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A B S T R A C T

In this study, we combine the SPARC (Sample-Partitioning Adaptive Reduced Chemistry) and the Cell
Agglomeration (CA) techniques, to accelerate the simulation of laminar and turbulent reactive flows with
detailed kinetics. The reduced mechanisms adopted by SPARC are generated on the basis of representative
thermo-chemical states corresponding to laminar, steady-state flamelets parameterized by the mixture fraction
and a progress variable, in line with the TRAC (Tabulated Reactions for Adaptive Chemistry) method, recently
proposed by Surapaneni and Mira (Comb and Flame, 2023). To further speed-up the calculation, CA (consisting
in grouping the cells having similar thermo-chemical states) is carried out before identifying the local reduced
mechanism by means of SPARC. To demonstrate the effectiveness of the approach, we considered two
benchmark cases: (i) a laminar, pulsating laminar coflow diffusion flame fueled by a mixture of C2H4 and N2
burning in air; (ii) a 2D, turbulent, non-premixed flame burning n-C7H16 in air subject to decaying isotropic
turbulence. In both cases, a detailed kinetic mechanism accounting for the formation of PAHs and soot particles
and aggregates was considered. The results are promising, showing both accuracy and computational efficiency.
While this study uses non-premixed flamelets with mixture fraction and progress variable as an illustrative
example, the proposed methodology has the potential to be applied to various combustion modes, including
premixed and partially premixed scenarios.
1. Introduction

Realistic modeling of chemically reactive systems in Computational
Fluid Dynamics (CFD) involves a large number of chemical species
participating in hundreds/thousands of elementary chemical reactions.
The incorporation of detailed chemical kinetics in multi-dimensional
CFD remains computationally expensive due to the large number of
species and the wide range of timescales of chemical and fluid dy-
namic processes, resulting in numerical stiffness [1]. To address this
challenge, various techniques have been proposed and implemented:

1. Chemical mechanism reduction methods aim to reduce the size
of detailed mechanisms while preserving essential combustion
characteristics. Approaches based on the DRG technique and
quasi-steady-state approximations have been widely employed
[1].

∗ Corresponding author.
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2. Dimension reduction techniques focus on identifying low-
dimensional attracting manifolds in the composition space, al-
lowing computations in a reduced space [2–4].

3. Storage/retrieval algorithms tabulate combustion chemistry and
provide inexpensive approximate solutions, reducing the compu-
tational cost of repetitive kinetic calculations [5].

4. Cell agglomeration methods reduce the cost of chemistry calcula-
tions by grouping computational cells with similar compositions
into zones [6,7]. Each zone represents a group of cells, reducing
the total number of zones compared to the number of cells.

CFD solvers based on the operator-splitting strategy are especially
suitable for simulation of reactive flows with detailed chemistry [8]. In
operator-splitting most of the computational time is spent to solve the
chemical step, which consists in solving 𝑁 independent, stiff, nonlinear
systems of ordinary differential equations (ODEs), where 𝑁 is the
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number of computational cells:

𝑑𝝍
𝑑𝑡

= 𝑺(𝝍) (1)

where 𝝍 is the thermo-chemical state vector (temperature and com-
position) in a single computational cell and 𝑺(𝝍) the corresponding
rate of change due to the chemical reactions. The independent na-
ture of the ODE systems makes the application of adaptive chemistry
techniques straightforward and highly effective. The core idea behind
adaptive chemistry is centered around the observation that within small
temperature and composition ranges, numerous species have negligible
concentrations, and only a limited number of species is chemically
active. Consequently, the kinetic mechanism required to describe the
chemical evolution within a specific thermo-chemical space may de-
mand fewer species and reactions than the complete mechanism. At
the highest level of adaptivity and reduction, the local thermo-chemical
state is evaluated on-the-fly, and a reduced kinetic mechanism is specif-
ically generated in each cell (DAC, Dynamic Adaptive Chemistry) [9–
11]. However, the computational cost of the reduction operations
is substantial, especially for higher levels of reduction and complex
mechanisms.

To alleviate the additional cost of DAC, the Sample-Partitioning
Adaptive Chemistry (SPARC) approach was recently proposed and
applied [12]. In SPARC, the on-the-fly mechanism reduction overhead
is avoided, by building a library of reduced mechanisms in a pre-
processing phase to be used in different regions of the domain during
the CFD simulation. The challenge lies in effectively partitioning the
composition space into clusters, ensuring that each cluster exhibits
sufficient homogeneity on a kinetic basis. Several approaches have been
considered, from Self Organizing Maps (SOM) to Principal Component
Analysis (PCA) [13].

In the present work, we explore the possibility to use low-dimensi-
onal manifolds to identify regions with different chemical activities,
in line with the TRAC (Tabulated Reactions for Adaptive Chemistry)
method, recently proposed in [14]. We applied the pre-partitioning
operations on representative thermo-chemical states corresponding to
laminar, steady-state flamelets parameterized by the mixture fraction
𝜉 and a normalized progress variable 𝑌 𝑛𝑐 . The advantage over SOM
or PCA is that the data generated in the pre-processing phase are
now linked to 2 control variables (𝜉 and 𝑌 𝑛𝑐 ) having a clear physical
interpretation and direct connection with chemical kinetics. To further
speed-up the calculation, Cell Agglomeration (CA) was combined with
SPARC. In CA, at each reaction step, the cells with similar properties
(features) are grouped together in a single zone (cluster) with averaged
values. Chemistry calculations are carried out per cluster (instead of
cells) and the results are mapped back to the original, single cells. Since
the number of clusters is usually much smaller than the total number
of cells, CA is expected to result in significant computational saving.
Instead of using the temperature and selected key-species, the idea is
to adopt 𝜉 and 𝑌 𝑛𝑐 as features in CA.

The paper is organized as follows. First, the SPARC and CA tech-
niques based on tabulated chemistry are presented and described (Sec-
tion 2). Then, in Section 3, two examples of application are presented,
analyzed, and discussed: (i) a pulsating, laminar coflow diffusion flame,
fed with C2H4 in air; (ii) a C7H16/air turbulent, non-premixed flame
subject to decaying isotropic turbulence. In both cases, a detailed
kinetic mechanism including formation of soot particles and aggregates
was considered.

It is important to note that, even if the these examples are based
on non-premixed flamelets parameterized with mixture fraction and
progress variable, the proposed methodology is more general and can
be extended to other combustion modes such as premixed and partially
premixed configurations.
2

Fig. 1. Tabulation-based sample-partitioning adaptive reduced chemistry and cell
agglomeration methodology.

2. Methodology

The proposed procedure consists of 2 phases (Fig. 1). The first phase
(SPARC) is carried out as a pre-processing step and aims at generating
a library of reduced kinetic mechanisms. The second phase, carried
out on-the-fly, corresponds to the chemical step in the context of the
operator-splitting approach, in which CA is used in combination with
the library of kinetic mechanisms produced during the first phase.

2.1. Phase 1: SPARC

The general idea behind SPARC [12] is the assumption that not
all the species contained in a detailed kinetic mechanism are (locally)
equally necessary. Depending on the physics of the reacting flow, a
reduced set of species and reactions can be identified in each cell at
each time step.

1. Dataset generation: the training dataset must adequately repre-
sents all the thermochemical states in the application. Thus,
for the cases here presented, it is constructed from steady and
unsteady adiabatic diffusion flamelets. The steady flamelets are
simulated by varying the applied strain rate until the extinction
limit. The composition space between the most strained flamelet
and mixing limit is covered by using unsteady flamelets.

2. Dataset remapping : the generated database is remapped over two
primitive variables to be selected according to the combustion
regime and the characteristics of the application. In the examples
presented in this paper, we selected the mixture fraction 𝜉 and
a normalized progress variable 𝑌 𝑛𝑐 , using a 𝑁𝜉 × 𝑁𝑌𝑐 grid with
uniform spacing.

3. Partitioning : a clustering algorithm in the 𝜉−𝑌 𝑛𝑐 space is adopted
to identify continuous regions (i.e., clusters) having similar ki-
netic behavior. In the present work, for simplicity, the 𝜉 − 𝑌 𝑛𝑐
space is decomposed in 𝑁𝜉 ×𝑁𝑌𝑐 clusters by means of a regular
2D Cartesian grid. Thus, each cluster is uniquely identified by
the 𝜉 and 𝑌 𝑛𝑐 values at its center.

4. Generation of reduced mechanisms: for each cluster of the dataset,
a reduced mechanism is generated via the DRGEP method [15].
The total number of reduced mechanisms is 𝑁𝜉 ×𝑁𝑌𝑐 .

Partitioning of the thermochemical space (step 3) can be performed
with more advanced approaches, such as Self Organizing Maps (SOM),
k-means clustering, Local Principal Component Analysis, or PCA-based
Artificial Neural Networks (ANN), as demonstrated in [16]. However,
since the focus of the paper is on presenting and demonstrating the
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applicability of the proposed SPARC-CA methodology, not on assessing
the performances of the partitioning algorithm, we adopted the simple
2D Cartesian partitioning mentioned above.

If the partitioning is properly carried out, the individual mech-
anisms generated for each sample are expected to be very similar.
Thus, their union is expected to produce a final mechanism that is
not significantly larger than the individual mechanisms. In the ideal
case, all the individual simplified mechanisms in a cluster would be
identical. Because this almost never happens, a measure of the kinetic
similarity must be introduced. If 𝑛𝑜𝑏 is the number of observations in a
iven cluster and 𝑛𝑠𝑝 is the number of species resulting from the union
f individual mechanisms, we define 𝑥𝑖 = 1∕𝑛𝑜𝑏

∑𝑛𝑜𝑏
𝑗=1 𝛿𝑖,𝑗 , where 𝛿𝑖,𝑗 is

qual to 1 if species 𝑖 is contained in the reduced mechanism for sample
, or equal to 0 if not. Then, for each cluster a similarity coefficient is
efined as: 𝜆 = 1− 1∕𝑛𝑠𝑝

∑𝑛𝑠𝑝
𝑗=1(𝑥𝑖 − 1)2. 𝜆 is equal to 1 in case of perfect

niformity, and its lower bound is 0.

.2. Phase 2: Chemical step

The second phase is the chemical step of the CFD simulation and
ncludes the following sub-steps:

1. Cell Agglomeration: cells having similar thermo-chemical state
(identified by 𝜉 and 𝑌 𝑛𝑐 only) are grouped together and the av-
eraged 𝜉 and 𝑌 𝑛𝑐 are estimated. The Dynamic Multi-Zone (DMZ)
algorithm [7], which is based on an unsupervised evolutionary
clustering algorithm that automatically determines the optimal
number of clusters for a user-defined level of accuracy, is here
adopted.

2. Classification: based on averaged 𝜉 and 𝑌 𝑛𝑐 , the reduced kinetic
mechanism in each cluster is identified from the library built in
the pre-processing step.

3. Averaging and chemical integration: conservation equations of
species and energy are solved according to the reduced kinetic
mechanism.

4. Back-mapping : the calculated thermo-physical state at the cluster
level is mapped back to the original cells, using the backward
remapping procedure proposed by Liang et al. [7], which ensures
the conservation of mass.

The DMZ algorithm first initializes all the cells as a single, big
cluster. Then, the number of clusters evolves since bigger clusters are
split in smaller ones via a bisection splitting method. The splitting op-
erations end when the accuracy criteria (i.e., level of thermo-chemical
homogeneity of the zones) specified by the user are satisfied. The
advantage with respect to static clustering algorithms, such as the
k-means algorithm, is that DMZ algorithm does not require a priori
pecification of the final number of clusters. The only input variables
equired by the DMZ algorithm are a set of features (temperature and
elected species) and a tolerance 𝜖𝐶𝐴 (not necessarily the same for all
he features) to prescribe the desired level of accuracy.

The averaging process (step 2) consists of calculating the mass-
eighted averaged thermo-chemical state 𝝍0 of cells identified as part
f a single zone:

𝝍0 =
∑

𝑖 𝝍0
𝑖 𝜌𝑖𝑉𝑖

∑

𝑖 𝜌𝑖𝑉𝑖
(2)

where the sum is carried out over all the cells belonging to the zone and
𝜌𝑖 and 𝑉𝑖 are the density and the volume of cell 𝑖, respectively. Then,
the reaction step (3), which is the integration of Eq. (1) over the time
interval 𝛥𝑡, is carried out for each zone: 𝝍0

⟶ 𝝍∗. Finally, the calcu-
lated thermo-physical vector 𝝍∗ is mapped back to the original cells. A
simple, weighted remapping of the species mass fractions changes from
the cluster would gradually deteriorate the solution. For this reason, in
the present work we considered a more accurate backward remapping
procedure [7], which also ensures conservation of mass. Finally, the
3

cells’ temperatures are estimated from the updated mixture sensible
enthalpy:

𝐻∗
𝑖 = 𝐻0

𝑖 +
∑

𝑗
ℎ𝑓𝑗 (𝑌

∗
𝑗 − 𝑌

0
𝑗 ) (3)

where 𝐻0
𝑖 is the mixture sensible enthalpy of cell i before the reaction

tep, ℎ𝑓𝑗 is the formation enthalpy of species 𝑗 and 𝑌
0
𝑗 and 𝑌

∗
𝑗 the

veraged mass fractions before and after the reaction step.

. Results and discussion

All the simulations have been carried out using the CRECK detailed
inetic mechanism [17], including the chemistry of PAHs (Polycyclic
romatic Hydrocarbons) and accounting for the formation of soot par-

icles and aggregates via a Discrete Sectional Method (DSM), resulting
n a total number of 185 species and about 8000 reactions [18]. The
imulations were carried out with the laminarSMOKE++ code, a CFD
olver based on OpenFOAM, specifically conceived for reacting flows
ith detailed kinetic mechanisms [19]. The laminarSMOKE++ solver

s based on the operator splitting technique, making it a suitable candi-
ate for testing the proposed SPARC-CA technique. laminarSMOKE++
s freely available on the web at the following address: https://github.
om/acuoci/laminarSMOKE.

.1. Generation of training dataset

The training dataset was built from the solutions of steady and un-
teady adiabatic laminar flamelets (calculated with the OpenSMOKE++
uite [20]), from a strain rate of 𝑎 = 0.01 s−1 (close to thermodynamic
quilibrium), to the extinction, corresponding to 𝑎𝑞 = 250 s−1 (C2H4
aminar coflow flame) and 𝑎𝑞 = 120 s−1 (n-C7H16 turbulent diffusion
lame). The dataset was parameterized through the mixture fraction

and the progress variable 𝑌𝑐 =
∑

𝑖 𝛼𝑖
𝑌𝑖
𝑊𝑖

, where 𝑌𝑖 and 𝑊𝑖 are the
mass fractions and molecular weights of species CO2, H2O, H2, CO, O2
and C10H8, with coefficients 𝛼 = [1, 1, 0.6, 1,−0.1, 20]. As demonstrated
in [21], the impact of the specific definition of 𝑌𝑐 on the generation of
the reduced mechanisms is very limited. Unlike the flamelet methods,
in SPARC-CA the chemical source terms and the transport properties
are not tabulated, but calculated on-the-fly from local conditions using
the reduced kinetic mechanisms. Thus, a simple definition of 𝑌𝑐 (such
as the linear combination of major products) is expected to be suffi-
cient to identify the evolving thermal states and the reduced kinetic
mechanisms.

The chemical reduction was carried out as a pre-processing step
using the DRGEP technique [15]. For both the datasets, 7 key-species
(fuel, O2, N2, OH, BIN5J, BIN13J, and BIN20J) were selected and
several tolerance thresholds 𝜖𝐷𝑅𝐺 were tested. BIN5J, BIN13J, and
BIN20J are the sections representing the smallest soot spherical par-
ticle, the smallest and the largest soot aggregates, respectively. They
were included to properly capture the soot kinetics in the reduction
phase. Table 1 reports the average and maximum number of species (re-
spectively 𝑛𝑠𝑝 and 𝑛𝑚𝑎𝑥𝑠𝑝 ) as a function of 𝜖𝐷𝑅𝐺, together with the mean
and the minimum similarity coefficients (𝜆 and 𝜆𝑚𝑖𝑛, respectively). 𝑛𝑠𝑝
and 𝑛𝑚𝑎𝑥𝑠𝑝 obviously increase with decreasing 𝜖𝐷𝑅𝐺. Similarly, the 𝜆
oefficient also increases, i.e., the mechanisms in each cluster become
ore similar.

Fig. 2 presents the maps of mass fractions of soot particles and
ggregates stored in the training dataset and the number of species in
he reduced kinetic mechanisms as a function of 𝜉 and 𝑌𝑐 for the n-
7H16/air flame. Similar maps for the C2H4 flame are available in the
upplementary Material. The progress variable, ranging from 0 and a
aximum 𝑌 𝑚𝑎𝑥𝑐 (𝜉), was normalized between 0 and 1:

𝑛
𝑐 =

𝑌𝑐 − 𝑌 𝑚𝑖𝑛𝑐 (𝜉)
𝑚𝑎𝑥 𝑚𝑖𝑛 (4)
𝑌𝑐 (𝜉) − 𝑌𝑐 (𝜉)

https://github.com/acuoci/laminarSMOKE
https://github.com/acuoci/laminarSMOKE
https://github.com/acuoci/laminarSMOKE
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Fig. 2. Mass fractions of soot spherical particles and aggregates and number of species included in the reduced kinetic mechanism as a function of 𝜉 and 𝑌𝑐 for the n-C7H16/air
flame. The dotted line represents the flamelet solution at the extinction scalar dissipation rate 𝑎𝑞 .
Table 1
Number of species and similarity coefficients for prescribed tolerances 𝜖𝐷𝑅𝐺𝐸𝑃 of reduced mechanisms.

𝜖𝐷𝑅𝐺𝐸𝑃 = 0.02 𝜖𝐷𝑅𝐺𝐸𝑃 = 0.05 𝜖𝐷𝑅𝐺𝐸𝑃 = 0.1

𝑛𝑠𝑝 𝑛𝑚𝑎𝑥𝑠𝑝 𝜆 𝜆𝑚𝑖𝑛 𝑛𝑠𝑝 𝑛𝑚𝑎𝑥𝑠𝑝 𝜆 𝜆𝑚𝑖𝑛 𝑛𝑠𝑝 𝑛𝑚𝑎𝑥𝑠𝑝 𝜆 𝜆𝑚𝑖𝑛

C2H4 71 136 0.94 0.88 62 110 0.93 0.87 59 98 0.89 0.85

n-C7H16 70 141 0.94 0.87 59 122 0.92 0.87 53 109 0.89 0.86
The 𝜉 − 𝑌 𝑛𝑐 table was discretized in 40 × 40 cells. The maps show a
peak of soot particles at 𝜉 ∼ 0.18, i.e., at slightly rich conditions (𝜉𝑠𝑡 is
0.143), whereas the soot aggregates cover a very narrow region in the
𝜉 − 𝑌𝑐 space at much larger values of 𝜉. The highest level of reduction
is found in lean regions, i.e., where 𝜉 < 𝜉𝑠𝑡, where not more than ∼50
active species can be found. Fuel-rich regions, i.e., where 𝜉 > 0.35,
require more complex chemistry, especially when the scalar dissipation
rate is above the extinction value 𝑎𝑞 . Moreover, the highest numbers of
active species and reactions are found where significant amounts of soot
aggregates are predicted. This is strictly related to the intrinsic nature
of the DSM adopted for soot: indeed, the chemistry of large aggregates
(i.e., BINs larger than BIN13) can be properly described only if smaller
BINs are kept in the reduced kinetic mechanism. This prevents the
possibility to reach very high levels of chemical reduction, as evident
from the data in Table 1.

3.2. Pulsating, laminar C2H4 diffusion flame

The first configuration analyzed is an axisymmetric, time-varying,
non-premixed laminar coflow flame [22]. The fuel is a mixture of 60%
C2H4 and 40% N2 (molar basis), while the oxidizer stream is regular air.
Both streams are fed at ambient temperature and atmospheric pressure.
The C2H4/N2 fuel stream enters through a circular nozzle (internal
diameter of 4 mm and thickness of 0.38 mm), while the coflow air
stream enters through an annular region (internal diameter of 50 mm).
The transient behavior is induced by a sinusoidal perturbation in the
fuel velocity profile with frequency 𝑓 and amplitude 𝐴. Both the fuel
and air streams are injected at 35 cm/s. The 2D computational domain
(with lengths of 55 mm and 120 mm in the radial and axial directions)
was discretized through a Cartesian mesh with ∼25,000 cells. The
steady-state conditions (𝐴 = 0) were simulated first, then a sinusoidal
fluctuation of the fuel velocity was imposed [22], with 𝐴 = 0.90 and
frequencies 𝑓 = 10, 20 and 40 Hz. In the following, only the case with
𝑓 = 20 Hz will be discussed, but the results for the two additional
frequencies are available in the Supplementary Material.

Fig. 3 shows the calculated fields of temperature and soot volume
fraction and particle number density at different times: maps on the left
side refer to the fully-resolved simulation, while maps on the right to
simulations carried out with 𝜖𝐷𝑅𝐺 = 0.05 and 𝜖𝐶𝐴 = 0.04. The SPARC-
CA solution is able to correctly describe on both a qualitative and
4

quantitative basis the complex dynamics of the flame (see for example
the pocket of soot leaving the computational domain at t=110 ms).

Different combinations of 𝜖𝐷𝑅𝐺 and 𝜖𝐶𝐴 have been investigated,
as reported in Table 2, where the relative errors (𝜀) are compared
against the fully-resolved simulation. More specifically, the relative
error between the SPARC-CA-based (𝑆𝐶) and the fully-resolved (𝐹𝑅)
simulations is defined as:

𝜀 = 1
𝑛𝑇 𝑛𝐶

𝑛𝑇
∑

𝑘=1

𝑛𝐶
∑

𝑖=1

|

|

|

𝜓𝑆𝐶𝑘,𝑖 − 𝜓𝐹𝑅𝑘,𝑖
|

|

|

𝜓𝑚𝑎𝑥
(5)

where 𝑛𝑇 is the number of discrete CFD times, 𝑛𝐶 is the number of
cells, 𝜓𝑘,𝑖 is the value of 𝜓 (temperature, mass fraction, or soot volume
fraction) at time 𝑘 and cell 𝑖 and 𝜓𝑚𝑎𝑥 = 𝑚𝑎𝑥 ||

|

𝜓𝐹𝑅𝑘,𝑖
|

|

|

. Only cells having
a temperature 𝑇 > 300 𝐾 are included in the sums above, in order
to avoid to have a bias in the error estimation. As expected from the
theoretical point of view, the results confirm that the relative error
decreases monotonically with the tolerances 𝜖𝐷𝑅𝐺 and 𝜖𝐶𝐴. This is an
important aspect to control the level of desired accuracy when applying
SPARC-CA.

Fig. 4 shows the temporal evolution of the total mass of soot
(𝑚𝑠𝑜𝑜𝑡) and the peak of soot volume fraction (𝑓𝑉 ) for the fully-resolved
simulation, together with the relative errors when the simulations are
performed via SPARC-CA (with 𝜖𝐷𝑅𝐺 = 0.05) and different values of
𝜖𝐶𝐴. Similar plots for cases with f=10 and 40 Hz are available in
the Supplementary Material. As expected, the relative error increases
for increasing 𝜖𝐶𝐴, but it remains consistently small, particularly for
𝑚𝑠𝑜𝑜𝑡. Importantly, it does not exhibit a tendency to accumulate over
time. These findings provide a more quantitative affirmation of what
could already be inferred from the analysis of Fig. 3, which demon-
strates SPARC-CA’s capability to accurately describe the soot dynamics,
resulting from complex kinetic process.

Additional plots reporting the temperature and mass fraction pro-
files of selected species at various spatial locations and times, further
demonstrating the close agreement between the SPARC-CA and the
fully-resolved solutions, are available in the Supplementary Material.

3.3. Turbulent, nonpremixed n-C7H16 flame

The second configuration here adopted is the 2D, turbulent non-
premixed flame burning a mixture of n-C H and N (0.844/0.156
7 16 2
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Fig. 3. Pulsating, laminar C2H4 diffusion flame: maps of temperature, soot volume fraction 𝑓𝑉 and soot particle number density 𝑁𝑠. Fully resolved (FR) and SPARC-CA (𝜖𝐷𝑅𝐺 = 0.05
and 𝜖𝐶𝐴 = 0.05) solutions are reported on the left and right sides, respectively. The black line is the stoichiometric mixture fraction, while the white line the iso-line at 𝑓𝑉 = 0.2
ppm.
Table 2
Summary of computational performances of SPARC-CA applied to the pulsating laminar coflow flame for several combinations of 𝜖𝐷𝑅𝐺 and 𝜖𝐶𝐴 parameters. The relative errors 𝜀 are
estimated according to Eq. (1). 𝑡𝑐ℎ𝑒𝑚 and 𝑡𝐶𝐴 are the computational times (per time step) for chemical integration and cell-agglomeration, respectively. The time for classification
operations is negligible. 𝑡𝑡𝑜𝑡 is the total computational time per time step. 𝑆𝑈𝑐 and 𝑆𝑈𝑡𝑜𝑡 are the chemical and the overall speed-up factors, respectively. The computational times
are reported in 𝑠.
𝜖𝐷𝑅𝐺 𝜖𝐶𝐴 𝜀𝑇 𝜀𝑂𝐻 𝜀𝐶𝑂 𝜀𝑠𝑜𝑜𝑡𝑓𝑣 𝑡𝑐ℎ𝑒𝑚 𝑡𝐶𝐴 𝑡𝑡𝑜𝑡 𝑆𝑈𝑐 𝑆𝑈𝑡𝑜𝑡

(-) 0.01 3.13E−06 3.18E−04 7.78E−05 2.34E−04 3.872 0.002 5.105 5.83 4.7
(-) 0.02 6.28E−06 1.24E−03 1.87E−04 6.29E−04 1.673 0.002 2.916 13.5 8.2
(-) 0.04 8.44E−05 4.55E−03 1.24E−03 1.37E−02 0.742 0.002 1.984 30.3 12.0
0.01 (-) 3.57E−06 6.34E−05 2.73E−05 1.16E−04 8.137 0 9.377 2.78 2.5
0.02 (-) 1.28E−05 4.22E−04 2.08E−04 4.48E−03 4.989 0 6.224 4.53 3.8
0.04 (-) 5.62E−05 2.98E−03 7.07E−04 7.50E−03 2.640 0 3.885 8.57 6.1
0.04 0.01 3.52E−06 3.87E−04 8.72E−05 2.65E−04 2.673 0.002 3.906 8.4 6.1
0.04 0.02 8.23E−06 1.74E−03 2.43E−04 8.67E−04 1.186 0.002 2.429 19.0 9.8
0.04 0.04 1.02E−04 5.15E−03 1.35E−03 1.47E−02 0.542 0.002 1.783 41.5 13.3
0.01 0.04 5.54E−06 8.38E−05 3.49E−05 1.86E−04 1.387 0.006 2.633 16.2 9.1
0.02 0.04 1.67E−05 4.95E−04 2.75E−04 6.07E−03 0.943 0.005 2.183 23.8 10.9
by volume) in air subject to decaying isotropic turbulence, proposed
by Bisetti et al. [23]. The 2D computational domain consists of a
square of size L=60 mm. Periodic boundary conditions are applied
in both the horizontal and vertical directions. At the onset of the
simulation, a horizontal strip of fuel is surrounded by the oxidizer.
Initial temperature and mass fractions are taken from a representative
1D flamelet solution (at scalar dissipation rate of 60 s−1) and mapped
from mixture fraction space onto the vertical coordinate according to
the mixture fraction spatial profile. The velocity field is initialized
with isotropic turbulence of prescribed fluctuations 𝑢′ = 75 cm/s and
integral length 𝐿11 = 4.4 mm. A uniform mesh with 384 × 384 cells
was adopted. The solution is advanced up to 15 ms. Because of the high
computational cost of this benchmark case, only a limited number of
simulations was carried out.

Although referred to as ‘‘turbulent’’, this 2D case does not fully rep-
resent three-dimensional turbulence due to its two-dimensional nature.
Indeed, this example must be intended as a proof-of-concept, aiming at
demonstrate the applicability of SPARC-CA to complex fluid dynamic
scenarios with very detailed kinetics.

Similarly to Figs. 4, 5 shows the temporal evolution of 𝑚𝑠𝑜𝑜𝑡 and
𝑓𝑉 . Once again, the same observations made earlier for the C2H4 flame
can be reiterated. In fact, despite the turbulent nature of the n-C7H16
flame, the relative error on 𝑚𝑠𝑜𝑜𝑡 is even lower compared to the C2H4.
A possible explanation could be related to lower threshold tolerance
adopted for the n-C H flame (𝜖 = 0.01) with respect to the C H
5
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flame (𝜖𝐷𝑅𝐺 = 0.04), ensuring a generally more accurate reduction of
the chemistry. The good agreement between the fully-resolved and the
SPARC-CA simulations is also confirmed by the maps of relevant fields
(such as soot volume fraction and particle number density) available in
the Supplementary Material.

3.4. Analysis of computational time

Table 2 reports details about the computational performance of
SPARC-CA applied to the 𝐶2𝐻4 laminar coflow flame. The overall com-
putational cost (𝑡𝑡𝑜𝑡) of SPARC-CA simulations decreases monotonically
with increasing tolerances. The time for performing cell-agglomeration
operations (𝑡𝐶𝐴) is almost independent of the 𝜖𝐶𝐴, but slightly increases
with decreasing 𝜖𝐷𝑅𝐺, i.e. for increasing average number of species
in the reduced kinetic mechanisms. However, 𝑡𝐶𝐴 is a very small
fraction of the cost of the chemical step (𝑡𝑐ℎ𝑒𝑚), which makes cell-
agglomeration especially convenient. Being the partitioning carried out
on a 2D regular grid in the 𝜉 − 𝑌 𝑛𝑐 space, the additional cost to identify
(i.e., to classify) the reduced kinetic mechanism (not reported in the
table) is negligible, requiring only the local values of 𝜉 and 𝑌 𝑛𝑐 .

When the complete kinetic mechanism is adopted, ∼95% of total
CPU time is spent for performing the chemical step in both the 𝐶2𝐻4
and n-C7H16 flames. The transport step is not affected by SPARC-
CA operations, since all the original species in the complete kinetic
mechanism are always transported. Thus, the maximum theoretical
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Fig. 4. Pulsating, laminar C2H4 diffusion flame: temporal evolution of (a) total mass
of soot and (b) peak soot volume fraction for the fully-resolved simulation and relative
errors with respect to SPARC-CA simulations.

overall speedup which could be reached is ∼20. The data reported in
Table 2 show that the effective overall speedup increases with increas-
ing tolerances 𝜖𝐷𝑅𝐺 and 𝜖𝐶𝐴, as expected. Indeed, larger tolerances
mean smaller average number of species in the reduced mechanisms
and smaller number of clusters to be integrated.

The data presented in Table 2 clearly shows that the majority
of the overall speed-up, approximately 70%–80%, is attributable to
Cell Agglomeration (CA). Consequently, the contribution of Sample
Partitioning Adaptive Reduced Chemistry (SPARC) to the overall ac-
celeration (specifically, its role in enabling the use of reduced kinetic
mechanisms) is relatively minor compared to CA. However, this finding
should not be considered general as it heavily depends on the degree
of composition stratification within the specific computational fluid
dynamics (CFD) simulation. Notably, CA’s effectiveness in accelerating
the chemical step increases in scenarios with limited composition strat-
ification, which permits the identification of fewer clusters. Conversely,
in simulations with a more varied composition space, the acceleration
due to CA is expected to diminish, enhancing the relative impact of
SPARC on numerical performance.

Fig. 6 show the temporal evolution of total number of clusters
𝑁𝑐 for the 𝐶2𝐻4 and n-C7H16 flames when different 𝜖𝐶𝐴 are adopted
(with fixed 𝜖𝐷𝑅𝐺), together with the corresponding speedup factor
𝑆𝑢. Obviously, 𝑁𝑐 decreases with increasing 𝜖𝐶𝐴, resulting into an
increase of 𝑆𝑢. For the pulsating C2H4 flame, both 𝑁𝑐 and 𝑆𝑢 are
almost constant in time, while for the turbulent n-C7H16 flame they are
very time-dependent. Indeed, because of the initial stratification in the
composition space, at the beginning of the simulation of the n-C7H16
flame cell-agglomeration is very effective, leading to small 𝑁𝑐 and large
𝑆𝑢. Then, during the evolution of the system, the composition space
covered by the flame becomes larger, which implies an increasing 𝑁𝑐 ,
leading to a reduction of 𝑆 .
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𝑢

Fig. 5. Turbulent, nonpremixed n-C7H16 flame: temporal evolution of (a) total mass of
soot and (b) peak soot volume fraction for the fully-resolved simulation and relative
errors with respect to SPARC-CA simulations.

4. Conclusions

In this work, we combined the SPARC (Sample-Partitioning Adap-
tive Reduced Chemistry) and the Cell Agglomeration (CA) techniques
with tabulation of chemistry in a 2D space, to accelerate the simulation
of laminar and turbulent reactive flows with detailed kinetics. The
results, even if preliminary, are satisfactory: the accuracy is good in
both the benchmark cases with good levels of acceleration, close to
∼70%–80% of theoretical maximum speedup. More systematic and
complete analyses are required to better asses the performances and
the limitations of the methodology.

While the applications of tabulation-based SPARC-CA presented in
this paper were based on non-premixed laminar flamelets (defined by
mixture fraction and a progress variable), it is important to emphasize
the adaptability of the proposed methodology to broader combustion
scenarios, such as premixed and partially premixed modes. The key is
using a training dataset that reasonably represents the thermochemical
state expected to be found in the CFD simulation and selecting the right
variables for effective clustering. A proper training dataset allows to
build a solid library of simplified kinetic mechanisms, which makes
the simulations more efficient. To better understand the versatility of
tabulation-based SPARC-CA, it is also crucial to consider that:

(i) the training dataset is only used to generate a proper library of
reduced kinetic mechanisms;

(ii) the remapping based on primitive variables is only used for
facilitating a rapid on-the-fly identification of the best reduced
kinetic mechanism;

(iii) all the species in the complete kinetic mechanism are trans-
ported.
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Fig. 6. Time evolution of number of clusters coming from the application of cell-
agglomeration (blue line) and of overall speedup factor (red line): (a) pulsating, laminar
C2H4 diffusion flame with 𝜖𝐷𝑅𝐺 = 0.05; (b) turbulent, nonpremixed n-C7H16 flame with
𝜖𝐷𝑅𝐺 = 0.01. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

This means that in the CFD simulations, the thermochemical state is
always calculated using detailed (albeit reduced) kinetic mechanisms.
Therefore, the training dataset and the identified primitive variables
are less crucial compared to tabulated-chemistry approaches, where the
thermochemical state is reconstructed from tabulated data.

In conclusion, the tabulation-based SPARC-CA method is a promis-
ing technique for accelerating simulations of reactive flows. This meth-
odology ensures good computational efficiency with minimal imple-
mentation effort, especially in operator-splitting-based CFD codes. Fur-
thermore, its flexibility allows it to be applied to various combustion
regimes, making it a versatile tool for a wide range of applications.

Novelty and significance statement

The main novelty of this research lies in implementation of a
new acceleration technique for CFD simulations of reactive flows with
detailed kinetic mechanisms. To the authors’ knowledge, this is the
first time the combination of reduced chemistry and cell agglomeration
techniques is implemented and applied on-the-fly in a CFD code. This
research is significant because the the proposed acceleration technique
has proven capable of ensuring a significant reduction in computation
times (speedup factors even larger than 10) while still maintaining good
accuracy in both laminar and turbulent simulations. Its adoption could
enable simulations with very detailed kinetics that were previously
prohibitive or computationally too expensive.
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