One-dimensional modelling of convective CO2 exchange in the Tropical Atlantic
One-dimensional modelling of convective CO2 exchange in the Tropical Atlantic
Diurnal changes in seawater temperature affect the amount of air–sea gas exchange taking place through changes in solubility and buoyancy-driven nocturnal convection, which enhances the gas transfer velocity. We use a combination of in situ and satellite derived radiometric measurements and a modified version of the General Ocean Turbulence Model (GOTM), which includes the National Oceanic and Atmospheric Administration Coupled-Ocean Atmospheric Response Experiment (NOAA-COARE) air–sea gas transfer parameterization, to investigate heat and carbon dioxide exchange over the diurnal cycle in the Tropical Atlantic. A new term based on a water-side convective velocity scale (w*w) is included, to improve parameterization of convectively driven gas transfer. Meteorological data from the PIRATA mooring located at 10°S10°W in the Tropical Atlantic are used, in conjunction with cloud cover estimates from Meteosat-7, to calculate fluxes of longwave, latent and sensible heat along with a heat budget and temperature profiles during February 2002. Twin model experiments, representing idealistic and realistic conditions, reveal that over daily time scales the additional contribution to gas exchange from convective overturning is important. Increases in transfer velocity of up to 20% are observed during times of strong insolation and low wind speeds (<6 m s?1); the greatest enhancement from w*w to the CO2 flux occurs when diurnal warming is large. Hence, air–sea fluxes of CO2 calculated using simple parameterizations underestimate the contribution from convective processes. The results support the need for parameterizations of gas transfer that are based on more than wind speed alone and include information about the heat budget.
Gas exchange, Air–water interface, Air–sea interaction, Upper ocean, Convection, Overturn, Buoyancy flux, Diurnal warming, 1-D modelling, Transfer velocity, Carbon dioxide, GOTM
161-182
Jeffery, C.D.
fcdcf12f-3139-4605-8f52-8af2092ba5b0
Woolf, D.K.
aeb210e8-5fd5-4dd4-903e-6d4ef2df9abe
Robinson, I.S.
548399f7-f9eb-41ea-a28d-a248d3011edc
Donlon, C.J.
9324225c-a1a7-4302-a3c2-f5679fa4ef45
2007
Jeffery, C.D.
fcdcf12f-3139-4605-8f52-8af2092ba5b0
Woolf, D.K.
aeb210e8-5fd5-4dd4-903e-6d4ef2df9abe
Robinson, I.S.
548399f7-f9eb-41ea-a28d-a248d3011edc
Donlon, C.J.
9324225c-a1a7-4302-a3c2-f5679fa4ef45
Jeffery, C.D., Woolf, D.K., Robinson, I.S. and Donlon, C.J.
(2007)
One-dimensional modelling of convective CO2 exchange in the Tropical Atlantic.
Ocean Modelling, 19 (3-4), .
(doi:10.1016/j.ocemod.2007.07.003).
Abstract
Diurnal changes in seawater temperature affect the amount of air–sea gas exchange taking place through changes in solubility and buoyancy-driven nocturnal convection, which enhances the gas transfer velocity. We use a combination of in situ and satellite derived radiometric measurements and a modified version of the General Ocean Turbulence Model (GOTM), which includes the National Oceanic and Atmospheric Administration Coupled-Ocean Atmospheric Response Experiment (NOAA-COARE) air–sea gas transfer parameterization, to investigate heat and carbon dioxide exchange over the diurnal cycle in the Tropical Atlantic. A new term based on a water-side convective velocity scale (w*w) is included, to improve parameterization of convectively driven gas transfer. Meteorological data from the PIRATA mooring located at 10°S10°W in the Tropical Atlantic are used, in conjunction with cloud cover estimates from Meteosat-7, to calculate fluxes of longwave, latent and sensible heat along with a heat budget and temperature profiles during February 2002. Twin model experiments, representing idealistic and realistic conditions, reveal that over daily time scales the additional contribution to gas exchange from convective overturning is important. Increases in transfer velocity of up to 20% are observed during times of strong insolation and low wind speeds (<6 m s?1); the greatest enhancement from w*w to the CO2 flux occurs when diurnal warming is large. Hence, air–sea fluxes of CO2 calculated using simple parameterizations underestimate the contribution from convective processes. The results support the need for parameterizations of gas transfer that are based on more than wind speed alone and include information about the heat budget.
This record has no associated files available for download.
More information
Published date: 2007
Keywords:
Gas exchange, Air–water interface, Air–sea interaction, Upper ocean, Convection, Overturn, Buoyancy flux, Diurnal warming, 1-D modelling, Transfer velocity, Carbon dioxide, GOTM
Identifiers
Local EPrints ID: 49283
URI: http://eprints.soton.ac.uk/id/eprint/49283
ISSN: 1463-5003
PURE UUID: 2ad20ec4-192f-40a3-a5df-5f1bd9a9989a
Catalogue record
Date deposited: 26 Oct 2007
Last modified: 15 Mar 2024 09:54
Export record
Altmetrics
Contributors
Author:
C.D. Jeffery
Author:
D.K. Woolf
Author:
C.J. Donlon
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics