.08, 0.1}
and the margin γ in {20, 30, 40, 50}. The best hyperparameters are
shown in Table 7.
Table 7: Hyperparameters found by grid search. d is the embedding
dimension, b is the batch size, n is the negative sampling size, γ is the
margin in loss, l is the learning rate, λ is the regularization parameter
in the distance function.

Dataset d b n γ l λ

NELL 800 512 128 20 1× 10−4 0.02
WN18RR 800 512 128 20 1× 10−4 0.02

B Classification Process of Test Queries

This paragraph describes the process for identifying subgroups of test
queries with different relation patterns. We first mined rules from the
triples-only dataset NELL995 [25] using the rule mining tool AMIE
[6]. The rules that are significantly supported by a large amount of
data and have body coverages greater than 0.2 are selected. These
rules are then categorized into six types: symmetry, inversion, com-
position, containment, transitivity and other. Each category includes
a list of relations that encompass relation patterns. Using the selected
relations, the test dataset of the logical query dataset NELL [15] is
traversed, and queries are classified into six subgroups: symmetry,
inversion, composition, containment, transitivity and other. A query
is classified into a subgroup based on the presence of at least one re-
lation from the corresponding relation subgroup. The other subgroup
does not include any of these patterns.

C Model Robustness Check

In this section, we check the model robustness of AConE by running
AConE 10 times with different random seeds. The mean performance
and standard deviations are reported in Table 8. The slight variances
in the results indicate that AConE is robust to the different initial-
izations of model parameters and our reported improvements are not
due to randomness.

D Intersection Operator
In this section, we explain the details of two important components
of the intersection operator, SemanticAverage(·) and CardMin(·)
SemanticAverage(·) is expected to compute the semantic center
θθθ

′

ax of the input {(θθθj,ax, θθθj,ap)}nj=1. Specifically, the computation
process is provided as:

[x;y] =

n∑
i=1

[aj ◦ cos(θθθj,ax);aj ◦ sin(θθθj,ax)],

θθθ
′

ax = Arg(x,y),

(8)

where cos and sin represent element-wise cosine and sine functions.
Arg(·) computes the argument given x and y. aj ∈ Rd are attention
weights such that

[aj]k =
exp([MLP([θθθj,ax−θθθj,ap/2;θθθj,ax+θθθj,ap/2])]k)∑n

m=1
exp([MLP([θθθm,ax−θθθm,ap/2;θθθm,ax+θθθm,ap/2])]k)

,
(9)

where MLP : R2d → Rd is a multi-layer perceptron network, [·;·] is
the concatenation of two vectors.

CardMin(·) predicts the aperture θθθ
′

ap of the intersection set such
that [θθθ

′

ap]i should be no larger than any θθθij,ap, since the intersection
set is the subset of all input entity sets.

[θ
′

ap]i = min{θi1,ap, . . . , θin,ap} · σ([DeepSets({(θθθj,ax, θθθj,ap)}nj=1)]i)

(10)
where DeepSets({(θθθj,ax, θθθj,ap)}nj=1) [28] is given by

MLP(1
n

∑n
j=1 MLP([θθθj,ax − θθθj,ap/2;θθθj,ax + θθθj,ap/2])).

Table 8: AConE’s MRR mean values and standard variances (%) on answering tree-form (∃, ∧, ∨,¬) queries
Dataset 1p 2p 3p 2i 3i pi ip 2u up 2in 3in inp pin pni

NELL 54.5± 17.7± 14.4± 41.9± 53.0± 26.1± 20.7± 16.5± 12.8± 5.2± 7.7± 9.4± 3.2± 3.7±
0.097 0.152 0.192 0.130 0.038 0.084 0.146 0.112 0.137 0.012 0.079 0.154 0.012 0.097

