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Abstract

In this paper, we first propose a version of FISTA, called C-FISTA type gra-
dient projection algorithm, for quasi-variational inequalities in Hilbert spaces
and obtain linear convergence rate. Our results extend the results of Nesterov
for C-FISTA algorithm for strongly convex optimization problem and other
recent results in the literature where linear convergence results of C-FISTA
are obtained for strongly convex composite optimization problems. For a
comprehensive study, we also introduce a new version of gradient projection
algorithm with momentum terms and give linear rate of convergence. We
show the adaptability and effectiveness of our proposed algorithms through
numerical comparisons with other related gradient projection algorithms that
are in the literature for quasi-variational inequalities.
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1 Introduction

Let us take H as a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖ and
K ⊂ H a nonempty, closed and convex subset. Assume that A : H → H is a
nonlinear operator and K : H ⇒ H is a set-valued mapping which associates for
any element u ∈ H a closed and convex set K(u) ⊂ H. The Quasi-Variational
Inequality (QVI), is defined by: find x∗ ∈ H such that x∗ ∈ K(x∗) and

〈A(x∗), x− x∗〉 ≥ 0 for all x ∈ K(x∗). (1)
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In the case of K(x) ≡ K for all x ∈ H, then the QVI (1) becomes the classical
variational inequality considered in ( [20, 21, 26, 42]), which is to find x∗ ∈ K such
that

〈A(x∗), x− x∗〉 ≥ 0 for all x ∈ K. (2)

Antipin et al. [3] introduced the following gradient projection algorithm to solve
QVI (1)

xk+1 = PK(xk)(xk − γA(xk)) (3)

and the following extragradient method{
yk = PK(xk)(xk − γA(xk)),
xk+1 = PK(xk)(xk − γA(yk))

(4)

Consequently, Antipin et al. [3] proved strong convergence results for the above pro-
posed algorithms (3) and (4) to solve QVI (1) under the conditions that K(x) :=
c(x) +K, c Lipschitz continuous and A is strongly monotone and Lipschitz contin-
uous. Related results to [3] can also be found in [31,33–35].

It should be noted that the extragradient method (4) requires two projection compu-
tations and two evaluations of A at each iteration, which could potentially increase
the computation complexities of extragradient algorithm (4). Motivated by the
results in [3], Mijajlović et al. [30] designed the algorithms

xk+1 = (1− αk)xk + αkPK(xk)(xk − γA(xk)) (5)

and {
yk = (1− βk)xk + βkPK(xk)(xk − γA(xk)),
xk+1 = (1− αk)xk + αkPK(yk)(yk − γA(yk))

(6)

with αk ∈ (0, 1], βk ∈ [0, 1] and strong convergence results obtained for QVI (1)
where A is a Lipschitz continuous strongly monotone operator and condition (15) is
assumed (for which the case K(x) := c(x) + K, x ∈ H is fulfilled). It is noted that
algorithm (3) is a special case of both algorithms (5) and (6). Some other related
results to Mijajlović et al. [30] can also be found in [8, 17,18,27].

Motivated by the recent interests in iterative algorithms with inertial extrapolation
step studied in [1, 2, 5–7, 9–12, 15, 28, 29, 37, 38, 40] and other related papers, Shehu
et al. in [41] proposed the following gradient projection method with inertial step:{

yk = xk + θk(xk − xk−1),
xk+1 = (1− αk)yk + αkPK(yk)(yk − γA(yk)),

(7)

where αk ∈ (0, 1) and 0 ≤ θk ≤ θ < 1. Shehu et al. in [41] obtained strong conver-
gence results (with no linear convergence) for QVI (1) with A strongly monotone
and Lipschitz continuous. Similarly, C. opur et al. [16] studied the gradient projec-
tion algorithm (3) with two inertial steps, which is an extension of inertial gradient
projection algorithm (7).

2



Recently, several accelerated versions of FISTA [9] have been introduced for linear
convergence of strongly convex composite optimization problems (see, for example,
[13, 14, 22, 23, 43]). Quite recently, the following new variation of FISTA, called
C-FISTA was presented in [24, Algorithm 1]

wk = 1
1+θ

xk + θ
1+θ

zk,

xk+1 = Prox R
rL

(wk − 1
rL
H(Bwk)),

zk+1 = (1− θ)zk + θwk + α(xk+1 − wk)
(8)

(please, see [24, Algorithm 1] for the choices of r, θ, α) for a class of composite
optimization model:

min
x∈X⊆Rn

H(B(x)) +R(x), (9)

where X is closed and convex, H : Rm → R is smooth and convex, R : Rn → R
convex but potentially non-smooth, B : Rn → Rm a smooth mapping, and HoB
is a convex function over X, and linear convergence results obtained [24, Theorem 1].

Our Contributions. Motivated by algorithm (8), our aim in this paper is to
explore the linear convergence of C-FISTA type projection algorithm for QVI (1)
with the possibility of improving on convergence speed of gradient projection (3)
and design an algorithmic version of (8) for QVI (1). Summarily, we

• introduce a C-FISTA, which is a gradient projection algorithm with a golden
ratio constant momentum and correction term for QVI (1), which can be
considered as an algorithmic extension of convex composite optimization model
(8) (with B = I) to QVI (1);

• introduce another new fast gradient projection algorithm with momentum
terms;

• obtain linear convergence results for the two proposed algorithms under some
standard conditions;

• provide numerical tests to confirm the superiority of our proposed algorithm
over related gradient projection algorithms for QVI (1) in the literature.

Outline. We outline the paper as, viz: Section 2 entails some basic facts, concepts,
and lemmas, which are needed in the linear convergence analysis. In Section 3, we
introduce a C-FISTA algorithm and another fast gradient projection algorithm with
momentum with their corresponding linear convergence results given. Section 4
discusses the numerical implementations of the proposed algorithms with versatility
and efficiency against other related algorithms while in Section 5, we give a brief
summary of our results.

2 Preliminaries

Definition 2.1. Given an operator A : H → H,
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• A is called L-Lipschitz continuous (L > 0), if

‖A(x)−A(y)‖ ≤ L‖x− y‖ for all x, y ∈ H. (10)

• A is called µ-strongly monotone (µ > 0), if

〈A(x)−A(y), x− y〉 ≥ µ‖x− y‖2 for all x, y ∈ H. (11)

For each x ∈ H, there exists a unique nearest point in K, denoted by PK(x), such
that

‖x− PK(x)‖ ≤ ‖x− y‖ for all y ∈ K. (12)

This operator PK : H → K is called the metric projection ofH ontoK, characterized
[25, Section 3] by

PK(x) ∈ K (13)

and
〈x− PK (x) , PK (x)− y〉 ≥ 0 for all x ∈ H, y ∈ K. (14)

We state the following sufficient conditions for the existence of solutions of QVIs (1)
given in [36].

Lemma 2.2. Let A : H → H be L-Lipschitz continuous and µ-strongly monotone
on H and K(·) be a set-valued mapping with nonempty, closed and convex values
such that there exists λ ≥ 0 such that

‖PK(x)(z)− PK(y)(z)‖ ≤ λ‖x− y‖, x, y, z ∈ H, λ+

√
1− µ2

L2
< 1. (15)

Then the QVI (1) has a unique solution.

The fixed point formulation of the QVI (1) is given by

Lemma 2.3. Let K(·) be a set-valued mapping with nonempty, closed and convex
values in H. Then x∗ ∈ K(x∗) is a solution of the QVI (1) if and only if for any
γ > 0 it holds that

x∗ = PK(x∗)(x∗ − γA(x∗)).

The following lemma is needed in our convergence analysis.

Lemma 2.4. If x, y ∈ H, we have

(i) 2〈x, y〉 = ‖x‖2 + ‖y‖2 − ‖x− y‖2 = ‖x+ y‖2 − ‖x‖2 − ‖y‖2.

(ii) Assume that x, y, z ∈ H and α, β, γ ∈ R such that α + β + γ = 1. Then

‖αx+ βy + γz‖2 = α‖x‖2 + β‖y‖2 + γ‖z‖2 − αβ‖x− y‖2

−αγ‖x− z‖2 − βγ‖y − z‖2.
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3 Main Results

In this section, we introduce our C-FISTA-type gradient projection algorithm and
another fast gradient projection algorithm with momentum alongside their linear
convergence results. Throughout this paper, we assume that γ ≥ 0 satisfies the
following condition:

Assumption 3.1. ∣∣∣γ − µ

L2

∣∣∣ < √µ2 − L2λ(2− λ)

L2
. (16)

Next is the proposed C-FISTA gradient projection algorithm below.

Algorithm 1 C-FISTA Gradient Projection Algorithm

1: Choose θ ≥ 0 and pick x0 = z0 ∈ H. Set k := 0.
2: Given the current iterates xk and zk, compute

wk = (1− θ)xk + θzk,
xk+1 = PK(wk)(wk − γA(wk)),
zk+1 = θ

1+θ
zk + 1

1+θ
wk + θ(xk+1 − wk)

(17)

3: Set k ← k + 1, and return to 2.

Remark 3.2.
(a) The proposed C-FISTA Gradient Projection Algorithm 1 features two mo-
mentum terms wk and zk; correction term θ(xk+1 − wk); and the basic gradient
projection step xk+1 = PK(wk)(wk − γA(wk)). The basic gradient projection step
xk+1 = PK(wk)(wk − γA(wk)) for QVI (1) has been studied in [3, 4, 32, 33,39].

(b) C-FISTA Gradient Projection Algorithm 1 can be considered as an extension of
(8) for solving QVI (1).

(c) Our C-FISTA Gradient Projection Algorithm 1 reduces to the basic gradient
projection algorithm for QVI (1) studied in [3,4,32,33,39] when θ = 0. Consequently,
in the convergence analysis of Algorithm 1, we do not need to consider the case θ = 0.

Theorem 3.3. Consider the QVI (1) with A being µ-strongly monotone and L-
Lipschitz continuous and assume there exists λ ≥ 0 such that (15) holds. Let {xk}
be any sequence generated by Algorithm 1 with γ ≥ 0 satisfying (16), and 0 <

θ ≤ 1
φ
, φ := 1+

√
5

2
. Then {xk} and {zk} converge linearly to the unique solution

x∗ ∈ K(x∗) of the QVI (1).

Proof. For the unique solution x∗ of (1), we have

‖xk+1 − x∗‖ = ‖PK(wk)(wk − γA(wk))− PK(x∗)(x∗ − γA(x∗))‖
≤ ‖PK(wk)(wk − γA(wk))− PK(x∗)(wk − γA(wk))‖

+‖PK(x∗)(wk − γA(wk))− PK(x∗)(x∗ − γA(x∗))‖
≤ λ‖wk − x∗‖+ ‖wk − x∗ + γ(A(x∗)−A(wk))‖. (18)
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Since A is µ-strongly monotone and L−Lipschitz continuous, we get

‖wk − x∗ − γ(A(x∗)−A(wk))‖2 = ‖wk − x∗‖2 − 2γ〈A(wk)−A(x∗), wk − x∗〉
+γ2‖A(wk)−A(x∗)‖2

≤ (1− 2µγ + γ2L2)‖wk − x∗‖2. (19)

Combining (18) and (19), we get

‖xk+1 − x∗‖ ≤ λ‖wk − x∗‖+
√

1− 2µγ + γ2L2‖wk − x∗‖
= β‖wk − x∗‖, (20)

where
β :=

√
1− 2µγ + γ2L2 + λ. (21)

We next show that β ∈ (0, 1). Observe that 0 <
√

1− 2µγ + γ2L2 ⇔ 0 <

1 − 2µγ + γ2L2 ⇔ µ2−L2

L4 <
(
γ − µ

L2

)2
. Since A is µ-strongly monotone and

L-Lipschitz continuous, we have µ ≤ L. Therefore, µ2−L2

L4 ≤ 0. Note also that(
γ − µ

L2

)2
> 0 by (16). Hence, µ2−L2

L4 <
(
γ − µ

L2

)2
. Noting that λ ≥ 0, we then

obtain 0 <
√

1− 2µγ + γ2L2 + λ.

Furthermore, by (16), we have that γ − µ
L2 <

√
µ2−L2λ(2−λ)

L2 which means that(
γ− µ

L2

)2
< L2λ(λ−2)+µ2

L4 and so we have
(
γ− µ

L2

)2
< λ(λ−2)

L2 + µ2

L4 . Expanding, we have

γ2− 2µγ
L2 < λ(λ−2)

L2 . This implies γ2L2−2µγ < λ(λ−2). Thus, 1−2µγ+γ2L2 < (1−λ)2.

Hence,
√

1− 2µγ + γ2L2 + λ < 1. Therefore, we have β ∈ (0, 1).

We also have from Algorithm 1 and Lemma 2.4 (ii) that

‖wk − x∗‖2 = ‖(1− θ)(xk − x∗) + θ(zk − x∗)‖2

= (1− θ)‖xk − x∗‖2 + θ‖zk − x∗‖2

−θ(1− θ)‖xk − zk‖2 (22)

and

‖zk+1 − x∗‖2 = ‖ θ

1 + θ
(zk − x∗) +

( 1

1 + θ
− θ
)

(wk − x∗) + θ(xk+1 − x∗)‖2

=
θ

1 + θ
‖zk − x∗‖2 +

( 1

1 + θ
− θ
)
‖wk − x∗‖2

+θ‖xk+1 − x∗‖2 −
θ

1 + θ

( 1

1 + θ
− θ
)
‖wk − zk‖2

−θ
( 1

1 + θ
− θ
)
‖xk+1 − wk‖2 −

θ2

1 + θ
‖xk+1 − zk‖2. (23)

Observe that
θ(1 + θ)β2

1− θ + θ2 + θ3
<

(1 + θ)(1− (1− θ)β2)

1− θ + θ2 + θ3

since 0 < 1− β2. Now, choose c > 0 such that

6



θ(1 + θ)β2

1− θ + θ2 + θ3
< c <

(1 + θ)(1− (1− θ)β2)

1− θ + θ2 + θ3
.

Note also that 1− θ + θ2 + θ3 > 0 for 0 < θ ≤ 1
φ
. If we plug (22) into (20) and add

the result with product of c and (23), we have

‖xk+1 − x∗‖2 + c‖zk+1 − x∗‖2 ≤ (1− θ)β2‖xk − x∗‖2 + θβ2‖zk − x∗‖2

−θ(1− θ)β2‖xk − zk‖2 +
cθ

1 + θ
‖zk − x∗‖2

+c
( 1

1 + θ
− θ
)
‖wk − x∗‖2 + cθ‖xk+1 − x∗‖2

− cθ

1 + θ

( 1

1 + θ
− θ
)
‖wk − zk‖2 − cθ

( 1

1 + θ
− θ
)
‖xk+1 − wk‖2

− cθ2

1 + θ
‖xk+1 − zk‖2

= (1− θ)β2‖xk − x∗‖2 +
(
θβ2 +

cθ

1 + θ

)
‖zk − x∗‖2

+c
( 1

1 + θ
− θ
)
‖wk − x∗‖2 − θ(1− θ)β2‖xk − zk‖2

+cθ‖xk+1 − x∗‖2 −
cθ

1 + θ

( 1

1 + θ
− θ
)
‖wk − zk‖2

−cθ
( 1

1 + θ
− θ
)
‖xk+1 − wk‖2 −

cθ2

1 + θ
‖xk+1 − zk‖2.

Hence,

(1− cθ)‖xk+1 − x∗‖2 + c‖zk+1 − x∗‖2 ≤ (1− θ)β2‖xk − x∗‖2

+
(
θβ2 +

cθ

1 + θ

)
‖zk − x∗‖2 + c

( 1

1 + θ
− θ
)

(1− θ)‖xk − x∗‖2

+c
( 1

1 + θ
− θ
)
θ‖zk − x∗‖2

= (1− θ)
(
β2 + c

( 1

1 + θ
− θ
))
‖xk − x∗‖2

+
(
θβ2 +

cθ

1 + θ
+ c
( 1

1 + θ
− θ
)
θ
)
‖zk − x∗‖2

≤ max
{(1− θ)

(
β2 + c

(
1

1+θ
− θ
))

1− cθ
,

(
θβ2 + cθ

1+θ
+ c
(

1
1+θ
− θ
)
θ
)

c

}
×(

(1− cθ)‖xk − x∗‖2 + c‖zk − x∗‖2
)

= τ
(

(1− cθ)‖xk − x∗‖2 + c‖zk − x∗‖2
)
, (24)

where

τ := max
{(1− θ)

(
β2 + c

(
1

1+θ
− θ
))

1− cθ
,

(
θβ2 + cθ

1+θ
+ c
(

1
1+θ
− θ
)
θ
)

c

}
.

Observe that
(1− θ)

(
β2 + c

(
1

1+θ
− θ
))

1− cθ
< 1,

7



since c < (1+θ)(1−(1−θ)β2)
1−θ+θ2+θ3 . Furthermore,(

θβ2 + cθ
1+θ

+ c
(

1
1+θ
− θ
)
θ
)

c
< 1,

since θ(1+θ)β2

1−θ+θ2+θ3 < c. We also have (1+θ)(1−(1−θ)β2)
1−θ+θ2+θ3 ≤ 1

θ
for 0 < θ ≤ 1

φ
=
√
5−1
2

and this

implies that c < 1
θ
. Therefore, τ ∈ (0, 1). Now, define

bk := (1− cθ)‖xk − x∗‖2 + c‖zk − x∗‖2 ≥ 0,

since c < 1
θ
. Then we have from (24) that

bk+1 ≤ τbk
...

≤ τ k+1b0. (25)

Consequently, we have that {bk} converges linearly to zero. Hence, we have that
both {xk} and {zk} converge linearly to to the unique solution x∗ ∈ K(x∗) of the
QVI (1). This completes the proof.

In a special case when K(x), x ∈ H is a ”moving set”. That is, the case when
K(x) := c(x) + K, x ∈ H where c : H → H is a λ-Lipschitz continuous mapping
and K ⊂ H is a nonempty, closed and convex subset. Then the Assumption (16)
is automatically satisfied with the same value of λ (see [32]). The following result
hold in this case.

Corollary 3.4. Consider the QVI (1) with A being µ-strongly monotone and L-
Lipschitz continuous and suppose that K(x) := c(x) +K, x ∈ H where c : H → H is
a λ-Lipschitz continuous mapping and K is a nonempty, closed and convex subset
of H. Let {xk} be any sequence generated by Algorithm 1 with γ ≥ 0 satisfying (16),

and 0 < θ ≤ 1
φ
, φ := 1+

√
5

2
. Then {xk} and {zk} converge linearly to the unique

solution x∗ ∈ K(x∗) of the QVI (1).

Next, we propose the second accelerated gradient projection algorithm with momen-
tum terms for solving QVI (1).

Algorithm 2 Accelerated Gradient Projection Algorithm

1: Choose x0 = z0 ∈ H and θk ∈ [0, 1]. Set k := 0.
2: Given the current iterates xk and zk, compute

wk = (1− θk)xk + θkzk,
xk+1 = PK(wk)(wk − γA(wk)),
zk+1 = (1− θk+1)zk + θk+1xk+1

(26)

3: Set k ← k + 1, and return to 2.
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Theorem 3.5. Consider the QVI (1) with A being µ-strongly monotone and L-
Lipschitz continuous and assume there exists λ ≥ 0 such that (15) holds. Let {xk}
be any sequence generated by Algorithm 2 with γ ≥ 0 satisfying (16), and θk ∈
{1, 1 − β2k},∀k ∈ N, where β is as defined in (21). Then {xk} and {zk} converge
linearly to the unique solution x∗ ∈ K(x∗) of the QVI (1).

Proof. For the unique solution x∗ of (1), we have (noting (20) and (22))

‖xk+1 − x∗‖2 + ‖zk+1 − x∗‖2 ≤ (1− θk)β2‖xk − x∗‖2 + θkβ
2‖zk − x∗‖2

−θk(1− θk)β2‖xk − zk‖2 + (1− θk+1)‖zk − x∗‖2

+θk+1‖xk+1 − x∗‖2 − θk+1(1− θk+1)‖xk+1 − zk‖2.

Hence,

(1− θk+1)‖xn+1 − x∗‖2 + ‖zk+1 − x∗‖2

+θk+1(1− θk+1)‖xk+1 − zk‖2

≤ (1− θk)β2‖xk − x∗‖2 + (β2θk + 1− θk+1)‖zk − x∗‖2

−θk(1− θk)β2‖xk − zk‖2 + θk(1− θk)β2‖xk − zk−1‖2

−θk(1− θk)β2‖xk − zk−1‖2

= (1− θk)β2‖xk − x∗‖2 + β2‖zk − x∗‖2

+θk(1− θk)β2‖xk − zk−1‖2 − θk(1− θk)β2‖xk − zk‖2

−θk(1− θk)β2‖xk − zk−1‖2, (27)

where the last equality holds since 1− β2 + β2θk = θk+1. We then obtain from (27)
that

bk+1 ≤ β2bk,

where {bk} is defined as

bk := (1− θk)‖xk − x∗‖2 + ‖zk − x∗‖2 + θk(1− θk)‖xk − zk−1‖2. (28)

Consequently, we have that {bk} converges linearly to zero. Consequently, we have
that both {xk} and {zk} converge linearly to the unique solution x∗ of (1).

Corollary 3.6. Consider the QVI (1) with A being µ-strongly monotone and L-
Lipschitz continuous and suppose that K(x) := c(x) +K, x ∈ H where c : H → H is
a λ-Lipschitz continuous mapping and K is a nonempty, closed and convex subset
of H. Let {xk} be any sequence generated by Algorithm 2 with γ ≥ 0 satisfying (16),
and and θk ∈ {1, 1 − β2k},∀k ∈ N, where β is as defined in (21). Then {xk} and
{zk} converge linearly to the unique solution x∗ ∈ K(x∗) of the QVI (1).

Remark 3.7.
(a) In the spirit of the algorithmic developments in [30,41], the step

xk+1 = PK(wk)(wk − γA(wk))

in both Algorithm 1 and Algorithm 2 can be replaced with

xk+1 = (1− αk)wk + αkPK(wk)(wk − γA(wk)), αk ∈ (0, 1],
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and the conclusion of Theorem 3.3 and Theorem 3.5 still obtained.

(b) Shehu et al. [41] and C. opur et al. [16] obtained strong convergence results for
QVI (1) under the condition that A is µ-strongly monotone and L-Lipschitz con-
tinuous without linear rate of convergence. In this paper, we give linear rate of our
proposed algorithms for the QVI (1) when A is µ-strongly monotone and L-Lipschitz
continuous.

4 Numerical Examples

We give some numerical implementations of our proposed Algorithm 1 and give
comparisons with some existing methods in the literature. All codes were written
in MATLAB R2023a and performed on a PC Desktop Intel Core i5-8265U CPU
1.60GHz 1.80 GHz, RAM 16.00GB. We compare Algorithm 1 and Algorithm 2
with [3, 16,41].

We choose to use the test problem library QVILIB taken from [19]; the feasible map
K is assumed to be given by K(x) := {z ∈ Rn : g(z, x) ≤ 0}. We implemented
Algorithm 1 and Algorithm 2 in Matlab. We implemented the projection over
a convex set as the solution of a convex program. We considered the following
performance measures for optimality and feasibility

opt(x) := −min
z
{F(x)T (z − x) : z ∈ K(x)}, feas(x) := ‖max{0, g(x, x)}‖∞.

A point x∗ is considered as a solution of the QVI if opt(x∗) ≤1e-3 and feas(x∗) ≤1e-
3. As nonlinear programming solver we used the built-in function fmincon with
the option of ’sqp’ as its internal algorithm and maximum iteration maxiter =
1000. The QVILIB [19] comprises a diverse collection of test problems designed for
evaluating algorithms used in solving QVIs (Quasi-Variational Inequalities). These
problems encompass academic models, real-world applications, and discretized ver-
sions of infinite-dimensional QVIs, which model various engineering and physical
phenomena. Additionally, the library provides an M-file named startinPoints, al-
lowing users to obtain starting points for each test problem.
In our experiments, we specifically utilized problems tailored for academic purposes.
These include OutZ40, OutZ41, OutZ42, OutZ43, OutZ44, Set1A, Set2A, Box1A,
and BiLin1A. The feasible set K(x) is defined as the intersection of a fixed set K̄
and a moving set K̃(x) that depends on the point x given by:

K̄ := {y ∈ Rk | gI(y) ≤ 0, M Iy + vI = 0},
K̃(x) = {y ∈ Rk | gP (y, x) ≤ 0, MP (x)y + vP (x) = 0}.

The comprehensive definitions of each problem can be found in [19]; however, we
provide a brief description of each problem in Table 1.

In Table 1, the first column contains the name of the problem, the second col-
umn (n) contains the number of variables in the problem, column mI contains the
number of inequality constraints defining K̄, column pI contains the number of lin-
ear equalities in K̄, the column mP contains the number of inequality constraints
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Table 1: Description of test problems used in the experiments

Problem name n mI pI mP pP n(start)

OutZ40 2 4 0 2 0 3
OutZ41 2 4 0 2 0 3
OutZ42 4 4 0 4 0 4
OutZ43 4 0 0 4 0 3
OutZ44 4 0 0 4 0 3
Set1A 5 0 0 1 0 2
Set2A 5 0 0 1 0 2
Box1A 5 0 0 10 0 2

BiLin1A 5 10 0 3 0 2

defining K̃(x), the column the pP is the number of equalities in the definition of
K̃(x) and the last column n(start) is the number of starting points for the problem.

Table 2 presents the results of Algorithm 1 for various combinations of γ and θ,
including the number of iterations required for the algorithm to satisfy the stopping
criterion. Instances of failure, where the algorithm does not converge within 1000
iterations, are also documented. The optimal performance of Algorithm 1 is observed
when θ = 0.5 and γ = 0.05. Generally, the algorithm exhibits improved performance
when the value of θ is less than the value of γ. The table also reports the average
number of iterations and the average time taken by the algorithm for all problems,
further supporting the observation that the algorithm performs better when θ is less
than γ.

In Table 3, we compare Algorithm 1 and Algorithm 2 performances with [3][Al-
gorithm 1] (namely, Grad-type Alg.), [16][Algorithm 2.1] (Inertial Alg.) and [41][Al-
gorithm 3.1] (Inertial Proj. Alg). Recall that the Gradient-type Alg. requires
an additional projection onto a closed and convex set per each iteration and the
Inertial Alg. computes two inertial steps at each iteration. Specifically, for Al-
gorithm 1 we choose γ = 0.05 and θ = 0.5, for Algorithm 2, we take γ = 0.5
and θk = 0.9k

k+1
, for Grad-type Alg., we take αk = k+1

2(k+5)
, for Inertial Alg., we chose

αk = k+7
2(k+5)

, βk = k−1
4(k+6)

, πk = k
6(k+2)

and θk = k
5(k+1)

. We recorded the number of
iterations and time taken by each method in Table 3. The results demonstrate that
the proposed algorithm outperforms the comparative algorithms from the literature.
Specifically, out of the 24 runs conducted in the experiment, the proposed algorithm
achieved 15 successful runs. In comparison, the Grad-type algorithm achieved 11
successful runs, the Inertial algorithm achieved 13 successful runs, and the Inert-Proj
algorithm achieved 14 successful runs. Furthermore, the average number of itera-
tions for Algorithm 1 and 2 are 409.08 and 413.0, respectively, while the Grad-type
algorithm requires 548.25 iterations on average, the Inertial algorithm takes 466.08
iterations, and the Inert-Proj algorithm takes 417.75 iterations. This highlights that
the proposed algorithms converge in fewer iterations to meet the stopping criterion
compared to the comparative algorithms. Similarly, the average computation time
for Algorithm 1 is 5.34 seconds, Algorithm 2 takes 5.51 seconds, the Grad-type al-
gorithm requires 7.50 seconds, the Inertial algorithm takes 6.18 seconds, and the
Inert-Proj algorithm takes 5.97 seconds. In conclusion, it was observed that none of
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the algorithms converged even at the final iteration for problem OutZ42, regardless
of the four different starting points used in the experiments.

Table 2: Numerical results of Algorithm 1 with different values of γ and θ: number
of iterations needed for satisfying the stopping criterion.

γ 0.5 0.5 0.5 0.5 0.05 0.05 0.05 0.05

θ 0.01 0.05 0.1 0.5 0.01 0.05 0.1 0.5

OutZ40-1 1 1 1 1 1 1 1 1
OutZ40-2 18 12 10 6 25 36 26 28
OutZ40-3 19 13 11 7 14 19 14 15
OutZ41-1 1 1 1 1 1 1 1 1
OutZ41-2 34 18 12 6 338 1000 883 960
OutZ41-3 37 19 13 7 11 15 11 12
OutZ42-1 1000 1000 1000 1000 1000 1000 1000 1000
OutZ42-2 1000 1000 1000 1000 1000 1000 1000 1000
OutZ42-3 1000 1000 1000 1000 1000 1000 1000 1000
OutZ42-4 1000 1000 1000 1000 1000 1000 1000 1000
OutZ43-1 1000 1 1 1 1 3 2 1
OutZ43-2 1 1 1000 1000 2 5 1 2
OutZ43-3 1000 1000 1000 1000 1000 1000 1000 1000
OutZ44-1 1000 3 1 1000 1 1 2 5
OutZ44-2 1000 1 1000 1000 1 3 1 7
OutZ44-3 1000 1000 1000 1000 1000 1000 1000 1000
Set1A-1 1 1 1 1 1 1 1 1
Set1A-2 1 1 1 1 1 1 1 1
Set2A-1 1 1 1 1 1 1 1 1
Set2A-2 1 1 1 1 1 1 1 1
Box1A-1 3 3 3 4 4 1000 4 4
Box1A-2 2 2 2 2 6 7 1000 1000

BiLin1A-1 3 3 3 4 1000 1000 1000 1000
BiLin1A-2 2 2 2 2 1000 1000 1000 1000
# success 15 18 16 15 16 14 15 15
Av. iter 380.21 253.5 336 376.88 350.38 420.63 414.58 418.33
Av. time 4.60 3.05 4.07 4.57 4.64 5.59 5.47 5.52

5 Conclusion

We first introduced a C-FISTA type gradient projection algorithm to solve quasi-
variational inequalities in Hilbert spaces and consequently obtain its linear conver-
gence rate under strong monotonicity of the operator. This proposed algorithm is
an adaptation of the Nesterov C-FISTA algorithm studied for strongly convex op-
timization problem to quasi-variational inequalities. Furthermore, another version
of gradient projection algorithm with momentum terms is also designed and linear
rate of convergence obtained. The numerical performance of the proposed algorithms
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Table 3: Comparison of the performance of proposed Algorithm 1 and 2 with other
methods.

Algorithms
Alg. 1 Alg. 2 Grad-type Alg. Inertial Alg. Iner-Proj. Alg.

Iter Time Iter Time Iter Time Iter Time Iter Time

OutZ40-1 1 1.92 1 1.95 1 1.32 1 2.42 1 0.62
OutZ40-2 36 0.67 45 0.95 1000 13.56 4 0.25 3 0.16
OutZ40-3 19 0.26 23 0.39 1000 12.31 3 0.04 2 0.02
OutZ41-1 1 0.01 1 0.01 1 0.01 1 0.02 1 0.01
OutZ41-2 728 9.41 813 10.04 1000 12.22 163 2.96 1000 14.6
OutZ41-3 15 0.19 19 0.24 1000 12.01 3 0.03 2 0.02
OutZ42-1 1000 11.74 1000 12.65 1000 12.50 1000 14.08 1000 13.26
OutZ42-2 1000 11.55 1000 12.11 1000 12.41 1000 13.10 1000 12.74
OutZ42-3 1000 12.05 1000 11.89 1000 12.59 1000 13.10 1000 11.36
OutZ42-4 1000 11.24 1000 12.08 1000 14.04 1000 13.06 1000 11.46
OutZ43-1 1 0.02 2 0.05 2 0.04 2 0.03 1 0.06
OutZ43-2 1 0.02 2 0.06 1 2.91 3 0.04 1000 15.71
OutZ43-3 1000 15.15 1000 20.11 140 2.91 1000 16.23 1000 15.19
OutZ44-1 3 0.06 3 0.08 3 0.06 1000 13.89 1000 15.85
OutZ44-2 2 0.05 9 0.16 6 0.19 1000 14.12 1000 16.32
OutZ44-3 1000 15.32 1000 19.08 1000 20.95 1000 14.06 1000 15.62
Set1A-1 1 0.03 1 0.06 1 0.05 1 0.06 1 0.03
Set1A-2 1 0.02 1 0.04 1 0.03 1 0.03 1 0.03
Set2A-1 1 0.04 1 0.02 1 0.02 1 0.03 1 0.03
Set2A-2 1 0.02 1 0.02 1 0.07 1 0.02 1 0.02
Box1A-1 1000 12.62 1000 13.15 1000 13.68 1000 10.58 4 0.03
Box1A-2 7 0.09 11 0.08 1000 13.08 2 0.03 2 0.02

BiLin1A-1 1000 12.96 1000 13.88 1000 13.38 1000 10.07 4 0.03
BiLin1A-2 1000 12.78 1000 13.49 1000 13.03 1000 10.02 2 0.02
# success 15 15 11 13 14
Av. iter 409.08 413 548.25 466.08 417.75
Av. time 5.34 5.51 7.50 6.18 5.97

showed that the new algorithms are efficient and outperform some popular related
gradient projection algorithms in the literature for quasi-variational inequalities.
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