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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Predictive models for boron rejection of 
RO membrane were developed using 
ML. 

• Tree-based models such as XGBoost re-
gressor showed outstanding 
performance. 

• For SWRO membranes, NaCl rejection 
>99.6 % will yield high boron rejection. 

• BWRO membranes with a looser struc-
ture will still perform well at pH >9. 

• Membrane surface properties showed 
minimal effects on boron rejection.  
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A B S T R A C T   

Reverse osmosis (RO) is a key technology for seawater desalination, but boron removal remains challenging due 
to the relatively low and varying boron rejection of RO membranes. This study explored the use of machine 
learning (ML) to develop predictive models for boron removal of RO membranes. Data of 11 features encom-
passing membrane properties, testing conditions and membrane performance were collected from journal arti-
cles. Missing data were recovered using data imputation algorithms. The predictive models were developed using 
five regression algorithms: linear, ridge, decision tree, random forest and XGBoost regressors, and the tree-based 
XGBoost regressor performed the best (R2 = 0.84). Feature importance analysis and tree diagrams revealed that 
membrane type, feed pH and NaCl rejection as key factors in influencing boron rejection, while membrane 
surface properties showed minimal impact. Partial dependence plots were generated to further analyze each 
feature. High NaCl rejection of >99.6 % is highly desirable for SWRO membranes to achieve high boron 
rejection. For BWRO membranes at pH >9, a looser structure with a NaCl rejection >95 % could be applied. The 
study successfully applied ML to a dataset with large portion of missing values, and the results provide valuable 
insights for future membrane design and boron removal processes.  
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1. Introduction 

Water scarcity is a pressing global challenge exacerbated by popu-
lation growth and industrialization. Seawater desalination has emerged 
as a critical source of clean water to meet the increasing water demand 
[1,2]. Membrane separation has gained prominence as a transformative 
technology for seawater desalination. In the reverse osmosis (RO) pro-
cess, semipermeable membranes can effectively retain salts and impu-
rities in seawater, producing high-purity clean water. Operating at 
ambient temperature, this pressure-driven process offers a more energy- 
efficient alternative to thermo-driven desalination processes like 
multistage flash distillation [3,4]. Polyamide thin-film composite (TFC) 
membranes have been widely used in the seawater RO (SWRO) desali-
nation process as they have a high salt rejection and excellent water 
permeability. In recent years, large-scale SWRO desalination plants have 
been constructed in countries with serious water scarcity, for example 
the Taweelah SWRO plant (909,200 m3/day) in the United Arab Emir-
ates and the Sorek (624,000 m3/day) SWRO plants in Israel [5]. 

One of the key challenges of SWRO desalination is the boron content 
in the water produced [6,7]. Seawater contains boron at a concentration 
of about 5 mg/L. Though boron is an essential micronutrient for most 
life, the amount needed is generally very small. At concentration >1 
mg/L, boron can be harmful for most plants, and high boron level can be 
toxic to human [8]. The World Health Organisation requires the boron 
concentration to be <0.5 mg/L in drinking water [9]. To meet the boron 
concentration requirement, it is essential for the SWRO process to have a 
high boron removal rate, preferably >90 %. However, boron is a small 
element and form a non-ionized boric acid (H3BO3) in seawater. With an 
ionic radius of 0.244–0.261 nm, boric acid can diffuse through the RO 
membranes in a non-ionic manner, resulting in a low boron rejection 
[10]. Many studies have been conducted to improve the boron rejection 
of RO membranes. One of the main approaches is through sealing the 
“defects” or plugging the network pores, so that boron can be excluded 
from passing through the membrane [11,12]. Some studies also modi-
fied the surface change of the membranes so that the stronger electro-
static charge can enhance the boron rejection [13,14]. 

While most SWRO membranes have a consistently high NaCl rejec-
tion >99 %, their boron rejection can vary significantly from 70 to 99 % 
[5,15]. To achieve a low boron concentration in the water produced, 
many SWRO plants have adopted a two-pass RO process where portion 
of the permeate from the first pass is fed to a second RO membrane unit 
[16,17]. Brackish water RO (BWRO) membranes with a higher water 
permeability are typically used in the second pass, and a lower pressure 
will be applied due to the low salt concentration. Though the second 
pass RO unit can further remove the boron content to meet the 
requirement, the extra step will require additional energy and cost. 
Alternatively, the boron rejection in the RO process can be improved by 
increasing the pH of the feed. As pH increases, boron will be transformed 
into negatively charged borate ions (B(OH)4

− ), could be rejected more 
effectively by the RO membranes through the Donnan's effect [16,18]. 
This procedure however requires large amount of chemical dosing to 
change the pH of the feed, and is more commonly used in the second 
pass RO. Therefore, SWRO membranes with a high boron rejection is 
highly desired so that boron removal can be done efficiently in the 
single-pass RO process. Despite ongoing efforts, the progress in devel-
oping membranes with desirable boron rejection performance was still 
slow. 

The use of machine leaning (ML) techniques can be beneficial in 
accelerating membrane development and facilitating the study of 
membrane processes. ML has gained popularity in many areas and its 
applications in chemical and environmental engineering, and material 
science have becoming prevalent in recent years [19–21]. Most studies 
on membrane development involved laborious experimental work and 
optimizing the membrane performance can be challenging with various 
parameters. One major advantage of ML is its capacity to handle and 
analyze multi-dimensional data and this will help researchers to search 

for useful materials and synthesis techniques more efficiently. Some 
recent studies have demonstrated the potential of ML techniques in 
membrane research. Yeo et al. employed ML technique gradient boost-
ing tree model to predict the salt pass rate of thin-film nanocomposite 
(TFN) RO membranes [22]. The contributions of different parameters 
such as the loading, pore size and shape of nanoparticles on the mem-
brane performance could be analysed effectively using data collected 
from the literature. In another study by Hu et al., ML techniques were 
used to predict the performance of organic solvent nanofiltration (OSN) 
membranes [23]. ML models such as artificial neural network, support 
vector machine and random forest were used as the alternative to 
traditional mathematical equations. Meanwhile, Zhu et al. [24] pre-
dicted the organic contaminants rejection of nanofiltration (NF) and RO 
membranes using traditional algorithm (e.g., multiple linear regression) 
and ensemble models (e.g., random forest and gradient boosting) using 
data collected from the journal articles. Their study showed that the 
ensemble models outperformed traditional models in predicting the 
removal efficiency [24]. 

Data is an essential part of ML and experimental data published in 
the literature is a valuable source of data. In recent years, databases of 
membrane research have been established, for example: the Open 
Membrane Database (OMD) for reverse osmosis and nanofiltration 
membranes, and the Membrane Database for polymer gas separation 
membranes [25,26]. Though the OMD has an extensive database on RO 
membranes, the focus is mainly on the water and salt permeabilities, and 
boron rejection data was not collected. A recent study by Ajali- 
Hernández et al. applied ML models to study boron permeability in 
SWRO, but the data used originated from a single desalination plant 
[27]. Therefore, one key challenge of utilizing ML techniques to study 
the boron rejection performance of RO membranes is collecting data 
from the literature. Another common challenge encountered when 
applying ML in membrane research is the missing data. Though most 
studies reported key membrane performances such as water perme-
ability and salt rejection, the comprehensiveness of other parameters 
such as detailed testing conditions and membrane properties can vary. 
Missing data will affect the modeling of the data as typical ML models 
cannot use data entries containing missing values. Therefore, data 
imputation is an important step to fill up the missing data so that all the 
collected data can be utilized for ML modeling, which is particularly 
important for problems without a large amount of data. However, many 
previous studies using ML for membrane research only employed basic 
strategies such as the median of the variables to fill up missing data [22]. 
Yuan et al. have previously used data imputation techniques to predict 
missing gas separation performance of membranes [28]. While Gao et al. 
have applied XGBoost and CatBoost to recover missing data in their 
study on NF membranes [29]. Advanced data imputation techniques can 
be further explored to study datasets in membrane research. 

This paper focused on the study of boron rejection performance in 
RO process using ML techniques. We first collected the experimental 
data from journal articles, with the focus on polyamide-based SWRO, 
BWRO and NF membranes. Data from three main categories were 
collected: membrane properties, testing conditions and membrane per-
formance. Descriptive analytics were performed on the compiled dataset 
to study the trend and distribution of the parameters. Afterwards, 
missing entries in the dataset were recovered using data imputation 
algorithms. Several data imputation methods: SimpleFill, k-nearest 
neighbours, SoftImpute and MissForest were applied. Finally, regression 
algorithms were performed to the predict boron rejection based on the 
parameters. Five regression models: linear, ridge, decision tree, random 
forest and XGBoost regressions were applied in this study. The rationale 
for using these methods is that they mostly have great explainability, 
which is important for understanding the factors influencing boron 
rejection. To further improve the accuracy of the regression models, data 
classification based on the membrane type was also conducted. The 
feature importance from the regression models and the tree diagram 
were analysed to understand parameters that will affect the boron 
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rejection performance of the membranes significantly. Furthermore, the 
trained regression algorithms were used to generate boron rejection 
performance data under various conditions, enabling partial de-
pendency analysis on the features. The interaction between parameters 
and optimum conditions for excellent boron rejection performance 
could be determined. The insight obtained from this study can serve as a 
valuable reference for researchers during membrane development and 
process design, and such information could be otherwise challenging to 
discover using non-ML methods. 

2. Method 

2.1. Data collection 

In this work, experimental data were collected from journal articles 
published from year 2005 to 2022 (full list in Table S1 Supplementary 
material). We focused on collecting data on polyamide TFC membranes 
as they are the most commonly used and studied membranes for 
seawater desalination and boron removal. Data points from graphs and 
charts were extracted using Plot Digitizer (http://plotdigitizer.sourcef 
orge.net/). Boron rejection was set as our target of prediction, and we 
collected data of 11 other parameters as features of the predictive 
models. 

2.2. Data imputation 

The collected dataset contained some missing data because not all 
the parameters were reported in each journal article. Data imputation 
was required to recover the missing entries before the dataset could be 
further analysed and modelled. The entire dataset was used for data 
imputation without splitting into training or testing dataset. Several 
imputation algorithms were studied, and their brief descriptions are as 
followed. Details on how the algorithm work, source codes and instal-
lation guides can be found in the links provided in the Supplementary 
material.  

SimpleFill The missing entries in each parameter are 
filled with the mean of respective 
parameter. 

K-nearest neighbours (KNN) The algorithm finds the k nearest neigh-
bours with the highest similarity score and 
subsequently uses the weighted sum of 
these k rows to recover missing entries 
[30]. 

SoftImpute Data imputation based on matrix comple-
tion method, according to the iterative soft 
thresholding of singular value decompo-
sition (SVD) [31].  

MissForest MissForest selects a parameter with the 
lowest missing entries and recover the 
missing entries in this parameter using 
random forest algorithm. Non-selected 
parameters are filled with mean of the 
respective parameter. The same procedure 
is repeated to next parameter with the 
lowest missing entries [32]. 

Root mean square error (RMSE) was used to evaluate the accuracy of 
data imputation, which is defined as follow: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

⃒
⃒
⃒yreal

i − ypred
i

⃒
⃒
⃒
2

n

√
√
√
√

(1)  

where yreal
i : collected data, ypred

i : predicted data by model, n: number of 
sample points. 

Before imputation algorithm is run, 10 available entries are hidden. 
These 10 hidden entries are then assessed against entries recovered from 
imputation algorithms. The errors are subsequently quantified using 
RMSE. This step is repeated until all available entries in each parameter 
are assessed. Since there will be multiple RMSE in each parameter, an 
average of RMSE is obtained as the representative of each parameter. 

2.3. Boron rejection regression models 

Regression algorithms were used to develop predictive models to 
predict boron rejection performance of membranes using the imputed 
dataset. Five regression algorithms were studied and their brief 
description are as below. More detailed information on the algorithms 
and the source codes can be found in the references indicated in the 
Supplementary material.  

Linear regression Linear regression is used as our baseline model 
since this is one of the widely used algorithms 
before other ML techniques start to gain 
popularity.  

Ridge regression Ridge regression is the extension of linear 
regression, with an additional feature to 
penalise coefficients of highly correlated pa-
rameters [33].  

Decision tree regressor In decision tree regressor, the dataset is 
broken into smaller and smaller subsets based 
on the best split [7,34]. The quality of the split 
is determined using squared error (SE) as 
defined in Eq. (2). In our experiment, the 
maximum depth of the full tree is set to 9 to 
prevent overfitting. SE is defined as follow: 

SE =
∑n

i=1

(
yreal

i − ypred
i

)2
(2)    

Random forest regressor Similar to decision tree regressor, random 
forest regressor however builds a group of 
trees using different subset of data [35]. Pre-
dicted values obtained from different trees are 
being aggregated as the final predicted value. 
In comparison to decision tree where only one 
tree is used, using a group of trees will reduce 
over-fitting. When growing the trees in 
random forest regressor, SE is used to deter-
mine the quality of split.  

XGBoost regressor Similar to random forest regressor, XGBoost 
regressor builds a group of progressive trees 
[36]. After the first tree is built, the subse-
quent tree is built based on the previous tree, 
which is to reduce the errors committed by 
previous tree. 

2.4. Interpretation of boron rejection regression models 

Besides analysing the feature importance of the predictive models, 
two other methods were used to further analyze and interpret the 
models. In the first method, a tree diagram of the decision tree regressor 
was generated using export_graphviz. The tree branches were analysed 
to gain more understand on the effects of the features. The second 
method was to construct the univariate and bivariate partial dependence 
plots (PDP) using the predictive models developed. The PDP plots 
enabled the study of the effects of variables under a wider range of 
conditions. The univariate PDP was generated by varying the condition 
of a single parameter, while keeping the remaining parameters constant. 
Boron rejections of each single data point was predicted and an average 
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was calculated and shown in the graphs. For the bivariate PDP, two 
parameters were varied at the same time while keeping remaining pa-
rameters constant. 

3. Results and discussion 

3.1. Descriptive analytics of data collected from literature 

Fig. 1a illustrated the number of publications on the study of boron 
rejection of RO membranes from 2005 to 2023, with a total of 77 papers. 
There has been a consistent interest in this area over the years, with 
studies mainly focusing on the development of RO membranes with an 
enhanced boron rejection performance and the understanding of boron 
rejection in RO process under different conditions. From the journal 
articles, we successfully aggregated 534 rows of data and Fig. 1b shows 
the boron rejection distribution of the membranes. Boron rejection >70 
% were typically observed in SWRO membranes, while it spread be-
tween 45 % to 99 % for BWRO membranes. SWRO membranes with a 
tighter pore network structure overall had a higher boron rejection 
compared to BWRO membranes. We also included NF membranes in this 
study as similar polyamide TFC membranes were investigated for boron 
removal application in some studies. As expected, NF membranes with a 
looser pore structure had the lowest boron rejection, typically below 65 
%. Of all these data points, there was similar number of data points for 
SWRO and BWRO, each accounted for about 44 %, while only 12 % for 
NF, as shown in Fig. 1c. 

We collected data of 11 parameters as the features for the ML 

modeling, as shown in Fig. 1d. These parameters are the operating or 
testing conditions (temperature, pressure, pH, cross-flow velocity, boron 
concentration and NaCl concentration), membrane properties (contact 
angle, surface charge and surface roughness), and membrane perfor-
mance (water permeability and NaCl rejection). These variables are 
commonly reported in the literature and many of them could affect the 
boron rejection performance of the membranes. Most studies included 
the operating conditions in the publication, therefore these variables 
had fewer missing data in our data collection. However, membrane 
properties were not reported in many studies especially those focused on 
membrane processes, leading to a high percentage of missing data (>50 
%) in these variables. In our data collection, we included TDS rejection 
and salt rejection under the NaCl rejection variable for studies where 
mixed salt solution was tested. TDS and salt rejections were normally 
reported when real feeds like seawater were tested, and NaCl was still 
the main salt component in the solution [37,38]. Including the TDS and 
salt rejection data will reduce the missing data in the NaCl rejection 
feature, which can subsequently improve the data quality and ML 
modeling, as discussed later in Section 3.3. 

Fig. 2a to f show the data distribution of the features and the mem-
brane type was also indicated in the distributions. The boron rejection 
performance have been studied at a wide range of pressure from 2 to 62 
bar. For the SWRO membranes, a higher pressure was normally applied, 
with most data points >40 bar. Feeds with a high NaCl concentration 
such as seawater were normally tested with SWRO membranes, and a 
higher pressure was required to overcome the osmotic pressure. On the 
other hand, the pressure applied was lower for BWRO membranes 

Fig. 1. (a) Number of publications by year, (b) distribution of boron rejection by membrane type, (c) distribution of membrane types, (d) dataset parameters and 
missing data percentage. 
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(typically between 5 and 35 bar), and NF membranes (below 20 bar), as 
feeds with a lower salt concentration were normally tested. Besides that, 
SWRO membranes had the highest NaCl rejection >99 %. The NaCl 
rejection was lower for BWRO membranes (97–99 %), and <86 % for NF 
membranes. The common pH used to study the boron rejection perfor-
mance was between 6 and 10. However, it was observed that BWRO 
membranes were also frequently tested at pH >10 to obtain better boron 
rejection performance [39]. 

For the membrane properties, the water contact angle of the mem-
branes mostly fell between 25 and 80◦ as the polyamide TFC membranes 
are generally hydrophilic. While for the membrane surface roughness, 
the data ranged between 10 and 130 nm, but with majority of them 
above 60 nm. The rough membrane surface was contributed by the 
common ridge-and-valley structure of polyamide thin films [40]. For the 
membrane surface charge, the polyamide TFC membranes generally had 
a negatively charged surface with most of them with the surface charge 
between − 10 and − 25 mV. Some studies also reported highly negatively 
charged membrane surface with a zeta potential below − 40 mV. 

3.2. Data imputation of missing entries 

The missing entries in our dataset were recovered using 4 data 
imputation algorithms: SimpleFill, KNN, SoftImpute and MissForest. 
Randomisation of the dataset was required for SoftImpute and Mis-
sForest, and 3 different random states were used during the imputation. 
Results of different random states in Table S2 in the Supplementary 
material showed consistent RMSE values, and an average RMSE value 
was calculated. Table 1 presents the results of the data imputation where 
a smaller RMSE value indicates a higher accuracy of the imputation. 
MissForest outperformed the other methods, having smaller RMSE 
values in most parameters. The magnitude of the RMSE values varied 
among the parameters as it depends on the absolute value of the data. 
Our study demonstrated that the MissForest method can further improve 
the data imputation as compared to the most used SimpleFill method. 
Data imputation step is an important step when applying ML techniques 
in experimental data as missing data is commonly encountered. Mis-
sForest was therefore used to fill up the missing entries to obtain the 
final dataset for the predictive models. 

Fig. 3a–c show the collected and imputed data points for the features: 
pressure, NaCl rejection and pH. The imputed values were within the 
reasonable range of data collected from the articles. Fig. 3d–f show the 
data distribution with the imputed data included. The distributions were 

similar to those before the imputation (Fig. 2a–c). 

3.3. Boron rejection prediction models 

After the data imputation, the complete dataset was used to develop 
predictive models for boron rejection of RO membranes using 5 different 
regression models. Without data imputation, the data entries containing 
missing values could not be used effectively by the regression methods 
to build the predictive models. All the variables listed in Table 1 were 
used as features of the modeling, except temperature as most studies 
only conducted the experiments at room temperature. A 5-fold cross 
validation was used for the regression assessments, and Table 2 reports 
the performance of each model in terms of their R2, RMSE and MAE 
values. We first conducted the modeling without categorizing the 
dataset based on the membrane type. As shown in Table 2(a), the 
XGBoost regressor performed the best with the highest R2 of 0.78. 
Compared to the tree-based models, both linear and ridge regressions 
did not give a good prediction of the boron rejection, with a low R2 of 
0.31. Some parameters in the dataset, such as pH and NaCl concentra-
tion behave like categorical variables. For example, as the pH was higher 
9, the boron rejection increased significantly. This created a scenario 
where boron rejection performance is bimodal between pH below and 
above 9. In this scenario, algorithms capable of handling categorical 
data such as decision tree, random forest and XGBoost regressor would 
perform better. Our results also demonstrated the superiority of the ML 

Fig. 2. Distribution of data collected: (a) pressure, (b) NaCl rejection, (c) pH, (d) water contact angle, (e) surface roughness, and (f) surface charge.  

Table 1 
Data imputation performance. The figures in bold represent the lowest RMSE for 
each parameter.  

Parameter RMSE 

SimpleFill KNN SoftImpute MissForest 

Surface charge  12.9  14.9  12.3  9.9 
Surface roughness  81.5  74.7  72.1  99.0 
Contact angle  23.8  18.8  14.9  13.6 
NaCl rejection  35.4  4.1  12.4  6.0 
Permeate flux  22.1  22.1  19.1  17.6 
Cross flow velocity  0.2  0.2  0.2  0.1 
Pressure  12.7  13.2  16.0  7.8 
Temperature  5.3  3.3  3.3  2.5 
pH  2.0  2.2  1.5  1.6 
NaCl concentration  6902.2  6363.3  7931.9  1559.8 
Boron concentration  110.0  431.8  158.7  174.1  
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models in handling the dataset from the membrane research area. 
It was shown earlier in Fig. 2 that the data distributions varied for 

different membrane types. The testing conditions and membrane per-
formance for SWRO, BWRO and NF membranes could be quite different. 
To enable the models to learn better using the dataset, we introduced a 
new feature: membrane type. SWRO, BWRO and NF membranes were 
encoded into 1, 2 and 3, respectively, for the membrane type feature. 
The regression results with the addition feature are shown in Table 2(b). 
The performance of all the models improved significantly, with a higher 
R2 value and lower RMSE. The R2 value of the best model (XGBoost 
regressor) improved from 0.78 to 0.84, while the RMSE decreased from 
12.10 to 10.45. The additional feature also improved the non-tree 
regression methods, linear and ridge regressions. Our study demon-
strated that categorizing the dataset can be an effective way to improve 
the learning process, especially for data with multiple distributions. 

From the data collection, we observed that not all the articles re-
ported the NaCl rejection of the membranes, resulting in a high per-
centage of missing data in this feature. For studies testing mixed solute 
solutions or real feeds like seawater, the TDS or salt rejection was more 
commonly reported. Introducing a separate feature for TDS or salt 
rejection would cause more missing data as most studies did not report 
this information. As NaCl was still the main component in the mixed 
solute solutions, the TDS/salt rejection would be reasonably close to the 
NaCl rejection of the membranes. Therefore, we performed an assess-
ment by including TDS/salt rejection data into the NaCl rejection feature 
for the regression fitting, and the results are shown in Table 2(c). The R2 

values further increased and the RMSE decreased for nearly all regres-
sion methods. The XGBoost regression still performed the best and had 
an R2 value of 0.84. The utilization of TDS/salt rejection reduced the 
missing data in the NaCl rejection feature, which could improve the data 
quality for modeling. For the subsequent analysis, we have included the 
TDS/salt rejection data. 

To further test the performance of the regression fittings, the dataset 
was divided into 80 % for training and 20 % for testing. The training 
dataset was first used to train the regression model, which was after-
wards used to predict the boron rejection of both the training and testing 
datasets. The predicted data were plotted against collected data and the 
R2 score was calculated, as shown in Fig. 4. The tree-based ML algo-
rithms: decision tree, random forest and XGB regressors had R2 values of 
0.64, 0.75 and 0.79, respectively, which outperformed the linear and 
ridge regressions, both with an R2 of 0.62. There was a good agreement 
between predicted and collected data, especially in the high boron 
rejection region. This can be attributed to more data points being 
collected for the high boron rejection region, as shown in Fig. 1b. 

The relative contributions of each parameter to the boron rejection 
performance of the membranes in different predictive models are 
plotted in Fig. 5. The contribution of pH was consistently high across 
these models; it was the most important parameter in the decision tree 
and XGBoost regressors and the second most important parameter in the 
random forest regressor. NaCl rejection was also shown as an important 
parameter across different models. Membranes with the capability to 
reject NaCl and salt efficiently are more likely to have a more selective 
and defect-free separating layer that could have a better boron rejection 
[15]. Membrane properties such as surface charge, surface roughness 
and contact angle did not exhibit strong effects on the boron rejection 

Fig. 3. Visualisation of recovered missing entries for (a) pressure, (b) NaCl rejection, and (c) pH. Data distribution after imputation for (d) pressure, (e) NaCl 
rejection, and (f) pH. 

Table 2 
Boron rejection prediction model performance: (a) without membrane type 
feature, (b) with membrane type feature, and (c) with membrane type feature 
and data of TDS/salt rejection. (σ is the standard deviation).   

R2 RMSE MAE 

(a) 
Linear regression 0.31 (σ = 0.10) 21.44 (σ = 1.21) 16.38 (σ = 1.19) 
Ridge regression 0.31 (σ = 0.10) 21.43 (σ = 1.20) 16.36 (σ = 1.17) 
Decision tree regressor 0.60 (σ = 0.09) 16.28 (σ = 1.44) 11.30 (σ = 1.04) 
Random forest regressor 0.62 (σ = 0.09) 15.86 (σ = 1.41) 11.35 (σ = 0.59) 
XGBoost regressor 0.78 (σ = 0.05) 12.10 (σ = 1.25) 7.59 (σ = 0.59)  

(b) 
Linear regression 0.66 (σ = 0.07) 14.84 (σ = 0.74) 10.99 (σ = 0.39) 
Ridge regression 0.67 (σ = 0.07) 14.83 (σ = 0.73) 10.98 (σ = 0.39) 
Decision tree regressor 0.76 (σ = 0.06) 12.47 (σ = 0.99) 8.64 (σ = 0.60) 
Random forest regressor 0.76 (σ = 0.07) 12.42 (σ = 1.15) 8.60 (σ = 0.48) 
XGBoost regressor 0.84 (σ = 0.03) 10.45 (σ = 1.12) 6.49 (σ = 0.65)  

(c) 
Linear regression 0.70 (σ = 0.06) 14.09 (σ = 0.61) 10.19 (σ = 0.42) 
Ridge regression 0.70 (σ = 0.06) 14.08 (σ = 0.60) 10.19 (σ = 0.43) 
Decision tree regressor 0.74 (σ = 0.08) 12.94 (σ = 1.56) 8.72 (σ = 1.04) 
Random forest regressor 0.79 (σ = 0.05) 11.85 (σ = 0.96) 8.03 (σ = 0.80) 
XGBoost regressor 0.84 (σ = 0.03) 10.09 (σ = 0.52) 6.08 (σ = 0.31)  
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performance. 
The importance of the features was also examined using a tree dia-

gram and Fig. 6 illustrates the diagram generated by the decision tree 
regressor. The tree first segregated the data points into 3 clusters ac-
cording to the membrane type. The tree model identified that SWRO, 
BWRO and NF membranes had distinct boron removal performance, and 
thus classified them in the first node of the tree. Within each membrane 
type cluster, the tree subsequently divided the data points based on the 
pH, with pH ~9 as the cut-off. The acid dissociation constant of boric 
acid is 9.2, where charged boron species becomes dominant above this 
pH. The boron rejection will increase significantly at pH >9 as the 
membranes can retain the charged species more effectively through 
surface charge effect [8]. The two most important and influential fea-
tures, membrane types and pH, were captured at the upper nodes of the 

tree. The decision tree is capable to generalise and learn from the dataset 
intuitively, producing outcome that aligns with current knowledge. 

The tree diagram generated not only shows the important features 
but also the conditions when a high boron rejection can be achieved. For 
SWRO membranes tested at pH <8.8, a higher pressure >15.8 bar could 
contribute to a higher boron rejection. The next level of the branch 
showed that NaCl rejection >99.6 % would yield a high boron rejection 
of 92.8 %. Though SWRO membranes generally have a high NaCl 
rejection >99 %, the ML model suggested that a higher NaCl rejection is 
likely needed to ensure a high boron rejection. This aligns with the 
understanding that a defect-free polyamide separating layer with a high 
crosslinking density is needed to achieve high NaCl rejection [15]. Such 
highly selective membranes will also have excellent solute sieving 
properties, which will be beneficial for boron rejection. However, the 

Fig. 4. Boron rejection prediction model performance: (a) linear regression, (b) ridge regression, (c) decision tree regression, (d) random forest regression, and (e) 
XGBoost regression. 

Fig. 5. Feature Importance generated by (a) decision tree regression, (b) random forest regression, and (c) XGBoost regression.  
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Fig. 6. A snip of tree diagram generated from the decision tree regressor.  

Fig. 7. Univariate PDP for (a) surface charge, (b) surface roughness, (c) contact angle, (d) NaCl rejection, (e) cross flow velocity, (f) pressure, (g) pH, (h) boron 
concentration, and (i) NaCl concentration. 
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higher NaCl rejection may compromise the water permeability of the 
membranes. Breakthroughs in membrane material synthesis are 
required to overcome the permeability-selectivity trade-off relationship. 
On the other hand, BWRO membranes generally had a lower boron 
rejection, and a higher pH > 9.3 was required in order to achieve a high 
boron rejection. The membrane surface charge was shown to be an 
important property to have a high boron rejection at high pH, and a 
highly negatively charged surface with zeta potential lower than − 24.8 
eV is favorable. For NF membranes, the boron rejection unfortunately 
was very low even when the pH was high. Though NF membranes have a 
high water permeability, the looser structure of the separating layer was 
insufficient for boron removal applications. The full tree generated in 
our experiment is included in Fig. S1 in the Supplementary material. 

3.4. Univariate and bivariate partial dependence analyses 

To further assess the effects of each feature on the boron rejection 
performance, partial dependence analysis was conducted. The univari-
ate partial dependence plots (PDP) were obtained by varying one 
parameter at a time, and the boron rejection was predicted with the 
conditions of other parameters remained unchanged. An average was 
obtained from all the data points and depicted using orange dotted line 
in Fig. 7. The predictive model developed from the random forest re-
gressor was used in this analysis. Though the XGBoost regressor gave 
slightly higher accuracy (in Section 3.3), the PDP produced had more 
noise. This could be due to the small dataset and overfitting, making 
result interpretation challenging. The PDP generated from the XGBoost 
regressor is included in the Supplementary material for reference. 
Among all the features, only NaCl rejection and pH showed significant 
effects on the boron rejection. As the NaCl rejection increased above 90 
%, the boron rejection increased by about 10 %, and it further increased 
when the NaCl rejection was above 99 %. This result supports the 
observation in the tree diagram (Fig. 6) that NF membranes with a low 
NaCl rejection <90 % may not be suitable boron removal even in the 

second pass of a two-pass RO process. RO membranes with a very high 
NaCl rejection will enhance the boron removal performance, and this 
observation is consistent with the “defect-plugging” approach taken by 
many researchers when developing RO membranes [15]. Meanwhile, as 
the pH was increased above 9, the boron rejection increased by about 15 
%. The result shows that pH around 10 could be sufficient to obtain the 
optimal effect of pH on boron removal. For other operating conditions, 
higher pressure showed a slight positive effect on the boron rejection, 
but the cross-flow velocity did not have much effect. The effects of 
membrane properties, surface charge, surface roughness and contact 
angle was also minimum. 

Bivariate dependence analysis was conducted to further understand 
the interaction between two features and their mutual effects. Likewise, 
the random forest regressor was used to produce the bivariate PDP in 
Fig. 8. From the earlier finding, pH consistently showed as an prominent 
feature and therefore was chosen as the primary parameter to study with 
another parameter. Membrane surface roughness, contact angle and 
crossflow velocity showed minimum effect on the boron rejection across 
different pH range. A slight effect was observed for surface charge at pH 
<8, but the effect of pH remained dominant. Surface modification of RO 
membranes to improve their surface charge may not yield substantial 
improvement especially when most RO membranes are already highly 
negatively charged. However, surface charge lower than − 24.8 eV is still 
vastly desirable for BWRO membranes applied at high pH, as discussed 
in Section 3.3. On the other hand, NaCl rejection and pressure showed 
some influence on boron rejection when pH is below 9. The values of 
boron rejection shown in the figures were relatively low as all three 
types of membranes were included in this analysis. 

We also generated the bivariate PDP for SWRO and BWRO mem-
branes separately, focusing on key features, as illustrated in Fig. 9. In 
seawater desalination, seawater is usually fed directly to the SWRO 
membrane unit. Changing the pH of the feed is usually impractical due 
to the large amount of water being processed. Furthermore, the high salt 
concentration of seawater also makes it difficult to control the pH. The 

Fig. 8. Bivariate PDP between pH and (a) surface charge, (b) surface roughness, (c) contact angle, (d) NaCl rejection, (e) cross-flow velocity, and (f) pressure.  
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pH of seawater is about 8, and it can be observed from Fig. 9(a) that NaCl 
rejection >99.4 % could further improve the boron rejection of SWRO 
membranes. Similar observation was shown in the NaCl rejection – 
pressure PDP in Fig. 9(b). High operating pressure is essential for 
achieving high boron rejection, and higher NaCl rejection could further 
enhance the boron retention. On the other hand, BWRO membranes are 
more likely used in the second pass of a two-pass RO process. High pH is 
needed for high boron rejection, but a very high NaCl rejection may not 
further improve the boron rejection. Therefore, relatively loose BWRO 
membranes can be used if a high pH is applied. The higher water 
permeability of looser BWRO membranes can potentially reduce the 
energy consumption of the process. 

4. Conclusions 

In this study, we successfully developed predictive models for boron 
removal performance of RO membranes using ML techniques based on 
published experimental data. Data of 11 features on membrane prop-
erties, operating conditions and membrane performance was first 
collected from the literatures. The missing data entries was then 
recovered through data imputation and several techniques including 
SimpleFill, KNN, SoftImpute and MissForest were examined. Our results 
demonstrated that ML-based MissForest algorithm could best impute the 
missing experimental data. The predictive models for boron removal 
performance were subsequently developed by training the regression 
models using the imputed dataset. Five regression models were studied 
and the tree-based algorithms (decision tree, random forest and XGBoost 
regressors) outperformed the linear and ridge regressions. The XGBoost 
regressor demonstrated the best performance, with an R2 of 0.84, which 
could be attributed to its ability to handle categorical parameters. Our 
study also showed two approaches to improve the training of the ML 
models. Firstly, the appropriate classification of the dataset enhanced 
the trainings, and the accuracy of the models improved significantly 
with the additional membrane type feature. Secondly, including the 
salt/TDS rejection data in the NaCl rejection feature further improved 
the training by reducing the missing entries in the dataset. To further 
improve the accuracy of the ML models, additional experiments can be 
designed in future work to obtain more data for model trainings. 

The effects of the features on the boron removal performance were 
studied by analysing the feature importance in the predictive models 
and the tree diagram. The membrane type, pH and NaCl rejection 
appeared to be the three most important parameters in affecting the 
boron rejection performance. The tree diagram showed that pH >9 was 
a key cut-off point for high boron removal rate, and NaCl rejection 
>99.6 % was required to achieve a high boron rejection for SWRO 
membranes at pH < 9. Membrane properties such as surface charge, 
surface roughness and contact angles showed minimum effects on the 
boron rejection. However, membrane surface charge of <− 24.8 eV is 
still desirable for high boron rejection in BWRO at pH > 9. Furthermore, 

the predictive models were used to generate univariate and bivariate 
PDP, allowing further analysis of the variables under a wider range of 
conditions. pH and NaCl rejection continued to show as the most 
prominent parameters in determining high boron rejection. For SWRO, 
defect-free membranes with a high NaCl rejection >99.6 % are highly 
desirable for high boron rejection. However, for the application of 
BWRO in a second pass RO process, a looser structure with a NaCl 
rejection of >95 % could perform well at pH >9. Our results demon-
strated that ML could effectively learn from the dataset, producing 
meaningful outcomes that align with current knowledge. The models 
also identified conditions for further improving the boron removal 
performance. Since this study relied on data from published papers, the 
explored features were limited. Further experiments are necessary to 
obtain sufficient relevant data to explore the effects of other features. 
The predictive models developed can serve as a useful tool for re-
searchers and membrane users to predict the membrane performance. 
The detailed analysis also provides researchers with more systematic 
guidelines for developing membranes and designing membrane 
processes. 
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