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Abstract: This paper presents a capacity planning framework for a microgrid based on renewable
energy sources and supported by a hybrid battery energy storage system which is composed of
three different battery types, including lithium-ion (Li-ion), lead acid (LA), and second-life Li-ion
batteries for supplying electric vehicle (EV) charging stations. The objective of this framework is
to determine the optimal size for the wind generation systems, PV generation systems, and hybrid
battery energy storage systems (HBESS) with the least cost. The framework is formulated as a mixed
integer linear programming (MILP) problem, which incorporates constraints for battery ageing and
the amount of unmet load for each year. The system uncertainties are managed by conducting the
studies for various scenarios, generated and reduced by generative adversarial networks (GAN) and
the k-means clustering algorithm for wind speed, global horizontal irradiation, and EV charging load.
The studies are conducted for three levels of unmet load, and the outputs are compared for these
reliability levels. The results indicate that the cost of hybrid energy storage is lower than individual
battery technologies (21% compared to Li-ion, 4.6% compared to LA, and 6% compared to second-life
Li-ion batteries). Additionally, by using HBESS, the capacity fade of LA batteries is decreased (for
the unmet load levels of 0, 1%, 5%, 4.2%, 6.1%, and 9.7%, respectively), and the replacement of the
system is deferred proportional to the degradation reduction.

Keywords: microgrid; renewable energy; hybrid battery energy storage system; 2nd life Li-ion
battery; generative adversarial network; mixed integer linear programming (MILP)

1. Introduction
1.1. Motivation

In line with the 2015 Paris Agreement, many governments have adopted policies for
reaching net-zero carbon emissions by 2050, which are mainly founded on increasing the
penetration of renewable energy in energy grids and the transition from fossil-fuel vehicles
to electric vehicles (EV) [1,2]. Due to the volatility and interruptible nature of renewable
generation, relying merely on these sources could lead to oversized capacities, which is
costly and inefficient. The combination of renewable generation with battery energy storage
systems is an effective solution which also facilitates the exploitation of these systems
independent from bulk energy grids in the form of microgrids [3,4]. On the other hand, the
transportation sector has been recognised as an emitting source, and the transition from
fossil-fuel vehicles to electric vehicles can have a significant effect on reaching the net zero
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carbon emission goal [5,6]. Nonetheless, both renewable generation and electric vehicle
charging stations have stochastic behaviours, and uncertainty management approaches
must be considered when planning microgrids with EV electric chargers and renewable
sources by generating scenarios [7,8].

Lead-acid (LA) batteries are the most common type of batteries that are used widely
in energy grids and the automotive industry. They are fully recyclable and lower in cost
than other types of battery; however, they need to be replaced after 4–5 years and have
high rates of degradation [9]. Conversely, lithium-ion (Li-ion) batteries are more expensive
(LA batteries are 1.5 times cheaper than Li-ion batteries in this reference) [9] but have lower
degradation rates which prolong their operational lives. Also, with the increasing trend
of utilising EVs, Li-ion batteries from these vehicles are considered for use as second-life
batteries in stationary applications such as microgrids and stand-alone energy systems
using renewables once they have come to the end of their useful life in the vehicles [10].

These policies and technological developments have motivated research into optimal
sizing of energy storage, considering the stochastic nature of renewable generation and
hybrid energy storage.

1.2. Literature Review

In recent years, significant research has been conducted on planning and sizing micro-
grids regarding various aspects of each component. Reference [4] introduces a microgrid
capacity planning model incorporating dynamic wireless charging stations. In this research,
the authors consider the potential of (in-motion electric vehicles) to be used for microgrid
energy regulation. By using this potential, there will be a moveable load and energy storage
system that can enhance the system’s power loss and voltage. In [11], a capacity planning
scheme is presented for an autonomous microgrid that includes controlling the power ramp
rate of the microgrid elements. This research involves the power released by the elements
in response to a frequency deviation and proportional to the droop in the capacity sizing
process for each element. The paper indicates how the droop parameters can affect the
size of each element. The optimal energy storage sizing for controlling the ramp rate of a
microgrid is investigated in [12] using a representative day selection technique. The day
selection day is based on a clustering approach using the k-medoids method. A capacity
planning scheme for a grid-connected microgrid is studied in [13] based on generated
scenarios and multi-dimensional uncertainties. A multi-objective energy battery sizing
approach is introduced in [14] for a grid-connected microgrid; in this research, the authors
consider system reliability and battery degradation. In [15], the authors formulate a mixed
integer multi-objective linear programming problem (MIMLP) for the robust planning of
a stand-alone microgrid using a typical day selection method; in this research, after the
days are selected, a bilevel programming scheme is used for capacity planning where in
the upper stage the CAPEX of the system is minimised and in the lower level the operation
costs are minimised. The reliability-based microgrid planning model is proposed in [16],
where the researchers consider photovoltaic, diesel, and battery energy storage systems
for the stand-alone system; however, battery degradation and different technologies are
not studied. Techno-economic studies are presented in [17] for PV-battery sizing of mi-
crogrids and to investigate the effect of the meteorological conditions on the size of PV
and battery. Stochastic programming is used in [18] for the optimal sizing of microgrid
components; the planning cost and system reliability are regarded as the objective functions.
A bi-objective model is used in [19] for renewable generation and energy storage sizing for
a stand-alone microgrid; a distributionally robust shortfall risk of load shedding is studied
to achieve a compromise between the system planning cost and system reliability. Also, a
two-stage stochastic programming approach is presented in [20] for sizing PV generation
and battery energy storage for peak load shaving in district buildings; the first stage of this
framework determines the capacities, and the second stage obtains the optimal operation
for the grid-connected mode. Repurposed electric vehicle batteries are used in [21] for
microgrid planning; a linearisation technique is used to obtain the replacement year of
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the battery; this research also models these batteries based on their first-life drive cycles
and the corresponding degradation. A battery sizing approach is presented in [22] for
an AC/DC microgrid regarding corrective actions for contingencies; the approach in this
work enhances the voltage and frequency regulations for an isolated microgrid. A new
objective function for making a trade-off between the economy and the utilisation rate of
renewable energy is presented in [23]; the model is based on predicting power to assure
the economical and reliable performance of the system.

Several studies have also been carried out on combining various types of battery
technologies. In [24], a battery sizing approach for microgrids is introduced using two
stages, wherein in the first stage, the capacity and maximum depth of discharge (DOD) are
acquired, and in the second stage, the technology is selected, and the battery lifetimes are
estimated; three various technologies including Li-ion, LA, and sodium sulfur (NaS) are
used. A techno-economic comparison between the utilisation of Li-ion and LA batteries
has been conducted in [25]. The study demonstrates the advantages of Li-ion batteries over
LA batteries but does not study the concurrent use of these technologies. The possibility
of connecting dual chemistries directly to a DC bus with a semi-control of battery strings
is investigated in [26]. In [27], both new and 2nd life Li-ion batteries (SLi-ion) are used
for multi-stage network planning; the results show some reduction in system costs and
maintaining the required degree of flexibility by considering SLi-ions. In [28], a Li-ion and
LA hybrid battery energy storage system (HBESS) is proposed to supply a fully renewable-
based electric vehicle charging station. The results show that using HBESS costs less than
using a single battery type system.

1.3. Research Gap and Contribution

Even though several researchers have worked on sizing stand-alone microgrids con-
sidering various dimensions of the problem, there is a gap in planning these energy systems
considering the concurrent utilisation of different battery technologies, including second-
life batteries and incorporating battery degradation and reliability limits of the system. In
this paper, the planning is studied using three different types of battery, including fresh
Li-ion, 2nd life Li-ion, and LA batteries, so the system can take advantage of the benefits
of each of these batteries. In addition, most of the techniques reported in the literature
use stochastic programming and scenario-based approaches, and the scenarios generated
for EV load, solar irradiation, and wind speed are generated without regard to temporal
correlations. To fill this gap, general adversarial networks (GAN) are used to generate
scenarios that emulate what happens in reality in terms of the variation of these stochastic
elements. To show the research gaps in the past literature, Table 1 provides a comparison
between this paper and the past research. Based on the contributions of this research,
six items are selected to distinguish this research from the past work. In summary, the
contributions of this work are as follows:

• A new formulation is presented for planning off-grid microgrids, including hybrid
battery energy storage systems (HBESS). The formulation is able to specify the capacity
of each system component and take advantage of the benefits of different battery
technologies in terms of cost and degradation characteristics. The formulation is based
on a mixed integer linear programming (MILP) approach to guarantee reaching a
global or near-optimal global solution to the problem.

• The formulation includes an energy management scheme that can set the reliability
level of the system and the capacity fading of different types of batteries in order to
manage the planning cost and defer battery replacement.

• A scenario generation approach based on GAN is developed to capture the uncertain-
ties caused by wind speed, solar irradiation, EV load and the temporal correlation of
these uncertain parameters. The method is designed to generate scenarios for each
season to emulate stochastic generation and consumption.

The next section of this paper elaborates on the modelling of each component of the
microgrid and describes the methodology. The corresponding formulation of the microgrid
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planning problem is presented in Section 3. Section 4 illustrates the numerical results
extracted from the simulations. Eventually, the related conclusions are explained in the
last section.

Table 1. Summary of the literature.

Ref. Uncertainty
Modeling

Battery
Degradation

Microgrid
Reliability

Scenario
Generation

Hybrid BESS
Management

2nd Life
Li-Ion BESS

[4] No No No No No No
[6] Stochastic No Yes Not Specified No No
[7] Stochastic/Robust No No Not Specified No No

[8] Chance
constrained No Yes Monte Carlo

simulation No No

[9] No No No No No No
[11] No Yes Yes No No No
[13] Scenario based No No GAN No No

[14] Stochastic Yes Yes Monte Carlo
simulation No No

[15] Robust No Yes No No No
[16] No No Yes No No No

[18] Stochastic No Yes Monte Carlo
simulation No No

[19] Robust No Yes No No No
[20] Stochastic No No GAN No No
[21] Stochastic Yes No Not Specified No Yes
[23] No No Yes No No No
[27] Stochastic No No GAN No Yes

Current Research Stochastic Yes Yes GAN Yes Yes

2. System Model and Methodology

In this paper, a stand-alone microgrid composed of PV generation systems, wind
generation systems, and EV charging stations is studied. The system is supported by a
battery energy storage system (BESS) composed of lithium-ion (Li-ion), lead acid (LA), and
2nd life Li-ion (SLi-ion) batteries. Figure 1 illustrates the system, which uses a common DC
bus to connect the system components. In this framework, all batteries are connected to the
coupling point by power electronic converters. In some types of research, such as [28], an
idea is presented to connect the batteries directly without using converters. Nonetheless,
the framework can be generalised to an AC system. In the following, the models used
for each of these elements are explained. After the models are presented, the uncertainty
modelling scheme is presented.
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2.1. PV Generation Modelling

To model the power generated by PV panels, the irradiation received by PV panels has
to be modelled initially. The irradiation that the PV uses to generate power is composed of
three main elements as follows [29]:

GT,β(t) = GB,β(t) + GD,β(t) + GR(t) (1)

In this relation, GT,β(t), is the global irradiance in (W/m2), GB,β(t), GD,β(t), and GR(t)
are the direct, diffuse, and reflected irradiation components for an inclined PV surface with
the tilt angle of β in (W/m2). After the global irradiance for the tilted surface is calculated,
the total power generated by the PV generation system can be calculated as follows:

PPV(t) = NPVηPV APV GT,β(t) (2)

where APV and ηPV are the solar panel area in (m2) and solar power efficiency. NPV is the
total number of PV panels.

2.2. Wind Generation Modelling

The output power generated by a wind turbine can be estimated as (3) [30].

PW(t) =


0 f or v(t) ≤ vci

a + b.Vw f or vci ≤ v(t) ≤ vR
PR f or vR ≤ v(t) ≤ vco
0 f or v(t) ≥ vco

(3)

where:
a = PRvc/(vci − vr) (4)

b = PR/(vR − vci) (5)

power generated by the wind turbine in (kW). In addition, v(t), vci, vR, vco, and w show
the wind speed, cut-in wind speed, rated wind speed, cut-out wind speed, and the Weibull
factor, respectively. The Weibull factor specifies how the wind generation changes for wind
speeds between the cut-in and rated wind speed. Usually, this factor is equal to 1, and a
linear relation is assumed for this wind speed interval. In this research, the power-wind
speed curve is available for the utilised wind turbines and is used to calculate the output
power for each hour according to the related wind speed [31].

2.3. Battery Capacity Fading Model

Battery capacity fading is caused by two types of degradation: cycle degradation
and calendar degradation. While the former is caused by the charge and discharge of the
battery, the latter is related to the stored energy in the battery [32]. Cycle degradation
has been regarded in several microgrid capacity sizing studies. However, in a number
of these studies, for incomplete cycles, the degradation of complete cycles is calculated.
Figure 2 shows an example of how the incomplete cycles are calculated using the rain-flow
counting algorithm [33]. In this figure, the total cycle degradation is calculated using the
following equation:

Deg = AG(DOD = 50%) + AG(DOD = 40%)− AG(DOD = 10%) + AG(DOD = 50%)
−AG(DOD = 20%)

(6)

In (6) Deg, and AG(DOD = *) indicate the total cycle degradation and the cycle
degradation (complete cycle) for a depth of the discharge. It must be noted that if complete
cycle degradation was applied for this figure, the calculated degradation would be the
degradation of full cycles at points 2, 4, and 6, which would overestimate the amount of
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degradation for the battery. The cycle degradation for a specific depth of discharge DOD is
calculated as:

DCyc = αcycDODCBESS (7)

where αcyc is the percentage of capacity fading for 1000 cycles of 100% DOD. It can be
illustrated that by simplifying (7), the relation (8) can be used instead [34].

DCyc = αcycPdis∆t (8)

Calendar ageing is proportional to the SOC of the battery and can be formulated as:

Dcal = αcalCBESSSOC (9)

However, the corresponding coefficient αcal shows the percentage of capacity fade
for a certain amount of SOC that is stored for 1 month. To convert this capacity fading
for each time interval ∆t, (9) is used (30 days is assumed for a month with 24 h for each
day). Instead of (9), the following relation can be used where E shows the stored energy in
the battery:

Dcal = αcalE/(720∆t) (10)

The total amount of degradation is obtained by the aggregation of two types of
degradation for each time interval [34].
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2.4. Uncertainty Modelling

The system uncertainties are caused by the stochastic generation of PV/wind and
the stochastic EV loads. To manage the uncertainty of the system, various scenarios are
generated according to the wind speed, total solar irradiation, and the EV load. In this
research, generative adversarial networks (GAN) are used to generate the scenarios. In the
past literature, various scenario-generating approaches have been applied for modelling
the uncertain space, such as Monte Carlo Sampling (MCS) and Latin Hypercube Sampling
(LHS) based on methods like copulas for modelling the distributions and correlations.
Most of these approaches are based on fitting a probability density function (pdf) to a data
set and randomly selecting data from this function. Nevertheless, the probability density
functions are based on statistical assumptions which are not always valid for dynamic
and time-varying uncertainties [18]. In this research, the probability density function for
the EV charging station loads is not known. Furthermore, a specified pdf for the solar
irradiation and wind speed cannot always be valid. Therefore, a data-driven approach is
used for generating scenarios that do not require a probability distribution function and
are able to capture the temporal correlations for various uncertain parameters, including
the EV station charging load, solar irradiation, and wind speed. After the scenarios are
generated, to compromise between the computational burden and the accuracy of the
results, the number of scenarios is reduced using the k-means algorithm. Figure 3 shows
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an overview of the uncertainty management scheme. In the following sections, each of the
stages is explained.
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2.4.1. Scenario Generation

GAN is a type of machine-learning approach that can be used to emulate a set of
data [35]. Without requiring information about the distribution of data (wind speed, solar
irradiation, and EV load), GAN is able to generate scenarios from a noisy input. The idea
of these networks is based on a MinMax game between two interconnected networks,
which are recognised as the generator (G) and the discriminator (D), as shown in Figure 3.
While the discriminator acts as a binary classifier and tries to detect the real data, the
generator attempts to confuse the discriminator by generating fake data. The generator
and discriminator compete until they reach the Nash-equilibrium point (Nash equilibrium
is a situation where none of the players can increase their profit by changing their strategy
while the strategy of other players is fixed). Eventually, after the generator is trained, it can
be separated and used to generate scenarios with the noise input. The objective function of
this system, in which the generator generates samples from the input noise (z) similar to
real samples (x), can be formulated as follows:

Minθ Maxω

(
Ex∼P(x)[log(Dω(x))] + Ez∼P(z)[log(1 − Dω(Gθ(z)))]

)
(11)

In (11), Dω and Gθ show the discriminator and generator which have the set of weights
and biases ω and θ, respectively. P(x) is the real historical dataset from which the real
samples x are taken. P(z) is the latent space (a random generator such as a noise function)
that the random data z is taken from. E(.) is the expected value.

In each iteration, the generator and discriminator are trained concurrently. The general
loss function from the view of the generator network is as follows:

MinGLG(G) = −Ez∼P(z)[log(Dω(Gθ(z)))] (12)

The goal of the generator is to confuse the discriminator which is fulfilled by (12) [35].
When the generator is trained, all the parameters of the discriminator are fixed, and the
weights and biases of the generator are updated by minimising (12). Also, the loss function
from the view of the discriminator is as follows:

MaxDLD(D) = Ex∼P(x)[log(Dω(x))] + Ez∼P(z)[1 − log(Gθ(z))] (13)

The discriminator’s objective function is to distinguish between the fake samples
generated by the generator and the real samples by updating the weights and biases θ
for each iteration. Like the previous step, the weights and biases of the generator are
fixed for this update. For the initial iterations, the discriminator will be able to easily
detect the fake samples, the discriminator loss function will be low, and the generator loss
function will have a high value. However, after a number of iterations, the loss function
of the discriminator and the generator will increase and decrease, respectively, and the
discriminator will be fooled into recognising the true and fake samples. After the generator
is trained, it can be used to generate scenarios. The training process can be fulfilled by
using Algorithm 1 below.

In Algorithm 1, the Adam (adaptive moment estimation) optimiser is used, which
is based on estimating the first and second-order moments. In terms of computation
and memory requirements, the optimiser is efficient for large-scale problems with many
parameters and data [36].
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Algorithm 1: Training of GAN for scenario generation

Default Values: Mini-Batch (Nbch), number of iterations (Nit)
Initialise hyperparameters θ and ω for generator and discriminator
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It is worth mentioning that using a solo deep learning model, such as a convolutional
neural network model, can make it difficult to generate scenarios. If the deep learning
model is trained with the historical dataset, it will perform as a forecaster. Forecasted
values have errors; however, their errors are usually low, and the outputs of a solo CNN
can be very similar to realised profiles. By merely using CNNs, it is difficult to generate
scenarios which are similar to the real parameter profiles. To generate these datasets, in
addition to a generator which is fed by white noise (despite a CNN which is fed by real
data), a discriminator is also required to assist the generator in learning how to generate
data profiles which are similar to the real data and not detectable by the discriminating
network as “fake” data. Also, in this research, in order to investigate hyperparameter
tuning, different combinations of various hyperparameters such as the batch size (10 to
50 batches), epochs (1000 to 5000), optimiser (Adam, SGD, RMSprop), number of nodes,
and number of layers are examined for the generator and discriminator. In addition to the
mentioned optimisers, the AdamW optimiser can also be used for training the discriminator
and generator by also considering the weight decay to be optimised.

In this study, for each season, a separate GAN is trained for the wind speed, solar
irradiation, and EV load, as illustrated in Figure 3. After the GAN is trained, it is used to
generate scenarios for each stochastic parameter and for each season. Eventually, using the
k-means method, the generated scenarios are reduced to a set of scenarios which represent
the total stochastic space.

2.4.2. Scenario Reduction

In this section, after the scenarios are generated for the electric vehicle charging
loads, solar irradiation, and wind speed, the scenarios are reduced using the k-means
approach [37]. k-means is a clustering algorithm that specifies k clusters with the corre-
sponding centres and specifies which data objects belong to which cluster. The k-means
algorithm seeks to find the optimal centres of each cluster in order to minimise the distance
of the centres from the data samples in the vicinity of these clusters. This distance is based
on calculating the Euclidean distance between the samples as follows:

d(ap, cq) =

√
n

∑
i=1

(
ap

i − cq
i

)2
= ∥ap − cq∥2 (14)

where a and c are sets of n-dimensional of data samples and cluster centroids, respectively.
Also, ap

i and cq
i show the pth sample from the data set and the qth centroid of the clusters.

The k-means algorithm is initiated by selecting k data sets as the cluster centres and by
defining a loop; the centres are modified for each iteration. During each iteration, each data
set is assigned to the closest centre according to the calculated Euclidean distance. In the
next step, the centres are shifted to the mean of all data sets of a cluster. The calculation
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continues until the distance between the new and previous centres is below a specified
amount as follows [37]:

k

∑
i=1

∥∥∥ci
t − ci

t−1

∥∥∥2
≤ ϵ (15)

where ci
t and ci

t−1 are the centroids of the ith cluster for the tth and tth−1 iteration. The
clustering algorithm is illustrated in Algorithm 2 below:

Algorithm 2: k-means algorithm

Input:
Input data set: A =

{
a1, a2, · · · , aj}, ai ∈ Rn

Output:
Output: Cluster Centroids: C=

{
c1, c2, · · · , ck}, Data set of each cluster: D=

{
d1, d2, · · · , dk

}
Initialisation:

Select k random points from the dataset A as the centroids
While ∑k

i=1
∥∥ci

t − ci
t−1

∥∥2
> ϵ:

For i = 1 to j:
argminm

∥∥ai − cm
∥∥

2 → m∗

Dm∗ ∪
{

ai}→ Dm∗

For i=1 to k:
ci = 1

|ci |∑aj∈ci aj

Return:
C and D

2.4.3. Methodology

The overall diagram of the proposed microgrid planning method is presented in
Figure 3. In the first step, the GAN is trained using the gathered data for EV load, wind
speed, and solar irradiation, which are determined for each season (December, January,
February for winter, March, April, May for spring, June, July, August for summer, and
September, October, November for autumn). In the second stage, after the generative net-
work is trained, it is used for generating various scenarios for 24 h, and the corresponding
annual profiles are built based on these scenarios; however, to reduce the computational
burden of the problem, the scenarios are reduced using k-means. After the final scenarios
are selected, the MILP formulation is solved for each scenario, and the final capacities are
acquired. Eventually, with the goal of assessing the results, the obtained capacities are
passed to the energy management system, and the performance of the system in terms of
the total unmet load and battery degradation is evaluated.

3. Microgrid Planning Formulation
3.1. Microgrid Capacity Sizing

The objective function of the problem is composed of the capital cost (CAPEX) and the
operation and maintenance cost (OPEX) of each element as follows:

F(s) = CostW(s) + CostPV(s) +
NTC

∑
tc=1

CostBESS(s, tc) +
NTC

∑
tc=1

CostConv.(s, tc)−
NTC

∑
tc=1

SalBESS(s, tc) (16)

CostW(s) = CAPEXWCW(s) + OPEXW(s) (17)

CostPV(s) = CAPEXPVCPV(s) + OPEXPV(s) (18)

CostBESS(s, tc) = CAPEXBESS(tc)CBESS(s, tc) + OPEXBESS(s, tc) (19)

CostConv(s, tc) = CAPEXConv.(tc)CBESS(s, tc) (20)

OPEXW(s) =
NY

∑
y=1

NT

∑
t=1

1
(1 + r)y (OPEXW,F NW(s) + OPEXW,VCW(s)Wind(s, t, y)∆t) (21)
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OPEXPV(s) =
NY

∑
y=1

NT

∑
t=1

1
(1 + r)y (OPEXPV,FCPV(s) + OPEXPV,VCPV(s)PV(s, t, y)∆t) (22)

OPEXBESS(s, tc) =
NY
∑

y=1

NT
∑

t=1

1
(1 + r)y (OPEXBESS,F(tc)Cconv(s, tc) + OPEXBESS,V(tc)(Pch(s, tc, t, y)

+Pdis(s, tc, t, y))∆t)
(23)

SalBESS(s, tc) =
γ.CAPEXBESS(tc)

(1 + r)NY

(
(1 − EOL(tc))CBESS(s, tc)−

NY

∑
y=1

NT

∑
t=1

D(s, tc, t, y)

)
(24)

CW(s) = Nw(s)PRW (25)

CPV(s) = NPV(s)PRPV (26)

CBESS(s) = NBESS(s)PRBESS (27)

CConv(s) = NConv(s)PRConv. (28)

In these relations, (17)–(20) show the total cost for each element of the microgrid
including the wind turbine, PV panels, BESSs for different technologies and the converters
for each BESS. The OPEX of each component of the microgrid is also indicated in (21)–(23)
for the wind turbine, PV panels, and different technologies of the BESSs (there was no
data for the OPEX of converters; however, if the OPEX of converters is available, it can be
involved in the objective function). In (24), the residual value of the battery at the end of
the planning horizon is calculated. In this relation, the residual capacity (obtained from
subtracting the amount of capacity fade from the initial useable capacity) is multiplied by
an initial percentage of the battery’s price. For these relations, the term

(
1/(1 + r)y) is used

for converting the costs in the later years to the present value according to the discount rate
of r. Relations (25)–(28) calculate the capacity from the number of elements used and the
size of each unit element.

The objective function is restricted by the following constraints:

CW(s) ≤ CW,max (29)

CPV(s) ≤ CPV,max (30)

CBESS(s, tc) ≤ CBESS,max(tc) (31)

CConv(s, tc) ≤ CConv,max(tc) (32)

In (29)–(32), the capacity for each scenario for wind, PV, BESS, and converters are
restricted to an upper bound. The load balance equation for the microgrid is as follows:

NWWG(s, t, y)∆t + CPV PVG(s, t, y)∆t + ∑Ntc
tc=1 Pdis,tc(s, tc, t, y) + UL(s, t, y) = EV(s, t, y)+

∑Ntc
tc=1 Pch,tc(s, tc, t, y) + RS(s, t, y)

(33)

In this relation, for each time interval for each year and of each scenario, the sum of the
energy generated by the wind and PV systems in addition to the discharge of all batteries
and the amount of load that is not supplied must provide the load, charge the battery, or be
curtailed. The relations for the BES systems are as follows:

Pch(s, tc, t, y) ≤ Cconv(s, tc) (34)

Pdis(s, tc, t, y) ≤ Cconv(s, tc) (35)

Pch(s, tc, t, y) ≤ Much(s, tc, t, y) (36)

Pdis(s, tc, t, y) ≤ Mudis(s, tc, t, y) (37)

uch(s, tc, t, y) + udis(s, tc, t, y) ≤ 1 (38)
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Etc(s, tc, t, y) = Etc(s, tc, t − 1, y) + (ηch(tc)ηConv(tc)Pch,tc(s, tc, t, y)∆t)
−(Pdis,tc(s, tc, t, y)∆t/ηdis(tc)ηConv(tc))

(39)

SOCmin(tc)CBESS(s, tc) ≤ E(s, tc, t, y) ≤ SOCmax(tc)CBESS(s, tc) (40)

RS(s, t, y) ≤ M(1 − udis(s, tc, t, y) (41)

UL(s, t, y) ≤ M(1 − uch(s, tc, t, y) (42)

In (34) and (35), the power discharged, and charged by the BESS are limited by the
converter size and for each type of technology. Binary variables in (36)–(38) determine the
charge and discharge states for the batteries. In these relations, M is any large value which
is used for linearisation in MILP problems. The energy balance equation for each type of
battery technology is demonstrated in (39). The energy stored in the batteries is limited
by (40). Relations (41) and (42) show that if any battery is discharging, there should be no
renewable energy spillage, and conversely, if there is any unmet load for a specific time
interval, none of the batteries are permitted to charge. The degradation limitations of the
batteries are as follows:

Dcyc(s, tc, t, y) = αcyc(tc)Pdis(s, tc, t, y)∆t (43)

Dcal(s, tc, t, y) = αcal(tc)/(24 × 30)Etc(s, tc, t, y) (44)

D(s, tc, t, y) = Dcyc(s, tc, t, y) + Dcal(s, tc, t, y) (45)

NY

∑
y=1

NT

∑
t=1

D(s, tc, t, y) ≤ (1 − EOL(tc))CBESS(s, tc) (46)

Relations (43)–(45) calculate the amount of cycle degradation, calendar degradation,
and total degradation for each type of battery, respectively. Equation (46) restricts the total
amount of degradation to less than the end-of-life capacity fade of the battery for each
type of technology. Eventually, the reliability constraints for the microgrid capacity sizing
framework are as follows:

EENS(s, y) =
NT

∑
t=1

UL(s, t, y) (47)

EENS(s, y) ≤ EENSmax ·
NT

∑
t=1

EV(s, t, y) (48)

In (47), the total expected energy not supplied is calculated for each year of each
scenario. Relation (48) limits this value to a maximum portion of the total EV load by
EENSmax (0 ≤ EENSmax ≤ 1).

When the capacities are obtained for each scenario, the final solutions are specified
as the expectation of the capacities for all scenarios. The next section explains how these
capacities are evaluated by the energy management system.

For the microgrid capacity planning section, the coefficient costs (CAPX, fixed OPEX,
and variable OPEX) for various parameters used in the objective function are shown in
Table 2 [34]. In addition, the battery characteristics are illustrated in Table 3.

Table 2. Cost parameters for each component of the microgrid.

Component CAPEX (£/kW) Fixed OPEX (£/kW/Year) Variable OPEX (£/kWh)

Wind 5000 83 0.016

PV 730 50 0.008

Li-ion Battery 335 8 0.00024

LA Battery 80 8 0.00024

SLi-ion Battery 150 8 0.00024

Converter 90 - -
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Table 3. Battery characteristics for each type of battery [34].

Parameter Li-Ion LA SLi-Ion

ηch,tc − ηdis,tc (%) 97–97% 90–90% 97–97%

SOCmin (%) 20% 50% 20%

SOCmax (%) 100% 100% 80%

αcyc (per 1000 cycle) (%) 4.5% 61.5% 4.5%

αcal (per month) (%) 0.125 0.125 0.125

EOL (%) 60 70 60

3.2. Capacity Sizing Assessment with the Energy Management System

After specifying the capacity of each component of the microgrid, the results are
studied to quantify the efficacy of the proposed framework. To do so, an energy man-
agement scheme that minimises the unmet load (expected energy not supplied) is solved,
considering the relations (29)–(48). The criteria for evaluating the results are based on the
amount of unmet load and the total degradation of the batteries.

4. Simulations and Results

In this section, the results are presented to demonstrate the efficacy of the proposed
capacity sizing scheme. For the scenario generation section, the Keras [38] library in
Python is used to train the GAN networks (Keras is an open-source library that provides a
Python interface for artificial neural networks). The details of the GAN used for generating
scenarios for wind speed, solar irradiation, and EV load scenarios are illustrated in Figure 3,
training stage.

In this research, an initial state of health (SOH) of 80% is assumed for the SLi-ion
batteries. Also, the converter efficiency for all battery types is assumed to be 97%. The
global irradiance and wind speed (10 m height) are extracted from [39] according to the
coordination of the installation site. Finally, the data used for the EV load is extracted from
the EV charging points of the Perth and Kinross Council [40]. The main limitation of this
research is that it has not been able to access the EV charging profile for more than two
years. By possessing access to larger EV charging datasets, more precise scenarios can be
generated, and the microgrid capacity sizing can be conducted with a higher accuracy. The
MILP problem is also formulated in the Python environment using the Spyder IDE [41]
and the GUROBI solver [42] to solve it using a Core i7, 2.1 GHz PC with 16 GB RAM and
setting the duality gap to 0%. Also, to reduce the number of scenarios using k-means and to
initialise the clusters’ centroids, the k-means++ option can be used in Scikit-learn to obtain
more effective results [43].

Two main study cases are investigated for the microgrid capacity sizing approach.
In the first case, the capacity sizing is fulfilled by using a single technology, BESS. In the
second case study, hybrid BESS technologies are studied for microgrid planning. For these
studies, initially, 9000 scenarios are generated for the daily wind speed, solar irradiation,
and EV load and for each season (as these scenarios are for 24 h and they are used for
making 1 year EV charging load, solar irradiation, and wind speed profiles; an adequate
number of scenarios have to be generated). By using k-means, the number of scenarios
is reduced to 10 for each year (the number of reduced scenarios can be specified by the
elbow method [44]). Figure 4 shows the loss function for the generator and discriminator
for winter for the three uncertain parameters. The results indicate that for the first initial
iterations, the discriminator is able to detect between the real samples, and the generator is
not able to confuse the discriminator; however, after a few iterations, the generator starts
generating samples that are similar to the real samples and the discriminator is not able to
distinguish them.
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Figure 4. Training evolution on the GAN for winter and for (a) Wind speed, (b) Solar irradiation, and
(c) EV load.

To show the similarity of the generated scenarios to the real data from the statistical
point of view, the cumulative distribution functions for the uncertain parameters are shown
in Figure 5. The results verify that the generated scenarios are able to emulate the set of
real data for wind speed, solar irradiation, and EV load. In addition, a comparison is made
between the normalised values of some samples from the real dataset and the generated
dataset for the solar irradiance, wind speed and EV load using the Euclidean distance to
find similar samples in Figure 5. To show the similarity between these datasets in terms of
correlation, the autocorrelation between these samples for each time lag is also shown in
Figure 6. In the next section, the results of the microgrid capacity planning are presented
for the two different case studies.
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Figure 5. Comparison of the cumulative distribution function between the real data (red dotted line)
and generated scenarios (blue line).
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Figure 6. Selected samples from the real dataset (blue dashed) and generated dataset (dark blue lines)
were derived using the Euclidean distance and corresponding autocorrelation.

4.1. Single BESS Technology Use

In this part, the simulation results are scrutinised for the utilisation of single technology
types of battery. Table 4 compares the total capacity sizing cost for using each of these types
of battery for the maximum level of reliability (EENSmax = 0). As expected, the new Li-ion
batteries have the highest planning cost compared to LA and second-life Li-ion-batteries.
In this study, scenario 9 has the highest planning cost with £774,297, £702,401, and £689,997
for Li-ion, LA, and SLi-ion batteries, respectively for the EENSmax = 0 study case. For
supplying 99% of the EV charging load, these costs decrease to £472,600, £412,868, and
£415,861, and for 95% of the met load for each year, these values drop to £341,325, 316,066,
and £308,104 for the three mentioned technologies, respectively.

The results indicate that the system planning cost can be decreased at the expense of a
lower reliability level of charging EVs. Moreover, due to the high price of Li-ion batteries,
the usage of these technologies results in high planning costs, even though they have a
better degradation characteristic compared to LA and SLi-ion batteries. Figure 7 shows the
planning cost for the other two reliability limits of EENSmax = 1% and EENSmax = 5%.
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Although the study case of EENSmax = 0, wherein a number of cases using LA batteries
leads to lower planning costs, for the two other reliability levels, the planning cost is higher
for LA batteries compared to SLi-ion BESS.

Table 4. Microgrid planning cost for various study cases and EENS = 0.

BESS
Type

Scenario#1
Cost (£)

Scenario#2
Cost (£)

Scenario#3
Cost (£)

Scenario#4
Cost (£)

Scenario#5
Cost (£)

Scenario#6
Cost (£)

Scenario#7
Cost (£)

Scenario#8
Cost (£)

Scenario#9
Cost (£)

Scenario#10
Cost (£)

Li-ion 371,433 559,212 438,444 606,928 362,084 540,559 480,344 423,876 774,297 417,563

LA 358,098 473,140 416,131 496,903 325,166 447,650 448,255 361,067 702,401 367,656

SLi-ion 352,144 478,819 406,921 510,220 325,681 457,867 452,566 363,209 689,997 371,382

Hybrid 347,909 452,658 397,476 479,286 314,873 430,677 444,727 344,331 674,013 354,413
Energies 2024, 17, x FOR PEER REVIEW 18 of 27 
 

 

  
Figure 7. Planning cost for utilisation of single BESS technology for different scenarios. (a) 𝐸𝐸𝑁𝑆  
= 1% (b) 𝐸𝐸𝑁𝑆  = 5%. 

  

  
Figure 8. The capacity of each microgrid component for utilisation of single BESS technology and 
for 𝐸𝐸𝑁𝑆  = 0. 

To investigate the effect of the system reliability of the microgrid component sizes, 
Table 5 shows the average size of all scenarios and for all battery-type study cases for three 
levels of reliability. As it was expected, when higher reliability levels are desired, the over-
all component size increases. For instance, for the single SLi-ion study case, the capacity 
size of the battery is 624 kWh and 194 kWh for 𝐸𝐸𝑁𝑆 = 0  and 𝐸𝐸𝑁𝑆 = 5% 

Figure 7. Planning cost for utilisation of single BESS technology for different scenarios.
(a) EENSmax = 1% (b) EENSmax = 5%.

The size of each component for each scenario is presented in Figure 8 for EENSmax = 0.
This figure illustrates that for scenario 9, the optimiser sizes near 300 kW PV for all various
battery technologies. However, for the other scenarios, the PV size is less than 100 kW due
to a lower peak of EV charging load. For the wind generation capacity, scenario S7 has
the largest size at 55.8 kW. The wind generation capacity is almost the same for different
types of batterie for most scenarios. For battery sizing, the LA battery has larger capacities
for all scenarios than Li-ion and SLi-ion. The reason for this solution is that despite Li-ion
and SLi-ion batteries that can be discharged to a SOC of 20%, the LA batteries are only
discharged to half of their capacity. In addition, the cycle ageing coefficient is larger for LA
batteries compared to Li-ion and SLi-ion, which results in a larger capacity to compensate
for the battery capacity loss caused by cycling.

The same interpretation can be provided when comparing the sizes of Li-ion and
SLi-ion batteries. The SLi-ion can be charged up to 80% of the specified capacity. Hence,
when compared to a fresh Li-ion battery with the same conditions, the capacity of the
SLi-ion battery has to be increased to achieve the same capability as a fresh Li-ion battery.
The other reason for the selection of larger sizes of SLi-ion compared to Li-ion batteries
is the cheaper price. In a number of scenarios, for example, for scenario S2, the optimiser
decreases the capacity of wind generation (14.4 kW) and tries to manage the load with a
lower cost by increasing the size of SLi-ion batteries. For the converters, in most of the
scenarios, the optimisation sizes have similar capacities for these components independent
of the type of battery that is used.

To investigate the effect of the system reliability of the microgrid component sizes,
Table 5 shows the average size of all scenarios and for all battery-type study cases for three
levels of reliability. As it was expected, when higher reliability levels are desired, the overall
component size increases. For instance, for the single SLi-ion study case, the capacity size
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of the battery is 624 kWh and 194 kWh for EENSmax = 0 and EENSmax = 5% respectively.
For the wind turbines and for the two mentioned levels of reliability, the wind capacity
sized for the single SLi-ion study case is 7 × 6.2 kW and 4 × 6.2 kW, respectively.
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Table 5. Average microgrid component sizes for all scenarios and all battery-type study cases.

Reliability Level PV (kW) Wind (kW) Battery (kWh) Converter (kW)

EENSmax = 0 65 6.3 × 6.2 887 73

EENSmax = 1% 60.3 4.7 × 6.2 620 56

EENSmax = 5% 64.4 3.3 × 6.2 393 42

4.2. Hybrid BESS

In this section, the results of using hybrid BESS technologies for microgrid capacity
sizing are presented. The numerical values of the planning cost for this study case are
presented in Table 4 for the case of EENSmax = 0 and compared with the planning costs of
using single types of BESS technology. For the hybrid BESS study case, the three types of
batterie, including Li-ion, LA, and SLi-ion, are considered in the optimisation problem. The
table shows the lower microgrid planning cost when using hybrid BESS technologies. The
results show that using new Li-ion batteries only leads to expensive plans for all scenarios.
For instance, when using hybrid BESS technologies, for scenario 9, the planning cost is
£100,284 cheaper. In addition, compared to the single usage of LA and SLi-ion batteries,
hybrid BESS planning leads to lower system costs. It is worth mentioning that for the
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hybrid BESS planning studies, the optimiser does not include any Li-ion battery capacity
for any scenario. The reason for this strategy is the high cost of using this type of battery
for the system, and for all scenarios, a combination of LA and SLi-ion is used. Utilising
hybrid BESS technologies also results in lower planning costs for lower reliability levels.
Figure 9 shows the capacity of each component for each scenario and each reliability level.
Like the single BESS technology study case, for most of the components and scenarios, the
capacity decreases when higher levels of EENSmax is acceptable.
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The advantage of using hybrid BESS technologies in the microgrid is not limited to the
lower cost of the system. Deferring the LA battery replacement is the other benefit of hybrid
BESS usage. Table 6 shows the average of degradation for the LA and SLi-ion batteries
for the two study cases of using single and hybrid BESS technologies and for the 10 years
planning horizon. As the results indicate, not only has the battery degradation decreased
for the LA battery and for the hybrid BESS technology utilisation, but the percentage
of battery capacity fade has also been reduced compared to the case of only using the
LA battery.

Table 6. Average capacity fades (kWh and % of total capacity) for LA and Li-ion batteries using single
and hybrid BESS technology for microgrid capacity planning.

EENSmax = 0 EENSmax = 1% EENSmax = 5%

Single Hybrid Single Hybrid Single Hybrid

LA Degradation 170 kWh—12.7% 88 kWh—8.5% 152 kWh—15.2% 60 kWh—9.1% 123.2 kWh—19.3% 33 kWh—9.6%

SLi-ion
Degradation 29 kWh—4% 11.72 kWh—6.08% 22.8 kWh—4.4% 12 kWh—6.8% 16 kWh—5.3% 11 kWh—7.5%

Also, for the SLi-ion battery, although the percentage of capacity fade increases, the
amount of battery degradation decreases when a hybrid BESS technology is considered
for the planning. Figure 10 shows the charge and discharge power of the LA and SLi-ion
batteries for the last scenario and the last year of operation with EENSmax = 0. This figure
illustrates that in the hybrid BESS usage case, the LA is discharged only for high levels
of EV charging load, which decreases battery degradation. It should be noted that the
model is able to consider other types of battery chemistries with the related data and costs
indicated in Table 3.
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To show the sensitivity of the results to the prices, another case study is presented
for the microgrid capacity sizing problem. For this case, a hybrid battery energy storage
capacity sizing with an EENSmax = 0 is studied, and the CAPEX of Li-ion batteries are
decreased to 200 £/kWh with the same prices for the two other batteries. The results of this
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study case are presented in Table 7. As can be seen from this table, the optimiser does not
size any SLi-ion batteries. Instead of this type of battery, the optimiser sizes Li-ion batteries
as the price difference with the SLi-ion battery type is decreased. For this case study, not
only are Li-ion batteries sized, but the total planning cost is also decreased compared to the
case in which the Li-ion battery CAPEX is 335 £/kWh.

Table 7. Results for the sensitivity of results to the Li-ion battery price.

Scenario Total Cost (£) PV (kW) Wind (kW) Li-ion (kWh) LA (kWh)

#1 346,155 102 4 × 6.2 109 500

#2 448,986 55 6 × 6.2 272 1230

#3 395,758 35 8 × 6.2 101 424

#4 476,281 11 8 × 6.2 209 1534

#5 313,068 21 6 × 6.2 109 506

#6 427,170 33 6 × 6.2 269 1306

#7 443,391 33 9 × 6.2 89 588

#8 341,802 29 5 × 6.2 197 1043

#9 669,309 327 2 × 6.2 365 949

#10 352,700 20 6 × 6.2 105 1089

4.3. Capacity Evaluation

In this section, the performance of the capacities determined in Section 4.2 is evaluated
using the energy management formulation. For this assessment, 50 new scenarios are
generated, and the results are assessed in terms of the total unmet load for 10 years for all
types of batteries. Table 8 shows the size of each component, the total planning cost and the
expected unmet load for these scenarios. As it was expected, the HBESS study case has the
least planning cost. In addition, compared to the Li-ion, LA and SLi-ion single utilisation,
the HBESS study case has a lower expectation for the amount of unmet load.

Table 8. Summary of results for EMS study with 50 scenarios.

Battery Type PV (kW) Wind (kW) BESS (kWh) Conv. (kW) Total Plan Cost (£) EENS (%)

Li-ion 67.4 7 × 6.2 540 73 446,672 0.64

LA 69.7 7 × 6.2 1330 73 373,851 0.5

SLi-ion 67 7 × 6.2 792 73 371,962 0.54

Hybrid 67 6 × 6.2 1033LA-
261SLi-ion

31 LA-
42 SLi-ion 357,270 0.49

To show the robustness of the obtained capacities, the obtained capacities for the
hybrid battery energy storage system are used for the energy management system (EMS),
assuming a 10% decrease for wind generation, a 10% decrease for the PV generation, and
a 10% increase for the EV charging load. Indeed, this case study shows how robust the
results are against exacerbated situations in terms of renewable generation decrease and
EV charging load increase. To do so, the EMS is executed for another 10 new scenarios;
the results of this study (expected value of all scenarios) are shown in Table 9. The results
show that even for an exacerbated condition of wind or PV generation (10% decrease), the
system is still able to supply the load with a high-reliability level, and the unmet load will
be less than 1%. In addition, there is a trivial change in battery degradation. For the EV
charging load of a 10% increase, also the system is robust, and the load is supplied with an
unmet load of less than 1%.
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Table 9. Results for robustness study of the obtained capacities for the HBESS Planning.

Study Cases EENS (%) LA Degradation (%) Li-Ion Degradation (%)

Base Case 0.36% 9.5% 5.5%
10% Wind Generation decrease 0.43% 9.7% 5.7%

10% PV Generation decrease 0.41% 9.7% 5.7%
10% EV charging increase 0.71% 10.3% 6%

5. Conclusive Remarks, Discussions, and Future Work
5.1. Conclusive Remarks

In this paper, a scenario-based capacity planning model incorporating hybrid battery
energy storage technologies is presented for a renewable-based microgrid to supply EV
charging stations. In addition, generative adversarial networks (GAN) are used for gener-
ating scenarios which are similar to the real behaviour of wind speed, global horizontal
irradiation and EV charging load of the stations and the number of scenarios is reduced by
using the k-means algorithm. Three various battery types, including lithium-ion, lead acid,
and second-life lithium-ion batteries, are considered.

The generated scenarios for wind speed, solar irradiation, and the EV load are able to
emulate the behaviour of the real dataset in terms of statistic values and temporal correlation
between different hours. For the capacity planning stage, the results demonstrate that the
usage of hybrid BESS technologies results in lower costs for various reliability levels. The
Hybrid utilisation case has the maximum cost reduction of 21%, 4.6%, and 6% compared to
the case where only Li-ion, LA, and SLi-ion batteries are used. The other advantage of using
a hybrid BESS system is decreasing the capacity fading of the LA batteries and postponing
the need to replace them. For the reliability levels of EENSmax = 0, EENSmax = 1%, and
EENSmax = 5%, the LA battery capacity fading decreases 4.2%, 6.1%, and 9.7% respectively.

For the energy management system, the expected capacity of each component of all
scenarios is considered as the designated size for that element and the energy management
system is executed for 50 new scenarios. The results indicate that the unmet load for the
hybrid BESS is 0.49%, which has a better performance than the LA and SLi-ion batteries,
which have 0.5% and 0.54% of unmet load over a 10 years period. Only the new Li-ion
battery has better performance, with a total unmet load of 0.25%. However, using a single
Li-ion BESS technology comes up with a plan which is 25% more expensive than using the
hybrid BESS composed of LA and SLi-ion batteries.

5.2. Discussions

A hybrid BESS microgrid has remarkable financial and environmental impacts. From
the point of view of finance, by decreasing the planning cost of off-grid microgrids, the
projects will be more profitable, and it can absorb more investments for establishing EV
charging stations supplied by off-grid microgrids. This also alleviates the load burden of
charging EVs on electrical grids and removes the necessity of investing in upgrading the
equipment capacity of power networks.

From the environmental point of view, the hybrid battery system reduces the need
for battery replacement and disposal, which can lead to environmental damage caused by
the leak of toxic chemicals in the soil and groundwater if they are not recycled properly.
In addition, growing interest in using HBESS will help reduce dependency on fossil fuel
generation, which will reduce greenhouse gas emissions and enhance the environmental
aspects of power generation systems.

The practical implementation of off-grid microgrids supplying electric vehicles can be
challenging and restricting. The first limitation of these systems is the site location. The
equipment used in these systems, such as the PV panels and wind turbines, usually needs
more space than fossil fuel-distributed generation units. Hence, finding appropriate sites
with sufficient solar irradiation and wind speed where this equipment can be installed is
challenging, especially in city centres and suburbs. Social and cultural aspects can also be
challenges for the establishment of off-grid microgrids. Local communities can be reluctant
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to accept this type of technology and may try to prevent their construction. Renewable
generation intermittency is another practical challenge for the system. Although renewable
generation is supported by the HBESS, and the design is robust against solar irradiation
and wind speed, the reliability of the system can still be diminished. Hence, a proper
energy management system (EMS) with a strong forecasting system is required to obtain
maximum reliability for the system. Economic challenges for supplying EV charging
stations with off-grid microgrids should also be considered. These systems have high
upfront investments, and the financial resources required for these projects are limited.

5.3. Future Work

Future research could be conducted on incorporating other BESS technologies, such
as Sodium-Sulfur (NaS) and vanadium redox flow batteries (VRFB) batteries for hybrid
BESS capacity sizing for microgrids. Sodium-Sulfur (NaS) has the advantage of providing
high power responses. For applications with a short duration, these types of technology
can supply up to five times their nominal power [45]. It also has low maintenance costs
and low self-discharge rates. Nevertheless, this type of technology needs high operation
temperatures, which can be challenging to deal with [46]. The other disadvantage of these
types of batteries is the low round-trip efficiency. While the round-trip efficiency for Li-ion
and LA batteries is between 80–90%, the efficiency of Sodium Sulfur is 75%. The higher
CAPEX of these batteries is another drawback compared to Li-ion and LA batteries.

Vanadium redox flow batteries (VRFB) are another type of battery which can be
considered for stationary applications. These types of batteries have long lifetimes and are
less vulnerable to high DODs [45]. Hence, they will have less capacity fading. The main
flaw of these batteries is their lower round-trip efficiency (75–85%) and large sizes.

The voltage-SOC characteristic behaviours of batteries can be considered for optimal
hybrid BESS capacity sizing for microgrids. If the batteries are connected directly to each
other without power electronics interfaces, the voltage-SOC curve of each type of battery
affects the performance of each battery in terms of the amount of power charge or discharge.
This can also be investigated for future research.
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Nomenclature

Sets and
indices

Parameters Variables

t Index for set of time CAPEX
Capital cost of system (£/kW)
or (£/kWh)

C
Power or capacity of
component in (kW) or (kWh)

y Index for set of year OPEX,F
Fixed Operation and
maintenance cost (£/y)

P Power of component (kW)

s Index for set of scenario OPEX,V
Variable Operation and
maintenance cost (£/kWh/y)

UL Unmet load (kWh)

tc
Index for set of battery
technologies

∆t Time interval (h) RS Renewable spillage (kWh)

NT
Total number of time
intervals

Wind Wind generation (kW) u
Binary variable indicating
operation mode of battery

NY Total number of years PV PV generation (kW) E Battery stored energy (kWh)

NS
Total number of time
intervals

C,max
Maximum capacity of each
element (kW) or (kWh)

EENS
Expected energy not
supplied (kWh)

NTC
Total number of battery
technologies

M Large value N Number of each component

PV Index for PV generation PR
Unit capacity of each
component (kW) or (kWh)

D
Total battery capacity fade
(kWh)

W Index for wind generation PVG
PV generation for 1 kW of
installed PV panel (kW)

OF(s)
Objective Function for
scenario s

BESS Indices for battery WG
Wind generation for 1 wind
turbine installed (kW)

ch Battery charge EOL End of life battery capacity (%)
dis Battery Discharge η Efficiency

SalBESS

Residual value of each type
of battery at the end of
planning horizon

EV
Electric vehicle charger load
(kW)

Conv Index for converter r Discount rate
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