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Abstract 

Liquid sloshing and its interaction with an elastic cover in a cylindrical tank is 

considered. The velocity potential for the fluid flow is expanded into the Bessel-Fourier 

series as commonly used. An efficient scheme is then developed, which allows the plate 

deflection to use the same type of expansion as the potential. When these two series are 

matched on the interface of the fluid and the plate, the unknown coefficients in the two 

expansions can be easily obtained. This is much more convenient than the common 

procedure where a different expansion is used for the plate and upon matching each 

term in the series of the plate is further expanded into the series used for the potential. 

Through the developed method, an explicit equation is derived for the natural 

frequencies and extensive results are provided. The corresponding natural mode shapes 

and principal strains distribution of the elastic cover are also investigated. Results are 

provided and the underlining physics is discussed. To verify the obtained results, the 

problem is also solved through a different method in which the potential is first 

expanded into vertical modes. Another explicit equation for the natural frequencies is 

derived. While the equation may be in a very different form, through the residual 

theorem, it is found that the second equation is identical to the first one. 

 

Key words: coupled fluid/structure vibration; natural modes; sloshing; elastic cover; 

eigenfunctions expansion. 



1. Introduction 

Liquid sloshing commonly exists in nature. It can also often be observed in many 

engineering applications, such as in marine transportation of crude oil and liquefied 

natural gas (LNG) (Rognebakke and Faltinsen [1]; Mitra et al. [2]), oil/LNG storage on 

land undergoing earthquakes (Hatayama [3]), motions of liquid fuel in spacecrafts and 

aircrafts (Veldman et al. [4]; Farhat et al. [5]), and bulk liquid road transportation 

(Toumi et al. [6]). Sloshing motions in many cases have adverse effect, which 

sometimes could have server consequence. This is primarily because the sloshing is 

usually the liquid motion in a confined container and is caused by the oscillation of the 

container. When the motions of the container and liquid are synchronized, energy from 

the container will be continuously transferred to the liquid. The energy of the liquid 

accumulates, and its motion becomes bigger and bigger, which is commonly known as 

resonance. In such a case, the large liquid motion may create large loads on the container 

and it is not uncommon that impact occurs regularly, which generates very high pressure 

over a short period of time. An example is an LNG carrier navigating on ocean. Violent 

liquid motion inside the tank may occur especially in the rough seas. When the 

frequencies of external excitation are close to the natural frequencies of the sloshing 

containers, the violent fluid motion may not only cause damage to the inner structure of 

containers, but also affect the motion of ships and pose a threat to their safety. It is 

therefore important to predict the natural frequencies accurately to help to control 

resonant motion and to minimize its effect. While the liquid sloshing may have many 

undesirable effects, it can also be used beneficially. In marine engineering, anti-roll 

tanks are sometimes installed in ships. The liquid motion can adjust to provide a counter 

force to improve the seakeeping performance of the ship. Tuned Liquid Damper (TLD) 

is sometimes installed in high-rise buildings for increasing dampening and decreasing 

vibration of structures induced by environmental factors such as wind. 

 

Due to its practical importance and relevance, extensive research has been undertaken 

on liquid sloshing. Based on the velocity potential theory, Faltinsen [7] studied sloshing 

in a two-dimensional (2D) rectangular tank. For the linear problem [7] derived the 



analytical solutions for the natural frequencies and for liquid motion under the forced 

sway oscillation of the tank, and also solved the corresponding nonlinear problem 

numerically based on the boundary element method. The same problem was also studied 

by Nakayama and Washizu [8] and Chen et al. [9] based on boundary element method 

and finite difference method, respectively. The two-dimensional sloshing problem in a 

general-shaped tank was considered by Solaas and Faltinsen [10]. The finite element 

method developed for the 2D nonlinear free surface problem (Wu and Eatock Taylor 

[11]) was extended to the 3D case and further applied to study the nonlinear sloshing 

problem in a rectangular tank by Wu et al. [12]. An analytical approach based on a 

modal theory was adopted by Faltinsen and Timokha [13] to deal with the nonlinear 

sloshing in a 2D rectangular tank. Based on the perturbation theory, Wu [14] 

investigated the second-order resonant behaviours of sloshing in a 2D rectangular tank. 

Wu [14] observed that the second-order resonance would occur when the 

difference/sum of two excitation frequencies approached to any even mode of natural 

frequencies. Apart from works mentioned above, there are many others dealing with 

2D/3D tanks with different shapes using various solution methods analytically or 

numerically either based on velocity potential theory or Navier-Stokes equations, which 

have been summarised in Ibrahim [15] and Faltinsen and Timokha [16]. 

 

Apart from sloshing of liquid with a free surface, there are also practical examples 

where there is an elastic cover on the liquid surface, for example a floating roof over 

the crude oil storage. Another example is the problem related to “seiche” phenomenon 

in some ice-covered water areas in cold regions. When the vertical dimension of an 

elastic cover is much smaller than the horizontal ones, it is common to use elastic plate 

theory for the cover. The deformation of elastic plate and the motion of liquid are 

coupled. The natural modes of the coupled system will be very much different from 

those of system with free surface. For example, Bauer [17] studied the natural 

frequencies of sloshing liquid in a circular cylindrical container covered by a membrane 

or plate cover based on the Bessel-Fourier series expansion. In [17], the written 

deflection of the plate contains two components. One is a special solution of the 

inhomogeneous equation due to the hydrodynamic pressure, in which the same 



orthogonal Bessel-Fourier expansion is used as that for the velocity potential. The other 

is the general solution of the homogenous equation, in which a different Bessel series 

is used. This can be clearly seen in the two summations of Eq. (33) of [17]. Amabili [18] 

considered a circular cylindrical container where the liquid surface is partially covered 

by an elastic circular plate, with its centre coincident with the centre line of the tank. In 

[18], the plate deflection and velocity potential are expanded into two different Bessel-

Fourier series with unknown coefficients. Different from [17], the expansion for the 

plate deflection has taken into account the plate edge conditions, and the dynamic 

condition is imposed based on the Rayleigh-Ritz method. Using the same method, Kim 

and Lee [19] investigated the case of the liquid surface partially covered by a doughnut-

shaped plate with its outer edge clamped to the tank wall. Recently, the problem in [17] 

was reconsidered by [20] based on the virtually same method, where more mathematical 

details such as on the coefficient matrix and additional results for simply supported edge 

cases were provided. 

 

In this paper, we shall consider the natural frequencies and natural modes of liquid in a 

circular cylindrical tank with an elastic cover on the surface. The edge condition of the 

cover, or the condition at the intersection of the cover and the tank wall can be arbitrary. 

Specifically, we shall focus on the clamped, simply supported and free edges, although 

their combinations can be equally considered. Two efficient methods have been 

developed, whose procedures can be used more generally for this type of problem.  

 

In the first method, variable separation method is used for the velocity potential which 

is expanded into a series in the horizontal plane. For a circular cylindrical tank, the 

expansion is in the form of Bessel-Fourier series which satisfies the tank wall condition. 

The vertical expansion is then obtained from the solution of the Laplace equation. It 

satisfies the tank bottom condition but not the conditions on the cover. This part may 

be similar to that in Bauer [17]. However, a major and significant difference is that 

Bauer [17] subsequently used two series (one double series plus one single series) for 

the deflection of the cover, based on respectively the special solution of the 

inhomogeneous equation and general solution of the homogeneous equation. The latter 



differs from that used for the potential. When matching dynamic and kinematic 

conditions on the interface of the cover and liquid, each term in the series of general 

solution has to be expanded into the Bessel series of the velocity potential. When the 

edge conditions are imposed, the unknown coefficients are coupled, and it leads to an 

infinite set of linear equations. If this is solved directly without further treatment, it has 

to be truncated at a large finite number and the natural frequencies can be obtained when 

the determinant of coefficient matrix is zero. A very similar procedure was used in [20]. 

 

In the context of the work mentioned above, the novelty of present method can be 

summarized below. Here we have developed a method through which the deflection 𝑤 

of the plate can be expanded in terms of the same Bessel-Fourier series as that for 

velocity potential 𝜙. This may sound trivial. However, the challenge is that when the 

expansion is applied to 𝑤 itself, the operator ∇4 cannot always be directly applied to the 

expansion, as the series usually becomes divergent. We have therefore expanded ∇4𝑤 

instead and developed a procedure to work out the expansion of 𝑤 based on that of ∇4𝑤. 

This not only avoids the issue of divergence but also provides a means to impose the 

edge conditions. When 𝑤 and 𝜙 are expanded into the same Bessel-Fourier series, their 

coefficients form a one-to-one relationship because of orthogonality, when matching 

conditions are imposed. Subsequently, when the edge conditions are enforced, a simple 

2-by-2 matrix equations are obtained. The natural frequencies can be obtained when the 

determinant of this 2-by-2 matrix is zero and this is a very simple operation. In the work 

of [17] and [20], the infinite matrix 𝑨 is truncated at a finite value, e.g., 𝑀. As 𝑀 

becomes larger, to solve det(𝑨) = 0 directly becomes numerically more difficult. In 

[20], 𝑀  is chosen around 10. Here in our work, the matrix is only 2-by-2 and its 

determinant can be calculated easily. For the results, [17] provided only the clamped 

case, while [20] further provided simply supported cases. Neither of them provided 

results for the free edge conditions. 

 

To verify our procedure, a second method is also developed. For the velocity potential, 

the deflection appears only in its dynamic and kinematic boundary conditions on the 

cover. Once these two conditions are combined, the deflection can be eliminated and 



problem becomes a one for the potential only. The potential is then first expanded in 

the vertical direction and each term satisfies the tank bottom condition and combined 

dynamic and kinematic condition on the cover. Through using the inner product and 

orthogonality, the tank wall and edge conditions are satisfied. As a result, another 

explicit equation for the natural frequencies is also derived. This equation is in a form 

very different from that derived from the first method. However, through residual 

theorem in the complex plane, they are found to be identical. 

 

This paper is organized as follows. The mathematical model and formulations are 

introduced in Section 2. The two solution methods for the liquid-plate-coupled sloshing 

system are developed in Section 3. Extensive results are provided for different edge 

conditions in Section 4. Conclusions are given in Section 5. 

 

 

Fig. 1. Illustration of liquid sloshing in a cylindrical tank with elastic cover. 

 

2. Mathematical model and formulations 

We consider liquid sloshing in a circular cylindrical tank. The tank wall is assumed to 

be rigid, while an elastic cover is on the top surface of the fluid. Cartesian and 

cylindrical coordinate systems, or 𝑂𝑥𝑦𝑧 and 𝑂𝑟𝜃𝑧  with 𝑥 = 𝑟 cos 𝜃  and 𝑦 = 𝑟 sin 𝜃 , 

fixed on the tank are established, with their origins located on the mean upper surface 

of the fluid domain, and the 𝑧-axes pointing vertically upwards along the centre line of 



the tank. The liquid is assumed to be inviscid and incompressible, and its motion is 

irrotational. Therefore, the velocity potential Φ can be adopted to describe the fluid 

motion. It satisfies the Laplace equation 

∇2Φ+
𝜕2Φ

𝜕𝑧2
=
𝜕2Φ

𝜕𝑥2
+
𝜕2Φ

𝜕𝑦2
+
𝜕2Φ

𝜕𝑧2
= 0,                                   (1) 

in the Cartesian system, which can be converted into the cylindrical system as  

𝜕2Φ

𝜕𝑟2
+
1

𝑟

𝜕Φ

𝜕𝑟
+
1

𝑟2
𝜕2Φ

𝜕𝜃2
+
𝜕2Φ

𝜕𝑧2
= 0.                                       (2) 

Here ∇2  is the two-dimensional Laplacian operator. When the motion amplitude is 

small compared with the tank dimension and the typical wavelength of the sloshing 

motion, the boundary conditions can be linearized. In such a case, the deflection of 

elastic cover 𝑊 and velocity potential Φ satisfy the following dynamic and kinematic 

conditions 

𝜌𝑒ℎ
𝜕2𝑊

𝜕𝑡2
+ 𝐿∇4𝑊 = −𝜌Φ𝑡 − 𝜌𝑔𝑊,                                        (3) 

𝑊𝑡 = Φ𝑧,                                                             (4) 

on the interface 𝑧 = 0, where 𝐿 = 𝐸ℎ3/[12(1 − 𝜈2)] is the flexural rigidity with 𝐸, ℎ, 

𝜌𝑒  and 𝜈  being the Young’s modulus, thickness, density and Poisson’s ratio of the 

elastic plate, 𝜌 is the density of the liquid and 𝑔 is the acceleration due to gravity. The 

combination of Eqs.(3) and (4) gives 

(𝐿∇4 + 𝜌𝑒ℎ
𝜕2

𝜕𝑡2
+ 𝜌𝑔)Φ𝑧 = −𝜌

𝜕2Φ

𝜕𝑡2
,        𝑧 = 0.                             (5) 

On the tank wall, the impermeable boundary condition gives 

∂Φ

𝜕𝑟
|
𝑟=𝑟0

= 0,                                                            (6) 

while on the tank bottom 

∂Φ

𝜕𝑧
|
𝑧=−𝐻

= 0,                                                           (7) 

where 𝑟0 is the radius of the tank and 𝐻 is the depth of liquid. 

 



In addition, the elastic cover is assumed to extend to the tank wall. We may consider 

three types of commonly used edge conditions (Timoshenko and Woinowsky-Krieger 

[21]), or clamped edge: 

𝑊|𝑟=𝑟0 = 0,
𝜕𝑊

𝜕𝑟
|
𝑟=𝑟0

= 0,                                             (8) 

free edge: 

∇2𝑊|𝑟=𝑟0 =
1 − 𝜈

𝑟0
[(
1

𝑟0

𝜕2

𝜕𝜃2
+
𝜕

𝜕𝑟
)𝑊]

𝑟=𝑟0

[
𝜕

𝜕𝑟
∇2𝑊]

𝑟=𝑟0

= −
1 − 𝜈

𝑟0
2 [(

𝜕3

𝜕𝜃2𝜕𝑟
−
1

𝑟0

𝜕2

𝜕𝜃2
)𝑊]

𝑟=𝑟0}
 
 

 
 

,                     (9) 

and simply supported edge: 

∇2𝑊|𝑟=𝑟0 =
1 − 𝜈

𝑟0
[(
1

𝑟0

𝜕2

𝜕𝜃2
+
𝜕

𝜕𝑟
)𝑊]

𝑟=𝑟0

, 𝑊|𝑟=𝑟0 = 0.                (10) 

 

3. Solution procedures for the natural frequencies 

We consider the case in which the liquid is set into motion by some initial disturbance 

and will then continue oscillating on its own at its natural modes without further 

excitation. Assuming that 𝜔 is a natural frequency, we may write the velocity potential 

and the cover deflection as Φ(𝑥, 𝑦, 𝑧, 𝑡) = Re{𝜙(𝑥, 𝑦, 𝑧) × 𝑒−𝑖𝜔𝑡}  and 𝑊(𝑥, 𝑦, 𝑡) =

Re{𝑤(𝑥, 𝑦) × e−𝑖𝜔𝑡}, respectively. 

 

3.1 Solution using a Bessel-Fourier series expansion 

The dynamic and kinematic conditions in Eqs. (3) and (4) can be written as 

𝐿∇4𝑤 + (𝜌𝑔 − 𝜌𝑒ℎ𝜔
2)𝑤 = 𝑖𝜔𝜌𝜙,   𝑧 = 0,                                (11) 

−𝑖𝜔𝑤 = 𝜙𝑧 ,   𝑧 = 0.                                                 (12) 

The velocity potential 𝜙 may be expanded into a Fourier series in 𝜃 direction. Through 

variable separation method in 𝑟 and 𝑧 directions, we may write 

𝜙 =∑∑ 𝐽𝑛(𝛼𝑛𝑚𝑟) (𝑎𝑛𝑚 cos 𝑛𝜃 + 𝑏𝑛𝑚 sin 𝑛𝜃)
cosh 𝛼𝑛𝑚(𝑧 + 𝐻)

cosh 𝛼𝑛𝑚𝐻

∞

𝑚=1

∞

𝑛=0

 ,      (13) 



where 𝐽𝑛 is the Bessel function of the first kind. Equation (13) automatically satisfies 

Eqs. (2) and (7). To satisfy Eq. (6), 𝛼𝑛𝑚𝑟0 will be the solution of 𝐽𝑛
′ (𝛼𝑛𝑚𝑟0) = 0, or 

zeros of the first-order derivative of the Bessel function. It should be noted that the 

derivative here is taken in the sense 𝐽𝑛
′ (𝑧) = d𝐽𝑛/d𝑧. 

 

The deflection of the elastic cover can be expanded as 

𝑤(𝑟, 𝜃) = ∑𝑤𝑛
(𝑐)(𝑟) cos 𝑛𝜃 + 𝑤𝑛

(𝑠)(𝑟) sin 𝑛𝜃

∞

𝑛=0

.                         (14) 

Here the procedures to solve the problems of 𝑤𝑛
(𝑐)

 and 𝑤𝑛
(𝑠)

 are identical. We therefore 

focus on the former and use 𝑤𝑛  for 𝑤𝑛
(𝑐)

. Due to the orthogonality of trigonometric 

functions, Eqs. (11) and (12) can be written in terms of 𝑤𝑛 as 

𝐿 (
𝜕2

𝜕𝑟2
+
1

𝑟
 
𝜕

𝜕𝑟
−
𝑛2

𝑟2
)

2

𝑤𝑛 + (𝜌𝑔 − 𝜌𝑒ℎ𝜔
2)𝑤𝑛 = 𝑖𝜔𝜌 ∑ 𝑎𝑛𝑚 𝐽𝑛(𝛼𝑛𝑚𝑟)

∞

𝑚=1

,    (15) 

−𝑖𝜔𝑤𝑛(𝑟) = ∑ 𝑎𝑛𝑚 𝛼𝑛𝑚 𝐽𝑛(𝛼𝑛𝑚𝑟) tanh𝛼𝑛𝑚𝐻

∞

𝑚=1

.                        (16) 

It may seem that we could expand 𝑤𝑛(𝑟) into a Bessel-Fourier series as we have done 

for 𝜙 in Eq. (13). However, as discussed in Ren et al. [22] on the rectangular channel 

problem, it can be problematic when spatial derivatives in Eq. (3) are applied to the 

expansion. Thus, in Ren et al. [22], the expansion is then applied to 𝑊′′′′(𝑦) in the 

transverse direction 𝑦  of the channel, and the expansion of 𝑊  is obtained through 

integration of 𝑊′′′′. The result therefore contains four additional coefficients which are 

determined through edge conditions of the cover at the channel wall. 

 

Here when we have the expansion for 𝑤𝑛(𝑟), we shall not take direct derivatives with 

respect 𝑟 to obtain 𝑤𝑛
(𝑘)

 for 𝑘 = 1,2,3,4. Instead, we shall obtain the expansion of the 

first term on the left-hand side of Eq. (15) through the following procedure. We first 

write 

𝐿𝑛(𝑟) = (
𝜕2

𝜕𝑟2
+
1

𝑟
 
𝜕

𝜕𝑟
−
𝑛2

𝑟2
)𝑤𝑛(𝑟),                                      (17) 

and then consider the following integration 



𝐼𝑚 = ∫ 𝐿𝑛

𝑟0

0

 𝑟 𝐽𝑛(𝛼𝑛𝑚𝑟)d𝑟 = ∫ (
𝜕2

𝜕𝑟2
+
1

𝑟
 
𝜕

𝜕𝑟
−
𝑛2

𝑟2
)𝑤𝑛

𝑟0

0

 𝑟 𝐽𝑛(𝛼𝑛𝑚𝑟)d𝑟.       (18) 

Through integration by parts, we obtain 

𝐼𝑚 = 𝑟0𝐽𝑛(𝛼𝑛𝑚𝑟0)𝑤𝑛
′(𝑟0) − 𝑟0𝛼𝑛𝑚 𝐽𝑛

′ (𝛼𝑛𝑚𝑟0)𝑤𝑛(𝑟0)

+ ∫ 𝑤𝑛 { [𝑟 𝐽𝑛(𝛼𝑛𝑚𝑟)]
′′ − [𝐽𝑛(𝛼𝑛𝑚𝑟)]

′ −
𝑛2

𝑟
𝐽𝑛(𝛼𝑛𝑚𝑟)}

𝑟0

0

d𝑟

= 𝑟0 𝐽𝑛(𝛼𝑛𝑚𝑟0)𝑤𝑛
′(𝑟0) − 𝑟0𝛼𝑛𝑚 𝐽𝑛

′ (𝛼𝑛𝑚𝑟0)𝑤𝑛(𝑟0)

− ∫ 𝛼𝑛𝑚
2  𝑤𝑛 𝑟 𝐽𝑛(𝛼𝑛𝑚𝑟)

𝑟0

0

d𝑟                                                                        (19) 

where Eq. (9.1.1) of Abramowitz and Stegun [23] or the differential equation satisfied 

by the Bessel function has been used. We then apply the procedure in Eq. (18) to the 

first term on the left-hand side of Eq. (15), or 

𝑀𝑛(𝑟) = (
𝜕2

𝜕𝑟2
+
1

𝑟

𝜕

𝜕𝑟
−
𝑛2

𝑟2
) 𝐿𝑛 = (

𝜕2

𝜕𝑟2
+
1

𝑟

𝜕

𝜕𝑟
−
𝑛2

𝑟2
)

2

𝑤𝑛,                     (20) 

and we have 

𝐾𝑚 = ∫ 𝑀𝑛

𝑟0

0

 𝑟 𝐽𝑛(𝛼𝑛𝑚𝑟)d𝑟

= 𝑟0 𝐽𝑛(𝛼𝑛𝑚𝑟0)
𝜕𝐿𝑛
𝜕𝑟
|
𝑟=𝑟0

− 𝑟0𝛼𝑛𝑚 𝐽𝑛
′ (𝛼𝑛𝑚𝑟0)𝐿𝑛|𝑟=𝑟0 − 𝛼𝑛𝑚

2 𝐼

= 𝑟0  𝐽𝑛(𝛼𝑛𝑚𝑟0)
𝜕𝐿𝑛
𝜕𝑟
|
𝑟=𝑟0

− 𝑟0𝛼𝑛𝑚  𝐽𝑛
′ (𝛼𝑛𝑚𝑟0) 𝐿𝑛|𝑟=𝑟0

− 𝑟0𝛼𝑛𝑚
2   𝐽𝑛(𝛼𝑛𝑚𝑟0)

𝜕𝑤𝑛
𝜕𝑟

|
𝑟=𝑟0

+ 𝑟0𝛼𝑛𝑚
3   𝐽𝑛

′ (𝛼𝑛𝑚𝑟0) 𝑤𝑛|𝑟=𝑟0

+ 𝛼𝑛𝑚
4  ∫ 𝑟 𝐽𝑛(𝛼𝑛𝑚𝑟) 𝑤𝑛

𝑟0

0

d𝑟 .                                                                          (21) 

We now expand 𝑤𝑛(𝑟) as 

𝑤𝑛(𝑟) = ∑ 𝑒𝑚 𝐽𝑛(𝛼𝑛𝑚𝑟)

∞

𝑚=1

.                                            (22) 

Using the orthogonality of the Bessel function, and noticing 𝐽𝑛
′ (𝛼𝑛𝑚𝑟0) = 0, Eqs. (19) 

and (21) give 



𝐼𝑚 = 𝑟0 𝐽𝑛(𝛼𝑛𝑚𝑟0)
𝜕𝑤𝑛
𝜕𝑟

|
𝑟=𝑟0

− 𝛼𝑛𝑚
2  𝑒𝑚 Ω𝑛𝑚,                              (23) 

𝐾𝑚 = 𝑟0  𝐽𝑛(𝛼𝑛𝑚𝑟0)
𝜕𝐿𝑛
𝜕𝑟
|
𝑟=𝑟0

− 𝑟0𝛼𝑛𝑚
2   𝐽𝑛(𝛼𝑛𝑚𝑟0)

𝜕𝑤𝑛
𝜕𝑟

|
𝑟=𝑟0

+ 𝛼𝑛𝑚
4  𝑒𝑚 Ω𝑛𝑚,     (24) 

where 

Ω𝑛𝑚 =
(𝛼𝑛𝑚

2 𝑟0
2 − 𝑛2)𝐽𝑛

2(𝛼𝑛𝑚𝑟0)

2𝛼𝑛𝑚
2

.                                      (25) 

Thus, 

𝐿𝑛(𝑟) = ∑
𝐼𝑚
Ω𝑛𝑚

 𝐽𝑛(𝛼𝑛𝑚𝑟)

∞

𝑚=1

,                                        (26) 

𝑀𝑛(𝑟) = ∑
𝐾𝑚
Ω𝑛𝑚

 𝐽𝑛(𝛼𝑛𝑚𝑟)

∞

𝑚=1

.                                       (27) 

We may notice that these expansions are different from those obtained by substituting 

Eq. (22) directly into Eqs. (17) and (20). 

 

Using Eqs. (13), (22) and (27) and the orthogonality of trigonometric and Bessel 

functions, from Eqs. (15) and (16) we can further have 

𝐿𝐾𝑚 + (𝜌𝑔 − 𝜌𝑒ℎ𝜔
2)𝑒𝑚Ω𝑛𝑚 = 𝑖𝜔𝜌𝑎𝑛𝑚 Ω𝑛𝑚,                             (28) 

−𝑖𝜔𝑒𝑚 = 𝑎𝑛𝑚 𝛼𝑛𝑚 tanh 𝛼𝑛𝑚𝐻.                                        (29) 

Substituting Eqs. (24) and (29) into Eq. (28), we have  

𝑟0  𝐽𝑛(𝛼𝑛𝑚𝑟0)
𝜕𝐿𝑛
𝜕𝑟
|
𝑟=𝑟0

− 𝑟0𝛼𝑛𝑚
2   𝐽𝑛(𝛼𝑛𝑚𝑟0)

𝜕𝑤𝑛
𝜕𝑟

|
𝑟=𝑟0

 

=
𝑒𝑚Ω𝑛𝑚
𝐿

[ 
𝜌𝜔2

𝛼𝑛𝑚 tanh 𝛼𝑛𝑚𝐻
− (𝐿𝛼𝑛𝑚

4 + 𝜌𝑔 − 𝜌𝑒ℎ𝜔
2)].                    (30) 

There are still edge conditions to be imposed. From Eq. (30), we can have 

𝑒𝑚 =

𝐿 (𝑟0  𝐽𝑛(𝛼𝑛𝑚𝑟0)
𝜕𝐿𝑛
𝜕𝑟
|
𝑟=𝑟0

− 𝑟0𝛼𝑛𝑚
2   𝐽𝑛(𝛼𝑛𝑚𝑟0)

𝜕𝑤𝑛
𝜕𝑟

|
𝑟=𝑟0

)

[
𝜌𝜔2

𝛼𝑛𝑚 tanh 𝛼𝑛𝑚𝐻
  − (𝐿𝛼𝑛𝑚

4 + 𝜌𝑔 − 𝜌𝑒ℎ𝜔
2) ] Ω𝑛𝑚

 .            (31) 

The edge conditions, in Eqs. (8) to (10), can be given explicitly for 𝑤𝑛. For clamped 

edge, 



𝑤𝑛|𝑟=𝑟0 = 0,   
𝜕𝑤𝑛
𝜕𝑟

|
𝑟=𝑟0

= 0.                                         (32) 

By using Eq. (17), the free and simply supported edge conditions in Eqs. (9) and (10) 

can be respectively written as 

[𝐿𝑛(𝑟)]𝑟=𝑟0 =
1 − 𝜈

𝑟0
(
𝜕

𝜕𝑟
𝑤𝑛(𝑟) −

𝑛2

𝑟0
𝑤𝑛(𝑟))

𝑟=𝑟0

[
𝜕

𝜕𝑟
𝐿𝑛]

𝑟=𝑟0

= −
1 − 𝜈

𝑟0
2 [(−𝑛2

𝜕

𝜕𝑟
+
𝑛2

𝑟0
)𝑤𝑛]

𝑟=𝑟0 }
 
 

 
 

,                     (33) 

and 

[𝐿𝑛(𝑟)]𝑟=𝑟0 =
1 − 𝜈

𝑟0
(
𝜕

𝜕𝑟
𝑤𝑛(𝑟) −

𝑛2

𝑟0
𝑤𝑛(𝑟))

𝑟=𝑟0

 

𝑤𝑛|𝑟=𝑟0 = 0 

}.                    (34) 

Substituting Eqs. (22), (23), (26) and (31) into one of the above sets of edge conditions 

Eqs. (32) to (34), we can have 

𝜕𝐿𝑛
𝜕𝑟
|
𝑟=𝑟0

× 𝐴11 +
𝜕𝑤𝑛
𝜕𝑟

|
𝑟=𝑟0

× 𝐴12 = 0

𝜕𝐿𝑛
𝜕𝑟
|
𝑟=𝑟0

× 𝐴21 +
𝜕𝑤𝑛
𝜕𝑟

|
𝑟=𝑟0

× 𝐴22 = 0
}
 
 

 
 

                                 (35) 

where 

𝐴11 = ∑
2𝛼𝑛𝑚

2 𝐿𝑟0

[
𝜌𝜔2

𝛼𝑛𝑚 tanh 𝛼𝑛𝑚𝐻
  − (𝐿𝛼𝑛𝑚

4 + 𝜌𝑔 − 𝜌𝑒ℎ𝜔
2) ] (𝛼𝑛𝑚

2 𝑟0
2 − 𝑛2)

 

∞

𝑚=1

𝐴12 = −∑
2𝛼𝑛𝑚

4 𝐿𝑟0

[
𝜌𝜔2

𝛼𝑛𝑚 tanh 𝛼𝑛𝑚𝐻
  − (𝐿𝛼𝑛𝑚

4 + 𝜌𝑔 − 𝜌𝑒ℎ𝜔
2) ] (𝛼𝑛𝑚

2 𝑟0
2 − 𝑛2)

 

∞

𝑚=1

𝐴21 = 0
𝐴22 = 1 }

 
 
 
 

 
 
 
 

    (36) 

for the clamped edges, 



𝐴11 = −∑

2𝛼𝑛𝑚
2 𝐿𝑟0  (𝛼𝑛𝑚

2 −
(1 − 𝜈)𝑛2

𝑟0
2 )

[
𝜌𝜔2

𝛼𝑛𝑚 tanh 𝛼𝑛𝑚𝐻
  − (𝐿𝛼𝑛𝑚

4 + 𝜌𝑔 − 𝜌𝑒ℎ𝜔
2) ] (𝛼𝑛𝑚

2 𝑟0
2 − 𝑛2)

 

∞

𝑚=1

𝐴12 = −
1 − 𝜈

𝑟0
+ ∑

2𝛼𝑛𝑚
2 𝑟0 [

𝜌𝜔2

𝛼𝑛𝑚 tanh 𝛼𝑛𝑚𝐻
  − (𝜌𝑔 − 𝜌𝑒ℎ𝜔

2) − 𝐿𝛼𝑛𝑚
2 (1 − 𝜈)𝑛2

𝑟0
2 ]

[
𝜌𝜔2

𝛼𝑛𝑚 tanh 𝛼𝑛𝑚𝐻
  − (𝐿𝛼𝑛𝑚

4 + 𝜌𝑔 − 𝜌𝑒ℎ𝜔
2) ] (𝛼𝑛𝑚

2 𝑟0
2 − 𝑛2)

∞

𝑚=1

𝐴21 = 1 +
(1 − 𝜈)𝑛2

𝑟0
2 ∑

2𝛼𝑛𝑚
2 𝐿

[
𝜌𝜔2

𝛼𝑛𝑚 tanh 𝛼𝑛𝑚𝐻
− (𝐿𝛼𝑛𝑚

4 + 𝜌𝑔 − 𝜌𝑒ℎ𝜔
2) ] (𝛼𝑛𝑚

2 𝑟0
2 − 𝑛2)

 

∞

𝑚=1

𝐴22 = −
(1 − 𝜈)𝑛2

𝑟0
2 {1 + ∑

2𝛼𝑛𝑚
4 𝐿

[
𝜌𝜔2

𝛼𝑛𝑚 tanh𝛼𝑛𝑚𝐻
− (𝐿𝛼𝑛𝑚

4 + 𝜌𝑔 − 𝜌𝑒ℎ𝜔
2) ] (𝛼𝑛𝑚

2 𝑟0
2 − 𝑛2)

 

∞

𝑚=1

}

}
 
 
 
 
 
 
 

 
 
 
 
 
 
 

(37) 

for the free edges and 

𝐴11 = −∑

2𝛼𝑛𝑚
2 𝐿𝑟0  (𝛼𝑛𝑚

2 −
(1 − 𝜈)𝑛2

𝑟0
2 )

[
𝜌𝜔2

𝛼𝑛𝑚 tanh𝛼𝑛𝑚𝐻
  − (𝐿𝛼𝑛𝑚

4 + 𝜌𝑔 − 𝜌𝑒ℎ𝜔
2) ] (𝛼𝑛𝑚

2 𝑟0
2 − 𝑛2)

 

∞

𝑚=1

𝐴12 = −
1 − 𝜈

𝑟0
+ ∑

2𝛼𝑛𝑚
2 𝑟0 [

𝜌𝜔2

𝛼𝑛𝑚 tanh 𝛼𝑛𝑚𝐻
  − (𝜌𝑔 − 𝜌𝑒ℎ𝜔

2) − 𝐿𝛼𝑛𝑚
2 (1 − 𝜈)𝑛2

𝑟0
2 ]

[
𝜌𝜔2

𝛼𝑛𝑚 tanh𝛼𝑛𝑚𝐻
  − (𝐿𝛼𝑛𝑚

4 + 𝜌𝑔 − 𝜌𝑒ℎ𝜔
2) ] (𝛼𝑛𝑚

2 𝑟0
2 − 𝑛2)

∞

𝑚=1

𝐴21 = ∑
2𝐿𝑟0𝛼𝑛𝑚

2

[
𝜌𝜔2

𝛼𝑛𝑚 tanh 𝛼𝑛𝑚𝐻
  − (𝐿𝛼𝑛𝑚

4 + 𝜌𝑔 − 𝜌𝑒ℎ𝜔
2) ] (𝛼𝑛𝑚

2 𝑟0
2 − 𝑛2)

 

∞

𝑚=1

𝐴22 = −∑
2𝐿𝑟0𝛼𝑛𝑚

4

[
𝜌𝜔2

𝛼𝑛𝑚 tanh 𝛼𝑛𝑚𝐻
  − (𝐿𝛼𝑛𝑚

4 + 𝜌𝑔 − 𝜌𝑒ℎ𝜔
2) ] (𝛼𝑛𝑚

2 𝑟0
2 − 𝑛2)

∞

𝑚=1 }
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 (38) 

for the simply supported edges. 

 

Therefore, the natural frequencies can be obtained from 𝐴11𝐴22 − 𝐴21𝐴12
 = 0. For 

clamped edge, 𝐴21 and 𝐴22 in Eq. (36) are obtained by first differentiating Eq. (22) and 

then working out the summation explicitly as 𝑟 → 𝑟0, together with Eq. (31). As a result, 

Eq. (35) is the same as that when taking 
𝜕𝑤𝑛

𝜕𝑟
|
𝑟=𝑟0

= 0 in Eq. (31) and then imposing 

only 𝑤𝑛(𝑟0) = 0 on Eq. (22). Because of this, the equation for the natural frequencies 

in the clamped edge case simply becomes 𝐴11 = 0, or 



∑
2𝐿𝑟0𝛼𝑛𝑚

2

[
𝜌𝜔2

𝛼𝑛𝑚 tanh 𝛼𝑛𝑚𝐻
− (𝐿𝛼𝑛𝑚

4 + 𝜌𝑔 − 𝜌𝑒ℎ𝜔
2)] (𝛼𝑛𝑚

2 𝑟0
2 − 𝑛2)

∞

𝑚=1

= 0.         (39) 

 

3.2 Solution using the vertical mode expansion 

Based on separation of variables, the velocity potential can be also expanded as the 

following form 

𝜙 = ∑ 𝜑𝑚(𝑟, 𝜃)

∞

𝑚=−2

⋅ 𝜓𝑚(𝑧),                                          (40) 

where 

𝜑𝑚(𝑟, 𝜃) = ∑
𝐽𝑛(𝜅𝑚𝑟)

𝐽𝑛(𝜅𝑚𝑟0)

∞

𝑛=0

[𝑎𝑚𝑛 cos 𝑛𝜃 + 𝑏𝑚𝑛 sin 𝑛𝜃],                    (41) 

𝜓𝑚(𝑧) =
cosh 𝜅𝑚(𝑧 + 𝐻)

cosh 𝜅𝑚𝐻
.                                           (42) 

𝜅𝑚 are eigenvalues and can be obtained from the dispersion relation corresponding to 

the boundary condition in Eq. (5): 

(𝐿𝜅𝑚
4 + 𝜌𝑔 − 𝜌𝑒ℎ𝜔

2)𝜅𝑚 sinh 𝜅𝑚𝐻 − 𝜌𝜔
2 cosh 𝜅𝑚𝐻 = 0.                (43) 

𝜅−2, 𝜅−1 are the complex roots with positive imaginary part, 𝜅0 as the positive real root, 

and 𝜅𝑛 (𝑛 = 1,2,3… ) are the positive pure imaginary roots. 

 

The orthogonal inner product defined in Sahoo et al. [24] is given as 

〈𝜓𝑚, 𝜓�̃�〉 = ∫𝜓𝑚

0

−𝐻

𝜓�̃� d𝑧 +
𝐿

𝜌𝜔2
[
𝜕𝜓𝑚
𝜕𝑧

d3𝜓�̃�
d𝑧3

+
𝜕3𝜓𝑚
𝜕𝑧3

d𝜓�̃�
d𝑧

]
𝑧=0

= 𝑆𝑚 𝛿𝑚�̃�     (44) 

where 𝛿𝑖𝑗 is the Kronecker delta function and 

𝑆𝑚 =
2𝜅𝑚𝐻 + sinh 2𝜅𝑚𝐻

4𝜅𝑚 cosh
2 𝜅𝑚𝐻

+
2𝐿𝜅𝑚

4

𝜌𝜔2
tanh2 𝜅𝑚𝐻.                       (45) 

Therefore, 



〈
𝜕𝜙

𝜕𝑟
, 𝜓�̃�〉 = ∫

𝜕𝜙

𝜕𝑟

0

−𝐻

𝜓�̃� d𝑧 +
𝐿

𝜌𝜔2
[
𝜕2𝜙

𝜕𝑧𝜕𝑟

d3𝜓�̃�
d𝑧3

+
𝜕4𝜙

𝜕𝑧3𝜕𝑟

d𝜓�̃�
d𝑧

]
𝑧=0

=
𝜕𝜑�̃�
𝜕𝑟

𝑆�̃� .   (46) 

On the tank wall, the impermeable condition Eq. (6) gives 

𝜕𝜙

𝜕𝑟
= 0, (𝑟 = 𝑟0).                                              (47) 

Substitution of Eq. (47) into Eq. (46) gives 

𝐿

𝜌𝜔2
[
𝜕2𝜙

𝜕𝑧𝜕𝑟

d3𝜓�̃�
d𝑧3

+
𝜕4𝜙

𝜕𝑧3𝜕𝑟

d𝜓�̃�
d𝑧

]
𝑟=𝑟0, 𝑧=0

=
𝜕𝜑�̃�
𝜕𝑟

|
𝑟=𝑟0

𝑆�̃� .                  (48) 

We let 

𝛽(𝜃) =
𝜕2𝜙

𝜕𝑧𝜕𝑟
|
𝑟=𝑟0,𝑧=0

=∑(𝑒𝑛 cos 𝑛𝜃 + 𝑓𝑛 sin 𝑛𝜃)

∞

𝑛=0

,                     (49) 

𝛾(𝜃) =
𝜕4𝜙

𝜕𝑧3𝜕𝑟
|
𝑟=𝑟0,𝑧=0

=∑(𝑐𝑛 cos 𝑛𝜃 + 𝑑𝑛 sin 𝑛𝜃)

∞

𝑛=0

.                    (50) 

Similar to Eq. (14), as the procedures for the problems in terms of cos 𝑛𝜃 and sin 𝑛𝜃 

are identical, we consider only the cases of cos 𝑛𝜃  in the following analysis. 

Substituting Eqs. (40), (41), (42), (49) and (50) into Eq. (48), and using the 

orthogonality of trigonometric functions, we obtain 

𝑎𝑚𝑛 =
𝐿 tanh 𝜅𝑚𝐻

𝜌𝜔2𝜅𝑚𝑆𝑚
×
𝐽𝑛(𝜅𝑚𝑟0)

𝐽𝑛
′ (𝜅𝑚𝑟0)

× (𝑒𝑛𝜅𝑚
3 + 𝑐𝑛𝜅𝑚),                     (51) 

Substituting Eqs. (40)~(42) and (51) into one of the edge conditions in Eqs. (32) to (34) 

and noticing 𝑤 = 𝜕𝜙/𝜕𝑧, we have 

𝑐𝑛𝐴11
(𝑛) + 𝑒𝑛𝐴12

(𝑛) = 0

𝑐𝑛𝐴21
(𝑛)
+ 𝑒𝑛𝐴22

(𝑛)
= 0

}       𝑛 = 0,1,2,3…                       (52) 

where 



𝐴11
(𝑛) = ∑

𝐿𝜅𝑚 tanh
2 𝜅𝑚𝐻

𝜌𝜔2𝑆𝑚
×
𝐽𝑛(𝜅𝑚𝑟0)

𝐽𝑛
′ (𝜅𝑚𝑟0)

∞

𝑚=−2

𝐴12
(𝑛)

= ∑
𝐿𝜅𝑚

3 tanh2 𝜅𝑚𝐻

𝜌𝜔2𝑆𝑚
×
𝐽𝑛(𝜅𝑚𝑟0)

𝐽𝑛
′ (𝜅𝑚𝑟0)

∞

𝑚=−2

𝐴21
(𝑛) = ∑

𝐿𝜅𝑚
2 tanh2 𝜅𝑚𝐻

𝜌𝜔2𝑆𝑚

∞

𝑚=−2

𝐴22
(𝑛) = ∑

𝐿𝜅𝑚
4 tanh2 𝜅𝑚𝐻

𝜌𝜔2𝑆𝑚

∞

𝑚=−2 }
 
 
 
 
 

 
 
 
 
 

                                  (53) 

for the clamped edge, 

𝐴11
(𝑛) = ∑

𝐿𝜅𝑚 tanh
2 𝜅𝑚𝐻

𝜌𝜔2𝑆𝑚
×
𝐽𝑛(𝜅𝑚𝑟0)

𝐽𝑛′ (𝜅𝑚𝑟0)
× (−𝜅𝑚

2 +
(1 − 𝜈)𝑛2

𝑟0
2 −

(1 − 𝜈)

𝑟0

𝐽𝑛
′ (𝜅𝑚𝑟0)

𝐽𝑛(𝜅𝑚𝑟0)
𝜅𝑚)

∞

𝑚=−2

𝐴12
(𝑛) = ∑

𝐿𝜅𝑚
3 tanh2 𝜅𝑚𝐻

𝜌𝜔2𝑆𝑚
×
𝐽𝑛(𝜅𝑚𝑟0)

𝐽𝑛′ (𝜅𝑚𝑟0)
× (−𝜅𝑚

2 +
(1 − 𝜈)𝑛2

𝑟0
2 −

(1 − 𝜈)

𝑟0

𝐽𝑛
′ (𝜅𝑚𝑟0)

𝐽𝑛(𝜅𝑚𝑟0)
𝜅𝑚)

∞

𝑚=−2

𝐴21
(𝑛) = ∑

𝐿𝜅𝑚 tanh
2 𝜅𝑚𝐻

𝜌𝜔2𝑆𝑚
×
𝐽𝑛(𝜅𝑚𝑟0)

𝐽𝑛′ (𝜅𝑚𝑟0)

∞

𝑚=−2

× (
(1 − 𝜈)𝑛2

𝑟0
3 −

𝐽𝑛
′ (𝜅𝑚𝑟0)

𝐽𝑛(𝜅𝑚𝑟0)
(𝜅𝑚

3 +
(1 − 𝜈)𝑛2

𝑟0
2 𝜅𝑚))

𝐴22
(𝑛) = ∑

𝐿𝜅𝑚
3 tanh2 𝜅𝑚𝐻

𝜌𝜔2𝑆𝑚
×
𝐽𝑛(𝜅𝑚𝑟0)

𝐽𝑛′ (𝜅𝑚𝑟0)

∞

𝑚=−2

× (
(1 − 𝜈)𝑛2

𝑟0
3 −

𝐽𝑛
′ (𝜅𝑚𝑟0)

𝐽𝑛(𝜅𝑚𝑟0)
(𝜅𝑚

3 +
(1 − 𝜈)𝑛2

𝑟0
2 𝜅𝑚))

}
 
 
 
 
 

 
 
 
 
 

 

(54) 

for the free edge, and 

𝐴11
(𝑛) = ∑

𝐿𝜅𝑚 tanh
2 𝜅𝑚𝐻

𝜌𝜔2𝑆𝑚
×
𝐽𝑛(𝜅𝑚𝑟0)

𝐽𝑛′ (𝜅𝑚𝑟0)
× (−𝜅𝑚

2 +
(1 − 𝜈)𝑛2

𝑟0
2 −

(1 − 𝜈)

𝑟0

𝐽𝑛
′ (𝜅𝑚𝑟0)

𝐽𝑛(𝜅𝑚𝑟0)
𝜅𝑚)

∞

𝑚=−2

𝐴12
(𝑛) = ∑

𝐿𝜅𝑚
3 tanh2 𝜅𝑚𝐻

𝜌𝜔2𝑆𝑚
×
𝐽𝑛(𝜅𝑚𝑟0)

𝐽𝑛′ (𝜅𝑚𝑟0)
× (−𝜅𝑚

2 +
(1 − 𝜈)𝑛2

𝑟0
2 −

(1 − 𝜈)

𝑟0

𝐽𝑛
′ (𝜅𝑚𝑟0)

𝐽𝑛(𝜅𝑚𝑟0)
𝜅𝑚)

∞

𝑚=−2

𝐴21
(𝑛)

= ∑
𝐿𝜅𝑚 tanh

2 𝜅𝑚𝐻

𝜌𝜔2𝑆𝑚
×
𝐽𝑛(𝜅𝑚𝑟0)

𝐽𝑛′ (𝜅𝑚𝑟0)

∞

𝑚=−2

𝐴22
(𝑛) = ∑

𝐿𝜅𝑚
3 tanh2 𝜅𝑚𝐻

𝜌𝜔2𝑆𝑚
×
𝐽𝑛(𝜅𝑚𝑟0)

𝐽𝑛′ (𝜅𝑚𝑟0)

∞

𝑚=−2 }
 
 
 
 
 

 
 
 
 
 

 

(55) 

for the simply supported edge. 



For non-trivial solution, we should have 𝐴11
(𝑛)
𝐴22
(𝑛)
− 𝐴12

(𝑛)
𝐴21
(𝑛)
= 0 , which gives the 

natural frequencies. For the clamped edge specifically, by using the identities (A4) and 

(A5) in Evans and Porter [25], we can obtain 

𝐴21
(𝑛) =

𝐿

𝜌𝜔2
∑

tanh2 𝜅𝑚𝐻 ⋅ 𝜅𝑚
2

𝑆𝑚

∞

𝑚=−2

= 0, 𝐴22
(𝑛) =

𝐿

𝜌𝜔2
∑

tanh2 𝜅𝑚𝐻 ⋅ 𝜅𝑚
4

𝑆𝑚

∞

𝑚=−2

= 1. 

Therefore, the formula for the natural frequencies can be further simplified as 

∑
𝜅𝑚 tanh

2 𝜅𝑚𝐻

𝑆𝑚
×
𝐽𝑛(𝜅𝑚𝑟0)

𝐽𝑛
′ (𝜅𝑚𝑟0)

∞

𝑚=−2

= 0.                                (56) 

Eq. (56) may seem very different form Eq. (39) for the same problem. However, it can 

be shown that they are in fact identical. We may define 

𝐾(𝜔, 𝛼) = (𝐿𝛼4 + 𝜌𝑔 − 𝜌𝑒ℎ𝜔
2)𝛼 sinh 𝛼𝐻 − 𝜌𝜔2 cosh 𝛼𝐻,                (57) 

and at 𝛼 = 𝜅𝑚 it becomes Eq. (43). We have 

𝜕𝐾

𝜕𝛼
(𝛼 = 𝜅𝑚) = 𝐾′(𝜔, 𝜅𝑚)

= (4𝐿𝜅𝑚
4 − 𝜌𝜔2𝐻) sinh 𝜅𝑚𝐻

+ (𝐿𝜅𝑚
4 + 𝜌𝑔 − 𝜌𝑒ℎ𝜔

2) (sinh 𝜅𝑚𝐻 + 𝜅𝑚𝐻 cosh 𝜅𝑚𝐻),                     (58) 

or, 

𝐾′(𝜔, 𝜅𝑚) = 2𝜌𝜔2
cosh2 𝜅𝑚𝐻

sinh 𝜅𝑚𝐻
× 𝑆𝑚 .                                    (59) 

We further construct a function as 

𝑓(𝛼) =
𝛼 sinh 𝛼𝐻

𝐾(𝜔, 𝛼)
×
𝐽𝑛(𝛼𝑟0)

𝐽𝑛
′ (𝛼𝑟0)

.                                         (60) 

Integrating 𝑓(𝛼) along a circle of infinite radius 𝑅 centred at the origin in the complex 

plane, and using residual theorem at 𝐾(𝜔, 𝜅𝑚) = 0 and 𝐽𝑛
′ (𝛼𝑛𝑚𝑟0) = 0, we have 



𝐼1 =
1

2𝜋𝑖
∮𝑓(𝛼)
 

𝑐

d𝛼

= 2( ∑
𝜅𝑚 sinh 𝜅𝑚𝐻

𝐾′(𝜔, 𝜅𝑚)
×
𝐽𝑛(𝜅𝑚𝑟0)

𝐽𝑛
′ (𝜅𝑚𝑟0)

∞

𝑚=−2

+ ∑
𝛼𝑛𝑚 sinh𝛼𝑛𝑚𝐻

𝐾(𝜔, 𝛼𝑛𝑚)
×

𝐽𝑛(𝛼𝑛𝑚𝑟0)

𝑟0𝐽𝑛
′′(𝛼𝑛𝑚𝑟0)

∞

𝑚=1

). 

(61) 

When 𝑅 → ∞, 𝐼1 → 0. Also, from Eq. (56), the first series on the right-hand side of Eq. 

(61) is  

∑
𝜅𝑚 sinh 𝜅𝑚𝐻

𝐾′(𝜔, 𝜅𝑚)
×
𝐽𝑛(𝜅𝑚𝑟0)

𝐽𝑛
′ (𝜅𝑚𝑟0)

∞

𝑚=−2

=
1

2𝜌𝜔2
∑

𝜅𝑚 tanh
2 𝜅𝑚𝐻

 𝑆𝑚
×
𝐽𝑛(𝜅𝑚𝑟0)

𝐽𝑛
′ (𝜅𝑚𝑟0)

∞

𝑚=−2

= 0.    (62) 

Thus, we have  

∑
𝛼𝑛𝑚 sinh𝛼𝑛𝑚𝐻

𝐾(𝜔, 𝛼𝑛𝑚)
×
𝐽𝑛(𝛼𝑛𝑚𝑟0)

𝐽𝑛′′(𝛼𝑛𝑚𝑟0)

∞

𝑚=1

= 0.                              (63) 

Furthermore, 𝐽𝑛(𝛼𝑛𝑚𝑟0)/ 𝐽𝑛
′′(𝛼𝑛𝑚𝑟0)  in Eq. (63) can be simplified by using the 

differential equation satisfied by the Bessel function together with 𝐽𝑛
′ (𝛼𝑛𝑚𝑟0) = 0, 

𝐽𝑛(𝛼𝑛𝑚𝑟0)

𝐽𝑛
′′(𝛼𝑛𝑚𝑟0)

=
𝛼𝑛𝑚
2 𝑟0

2

𝑛2 − 𝛼𝑛𝑚
2 𝑟0

2 .                                           (64) 

Equation (63) can be further written as 

∑
𝛼𝑛𝑚
2 𝑟0

2

(𝐿𝛼𝑛𝑚4 + 𝜌𝑔 − 𝜌
𝑒
ℎ𝜔2 −

𝜌𝜔2

𝛼𝑛𝑚 tanh𝛼𝑛𝑚𝐻
) (𝑛2 − 𝛼𝑛𝑚2 𝑟0

2)

∞

𝑚=1

= 0,           (65) 

which is identical to Eq. (39). 

 

4. Results and Analysis 

4.1 Special case 

Here we first consider a limit case with zero liquid density. When 𝜌 = 0, the solution 

for the clamped edge can be simplified to 

∑
1

(𝐿𝛼𝑛𝑚4 − 𝜌𝑒ℎ𝜔2)

∞

𝑚=1

×
𝐽𝑛(𝛼𝑛𝑚𝑟0)

𝐽𝑛′′(𝛼𝑛𝑚𝑟0)
= 0.                                   (66) 



Let 𝑓(𝛼) =
𝐽𝑛(𝛼𝑟0)

(𝐿𝛼 
4−𝜌𝑒ℎ𝜔

2)×𝐽𝑛
′ (𝛼𝑟0)

, and use residual theorem at 𝐿𝛼𝑛𝑚
4 − 𝜌𝑒ℎ𝜔

2 = 0 and 

𝐽𝑛
′ (𝛼𝑛𝑚𝑟0) = 0, we can have 

∑
1

4𝐿𝜆𝑛𝑚
3

4

𝑚=1

×
𝐽𝑛(𝜆𝑛𝑚𝑟0)

𝐽𝑛
′ (𝜆𝑛𝑚𝑟0)

+ 2 ∑
1

(𝐿𝛼𝑛𝑚
4 − 𝜌𝑒ℎ𝜔

2)

∞

𝑚=1

×
𝐽𝑛(𝛼𝑛𝑚𝑟0)

𝐽𝑛
′′(𝛼𝑛𝑚𝑟0)

= 0.           (67) 

From Eq. (66), we have 

∑
1

4𝐿𝜆𝑛𝑚
3

4

𝑚=1

×
𝐽𝑛(𝜆𝑛𝑚𝑟0)

𝐽𝑛
′ (𝜆𝑛𝑚𝑟0)

= 0,                                            (68) 

where 𝜆𝑛𝑚
4 =

𝜌𝑒ℎ

𝐿
𝜔2 , or 𝜆𝑛1 = −𝜆𝑛2 = 𝑖𝜆𝑛3 = −𝑖𝜆𝑛4 = 𝑖𝑘  with 𝑘 = (

𝜌𝑒ℎ

𝐿
𝜔2)

1

4
. 

Equation (68) further gives 

𝐼𝑛(𝑘𝑟0)𝐽𝑛
′ (𝑘𝑟0) + 𝐽𝑛(𝑘𝑟0)𝐼𝑛

′ (𝑘𝑟0) = 0.                                 (69) 

where 𝐼𝑛 is the modified Bessel function of the first kind. Similarly, by using residual 

theorem to infinite series in each 𝐴𝑖𝑗 in Eq. (38), we finally have 

𝐽𝑛+1(𝑘𝑟0)𝐼𝑛(𝑘𝑟0) + 𝐼𝑛+1(𝑘𝑟0)𝐽𝑛(𝑘𝑟0) =
2𝑘𝑟0
1 − 𝜈

× 𝐽𝑛(𝑘𝑟0)𝐼𝑛(𝑘𝑟0)           (70) 

for the natural frequencies of simply supported plate in vacuum. These formulations are 

virtually the same as those provided by Wah [26] without tension. For the free edge 

case, by applying the residual theorem to infinite series in each 𝐴𝑖𝑗 of Eq. (37), we have 

1 − 𝜈

𝑘𝑟0
= [

(1 − 𝜈)𝑛2

𝑘2𝑟0
2 −

(1 − 𝜈)2(𝑛4 − 𝑛2)

2𝑘4𝑟0
4 −

1

2
] ×

𝐽𝑛(𝑘𝑟0)

𝐽𝑛′ (𝑘𝑟0)

+ [
(1 − 𝜈)𝑛2

𝑘2𝑟0
2 +

(1 − 𝜈)2(𝑛4 − 𝑛2)

2𝑘4𝑟0
4 +

1

2
] ×

𝐼𝑛(𝑘𝑟0)

𝐼𝑛′ (𝑘𝑟0)

−
(1 − 𝜈)𝑛2

𝑘3𝑟0
3 ×

𝐽𝑛(𝑘𝑟0)

𝐽𝑛′ (𝑘𝑟0)
×
𝐼𝑛(𝑘𝑟0)

𝐼𝑛′ (𝑘𝑟0)
.                                                                       (71) 

which is equivalent to the equation provided by Bauer [17]. 

 

4.2 Natural frequencies 

In the analysis below, all the variables are non-dimensionalized based on the following 

three basic parameters, namely, the acceleration due to gravity 𝑔, the density of the 

liquid 𝜌 as well as the radius of the tank 𝑟0. Accordingly, the dimensionless parameters 

for the liquid depth 𝐻, the mass per unit area of the cover 𝜌𝑒ℎ, and the flexural elasticity 



𝐿  are 𝐻∗ = 𝐻/𝑟0, 𝑚
∗ = 𝜌𝑒ℎ/(𝜌𝑟0)  and 𝐿∗ = 𝐿/(𝜌𝑔𝑟0

4) , respectively. Similarly, the 

natural frequency 𝜔 can be non-dimensionalized as 𝜔∗ = 𝜔√𝑟0/𝑔. The Poisson’s ratio 

𝜈 is set as 0.3. Here the first method in Section 3.1 has been adopted for the calculation 

of the natural frequencies, and the second method is used for verification. 

 

                                             (a)                                                              (b)    

  

   (c)                                                                   (d) 

Fig. 2. The first four natural frequencies against different 𝐻∗for various edge conditions for 𝐿∗ =

2 × 10−3,𝑚∗ = 1 × 10−3: (a) 𝑛 = 0; (b) 𝑛 = 1; (c) 𝑛 = 2; (d) 𝑛 = 3. clamped edge: red circles; 

simply supported edge: blue diamonds; free edge: green squares. Results from Bauer [17] for clamped 

edge are nondimensionalized and shown as black dashed lines for comparison in (a), (b) and (c). 

 

We first investigate the effect of the liquid depth on the natural frequencies. For given 

𝑚∗ and 𝐿∗, we display the curves of 𝜔∗ against different 𝐻∗ for various edge types in 

Fig. 2. The results for the clamped edge by Bauer [17] are provided for comparison in 

Fig. 2 (a, b, c), and good agreement can be found. For the 𝑘th natural frequencies, at a 

given 𝐻∗ , the clamped edge corresponds to the largest value while the free edge 

corresponds to the smallest, which is consistent with the observation in Ren et al. [22]. 

In addition, with the increase of 𝐻∗, the curves increase rapidly to the limit values. This 



could be understood through the term tanh 𝛼𝑛𝑚𝐻 in the denominators of Eqs. (36) to 

(38). With the increase of 𝐻 , the value of tanh 𝛼𝑛𝑚𝐻  increases very rapidly and 

approaches to one when 𝐻 → ∞. Therefore, when liquid depth has reached a critical 

value, which makes tanh 𝛼𝑛𝑚𝐻 → 1  even for the smallest 𝛼𝑛𝑚 , the corresponding 

natural frequencies will not change very much with further increase of liquid depth. 

 

          

                              (a)                                                                           (b) 

            

                                     (c)                                                                         (d)  

           

                                     (e)                                                                          (f)  

Fig. 3. Natural frequencies 𝜔𝑘
∗  (𝑘 = 1,2) against different 𝐿∗ and 𝑚∗ for various edge conditions for 

𝐻∗ = 1 at 𝑛 = 0. (a) clamped edge for 𝑘 = 1; (b) clamped edge for 𝑘 = 2; (c) simply supported edge 

for 𝑘 = 1; (d) simply supported edge for 𝑘 = 2; (e) free edge for 𝑘 = 1; (f) free edge for 𝑘 = 2. 



 

We further investigate the effect of 𝐿∗ and 𝑚∗ on the natural frequencies for a given 𝐻∗. 

For 𝑛 = 0, the graphs for the first two natural frequencies against different pairs of 𝐿∗ 

and 𝑚∗ at different edge conditions are plotted in Fig. 3. In the figure, the logarithm 

base 10 of 𝐿∗ and 𝑚∗ are set as coordinates. We can observe that a similar variation 

trend of 𝜔𝑘
∗  with 𝐿∗ and 𝑚∗ for all these three edge constraints. The natural frequencies 

𝜔𝑘
∗  will increase with the increasing of 𝐿∗ or the decreasing of 𝑚∗. As the former is in 

fact the stiffness term and the latter is the mass term, the result is expected. However, it 

ought to point out that for the free surface problem without the elastic cover, the 

restoring force of the wave motion is also related to the density of the fluid and therefore 

the natural frequencies of the sloshing motion are independent to the density. Here when 

the physical properties of the elastic cover are given, 𝐿∗  and 𝑚∗  will be very much 

affected by the fluid density, or the natural frequencies of the fluid motion will be 

affected by its density. In practice, containers with same geometry may be used to store 

different liquids, for example, crude oil and LNG. For a fixed elastic cover, the change 

of liquid density leads to the changes of 𝑚∗ and 𝐿∗ simultaneously at a same rate. An 

increasing 𝜌 corresponds to decreasing (𝐿∗,𝑚∗). In this case, it may be interesting to 

investigate the effect of liquid density on the natural frequencies. To do so, we may 

compare the natural frequencies corresponding to three pairs of (𝐿∗, 𝑚∗) in Table 1. The 

results correspond to three separate points located in each graph of Fig. 3. Through 

comparing, we may find that the natural frequencies will increase with the increase of 

(𝐿∗,𝑚∗), or the decrease of 𝜌. This to some extent illustrates that changing 𝐿∗ makes 

bigger difference to the natural frequencies than changing 𝑚∗. As discussed above, for 

the limit case where 𝜌 = 0, 𝜔𝑘
∗  can be obtained from Eqs. (69) to (71). When we 

consider the limit case where the liquid density is very large, or 𝜌 → ∞ , both 

𝐿∗ and 𝑚∗ → 0, then it is identical to the case without the elastic cover. Therefore, the 

natural frequencies in this case will tend to that with free surface. 

 

 



Table 1. Natural frequencies 𝜔𝑘
∗  at different (𝐿∗, 𝑚∗) at 𝑛 = 0 and 𝐻∗ = 1. 

               edge types, 𝑘  

 

            (𝐿∗,𝑚∗) 

clamped 

𝑘 = 1 

clamped 

𝑘 = 2 

simply 

supported 

𝑘 = 1 

simply 

supported 

𝑘 = 2 

free 

𝑘 = 1 

free 

𝑘 = 2 

(1 × 10−3, 5 × 10−4) 3.2155 7.8965 2.7495 6.7560 2.0514 4.1831 

(2 × 10−3, 1 × 10−3) 4.0008 10.7930 3.2885 9.1397 2.1274 5.2713 

(4 × 10−3, 2 × 10−3) 5.2202 14.9506 4.1558 12.5892 2.2683 6.9392 

 

4.3 Shapes of natural modes 

We also investigate the shapes of the natural modes at natural frequencies. As in Ren et 

al. [22], once the natural frequency 𝜔𝑘
∗  (𝑘 = 1,2, … ) is obtained through solving the 

non-trivial solution, then we can prescribe one of the non-zero coefficients and calculate 

the rest through solving the system of linear equations. Here we notice that because of 

the orthogonality of the trigonometric functions, the natural modes at different 𝑛 are 

independent to each other. At each 𝑛, we have two unknowns, 
𝜕𝐿𝑛

𝜕𝑟
|
𝑟=𝑟0

 and 
𝜕𝑤𝑛

𝜕𝑟
|
𝑟=𝑟0

. 

We can set one of them as unit and find the other from Eq. (35). In the results below, 

𝜕𝐿𝑛

𝜕𝑟
|
𝑟=𝑟0

= 1 is taken apart from the free edge case when 𝑛 = 0 as it is zero from the 

boundary condition. In that particular case 
𝜕𝑤𝑛

𝜕𝑟
|
𝑟=𝑟0

= 1 is taken. 𝑒𝑚 can be obtained 

from Eq. (31) and subsequently the shapes of natural modes can be found. For 𝑛 = 0, 

it corresponds to an axisymmetric case, for which the first four modes are shown in Fig. 

4 for various edge constraints. In the figure, we can observe that the peaks of the 

deflections at all modes occur at the centre of the cover, or 𝑟∗ = 0. At the edge, 𝑤0 are 

zero for clamped and simply supported cases due to the edge conditions. For free edge, 

the values of 𝑤0 at the edge are non-zero but the amplitudes are smaller than those at 

the centre. The mode shapes become more oscillatory along the axial direction as the 

natural frequency increases. At higher 𝜔, the acceleration of the deflection will be 

higher, which leads to a higher internal force and moment. This means larger spatial 

derivatives of the deflection or a faster spatial variation of the deflection, leading to a 

more oscillatory curve of 𝑤𝑛(𝑟). 

 



 

                                          (a)                                                                            (b) 

 

     (c)                                                                              (d) 

Fig. 4. Normalized mode shapes corresponding to 𝑛 = 0 for various edge conditions at the 𝑘𝑡ℎ natural 

frequency 𝜔𝑘
∗  (𝑘 = 1,2,3,4) with 𝐻∗ = 1, 𝐿∗ = 2 × 10−3,𝑚∗ = 1 × 10−3. (a). 𝜔1

∗; (b). 𝜔2
∗ . (c). 𝜔3

∗; 

(d).  𝜔4
∗. 

 

For 𝑛 > 0 , the mode shapes become non-axisymmetric. However, noticing that 

𝐽𝑛(0) = 0 for all 𝑛 > 0, the value at the centre of mode shape is always zero. In Fig. 5, 

we display the normalized 𝑤𝑛  corresponding to the first four natural frequencies 

𝜔𝑘
∗  (𝑘 = 1~4) for 𝑛 = 1 and 2 for various edge constraints. 



 

    (a)                                                                           (b) 

 

     (c)                                                                            (d) 

 

(e)                                                                             (f) 



 

      (g)                                                                          (h) 

Fig. 5. Normalized mode shapes corresponding to 𝑛 = 1 and 2 for various edge conditions at the 𝑘𝑡ℎ 

natural frequency 𝜔𝑘
∗  (𝑘 = 1,2,3,4) with 𝐻∗ = 1, 𝐿∗ = 2 × 10−3,𝑚∗ = 1 × 10−3. (a). 𝑛 = 1 at 𝜔1

∗; 

(b). 𝑛 = 1 at 𝜔2
∗ . (c). 𝑛 = 1 at 𝜔3

∗; (d). 𝑛 = 1 at 𝜔4
∗; (e). 𝑛 = 2 at 𝜔1

∗; (f). 𝑛 = 2 at 𝜔2
∗ . (g). 𝑛 = 2 at 

𝜔3
∗; (h). 𝑛 = 2 at 𝜔4

∗. 

 

For free edge case, it is observed that the maximum absolute values of the curves usually 

occur at the edge corresponding to the first two natural frequencies for both 𝑛 = 1 and 

2, while they are located at 0 < 𝑟∗ < 0.5 for cases corresponding to the third and fourth 

natural frequencies. For clamped and simply supported edge cases, the maximum 

absolute values of the curves occur at the first peak or trough. 

 

We define 

�̃�𝑛
 (𝑟, 𝜃) = cos 𝑛𝜃 × ∑ 𝑒𝑚 𝐽𝑛(𝛼𝑛𝑚𝑟)

∞

𝑚=1

,                                (72) 

based on which the mode shapes can be plotted. From Eq. (72), the zero deflection, or 

�̃�𝑛
 (𝑟, 𝜃) = 0, is satisfied when either 𝑤𝑛(𝑟) = 0 or cos 𝑛𝜃 = 0, which correspond to 

nodal circles and nodal diameters (or nodal diametrical lines) in the context of free 

vibration of plates (e.g., Stuart and Carney [27]), respectively. It is obvious that in the 

area very close to a nodal point, there will be a very low level of vibration. The positions 

of nodal circles/diameters may well reflect the dynamic behaviours of the elastic plate 

and can be further used to study the vibration control. Here we may show the normalized 

mode shapes for clamped constraint in Fig. 6 at different modes (𝑛, 𝑘), in which the 

nodal lines are shown as dashed-dotted curves. We can observe that the mode shapes 



are anti-symmetric to the nodal diameters (at 𝑛 ≥ 1), and so it is also expected that the 

mode shape graphs become more oscillatory with the increase of 𝑛, as shown in Fig. 6. 

 

 

                                      (a)                                                                               (b) 

 
                                 (c)                                                                             (d) 



 
                                (e)                                                                            (f) 
 
Fig. 6. Normalized mode shapes for clamped edge with 𝐻∗ = 1 at mode (𝑛, 𝑘) with (𝑛, 𝑘) equalling 

to: (a). (0,2); (b). (1,2); (c). (1,3); (d). (2,2); (e). (2,3); (f). (3,2). 

 

4.4 Principal strains 

The principal strain of the elastic cover can be obtained by calculating the eigenvalues 

of the strain tensor matrix (Fung [28]) 

𝜺 =
ℎ

2
(
𝜀𝑟𝑟 𝜀𝑟𝜃
𝜀𝑟𝜃 𝜀𝜃𝜃

) =
ℎ

2

(

 

𝜕2𝑊

𝜕𝑟2
1

𝑟

𝜕2𝑊

𝜕𝜃𝜕𝑟
−
1

𝑟2
𝜕𝑊

𝜕𝜃
1

𝑟

𝜕2𝑊

𝜕𝜃𝜕𝑟
−
1

𝑟2
𝜕𝑊

𝜕𝜃

1

𝑟

𝜕𝑊

𝜕𝑟
+
1

𝑟2
𝜕2𝑊

𝜕𝜃2 )

 ,                     (73) 

or the solution of det[𝜺 − 𝜆𝑰𝟐] = 0 with 𝑰𝟐 being the identity matrix of size 2. We may 

choose one of the mode shapes for analysis. The expression of 𝑊 may be written as 

𝑊(𝑥, 𝑦, 𝑡) = Re{�̃�𝑛 × e
−𝑖𝜔𝑡} = �̃�𝑛 cos 𝜔𝑡 ,                            (74) 

by noticing that �̃�𝑛 is real. Therefore, we have 

𝜆1,2 =
ℎ cos𝜔𝑡

4
{𝐶1 ± √𝐶3

2 + 4𝐶2
2},                              (75) 

where 𝐶1, 𝐶2 and 𝐶3 are given as 

𝐶1 = cos 𝑛𝜃 × ∑
𝐼𝑚
𝛺𝑛𝑚

 𝐽𝑛(𝛼𝑛𝑚𝑟)

∞

𝑚=1

, 

𝐶2 = sin 𝑛𝜃 × {𝑛ℐ0
(𝑛) − 𝑛(𝑛 − 1) ∑ 𝑒𝑚 [

𝐽𝑛(𝛼𝑛𝑚𝑟)

𝑟2
]

∞

𝑚=1

}, 



𝐶3 = cos 𝑛𝜃 × {∑
𝐼𝑚
𝛺𝑛𝑚

 𝐽𝑛(𝛼𝑛𝑚𝑟)

∞

𝑚=1

+ 2ℐ0
(𝑛) + 2𝑛(𝑛 − 1) ∑ 𝑒𝑚 [

𝐽𝑛(𝛼𝑛𝑚𝑟)

𝑟2
]

∞

𝑚=1

} 

with 

ℐ0
(𝑛) = ∑ 𝑒𝑚 [

𝛼𝑛𝑚𝐽𝑛+1(𝛼𝑛𝑚𝑟)

𝑟
]

∞

𝑚=1

. 

Here 𝐽𝑛
′  has been replaced by 𝐽𝑛+1 and 𝐽𝑛 [23], and 𝐼𝑚 is defined in Eq. (23). The term 

involving the summation of 𝐽𝑛 in 𝐶2 and 𝐶3 is zero when 𝑛 = 0,1 and non-singular at 

𝑟 = 0 when 𝑛 > 1. It is also convergent. The series of ℐ0
(𝑛)

 has no singularity at 𝑟 = 0 

but is not convergent and the way to treat its non-convergence is given in the Appendix 

A. 

From Eq. (75), the maximum principal strain can be obtained as the maximum of |𝜆1| 

and |𝜆2| with cos𝜔𝑡 = ±1, or 

𝜀𝑚𝑎𝑥 =
ℎ

4
× {|𝐶1| + √𝐶3

2 + 4𝐶2
2 } .                                    (76) 

The maximum principal strain along the radius is plotted in Fig. 7 for the axisymmetric 

case (𝑛 = 0) corresponding to the clamped, simply supported and free edge conditions, 

respectively. From Fig. 7, we can observe that for clamped edge, the maximum principal 

strain occurs at the tank wall for the first natural frequency. However, for other three 

natural frequencies, the maximum principal strains appear at the centre of the tank. 

Compared with the clamped edge case, the values at edges of other types are smaller 

than any other places and the largest values occur at 𝑟∗ = 0. Besides, the values of 𝜀𝑚𝑎𝑥
∗  

are not monotonous with radius but a piecewise function based on Eq. (76), and the 

numbers of peaks increase with the increasing of the index 𝑘 in 𝜔𝑘
∗ . In addition, we may 

also find that the numbers of peaks for free edge case are less than the corresponding 

cases of clamped and simply supported edges. 

 



 

(a) 

 

(b) 

  

(c) 

Fig. 7. Maximum principal strain of the clamped elastic cover corresponding to the given mode 

shapes at 𝑛 = 0 with 𝐻∗ = 1, 𝐿∗ = 2 × 10−3,𝑚∗ = 1 × 10−3, ℎ∗ = 10−2. (a). clamped edge at 
𝜕𝐿𝑛

∗

𝜕𝑟∗
|
𝑟∗=1

= 1; (b). simply supported edge at 
𝜕𝐿𝑛

∗

𝜕𝑟∗
|
𝑟∗=1

= 1; (c). free edge at 
𝜕𝑤𝑛

∗

𝜕𝑟∗
|
𝑟∗=1

= 1. 

 

 



For 𝑛 > 0, the distribution of the maximum principal strains of the elastic cover with 

the clamped edge conditions is shown in Figs. 8 and 9 for 𝑛 = 1  and 𝑛 = 2 , 

respectively. The graphs are symmetric about the centre and also the corresponding 

nodal diameter(s). These can be expected from Eq. (76). In fact we may write 𝜀𝑚𝑎𝑥 =

ℎ

4
× {𝓅

𝑛
|cos 𝑛𝜃| + √𝒶𝑛

2 cos2 𝑛𝜃 + 𝒷𝑛
2 sin2 𝑛𝜃}, where 𝓅𝑛 , 𝒶𝑛

2  and 𝒷𝑛
2  are known from 

the expressions of 𝐶1 to 𝐶3 and 𝓅𝑛 > 0. From this, 𝜀𝑚𝑎𝑥(𝜃, 𝑟) = 𝜀𝑚𝑎𝑥(−𝜃, 𝑟). Also for 

a nodal diametrical line at 𝜃 = 𝜃0 , on which cos 𝑛𝜃0 = 0 and sin 𝑛𝜃0 = ±1, we have 

𝜀𝑚𝑎𝑥(𝜃0 + 𝛼, 𝑟) = 𝜀𝑚𝑎𝑥(𝜃0 − 𝛼, 𝑟).  Besides, we can also observe that along the 

circumferential direction, 𝜀𝑚𝑎𝑥
∗  has the minimal values at the nodal diametrical lines 

than at any other diametrical lines. At given radius 𝑟∗, we may further plot the maximum 

principal strain against different 𝜃 in Fig. 10 to show its variation. From the figure, we 

can find that the curves have sharp corners at 𝜃 = 𝜋/4, 3𝜋/4,5𝜋/4 and 7𝜋/4, which 

are the angles corresponding to the nodal diameters for 𝑛 = 2. 

 

      

                                     (a). 𝜔1
∗                                                                                (b). 𝜔2

∗  



        

                                     (c). 𝜔3
∗                                                                                (d). 𝜔4

∗ 

Fig. 8. Maximum principal strain corresponding to mode shape at 𝑛 = 1 with 𝐻∗ = 1, 𝐿∗ =

2 × 10−3,𝑚∗ = 1 × 10−3, ℎ∗ = 1 × 10−2,
𝜕𝐿𝑛

∗

𝜕𝑟∗
|
𝑟∗=1

= 1. 

 

   
                                     (a). 𝜔1

∗                                                                                (b). 𝜔2
∗  

 
                                     (c). 𝜔3

∗                                                                               (d). 𝜔4
∗ 

Fig. 9. Maximum principal strain of elastic cover corresponding to mode shape at 𝑛 = 2 with 𝐻∗ =

1, 𝐿∗ = 2 × 10−3,𝑚∗ = 1 × 10−3, ℎ∗ = 1 × 10−2,
𝜕𝐿𝑛

∗

𝜕𝑟∗
|
𝑟∗=1

= 1. 



 

 
Fig. 10. Maximum principal strain against 𝜃 at different 𝑟∗, other parameters are same as those of Fig 

9(d). 

 

It is worth noting that the real motion of the system is the linear superposition of all the 

natural modes, which is further dependent on the initial conditions. In such a case, the 

deflection of the elastic cover can be obtained through the linear superposition of the 

natural mode shapes. However, the principal strain may not be obtained through directly 

superposition of the result for each natural mode, as the corresponding eigenvector of 

each mode may not be the same. For the calculation of the principal strain corresponding 

to certain initial conditions, the expression of 𝑊 should be obtained first before using 

Eq. (73). 

 

5. Conclusions 

The natural modes of liquid motion coupled with an elastic plate on its upper surface in 

a cylindrical tank is investigated. Two effective solution schemes are developed, which 

are used to solve the problem for the plate with various edge constraints.  

 

Explicit equations for the natural frequencies have been derived for the cover with 

different edge conditions and they are verified by a different method and residual 

theorem. The effect of various physical parameters on natural frequencies is 



investigated. Increasing the liquid depth leads to an increase of the natural frequency 

but will approach the limit value very quickly. The natural frequency is very much 

affected by the nondimensionalized flexural rigidity 𝐿∗  and mass per unit area 𝑚∗ . 

Increasing 𝐿∗ or decreasing 𝑚∗ leads to an increase of natural frequencies for all the 

three edge types considered. 

 

The natural frequency is independent to liquid density for free surface sloshing problem 

or sloshing without the elastic cover. The natural frequency of the coupling system with 

the cover is very much dependent on the liquid density. Specifically, as the liquid 

density becomes very large relative to that of the plate, the natural frequency of the 

system will tend to that of free surface without cover. 

 

At higher natural frequencies, mode shapes along the axis direction is more oscillatory, 

due to larger bending moment and shear force, and subsequently a faster spatial 

variation of the deflection. The mode shapes also become more oscillatory when the 

numbers of nodal diameters 𝑛 increases. For the distribution of maximum principal 

strains in the circular elastic cover, the values are symmetric about the centre and also 

the corresponding nodal diametrical line(s). 
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Appendix A. Dealing with non-convergent series  

 

In 𝐶2 and 𝐶3 of Eq. (75), the infinite series ℐ0
(𝑛)

 is non-convergent. We may write  

ℐ0
(𝑛) = ∑ 𝑒𝑚

𝛼𝑛𝑚𝐽𝑛+1(𝛼𝑛𝑚𝑟)

𝑟

∞

𝑚=1

=
𝜕𝐿𝑛
𝜕𝑟
|
𝑟=𝑟0

×
ℐ1
(𝑛)

𝑟
+
𝜕𝑤𝑛
𝜕𝑟

|
𝑟=𝑟0

×
ℐ2
(𝑛)

𝑟
,                 (A. 1) 

where 



ℐ1
(𝑛) = ∑

𝐿𝑟0  𝐽𝑛(𝛼𝑛𝑚𝑟0) 𝛼𝑛𝑚 𝐽𝑛+1(𝛼𝑛𝑚𝑟)

[
𝜌𝜔2

𝛼𝑛𝑚 tanh𝛼𝑛𝑚𝐻
  − (𝐿𝛼𝑛𝑚4 + 𝜌𝑔 − 𝜌𝑒ℎ𝜔2) ] 𝛺𝑛𝑚

 

∞

𝑚=1

                  (A. 2) 

and 

ℐ2
(𝑛) = −∑

𝐿𝑟0𝛼𝑛𝑚
3   𝐽𝑛(𝛼𝑛𝑚𝑟0) 𝐽𝑛+1(𝛼𝑛𝑚𝑟)

[
𝜌𝜔2

𝛼𝑛𝑚 tanh 𝛼𝑛𝑚𝐻
  − (𝐿𝛼𝑛𝑚4 + 𝜌𝑔 − 𝜌𝑒ℎ𝜔2) ] 𝛺𝑛𝑚

 

∞

𝑚=1

.               (A. 3) 

 

We notice that in ℐ2
(𝑛)

 when 𝑚 is large, the 𝑚𝑡ℎ term is of order 1/𝛼𝑛𝑚 and as a result 

the summation may not converge. Thus, we may write  

ℐ2
(𝑛) = ℐ(𝑛) + ∑

𝑟0 𝐽𝑛(𝛼𝑛𝑚𝑟0)𝐽𝑛+1(𝛼𝑛𝑚𝑟) (𝜌𝑔 − 𝜌𝑒ℎ𝜔
2 −

𝜌𝜔2

𝛼𝑛𝑚 tanh𝛼𝑛𝑚𝐻
)

[
𝜌𝜔2

𝛼𝑛𝑚 tanh 𝛼𝑛𝑚𝐻
  − (𝐿𝛼𝑛𝑚4 + 𝜌𝑔 − 𝜌𝑒ℎ𝜔2) ]𝛺𝑛𝑚 𝛼𝑛𝑚

∞

𝑚=1

          (A. 4) 

with 

ℐ(𝑛) = ∑
𝑟0 𝐽𝑛(𝛼𝑛𝑚𝑟0)𝐽𝑛+1(𝛼𝑛𝑚𝑟)

𝛺𝑛𝑚𝛼𝑛𝑚

∞

𝑚=1

.                                          (A. 5) 

After separating ℐ(𝑛) from ℐ2
(𝑛)

, the remaining summation in (A.4) is then convergent. 

 

For (A.5), we may use Eq. (9.1.30) of Abramowitz and Stegun [23] and let 𝑧 = 𝛼𝑛𝑚𝑥, 

𝜈 = 𝑛 + 1 and 𝑘 = 1. Integrating with respect to 𝑥 from 0 to 𝑥0, this leads to 

𝑥0
𝑛+1 𝐽𝑛+1(𝛼𝑛𝑚𝑥0)

𝛼𝑛𝑚
= ∫ 𝑥𝑛+1 𝐽𝑛(𝛼𝑛𝑚𝑥)

𝑥0

0

𝑑𝑥.                                 (A. 6) 

By expanding Dirac delta function into an infinite series of Bessel functions, we have  

𝛿(𝑟 − 𝑥) = ∑
𝑥𝐽𝑛(𝛼𝑛𝑚𝑥)

𝛺𝑛𝑚

∞

𝑚=1

𝐽𝑛(𝛼𝑛𝑚𝑟) = {
0,          𝑟 ≠ 𝑥
∞, 𝑟 = 𝑥

 ,                         (A. 7) 

Multiplying (A.7) with 𝑥𝑛, integrating the result with respect to 𝑥 from 0 to 𝑥0, and 

further using (A.6), we have 

∑
𝐽𝑛(𝛼𝑛𝑚𝑟)𝐽𝑛+1(𝛼𝑛𝑚𝑥0)

Ω𝑛𝑚𝛼𝑛𝑚

∞

𝑚=1

=
1

𝑥0
𝑛+1 

∫ 𝛿(𝑟 − 𝑥) 𝑥𝑛 𝑑𝑥

𝑥0

0

= {

0,          𝑥0 < 𝑟
𝑟𝑛

𝑥0
𝑛+1 ,    𝑥0 > 𝑟

  .    (A. 8) 

 



Replacing 𝑟 and 𝑥0 with 𝑟0 and 𝑟 respectively in (A.8), and applying the result to (A.5), 

we obtain ℐ(𝑛) = 0, as 𝑟 < 𝑟0. 
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