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Abstract 

The large compositional space of high entropy alloys (HEA) often presents significant challenges in 

comprehensively deducing the critical influence of atomic composition on their mechanical responses. 

We propose an efficient nonparametric kernel-based probabilistic computational mapping to obtain the 

optimal composition of HEAs under ballistic conditions by exploiting the emerging capabilities of 

machine learning (ML) coupled with molecular-level simulations. Compared to conventional ML 

models, the present Gaussian approach is a Bayesian paradigm that can have several advantages, 

including small training datasets concerning computationally intensive simulations and the ability to 

provide uncertainty measurements of molecular dynamics simulations therein. The data-driven analysis 

reveals that a lower concentration of Ni with a higher concentration of Al leads to higher dissipation of 

kinetic energy and lower residual velocity, but with higher penetration depth of the projectile. To deal 

with such conflicting computationally intensive functional objectives, the ML-based simulation 

framework is further extended in conjunction with multi-objective genetic algorithm for identifying the 

critical elemental compositions to enhance kinetic energy dissipation with minimal penetration depth 

and residual velocity of the projectile simultaneously. The computational framework proposed here is 

generic in nature, and it can be extended to other HEAs with a range of non-aligned multi-physical 

property demands. 
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1. Introduction  

High entropy alloys (HEAs) are multi-principal element alloys consisting of five or more 

primary alloying elements with atomic percentages ranging from 5% to 35% [1, 2]. The presence of a 

large number of principal elements in HEAs leads to mutual solubility and high configuration entropy, 

which promotes the formation of solid solutions with uniform phase transitions [3, 4]. HEAs with simple 

solid solution phases outperform conventional alloys in structural and functional properties. Because of 
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their large material compositional space and exceptional structural and functional properties, such as 

high hardness, ultimate tensile strength, ductility, high corrosion and wear resistance, HEAs have a high 

potential for a wide range of applications [5-11]. To take advantage of such properties, HEAs have been 

used in aerospace, sea-vessels [12-15], high-temperature applications [16, 17], and cryogenic 

applications [18]. Among HEAs, the AlCoCrFeNi HEA has gained particular interest due to its 

distinctive single-phase microstructure. For example, Yang et al. [19] fabricated AlCoCrFeNi HEAs 

with different Al concentrations and studied their mechanical and microstructural properties. It was 

observed that AlCoCrFeNi HEA exhibits a single FCC crystal structure with Al concentration of 0.1. In 

another study, Joseph et al. [20] reported that Al0.3CoCrFeNi HEA exhibits remarkable work-hardening 

which is attributed to its single-phase (FCC) structure. Due to the evidence gathered from the past 

literature, AlCoCrFeNi HEAs are computationally modeled as a single-phase (FCC) crystal system to 

study its mechanical response and underlying mechanism. Such as, Jiang et al. [21] conducted MD 

simulations to investigate the mechanical and deformation behavior of single FCC crystal AlxCoCrFeNi 

(x = 1-2, molar ratio) HEAs subjected to uniaxial tension under varying conditions. Vu et al. [22] 

investigated the influences of grain size, temperature, and tension strain rate on mechanical properties 

and deformation behaviour of Al0.3CoCrFeNi HEA. Their findings revealed that elevated temperatures 

lead to temperature-induced softening, causing a reduction in connecting force between atoms. 

A few recent studies reported promising capabilities of high entropy alloys for designing and 

developing materials against high-velocity impact [23-25]. For such applications, materials are 

subjected to high-velocity impact with high strain deformation [50], where the strain rate is higher than 

~102 s-1. The microstructural transitions during high strain rate deformation of the HEA systems have 

been widely explored in the past. For instance, Kumar et al. [26] investigated the plastic deformation 

behaviour of Al0.1CoCrFeNi HEA under high strain rate compression. The Al0.1CoCrFeNi HEA 

exhibited exceptional work-hardening capability irrespective of strain rates. Gangireddy et al. [27, 28] 

compared Al0.3CoCrFeNi (single phase FCC) with Al0.7CoCrFeNi (dual phase FCC-BCC) at a strain 

rate of 10-3 s-1 and 103 s-1. The single-phase HEA system exhibited extraordinary strain rate sensitivity 

and work hardening capability due to low stacking fault energy (SFE). The dual-phase HEA system 

demonstrated higher strength due to the refined microstructure with a large number of interphase 

boundaries. Choudhuri et al. [29, 30] conducted the ballistic impact test on the AlCoCrFeNi2.1 HEA 

system and investigated the ballistic responses with microstructural deformation mechanisms. From the 

ballistic responses, it was observed that the AlCoCrFeNi2.1 HEA plates were partially penetrated, 

plugged, and fully penetrated with projectile velocities at 803 m/s, 1159 m/s, and 1388 m/s, respectively. 

Li et al. [31] reported the high resistance to shear failure of the Al0.3CoCrFeNi HEA system under high-

velocity deformation. Muskeri et al. [32] conducted a ballistic impact test on the single-phase 

Al0.1CoCrFeNi HEA with high projectile velocities ranging from 500 to 1000 m/s considering the 
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microstructural deformation behaviour. During the ballistic impact test, ductile deformation failure was 

observed in partial penetration, plug formation, and full penetration cases.  

A few experimental investigations presented in the preceding paragraph highlight that 

AlCoCrFeNi HEA has promising capabilities against dynamic impact and high strain-rate deformations. 

Hence, it is essential to assess the ballistic behaviour of such a material system by considering large-

scale variations in its compositional space for achieving optimal performance. However, it is 

challenging to perform such analysis experimentally due to the constraints associated with time, cost, 

and precision [33]. In contrast, performing molecular dynamics simulations have demonstrated the 

capability in revealing materials responses efficiently at the atomic level with adequate accuracy [34].  

To mitigate these constraints, several research groups utilized molecular dynamics (MD) simulations to 

investigate the nanoscale ballistic performance of various prospective barrier materials [35-40]. 

Different HEA systems are also explored for their promising ballistic capabilities in an MD 

environment. For example, Tang and Li [41] reported that Mn free Cantor alloy (CrMnFeCoNi) offers 

excellent resistance to failure under high-velocity impact. In another study, Sircar and Patra [42] 

investigated the basis plane-specific shock response of Cantor alloy. Singh et al. [43] reported the shock 

wave propagation in CoCrCuFeNi HEA as a response to an ultra-short shock pulse. Such literature 

indicates that the research community has started showing interest in exploring the ballistic performance 

of complex materials systems like HEA by utilizing MD simulations. However, characterizing the 

ballistic performance of HEAs as a function of large-scale variations in their compositional space 

remains a challenge. To address such challenges, we propose integrating machine learning (ML) 

approaches with MD simulations to map the entire compositional space of HEAs in a computationally 

efficient framework [44-48, 51-53]. In this article, by integrating MD simulations with the 

computationally efficient nonparametric kernel-based probabilistic Gaussian process ML model, 

ballistic responses (such as kinetic energy dissipation (ΔKE), penetration depth (δ) and residual velocity 

of the projectile (Vr)) of AlCoCrFeNi HEA would be mapped with the variations in the alloying 

composition of the individual elements. The ML based simulation framework would further be extended 

in conjunction with multi-objective genetic algorithm to identify the optimal HEA elemental 

composition for enhancing the kinetic energy dissipation with minimal penetration depth and residual 

velocity of the projectile.  

The specific contribution of this study is the investigation of the critical ballistic performances 

of AlCoCrFeNi HEAs considering the large compositional space which is only feasible due to 

introduction of the machine learning-assisted efficient computational framework. It is worth noting that 

the functional behaviour of HEAs depends primarily on their compositional space, making it crucial to 

capture the entire continuous domain of variation in elemental concentration. In this context, we would 

computationally couple MD simulations, nonparametric kernel-based probabilistic Gaussian processes 

model, and the multi-objective genetic algorithm (MOGA) for extensive data-driven investigations. 
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Hereafter, the article is organized as follows, Section 2 elaborates on the computational methodology 

utilized in the present investigation, Section 3 presents the numerical results including model validation 

from multiple perspectives and new results based on the efficient ML based computational framework 

and finally, and the following sections provide summary and concluding remarks. 

 

2. Modeling and simulation 

This section presents the methodology adopted to integrate the nonparametric kernel-based 

probabilistic Gaussian process machine learning algorithm with MD simulations to investigate the 

ballistic performance of AlCoCrFeNi HEA (refer to Figure 1). At the first stage, the input features such 

as the atomic fraction of constituent elements (Al, Co, Cr, Fe, and Ni) of HEA and impact velocity (Vi) 

of the projectile are (quasi-)randomly distributed within the parametric range of variation (considered 

parametric bound of the input features: Fe [15%, 25%], Ni [15%, 25%], Co [15%, 25%], Cr [15%, 

25%], Al [0% - 40%], Vi [400 m/s, 1100 m/s]) by enforcing Sobol sequence sampling. In this manner, 

the sample space for training (64 samples) and validating (16 samples) the machine learning model is 

constructed. The random distribution of individual parameters is illustrated in Figure S1 of the 

supplementary material. The conventional design of HEAs considers elemental composition of 

individual constituent elements in the range of 5% to 35% [4]. Further, the reported literature suggests 

that the increase in Al concentration in AlCoCrFeNi leads to the design of low-density alloy with 

enhanced hardness due to the inherent FCC to BCC transition on the microstructural level [19, 55]. With 

this understanding, in the present study, the Al concentration is varied from 0% to 40% (highest), in 

accordance with the experimentally synthesized HEA configurations of AlCoCrFeNi reported by Gorrse 

et al. [56], while all other constituent elements are maintained in between 15% to 25% concentrations. 

The AlCoCrFeNi HEA demonstrates great potential in surface engineering, where the objective is to 

enhance the hardness of the surface [57-58]. Such alloys have potential applications in the surface 

coating of turbine blades, aeronautical structures, and other areas where high to hypervelocity impact 

occurs frequently. Hence, in the present study, the impact velocity of the projectile is stochastically 

varied from 400 m/s (4 Å/ps) to 1100 m/s (11 Å/ps) to capture medium (10−1 - 102 s−1), high (102 - 104 

s−1), and dynamic strain-rate (> 104 s−1) deformation and characterize the ballistic performance of the 

HEA configurations [31, 59]. The MD simulations of high-velocity impact are performed on different 

configurations of AlCoCrFeNi following the (quasi-)randomly distributed input sample space. 

Compared to conventional machine learning models, the present Gaussian approach is a Bayesian 

paradigm that can have several advantages, including small training datasets concerning 

computationally intensive simulations and having the ability to provide uncertainty measurements of 

molecular dynamics simulations therein. The ability of the machine learning framework to incorporate 

inevitable variability in molecular dynamics simulations corresponding to each realization in the form 

of mean and standard deviation can address the issue of repeatability comprehensively. Unlike 
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traditional regression models, which assume linear correlations between variables, GP models are 

adaptable and may account for complicated interactions between input data and output predictions. It is 

worth noting that, despite the unusually small sample size used here for training the ML models, the 

constructed Sobol sequence-based elemental composition samples capture an extensive portion of the 

parametric range of variation (see Figure S1 of the supplementary material). This implies that an 

efficient generalized ML model for HEAs can be obtained by running a small number of 

computationally expensive algorithmically selected MD simulations [39-40, 44-48].  

To perform the simulation of impact of the projectile in the LAMMPS [49] environment, 

AlCoCrFeNi HEAs with randomly distributed compositional space are modelled as cylindrical (radius 

= 215 Å and thickness = 60.52 Å) target plates. A width of 15 Å on the target plate's periphery is clamped 

by imposing zero force and zero velocity. Rigid cylindrical (radius = 28 Å and height = 78 Å) projectiles 

of gold are utilized to perform the atomistic simulations of impact. The interaction among the 

constituent elements of AlCoCrFeNi HEA is modeled by utilizing the EAM/alloy force-field [54]. The 

same force field is used to model the monolithic gold nano-projectile. The interface between constituent 

elements of HEA and the projectile (Au) is modeled by using the Lennard-Jones (L-J) force-field [60], 

wherein the calculation of the L-J parameters is done following Tang and Li [41]. The L-J parameters 

utilized in the simulations are presented in Table 1. An iteration time-step of 0.1 fs is utilized to perform 

the MD simulations. The potential energy of the simulation setup is minimized for 2.5 ps before 

beginning the MD simulations of high-velocity impact. By imposing the NPT ensemble for 10 ps, the 

pressure and temperature of the energy-minimised simulation setup are equilibrated at 0 bar and 300K, 

respectively.  Further, the projectile is impacted on the target plate within the NVE ensemble. The 

instantaneous variation in the kinetic energy of the projectile is assessed to evaluate the kinetic energy 

dissipated (ΔKE) by the target plate, which can be calculated as 

ΔKE = KEi - KEf (1) 

where KEi refers to the initial kinetic energy of the projectile and KEf refers to the post-impact kinetic 

energy of the projectile. Also, the temporal variation in the projectile’s velocity is observed to obtain 

the post-impact residual velocity (Vr). The extent of deflection/damage (penetration depth (δ)) of the 

target plate is evaluated by observing the temporal variation in the transverse displacement of the 

projectile. The dataset generated by quasi-random sampling-based MD simulation is utilized to train 

and validate the Gaussian Process-based machine learning model. It is to be noted that the constructed 

machine learning model is validated by a separate set of samples which are not utilized while training 

the model. It ensures that the constructed models are capable of accurate generalization without any 

prediction bias. A detailed description of the Gaussian Process machine learning model is provided in 

section SM1 of the supplementary material. The constructed Gaussian Process models utilize isotropic 

Matern 2.5 kernel with a kernel scale of 5.5 and basis function ‘zero’. Based on the proposed framework 

we develop a nonparametric kernel-based probabilistic computational mapping between the fraction of  
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Figure 1. Machine learning-based computational framework coupled with molecular dynamics 

simulations. The seamless integration of machine learning and MD simulation is exploited here to unravel the 

deep insights concerning the atomic composition of AlCoCrFeNi HEA for achieving optimal ballistic 

performance. (A) Sobol sequence sampling-based typical random configurations of AlCoCrFeNi HEA 

modelled in LAMMPS environment (B) Flow diagram of the complete computational framework adopted in 

the present study (C) Post-impact atomistic deformation mechanism of HEA configurations suggested by large-

scale physics-based investigation. 

 

Table 1. L-J parameters used to model the interaction between HEA configurations and Au nano-projectile 

Atom pair ε (eV) σ(Å) 

Al-Au 70.62 3.47 

Co-Au 11.76 2.74 

Cr-Au 12.17 2.81 

Fe-Au 11.33 2.76 

Ni-Au 12.17 2.72 
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constituent elements of AlCoCrFeNi HEA and impact velocity of projectiles with kinetic energy 

dissipated by HEA plate, depth of penetration and residual velocity of projectiles. 

The Gaussian Process models are further exploited to perform genetic algorithm based multi-

objective optimization, wherein, the optimal elemental compositions of AlCoCrFeNi HEA are proposed 

to maximize the kinetic energy dissipation of HEA with minimum possible penetration depth and 

residual velocity. A detailed description of the genetic algorithm based multi-objective optimization 

algorithm is provided in section SM2 of the supplementary material. The optimization is performed by 

developing a MATLAB code with a population size of ‘100’, a cross-over rate of ‘0.8’ and by enforcing 

the adaptive mutation function. It is to be noted that the proposed optimization framework employs a 

computationally efficient ML model as the fitness function (not just the initial 80 samples). This enables 

the optimization algorithm to search across the entire parametric range of variation, utilizing the ML 

model's ability to rapidly evaluate the fitness of potential solutions. Here the population size of 100 

refers to the genetic algorithm's search space over the continuous domain of parametric variation, rather 

than being constrained by the initial 80 samples utilized for model creation. Thus, we are able to exploit 

the generalization capability of the ML model over the entire design space for genetic algorithm. While 

performing the optimization to find the optimal solution to the multi-objective problem, the atomic 

fractions of the constituent elements are restricted in the same range as mentioned before in this section. 

 

3. Results and discussion 

This section presents the numerical results obtained from the coupled machine learning (ML) 

driven MD simulations framework. To validate the MD simulations based ballistic analyses, the specific 

kinetic energy dissipation (ΔKE*) of an aluminum plate is compared with the published findings [36]. 

The specific kinetic energy dissipation (ΔKE*) is the kinetic energy dissipated by the target with respect 

to the mass of the impact zone. The structural configurations of the cylindrical target aluminum plate 

(effective radius: 200 Å and thickness: 24.3 Å) and cylindrical gold projectile (diameter: 77 Å and 

height: 81 Å) are maintained as reported in Dewapriya and Miller [36]. The current MD simulations 

result in the ΔKE* of aluminum as 3.03 MJ/kg, 3.69 MJ/kg, and 4.67 MJ/kg at the impact velocity of 

500 m/s, 750 m/s, and 1000 m/s, respectively. These observations are found to be in good agreement 

with the values reported by Dewapriya and Miller [36], i.e. 3.12 MJ/kg at 500 m/s, 3.98 MJ/kg at 750 

m/s, and 4.67 MJ/kg at 1000 m/s. The validatory simulations establish the reliability of the 

computational approach used in the MD simulation of a high-velocity impact. With sufficient 

confidence in the simulations of high-velocity impact, further extensive MD simulations are performed 

on different configurations of AlCoCrFeNi HEA to construct the training and validation dataset. The 

detailed process of sample preparation and data generation is explained in section 2.  

The sample space constructed by performing MD simulations for (quasi-)randomly sampled 

input parameters is utilized to develop the Gaussian process based ML model. In the present study, an 
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individual ML model is constructed for the considered quantities of interest, i.e. kinetic energy 

dissipation (ΔKE), penetration depth (δ), and residual velocity (Vr). The validation of developed ML 

models is presented in Figure 2. Figure 2(A-C) illustrates the scatter plots between the responses 

obtained from the MD simulation and predicted by the Gaussian Process model for ΔKE, δ, and Vr, 

respectively. It can be noticed from these scatter plots that the true and predicted responses are 

significantly closer to the linear diagonal line, which indicates an accurate ML model construction. The 

corresponding percentage error in the predictions is illustrated in Figure 2(D-F) in terms of probability 

density function (pdf) plots. It is evident from the error plots that the distribution of percentage error in 

predictions remains in the range of ±10% for each response, while more instances show less error. Note 

that the training and validation sizes for obtaining the results in Figure 2 are based on the aforementioned 

number of simulations. With adequate confidence established in the computational efficiency of 

constructed Gaussian Process models, the models are further utilized to perform large-scale predictions.  

The input parameters are randomly distributed within the parametric range by using Monte Carlo 

sampling (~104 samples). At first, the influence of increasing impact velocity on the responses is 

explored, wherein the impact velocity is stochastically varied in the range of 400 m/s to 1100 m/s, while 

the equiatomic fractions (each 20%) of constituent elements (Al, Co, Cr, Fe and Ni) of HEA are 

maintained. The impact velocity-dependent ballistic performance of AlCoCrFeNi HEA is depicted in 

Figure 3(F). It can be noticed from the figure that with the increase in impact velocity all three responses 

(ΔKE, δ, and Vr) increase simultaneously, which indicates a positive correlation of impact velocity with 

the ballistic responses of HEA. The individual ballistic responses are then evaluated in the context of 

variation in the atomic fraction of each constituent element of HEA at three different impact velocities 

(500 m/s, 750 m/s, and 1000 m/s). The atomic fraction of Fe, Ni, Co, and Cr is stochastically varied 

from 15% to 25% and the atomic fraction of Al is stochastically varied from 0% to 40%. At a time, the 

concentration of only one element is varied within the corresponding parametric range and the 

remaining elements are maintained with equiatomic fractions. The individual atomic fractions 

dependent kinetic energy dissipation (ΔKE) of HEA is presented in Figure 3(A-E). The results highlight 

that the variation in ΔKE as a function of the atomic fraction of an individual element demonstrates the 

same trend regardless of the impact velocity of the projectile. Also, an increase in the atomic fractions 

of Fe, Co, and Cr indicates the subsequent increase in the kinetic energy dissipation of the HEA (see 

Figure 3(A, C, and D), whereas, an increase in atomic fractions of Ni and Al results in a decrease in the 

kinetic energy dissipation of the HEA (see Figure 3(B and E)).  

Similar observations can be inferred from the individual atomic fractions dependent penetration 

depth (δ) which is illustrated in Figure S2 of the supplementary material. The observation in terms of 

ΔKE and δ reveals that with the increase in penetration depth the kinetic energy dissipation increases 

and vice-versa. This can be explained by the increase in plastic deformation of the target plate with the 

increase in penetration depth. Unlike the influence of atomic concentrations of constituent elements on 
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Figure 2. Validation of Gaussian Process-based ML model. (A) Scatter plot between MD simulations 

derived ΔKE and Gaussian Process predicted ΔKE (B) Scatter plot between MD simulations derived δ 

and Gaussian Process predicted δ (C) Scatter plot between MD simulations derived Vr and Gaussian 

Process predicted Vr (D) Probability density function plots of percentage error in the prediction of ΔKE 

(E) Probability density function plots of percentage error in the prediction of δ (F) Probability density 

function plots of percentage error in the prediction of Vr. 

 

 

the kinetic energy dissipation (ΔKE) and depth of penetration (δ) of HEA, the residual velocity (Vr) does 

not exhibit a sharp increase or decrease, except for the case of an increase in Al concentrations (see 

Figure S3 of the supplementary material). Note that the overall slopes of the curves presented in Figures 

3, S2 and S3, provide an indication (/preliminary understanding) of the corresponding relative 

importance of the compositional elements to the response quantities. It is further revealed from the 

figures that the increase in Ni and Al concentration has a negative influence on the kinetic energy 

dissipation and penetration depth of HEA, whereas, an increase in Al concentration exhibits a negative 

influence on the projectile’s residual velocity. The remaining elements show a positive correlation to 

the corresponding response parameters. It is to be noted that the superior ballistic performance of the 

material must exhibit high kinetic energy dissipation with reduced residual velocity and penetration 

depth of the projectile.  
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Figure 3. General trends of ballistic parameters. (A - E) Variation in kinetic energy dissipation 

(ΔKE) with atomistic composition at different impact velocities. (F) Variation in ballistic parameters 

ΔKE, δ and Vr as a function of impact velocity ranging from 400 m/s to 1100 m/s. 

 

The atomic composition-based computational mapping developed through Gaussian Process 

predictions is utilized to perform a data-driven sensitivity analysis. In this regard, the relative coefficient 

of variation is evaluated for the cases of individual variation in atomic composition. The data-driven 

sensitivity analysis is performed for all three responses and presented in Figure 4(A-C). The impact 

velocity is kept constant at 750 m/s during the sensitivity analysis because the responses show the same 

pattern of variation regardless of the impact velocity. The sensitivity analysis presented in Figure 4(A-

C) demonstrates that irrespective of the responses, variations in atomic fractions of Fe, Co, and Cr have 

a similar statistical significance on the ballistic performance of AlCoCrFeNi HEA. In contrast, the 

compositional variation in Ni and Al concentration shows a significant difference in the parametric 

correlations with the ballistic measures (ΔKE, δ, and Vr) of the HEA. The correlation mapping of input 

features with the ballistic responses is presented in Figure 4(D), which indicates a strong negative 

correlation of Al concentration on the ballistic performance measures. Apart from the Al concentration, 

the Ni concentration also exhibits a mild negative influence on the ballistic responses. All the other 

input features (compositional change in Fe, Co, and Cr concentration) including the impact velocity 

exhibit a strong positive correlation with the ballistic responses. Note here that the correlation 

coefficient varies from -1 (red color) to 1 (green color) where -1 indicates strong negative correlation  
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Figure 4. Statistical insights of individual input parameters on the ballistic performance of 

AlCoCrFeNi HEA. Data-driven sensitivity analysis of constituent elements on the (A) kinetic energy 

dissipation (ΔKE) of AlCoCrFeNi (B) projectile’s depth of penetration (δ) (C) projectile’s residual 

velocity (Vr). Note that the sensitivity analysis results only provide absolute values, and they cannot 

show the negative or positive correlations between input and output parameters. Thus, a separate 

correlation analysis is further carried out. (D) Correlogram to show the correlations among input 

features and ballistic responses. 

 

of an individual parameter and 1 indicates strong positive correlation. Subsequently, any values in 

between the range of -1 to 1 give a quantification of the degree of positive or negative correlation. It is 

worth mentioning that the results presented in Figure 4 are in good agreement with the preceding 

discussions based on Figures 3, S2 and S3. 

With the above understanding, in the next step, the combined composition of Fe, Co, and Cr is 

maintained at 75%, while the atomic fractions of Ni and Al are varied so that the collective atomic 

fraction of Ni and Al remains at 25%. The combined variation in the atomic fractions of Ni and Al is 

accomplished by decreasing the atomic fraction of Ni from 25% to 0% and simultaneously increasing  
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Figure 5. Combined influence of Ni and Al concentration on the ballistic performance of 

AlCoCrFeNi HEA. (A) kinetic energy dissipation (ΔKE) (B) projectile’s depth of penetration (δ) (C) 

projectile’s residual velocity (Vr). 

 

the atomic fraction of Al from 0% to 25%, with an interval of 2.5%. The ballistic performance of these 

HEA configurations is compared with the equiatomic AlFeCoCrNi HEA (see Figure S4 of the 

supplementary material and Figure 5). It is observed that the high velocity (Vi ≈750 m/s) impact of 

projectiles on the equiatomic AlFeCoCrNi HEA results in the least depth of penetration (see Figure S4 

(B) and Figure 5(B)). However, it also leads to comparatively higher post-impact kinetic energy and 

velocity of the projectile (see Figure S4(A) and S4(C)), indicating low kinetic energy dissipation offered 

by equiatomic AlFeCoCrNi HEA. The increase in Al concentration and a simultaneous decrease in Ni 

concentration increases the transverse displacement of the projectile, which is evident in Figure S4(B) 

and Figure 5(B). The highest transverse depth traveled by the projectile is observed for the HEA 

configuration with 25% Al and 0% Ni. The increase in transverse displacement of the projectile is a 

consequence of increased plastic deformation of the target plate with the increase in Al concentration. 

The increased penetration depth of the projectile offered by the HEA configuration with 0% Ni and 25% 

Al exhibits relatively higher kinetic energy dissipation (see Figure 5(A)) and the least residual velocity  
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Figure 6. Temporal post-impact structural evolution of AlCoCrFeNi HEAs. The frame by frame 

atomistic trajectory of a cylindrical projectile at different time instants is shown. The evolution of shear 

strain bands in the target plate is also demonstrated for each individual time frame. (A) Structural 

evolution of equiatomic AlCoCrFeNi HEA. The contact happens with target equiatomic AlCoCrFeNi 

HEA at 1.2 ps. At 3.68 ps the projectile comes to rest with the maximum deflection observed in the rear 

face of target as 22 Å. At this instant, nearly 1% of the HEA atoms (localized near the impact zone) are 

transitioned from FCC to HCP crystal structure. At 7 ps the resisting stress-wave (in the HEA target) 

dependent rebound of the projectile happens. At 10 ps the projectile completely comes loose from the 

target and rebounds with a residual velocity. (B) Structural evolution of Al25(FeCrCo)75Ni0 HEA. The 

contact with target Al25(FeCrCo)75Ni0 HEA happens at 1.2 ps. At 5.57 ps the projectile comes to rest 

with the maximum deflection observed in the rear face of target as 30 Å. At this instant, nearly 3.73% 

of the HEA atoms (localized near the impact zone) transitioned from FCC to HCP crystal structure. At 

10 ps the resisting stress-wave (in the HEA target) dependent rebound of the projectile happens. At 12 

ps the projectile completely comes loose from the target and rebounds with a residual velocity.  

 

of the projectile (see Figure 5(C)). Such observations establish that with the increase in atomic fraction 

of Al the ease in penetration of the projectile increases which also enhances the deflection of the target 

and with increased plastic deformation the kinetic energy dissipation increases.  
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To understand the deformation mechanics more clearly the structural evolution of equiatomic 

AlCoCrFeNi HEA (refer to Figure 6(A)) as a result of high-velocity impact is compared with the 

Al25(FeCrCo)75Ni0 HEA (refer to Figure 6(B)). The results reveal that the nano-projectile comes to rest 

earlier in the case of equiatomic HEA (at 3.68 ps) when compared with the  Al25(FeCrCo)75Ni0 HEA (at 

5.56 ps). This is explained by the higher plastic deformation observed in the case of Al25(FeCrCo)75Ni0 

HEA. The highest deflection in the target plates is observed at the instance when the projectile comes 

to rest. At the instance of highest deflection in both cases, a transition from FCC lattice to HCP lattice 

of the particles (structural evolution) is recorded. The FCC to HCP transition is represented by roughly 

1% (7763 atoms) of all atoms in equiatomic HEA. In the case of Al25(FeCrCo)75Ni0 HEA, however, this 

percentage climbs to 3.73% (29979 atoms).  It is also worth noting that in the case of equiatomic HEA, 

the FCC to HCP transition of atoms is restricted primarily to the vicinity of the impact zone, while for 

Al25(FeCrCo)75Ni0 HEA, the HCP atoms can be seen spreading up to the boundary region. 

With the understanding gathered in the preceding paragraphs, it is clear that increasing the Al 

concentration with simultaneously decreasing the Ni concentration increases kinetic energy dissipation, 

and also results in a decrease in the projectile’s residual velocity. Although an increase in kinetic energy  

dissipation with a decrease in residual velocity is a desirable phenomenon, it occurs at the expense of 

an increase in penetration depth (see Figure S4(B)), which is undesirable in the context of barrier 

materials. To overcome this lacuna, in the following stage, the Gaussian Process models (for ΔKE, ẟ 

and Vr) are employed to perform multi-objective optimization. An evolutionary algorithm is utilized to 

find a set of optimal atomic fractions of constituent elements of AlCoCrFeNi HEA to maximize the 

kinetic energy dissipation with minimized penetration depth and residual velocity of the projectile (see 

section SM4 of the supplementary material). The Pareto solution obtained from the genetic algorithm-

based multi-objective optimization is illustrated in Figure 7. The non-dominated solutions presented in 

Figure 7(A) refer to the optimal elemental composition of AlCoCrFeNi HEA (as presented in Table S1 

and S2 of the supplementary material) corresponding to maximizing the post-impact kinetic energy 

dissipation, along with individual minimization of penetration depth and residual velocity, respectively.  

At first, only two responses (out of three) are considered in performing the multi-objective optimization 

at a time, wherein for each instant maximizing the kinetic energy dissipation is considered as a common 

objective. The solutions obtained from such investigation provide insight into the optimal atomic 

composition of AlCoCrFeNi HEA which could result in maximum post-impact kinetic energy 

dissipation with either minimum penetration depth or minimum residual velocity of the projectile. In 

the next step, while performing the multi-objective optimization, all three responses are considered with 

the intended objectives (maximizing: ΔKE, minimizing: ẟ and Vr) at the same time. The Pareto solution 

for the same is illustrated in Figure 7(B-C), and the corresponding optimal atomic compositions of 

AlCoCrFeNi HEA are presented in Table S3 of the supplementary material. The spread of optimal 

solution based on ML-MOGA optimization for maximizing ΔKE, and minimizing ẟ and Vr is illustrated  
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Figure 7. Pareto front of non-dominated solutions in terms of maximized ΔKE with minimized ẟ 

and Vr. With the help of the presented data-driven analysis, a set of optimal compositions of 

AlCoCrFeNi HEA is suggested (refer to Table S1 – S4 of the supplementary material) for enhancing 

the post-impact kinetic energy dissipation with minimal residual velocity and penetration depth of the 

projectile (A) Solutions for maximizing post-impact kinetic energy dissipation with individual 

minimization of residual velocity and penetration depth of the projectile (B, C) Solutions for 

maximizing post-impact kinetic energy dissipation with simultaneous minimization of residual velocity 

and penetration depth of the projectile. The scatter points in yellow color (refer to Figure 7(B) and 

Figure 7(C)) correspond to the ballistic responses gathered by performing the MD simulations. These 

points denote the higher and lower kinetic energy dissipation observed as illustrated in Figure 7(C) (↑ 

denotes the points with maximum observed ΔKE and ↓ denotes the points with minimum observed 

ΔKE). The corresponding compositional space of the AlCoCrFeNi HEA can be referred from Table S4 

of the supplementary material. (D) The spread of optimal solution based on ML-MOGA optimization 

for maximizing ΔKE, and minimizing ẟ and Vr. 

 

in Figure 7(D). For validating the optimal results, we have performed direct MD simulations further, 

and the outcomes are in perfect agreement with the results of ML-MOGA framework, as depicted in 

Figure 7(B-C). This provides additional confidence in the exploitation of machine learning over the 

large compositional space of AlCoCrFeNi high entropy alloys for unraveling optimal nanoscale ballistic 

performances. Note here that the Pareto optimal results provide a significant extent of design flexibility 
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in terms of the compositional components for achieving the target responses as per application-specific 

demands. 

 

4. Summary and perspective 

The large compositional space of high entropy alloys presents a significant challenge in 

identifying the function-specific optimal fractions of each of the constituent elements. Such analysis 

requires an intensive data-driven investigation, which is not always viable based on experimental 

methods or computationally expensive direct simulation methods (such as molecular dynamics (MD) 

simulation). This creates a strong rationale to develop alternative high-fidelity methods which can 

accurately perform data-driven investigations, while incurring relatively much lower costs compared to 

conventional approaches. This article proposes an efficient computational framework to obtain the 

optimal composition of high entropy alloys under ballistic conditions. We have proposed to exploit the 

emerging capabilities of machine learning through random sampling-based molecular dynamics (MD) 

simulation which is further integrated with Gaussian process driven multi-objective genetic algorithm. 

Based on the proposed framework we have developed an efficient computational mapping between the 

fraction of constituent elements (Al, Co, Cr, Fe and Ni) of HEA and impact velocity (Vi) of the projectile 

with kinetic energy dissipated (ΔKE) by HEA plate, depth of penetration (δ) and residual velocity (Vr) 

of the projectile. Compared to conventional machine learning models, the present Gaussian approach is 

a Bayesian paradigm that has several advantages, including computational efficiency in training the 

compositional space of high entropy alloys and having the ability to provide uncertainty measurements 

of molecular dynamics simulations therein. The ability of the machine learning framework to 

incorporate inevitable variability in molecular dynamics simulations corresponding to each realization 

in the form of mean and standard deviation can address the issue of repeatability comprehensively. 

The influencing features such as the atomic fraction of constituent elements (Fe, Ni, Co, Cr, and 

Al) of HEA and impact velocity (Vi) of the projectile are algorithmically sampled within the parametric 

bound of variation based on quasi-random Sobol sequence. Subsequently, the sample space for training 

and validating the machine learning model is constructed by performing respective MD simulations for 

high-velocity impact. The ballistic performances of the HEA in terms of kinetic energy dissipation, 

residual velocity and penetration depth of the projectile are recorded based on MD simulations. The 

computational accuracy of the constructed ML model is ascertained on the basis of percentage error in 

the prediction, which remains within 10% for the converged training sample size. Note that the current 

analysis also involves another stage of validation concerning the baseline molecular dynamics 

simulation framework for high-velocity impact. The Gaussian process-based machine learning model 

is coupled subsequently with genetic algorithm at the following stage for identifying the optimal 

compositions in HEA with multiple conflicting objectives. For validating the optimal results, we have 

performed direct MD simulations further, and the outcomes are found to be in perfect agreement with 
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the results of ML-MOGA framework. A three-fold validation adopted here provides adequate 

confidence in the exploitation of machine learning over the large compositional space of AlCoCrFeNi 

HEAs for unraveling optimal nanoscale ballistic performances. The salient outcomes derived from the 

data-driven analysis presented in this article are summarized below. 

1. The constructed Gaussian Process models demonstrate adequate generalization capabilities, 

wherein the prediction error ranges below 10% for each ML model concerning ballistic 

responses. 

2. The impact velocity has a strong positive correlation with all three ballistic responses under 

consideration. With the increase in impact velocity from 400 m/s to 1100 m/s the ΔKE, ẟ, and 

Vr exhibits 49.4%, 35.3%, and 12.46% increase, respectively.   

3. The atomic fraction-dependent kinetic energy dissipation and depth of penetration exhibit 

similar trends, regardless of the impact velocity. An increasing trend in kinetic energy 

dissipation and depth of penetration is noticed as the atomic fractions of Fe, Co, and Cr are 

increased. In contrast, when the atomic fractions of Ni and Al increase, the kinetic energy 

dissipation and depth of penetration decrease. 

4. A strong positive correlation between ΔKE and ẟ is observed (with the increase in depth of 

penetration the kinetic energy dissipation increases). This can be explained by the increase in 

plastic deformation of the target plate with the increase in penetration depth which further 

increases the kinetic energy dissipation. 

5. An increase in Al concentration exhibits a sharp decline in the residual velocity of the projectile. 

6. The data-driven sensitivity analysis demonstrates that regardless of the responses, variations in 

atomic fractions of Fe, Co, and Cr have a similar statistical significance on the ballistic 

performance of AlCoCrFeNi HEA. In contrast, the compositional variation in Ni and Al 

concentration shows a significant difference in the parametric correlations with the ballistic 

measures (ΔKE, δ, and Vr) of the HEA. 

7. An increase in Al concentration and a simultaneous decrease in Ni concentration increases 

transverse displacement of the projectile when compared with equiatomic AlCoCrFeNi HEA. 

The highest transverse depth traveled by the projectile is observed for the HEA configuration 

Al25(CoCrFe)75Ni0. The increase in transverse displacement of the projectile is a consequence 

of increased plastic deformation of the target plate with the increase in Al concentration. The 

increased penetration depth of the projectile offered by the HEA configuration with 0% Ni and 

25% Al also results in relatively higher kinetic energy dissipation and the least residual velocity 

of projectile. 

8. The atomistic deformation mechanics reveals that, at the instance of highest deflection, a 

transition from FCC lattice to HCP lattice of the particles (structural evolution) takes place, 

wherein the percentage of atoms participating in the process is significantly higher in 
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Al25(FeCrCo)75Ni0 HEA compared to the equiatomic configurations. This leads to a substantially 

higher energy dissipation for Al25(FeCrCo)75Ni0 HEA. 

9. The computationally efficient Gaussian Process models are further exploited to perform multi-

objective genetic algorithm based optimization, which can provide Pareto solutions and the 

corresponding optimal points for designing the AlCoCrFeNi HEA having enhanced kinetic 

energy dissipation with reduced depth of penetration and residual velocity of the projectile. 

 

5. Conclusions 

We have proposed a generic error-inclusive Bayesian computational approach for HEAs by 

exploiting machine learning over the large compositional space for unraveling optimal nanoscale 

ballistic performance with conflicting objectives. More interestingly, Pareto optimal solutions are 

obtained, leading to a wide range of design flexibilities for multi-objective application-specific 

functionalities. The proposed machine learning-based approach can be readily extended to different 

other HEAs and various multi-physical properties with conflicting objectives and inherent simulation 

variabilities. 
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