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A B S T R A C T   

Neurocognitive deficits have been implicated as transdiagnostic risk markers of substance use disorders. How
ever, these have yet to be comprehensively evaluated in other, non-substance addictions. In a large, general 
community sample (N = 475) the present study evaluated the neurocognitive correlates of problem alcohol use 
and three non-substance-related addictive behaviors: addictive eating (AE), problematic pornography use (PPU), 
and problematic use of the internet (PUI), to identify potential shared and distinct neurocognitive correlates. A 
sample of Australian residents (54.4 % female M[SD] age = 32.4[11.9] years) completed a comprehensive online 
assessment of neurocognitive tasks tapping into eight distinct expert-endorsed domains purportedly associated 
with addiction. Multiple linear regressions with bootstrapping were used to examine associations among each 
addictive behavior of interest and neurocognition, trait impulsivity, and compulsivity, as well as key covariates. 
Neurocognition was differentially associated with each addictive behavior. None of the neurocognitive domains 
were significantly associated with problematic alcohol use or AE (p >.05), poorer performance monitoring was 
significantly associated with higher levels of PPU and PUI (β = − 0.10, p =.049; β = − 0.09, p =.028), and a 
preference for delayed gratification was associated with more severe PUI (β = − 0.10, p =.025). Our findings have 
theoretical implications for how we understand non-substance addiction and suggest the need for a more 
nuanced approach to studying addictive behaviors that take into account the underlying neurocognitive 
mechanisms associated with each type of addiction.   

1. Introduction 

Addiction is a complex condition characterized by repeated 
engagement in substance use or other behavior despite negative con
sequences (Diagnostic Statistical Manual of Mental Disorders [DSM-5]: 
American Psychiatric Association, 2013). The literature has predomi
nantly centered on substance use disorders, such as alcohol use disorder 
(AUD), whereas there has been an increasing focus on non-substance 
(behavioral) addictions (Chamberlain et al., 2016). Recent such efforts 
include addictive eating (AE), problematic pornography use (PPU), and 
problematic use of the internet (PUI) due to their associated psycho
logical distress and poorer quality of life (Burmeister et al., 2013; Bur
rows et al., 2018; Camilleri et al., 2021; Fineberg et al., 2018; Floros & 
Ioannidis, 2021; Kuss et al., 2014; Raj et al., 2022). It is essential to 

acknowledge that none of these addictive behaviors have agreed-upon 
clinical criteria. Consequently, it is more appropriate to view them as 
problem behaviors positioned on a severity continuum. AE, PPU, and 
PUI may share some important features with substance addiction, 
including loss of control, craving, and emotional distress (Adams et al., 
2017; Fineberg et al., 2018; Grubbs et al., 2015; Tiego et al., 2021). 
Addictive behaviors can be conceptualized using current neurocognitive 
‘dual-process’ models of addiction, typified by excessive drive and 
reward-seeking coupled with impaired executive ‘top-down’ control 
(Volkow et al., 2019; Volkow & Morales, 2015). Dual process models 
have been further extended in non-substance addictive behaviors 
(Brand, 2022; Brand et al., 2019; Wei et al., 2017). However, addiction- 
specific neurocognitive functions have yet to be comprehensively eval
uated in non-substance addictions. For example, it is unclear whether 
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non-substance addictive behaviors share neurocognitive features. Sub
stance use research has also shown inconsistent neurocognitive corre
lates (Ekhtiari et al., 2017; Lundqvist, 2005; Smith et al., 2014). 
Identifying the neurocognitive correlates of addictive behaviors is 
essential to progressing etiological understanding and facilitating the 
development of effective prevention and intervention strategies. This 
study investigates the trans-behavioral neurocognitive correlates of non- 
substance addictive behaviors; namely, AE, PPU, and PUI, in comparison 
to problematic alcohol use, to identify potential shared and distinct 
neurocognitive mechanisms. 

Current consensus is that some neurocognitive deficits can serve as 
transdiagnostic markers of addiction, regardless of the specific type of 
behavior (Yücel et al., 2019). Self-regulation is often defined as being 
comprised of: Inhibition, the ability to stop or inhibit an undesirable 
automatic response (Chambers et al., 2009); Shifting, the ability to 
flexibly shift between tasks, mental sets, or demands (Kiesel et al., 
2010); and Performance monitoring, the ability to monitor and evaluate 
action outcomes to adjust performance (Franken et al., 2018). Poorer 
executive functioning in individuals with addiction is marked by 
reduced inhibitory control, poorer performance monitoring, and 
inflexible task shifting (Franken et al., 2018; Odlaug et al., 2011; 
Rodrigue et al., 2018; Smith et al., 2014; Zhou et al., 2013). By contrast, 
the ‘bottom-up’ motivational processes associated with addiction are 
underpinned by heightened reward-seeking; chief among this is an 
increased preference for immediate over larger but delayed rewards or 
poor ‘delay discounting’ (Amlung et al., 2017), and heightened incen
tive attribution towards addiction-related cues (Berridge & Robinson, 
2016). Unfortunately, most studies to date have focused on individual 
neurocognitive factors in isolation. Therefore, there is a lack of empirical 
evidence regarding how each domain is independently associated with 
addictive behaviors. This is a critical area of further investigation since 
neurocognitive functions associated with executive control and height
ened reward-seeking significantly overlap with each other (Criaud & 
Boulinguez, 2013; Ridderinkhof et al., 2004). 

Few studies have examined neurocognitive functioning associated 
with AE, PPU, and PUI. Existing studies have generally identified neu
rocognitive markers implicated in problematic alcohol use, including 
heightened attentional bias toward reward cues (Adams et al., 2019; 
Jeromin et al., 2016; Mechelmans et al., 2014; Nikolaidou et al., 2019) 
and a preference for immediate gratification over larger, later rewards 
(Cheng et al., 2021; Kowalewska et al., 2017; VanderBroek-Stice et al., 
2017). Individuals with AE, PPU, and PUI also present with executive 
dysfunction, but in differing domains. PUI but neither AE or PPU has 
been shown to be associated with impaired response inhibition (Antons 
& Brand, 2018; Antons & Matthias, 2020; Hardee et al., 2020; Ioannidis 
et al., 2022; Meule et al., 2012; VanderBroek-Stice et al., 2017), and 
both AE and PUI have been shown to be associated with impaired per
formance monitoring (Franken et al., 2018; Rodrigue et al., 2018; Zhou 
et al., 2013). It is unclear whether these differences arise from meth
odological differences, for example selection of neurocognitive mea
sures, sample characteristics, and inclusion (or lack there-of) of 
covariates. Because many studies only look at a single neurocognitive 
measure, it is entirely plausible that differing executive control profiles 
among AE, PPU, and PUI may be due to common neurocognitive func
tion(s) that drive performance across measures. Further, sample char
acteristics often vary, including differing illness severities, and 
demographic features (e.g. sex, age). These studies also do not address 
comorbidities of other addictive behaviors. Assessing the relationship 
between neurocognition and multiple addictive behaviors in the same 
sample would account for these disparities, and help us evaluate 
whether AE, PPU, and PUI share common underlying neurocognitive 
processes. 

Examining addictive behaviors in general community samples using 
a dimensional approach can lead to a more nuanced understanding of 
the neurocognitive functions underlying addictive behaviors. Clinical 
presentations of addiction represent only the tip of the iceberg, as the 

majority of addiction problems do not meet strict diagnostic thresholds 
(Grant et al., 2015; Hasin et al., 2013). Further, despite not meeting 
diagnostic thresholds, these addictive behaviors still contribute to 
burden of disease and are important to detect early. By adopting a 
dimensional approach and examining addictive behaviors across the full 
spectrum of severities, we can detect often more subtle effects, with 
direct implications for the development of early intervention strategies. 

In addition to neurocognition, addictive behaviors are associated 
with trait impulsivity and compulsivity (Forsén Mantilla et al., 2022; 
Kuss et al., 2014; Murphy et al., 2014). Impulsivity can be defined as the 
tendency to rapidly react to a situation in a reward-driven manner, 
without forethought or consideration of the consequences (Moeller 
et al., 2001). Impulsivity is a multifaceted construct, commonly 
conceptualized and assessed in addiction research as being made up of 
four key facets: lack of planning, lack of perseverance, sensation seeking 
and emotion-driven rash action (urgency; Cyders et al., 2014). 
Compulsivity can be defined as repeated actions that are inappropriate 
to a given situation and lacks a clear connection to an overarching goal, 
often resulting in negative consequences (Dalley et al., 2011). Although 
previous research has found neurocognitive functions correspond with 
trait impulsivity (Christiansen et al., 2012) and compulsivity (Albertella 
et al., 2020), when assessed concurrently it is clear that they are not 
measuring the same underlying construct (Eisenberg et al., 2019). For 
example, convergent validity among task-related executive function and 
self-report questionnaires was only moderate in a large meta-analysis on 
self-regulation ability (Duckworth & Kern, 2011). Therefore, both trait- 
based and neurocognitive-based measures of impulsivity and compul
sivity appear to contribute to addiction vulnerability in different ways. 

This study sought to investigate the neurocognitive correlates of 
addictive behaviors. Using a tailored assessment battery that measures a 
comprehensive range of addiction-specific neurocognitive functions, the 
present study aims to evaluate the shared and distinct neurocognitive 
correlates of problematic alcohol use, AE, PPU, and PUI, adjusting for 
key covariates. A demographically targeted, general community sample 
was recruited to capture a broad spectrum of behavioral severity. 

2. Methods 

2.1. Participants and procedure 

This study was embedded in a larger normative study for the 
BrainPark Assessment of Cognition (BrainPAC) neurocognitive battery 
(see supplementary material). Australian residents were recruited via 
Prolific, social media advertisements, and local community newsletters. 
Inclusion criteria were: 18 to 65 years old, not color blind, self-reported 
absence of a neurological disorder (i.e. stroke, brain injury, and de
mentia) or history of a psychotic disorder. Participants completed all 
measures online via the Qualtrics survey platform (https://www.qual 
trics.com). The neurocognitive tasks were separated by self-report sur
veys (trait and behavior scales) and the order of task presentation was 
counterbalanced. The study was approved by the Monash University 
Human Research Ethics Committee [26088]. 

2.2. Neurocognitive measures 

The neurocognitive battery (Table 1) was selected to measure expert- 
endorsed neurocognitive domains as associated with addiction and 
addiction-related outcomes (Yücel et al., 2019). 

2.3. Self-report scales 

Trait Compulsivity – The Cambridge-Chicago Compulsivity Trait Scale 
(CHI-T; Chamberlain & Grant, 2018; Tiego et al., 2023) is a 15-item 
scale. Items are summed into an overall score. Higher scores indicate 
higher compulsivity. 

Trait Impulsivity – The Short UPPS Impulsive Behavior Scale (SUPPS- 
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P; Cyders et al., 2014) is a 20-item scale. Three scores were calculated: 
urgency (combining negative and positive urgency subscales), lack of 
perseverance and premeditation (combining lack of perseverance and 
premeditation subscales), and sensation seeking (SS: sensation seeking 
subscale). Higher values indicate greater impulsivity. 

Psychological Distress – The Depression Anxiety Stress Scale (DASS- 
21; Szabó, 2010) is a 21-item scale used to assess current psychological 
distress. Items were summed into form a total score. Higher scores 
indicate greater distress. 

2.4. Dependent variables 

Participants were asked to respond reflecting on the past three 
months. 

Problematic Alcohol Use – The Alcohol Use Disorder Identification 
Test (AUDIT; Saunders et al., 1993) is a 10-item scale. A total score is 
summed, ranging from 0 to 40. 

Addictive Eating – The modified Yale Food Addiction Scale version 2 
(mYFAS 2.0; Schulte & Gearhardt, 2017) is a 13-item scale. A symptom 
count is computed, ranging from 0 to 11. 

Problematic Pornography Use (PPU) - The Problematic Pornography 
Consumption Scale (PPCS-6: Bőthe et al., 2021) is a 6-item scale. A total 
score is calculated, ranging from 6 to 42. 

Problematic Use of the Internet – The abbreviated Young’s Internet 
Addiction Test (IAT-10; Tiego et al., 2021) is a 10-item scale. A total 
score ranging from 10 to 50 is computed. 

2.5. Data cleaning 

To ensure data quality, online neurocognitive assessment requires 
comprehensive screening protocols and post-hoc data cleaning. Bots and 
fraudulent responses were identified and excluded using features 
embedded in the Qualtrics survey platform. Implausible responses and 
poor performance presumedly due to lack of effort were identified and 
removed via a) attention check questions (e.g. “Please select the option 
Piano Keys”); b) neurocognitive task performance at less than chance 
levels (as per Lee et al., 2023; Albertella, Watson, et al., 2019); c) task- 
specific cleaning procedures (e.g. SST go trial accuracy, stop trial ac
curacy, [Verbruggen et al., 2019] and Independent Race Model check 
[Band et al., 2003]). Mann Whitney U and t-tests were used to investi
gate differences between individuals whose data was filtered out 
compared with included individuals on all variables (Table A1). 

2.6. Data analysis 

Individuals who reported not engaging in an addictive behavior in 
the past 3 months were assigned a zero for the corresponding problem 
behavior scale. Statistical outliers on neurocognitive measures ≥ 3 
standard deviations from the mean were removed (Field et al., 2012). All 
analyses were conducted on complete data sets (i.e. participants who 
provided data for all variables of interest). Bivariate Spearman corre
lations, adjusting for multiple comparisons (Holm method: Holm, 1979), 
investigated relationships among all variables (Table 3). The 

Table 1 
Neurocognitive assessment battery.  

Function Task Brief description Trials 
(practice) 

Primary metric 

Response inhibition The BrainPAC Stop Signal 
Taks (SST) 
(Lee et al., 2023) 

A gamified visual cue stop signal paradigm (Verbruggen et al., 
2019) in a medieval war game format, with the goal of defeating 
a dragon. Players pass arrows to two archers (left/ right) as fast 
as they can (go signal) whilst avoiding the dragon’s fire (stop 
signal) so they can shoot the arrows and defend their village. 

150 
(10) 

Stop signal reaction time (SSRT). 
Higher RT indicates poorer 
response inhibition. 

Reward learning 
(reward-related 
attentional bias) 

The BrainPAC Value 
Modulated Attentional 
Capture (VMAC) Task 
(Lee et al., 2023) 

A gamified version of the original VMAC task (Albertella et al., 
2019; Le Pelley et al., 2015) following a soccer format. Players 
must kick the ball (left/right), with speed and accuracy to earn 
points. Some trials have players with different hair colors acting 
as distractors and indicating the potential reward value of that 
trial. 

5x24 
(6) 

VMAC score averaged across the 
last two blocks of the task. 
Higher values reflect more 
reward-related attentional 
capture. 

Reward learning 
(goal-directed vs 
habitual) 

The BrainPAC Sequential 
Decision-Making Task (SDT) 
(Lee et al., 2023) 

A gamified two-step choice task (Kool et al., 2016, 2017), 
presented in the form of an animal rescue game. Participants 
select a ranger to search two environments (the forest or the 
farmland) for lost animals. Model-based decision-makers learn 
which rangers are most effective at finding the maximum number 
of animals. 

125 
(25) 

Mixing weight (w). 
Higher scores indicate more goal- 
directed (model-based) decision- 
making. 

Reward valuation (risky 
decision-making under 
uncertainty) 

The BrainPAC Balloon 
Analogue Risk Task (BART) 
(Lee et al., 2023) 

A gamified version of the BART stretch variant (Lejuez et al., 
2002) paradigm in which players inflate a series of balloons to 
earn hypothetical money (maximum earning of $128 AUD p/ 
balloon). Each balloon has a pseudorandomized burst threshold 
(mean burst point at $64 AUD), resulting in any potential 
earnings being lost. 

30 
(10) 

Mean pre-committed pumps 
across all balloons. 
Higher values indicate riskier 
choice in the face of uncertainty. 

Flexible updating N-back Task 
(Ragland et al., 2002;  
Inquisit 5, 2018) 

A letter sequencing go/no-go task. Participants respond to “M” in 
0-back trials, to the previous letter in 1-back trials, and to the 
letter two trials back in 2-back trials, and so on. 

3x60 
(9) 

3-back d’ (parametric measure of 
sensitivity). 
Higher d’ values indicate more 
flexible updating/ better working 
memory performance. 

Goal selection; updating, 
representation and 
maintenance 

Category Switch Task (CST) 
(Friedman et al., 2008; 
Inquisit 5, 2018) 

Participants are presented with a word they must categorize in 
terms of A) ‘living’, or B) ‘size’. Each trial is accompanied by a 
cue that indicates to the participant whether they are required to 
categorize the object according to conditions A or B. 

65 
(80) 

Latency switch cost. 
Higher values indicate poorer 
task switching. 

Performance monitoring Error Awareness Task (EAT) 
(Hester et al., 2007; Inquisit 
5, 2018) 

A visual go/no-go paradigm in which participants indicate their 
error awareness following any commission error. 

2x150 
(70) 

Percentage error awareness 
(commission errors). 
Higher values indicate better 
error awareness. 

Temporal discounting Monetary Choice 
Questionnaire (MCQ) 
(Kirby et al., 1999) 

A 27-item questionnaire asks the participant to choose between 
two hypothetical reward options, a smaller reward now, or a 
larger reward at some point in the future e.g. “Would you prefer 
$15 today or $35 in 13 days”. 

27 
(NA) 

Log k  

Higher values indicate a 
preference for sooner but smaller 
rewards.  
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distributions of all four addictive behavior scales were positively 
skewed, constituting the choice of linear regression models with boot
strapping (5,000 samples) (Neal & Simons, 2007). Multicollinearity was 
assessed for each model independently, with VIF values less than 2.5 
indicating no issue of multicollinearity (Johnston et al., 2018). Age, sex, 
psychological distress, trait impulsivity, and compulsivity were included 
as covariates in each regression model (Eisenberg et al., 2019; Sjoberg & 
Cole, 2018; Starcke et al., 2016). G-Power 3.1 (Faul et al., 2007) was 
used to calculate the minimum sample size required for multiple 
regression analyses with 15 predictors and an alpha error probability set 
to 0.05. A sample of N = 139 was deemed sufficient to find a medium 
effect (f2 = 0.15, Power = 0.80). 

3. Results 

3.1. Participants 

Nine-hundred-and-forty-four participants were enrolled. Sixty-three 
withdrew during the assessment sessions, and 78 were identified as 
fraudulent responses (i.e. spam bots/not genuine responses). Eight- 
hundred-and-three participants completed the assessment, with 311 
removed due to missing data on one or more variables of interest (i.e. 
those included in the regression models), failed attention checks, or poor 
neurocognitive task performance. After removing outliers based on 
neurocognitive task performance, a final sample of 475 individuals had 
complete datasets (see Fig. 1). Participant demographics are displayed 
in Table 2. 

3.2. Multiple regression models 

Correlation analysis findings are presented in Table 3. The multi
variate models (Tables 4-7) showed the neurocognitive variables were 
not significantly associated with problematic alcohol use or AE. Poorer 
error awareness was significantly associated with greater PPU (β =
− 0.10, p =.049) and PUI (β = − 0.09, p =.028), and less steep delay 
discounting was significantly associated with higher PUI (β = − 0.10, p 
=.025). Higher levels of psychological distress were significantly asso
ciated with more problematic alcohol use (β = 0.22, p =.003), AE (β =
0.26, p <.001), PPU (β = 0.20, p <.001), and PUI (β = 0.37, p <.001). 
Higher levels of urgency were significantly associated with more PPU (β 

= 0.14, p =.013) and PUI (β = 0.15, p =.003). Sensation seeking was 
positively associated with problematic alcohol use (β = 0.17, p =.003) 
and negatively associated with AE (β = − 0.12, p =.004) and PUI (β =
− 0.09, p =.014). Higher levels of trait compulsivity were significantly 
associated with more AE (β = 0.18, p =.002) and PUI (β = 0.12, p 
=.010). Age was positively associated with problematic alcohol use (β =
0.16, p =.002), and negatively associated with PUI (β = − 0.17, p <.001). 
Being male was significantly associated with more PPU (β = − 0.46, p 
<.001), and PUI (β = − 0.15, p <.001) whilst being female was signifi
cantly associated with greater AE (β = 0.19, p <.001). None of the 
multivariate models showed problems with multicollinearity. 

4. Discussion 

This is the first study to comprehensively investigate and control for 
the neurocognitive correlates of non-substance addictive behaviors 
across AE, PPU, PUI, and problem alcohol use. We took a dimensional 
approach to identify correlates associated with these addictive behav
iors at varying degrees of severity in the general community. Our find
ings indicate, in this sample, addictive behaviors are associated with a 
unique profile of neurocognitive functioning. Our multivariate models 
showed none of the neurocognitive domains were associated with AE or 
problematic alcohol use. Poorer performance monitoring was indepen
dently associated with more PPU and PUI, and a higher preference for 
delayed gratification was also independently associated with higher 
PUI. Importantly, these findings are identified whilst adjusting for 
known confounds (i.e. age, sex, psychological distress), as identified as a 
key methodological shortcoming of prior research (Christensen et al., 
2023). Our findings suggest the need for a more nuanced approach to 
studying addictive behaviors that take into account the underlying 
neurocognitive mechanisms associated with each type of addiction. 

Our performance monitoring findings are consistent with prior 
research (Zhou et al., 2013). However, this is the first study to show a 
link between poorer performance monitoring and PPU. Very little work 
has been done evaluating the potential neurocognitive mechanisms 
associated with PPU. Of the extant work, findings are mixed. For 
example, PPU has been associated with both improved and poorer 
inhibitory control (Antons & Brand, 2018; Antons & Matthias, 2020). 
Considerable research has investigated PUI, with studies showing PUI is 
associated with poorer working memory, response inhibition, and risk- 

Fig. 1. Flow diagram mapping data collection, cleaning, and reasons for exclusion.  
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taking behaviors, as measured by the BART (for a meta-analysis: Ioan
nidis et al., 2019). Our study did not find these associations, potentially 
because the previous studies compared individuals with a PUI “diag
nosis” to controls, while our sample included individuals with varying 
PUI severity. Further, if such deficits are related to vulnerability, they 
may be more strongly associated with presence vs absence of a disorder 
rather than its severity. Relatedly, it may be that deficits in these do
mains are evident in those with high levels of PUI, whereas the current 
study was conducted in a relatively normative sample. Performance 
monitoring is necessary to support higher-order functions such as 
cognitive control (Ferdinand & Czernochowski, 2018), and so reduced 
performance monitoring may be detectible before other cognitive 
functions, acting as an early trans-behavioral risk indicator for PPU and 
PUI. However, it is important to note the concurrence of PUI and PPU in 
our sample (Table 3). Given pornography is predominantly accessed via 
the internet, our PPU findings may instead be driven by problematic 
internet use to watch pornography, rather than specifically 
pornography-related functions. 

Some of our findings diverge from that of previous work. For 
instance, the finding that more severe PUI was associated with less steep 
delay discounting, or a preference for later larger rewards, is contrary to 
substantial literature showing individuals with internet addiction are 
significantly steeper discounters compared to controls (for meta- 

analysis: Cheng et al., 2021). A potential interpretation relates to the fact 
that we are looking at PUI dimensionally, thus including individuals at 
both low and high levels of problem severity. Tiego et al. (2021) have 
argued that PUI as measured by the IAT has a unipolar distribution in 
which meaningful variance is found at the higher end of the severity 
spectrum. Given this, including individuals at lower PUI severity may 
have disrupted the expected effect. Further, the finding that the severity 
of AE symptoms was not associated with any neurocognitive variables 
contrasts with previous studies (Franken et al., 2018; Rodrigue et al., 
2018; VanderBroek-Stice et al., 2017). One explanation for this may be 
that neurocognitive functions are more likely to be implicated in more 
severe AE. The aforementioned studies included samples with 35–100 % 
of participants endorsing mild-severe food addiction, compared to 18 % 
currently. Similarly, contrary to expectations, the present study did not 
find any of the neurocognitive variables were significantly associated 
with problematic alcohol use. The majority of our sample had no/low 
alcohol use problems, making it difficult to compare with previous work 
which has mostly been conducted in hazardous-severe alcohol use co
horts (Stavro et al., 2013). It is possible that neurocognitive risk or 
sequelae may not be detectable at mild levels of severity. However, our 
findings may be attributed to the study sample, with PUI being the most 
prevalent addictive behavior endorsed. This sample may differ signifi
cantly from traditional alcohol-focused research cohorts, suggesting a 
unique group of individuals in this study. 

Psychological distress was a trans-behavioral correlate across all four 
addictive behaviors. This is consistent with previous research showing 
increased psychological distress is associated with multiple addictive 
and compulsive behaviors (Albertella et al., 2021; Albertella, Pelley, 
et al., 2019; Sepas et al., 2021). This finding is likely to present a bi- 
directional relationship between psychological distress and addictive 
behaviors, a) that addictive behaviors are motivated by way of coping 
with psychological distress (Burnatowska et al., 2022; Rodriguez et al., 
2020), and b) addictive behaviors may themselves enhance distress 
(Yang et al., 2022). 

The present study suggests that different problematic behaviors may 
be associated with differing trait impulsivity and compulsivity thresh
olds. Higher SS was significantly associated with more problematic 
alcohol use, and less AE and PUI. Our alcohol findings are in keeping 
with the literature in that SS is consistently associated with higher levels 
of alcohol use, albeit with a small effect (Hittner & Swickert, 2006). 
Further, our AE findings replicate that of Burrows et al. (2017) who 
showed a negative relationship between SS and food addiction. Less SS 
has also been linked with more time spent online (Müller et al., 2016). 
We also found AE and PUI were significantly positively associated with 
trait compulsivity, which is in line with previous findings (Albertella 
et al., 2021). Taken together we see a pattern emerge according to 
behavior type: after controlling for key covariates, substance-related 
addictive behaviors (i.e. alcohol use) may be more driven by the 
desire for sensation, presumably the reinforcing effects of the substance; 
whilst non-substance addictive behaviors may be more compulsively 
driven. It is important to note that this does not refute the role of 
impulsivity in non-substance-related addictive behaviors, nor compul
sivity in substance addiction both of which have been well evidenced 
elsewhere (Everitt & Robbins, 2016; Lee et al., 2019). Rather, the pre
sent findings may speak to the relative contributions of these constructs 
per addictive behavior type (Tiego et al., 2019), particularly in less se
vere, non-clinical general population cohorts. 

4.1. Limitations and future directions 

Despite the strengths of our study, namely, a large sample size, the 
assessment of multiple addictive behaviors, and a comprehensive eval
uation of addiction-specific neurocognitive correlates for each behavior, 
our findings should be considered in light of several limitations. The 
most notable limitation is the relatively low levels of severity (see ap
pendix Fig. A1) in the study sample preventing the generalizability of 

Table 2 
Description of demographic characteristics of the sample.  

Variables N  

Sample 475  
Mean age (SD) 32.3 (11.8)  
Sex, N (%)   
Male 

Female 
217 (45.7) 
258 (54.3)  

Gender, N (%)Man 
Woman 
Non-binary 
Not listed/ Prefer not to say 

216 (45.5) 
254 (53.5) 
4 (0.8) 
1 (0.2)  

Race/Ethnicity, N   
Aboriginal or Torres Strait 

Islander 
2  

African 2  
Asian 101  
Black or African American 2  
Hispanic or Latino 4  
Middle Eastern 4  
South Asian 30  
White or Caucasian 317  
Other 13  
Household income in AUD, N   
< $10,000 15  
$10,000 – $20,000 17  
$20,000 – $40,000 48  
$40,000 – $60,000 74  
$60,000 – $80,000 58  
$80,000 – $100,000 66  
> $100,000 197  
Addictive behaviors M (SD), 

range 
Classified as problematic: N 
(%) 

AUDIT 5.09 (4.82), 
0–30 

Harmful/hazardous: 47 (10) 
Suspected dependence: 15 (3) 

mYFAS 0.71 (1.78), 
0–10 

Mild: 28 (6) 
Moderate: 15 (3) 
Severe: 22 (5) 

PPCS 9.61 (5.89), 
6–42 

31 (7) 

IAT 16.31 (6.67), 
10–48 

163 (34) 

Note: Sex was defined as biological sex. AUDIT: Alcohol Use Identification Test, 
no/low problem use (0–7), harmful/ hazardous use (8–14), likely alcohol 
dependence (≥15); mYFAS: modified Yale Food Addiction Scale 2.0, mild (2–3), 
moderate (4–5) severe (≥6) symptoms. PPCS: Problematic Pornography Con
sumption Scale, problematic use (≥20). IAT: an abbreviated version of Young’s 
Internet Addiction Test, problematic use (≥17). 
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our findings to populations with more severe addictive behaviors. 
Although rates of AE and PPU corresponded with what has previously 
been estimated in general population samples (4–15 % for AE and 7 % 
for PPU; Mennig et al., 2020; Meule & Gearhardt, 2019), rate of haz
ardous alcohol use was well below Australian population estimates (22 
%; O’Brien et al., 2020). We recommend that future research in com
munity samples focus recruitment efforts to target individuals at more 
severe levels of addictive behavior. Contrary to this, the rate of PUI in 
the study sample was much higher than global estimates (6 %; Cheng & 
Li, 2014), suggesting our sample experienced more PUI than what would 
typically be observed in the general population. An additional limitation 
was the unsupervised nature of data collection. While online remote- 
access data collection is beneficial when wanting to target demograph
ically diverse samples at scale, it also requires a rigorous data cleaning 
protocol which necessitated the removal of just under 40 % of the 
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Table 4 
Linear regression model with bootstrapping for problematic alcohol use.   

β SE 95 % CI p    

Lower Upper  

Demographics      
Age  0.16  0.02  0.02  0.10  0.002** 
Sex (F)  − 0.01  0.51  − 1.09  0.94  0.921 
Neurocognition      
SST: SSRT  − 0.06  2.87  − 8.39  3.14  0.332 
VMAC: VMAC score  0.01  4.10  − 7.55  9.05  0.912 
BART: M pre-committed pumps  0.04  0.02  − 0.02  0.04  0.458 
CST: Switch cost latency  − 0.02  0.00  − 0.00  0.00  0.666 
EAT: Error awareness  0.03  0.01  − 0.01  0.02  0.606 
SDT: w  − 0.07  0.56  − 2.05  0.15  0.088 
N-Back: 3-back d’  0.04  0.15  − 0.15  0.45  0.291 
DDT: Log k  − 0.00  0.12  − 0.24  0.21  0.948 
Covariates      
DASS: Total score  0.22  0.03  0.03  0.15  0.003** 
SUPPS-P: Lack of perseverance 

and premeditation  
0.04  0.16  − 0.20  0.40  0.475 

SUPPS-P: Urgency  0.05  0.11  − 0.14  0.31  0.440 
SUPPS-P: Sensation seeking  0.17  0.09  0.11  0.44  0.003** 
CHI-T: Trait compulsivity score  − 0.05  0.05  − 0.13  0.06  0.503 

Note. β: Unstandardized coefficient; SE: Standard error; *p <.05, **p <.01, ***p 
<.001. 

Table 5 
Linear regression model with bootstrapping for addictive eating.   

β SE 95 % CI p    

Lower Upper  

Demographics      
Age  0.05 0.01  − 0.01  0.02  0.310 
Sex (F)  0.19 0.14  0.41  0.96  <0.001*** 
Neurocognition      
SST: SSRT  0.06 0.93  − 0.79  2.94  0.257 
VMAC: VMAC score  0.02 1.54  − 2.40  3.77  0.698 
BART: M pre-committed 

pumps  
0.04 0.00  − 0.00  0.01  0.350 

CST: Switch cost latency  0.02 0.00  − 0.00  0.00  0.714 
EAT: Error awareness  0.01 0.00  − 0.00  0.00  0.918 
SDT: w  − 0.03 0.23  − 0.58  0.32  0.579 
N-Back: 3-back d’  0.03 0.06  − 0.06  0.16  0.391 
DDT: Log k  0.07 0.05  − 0.01  0.17  0.109 
Covariates      
DASS: Total score  0.26 0.01  0.02  0.06  <0.001*** 
SUPPS-P: Lack of 

perseverance and 
premeditation  

0.03 0.06  − 0.08  0.14  0.621 

SUPPS-P: Urgency  0.08 005  − 0.03  0.14  0.195 
SUPPS-P: Sensation seeking  − 0.12 0.03  − 0.14  − 0.02  0.004** 
CHI-T: Trait compulsivity 

score  
0.18 0.02  0.02  0.09  0.002** 

Note. β: Unstandardized coefficient; SE: Standard error; *p <.05, **p <.01, ***p 
<.001. 
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dataset. Post-hoc comparisons of our sample for those whose data was 
screened out found that the individuals who were removed from the 
analysis had significantly higher AE, PUI, and lack of perseverance/ 
premeditation than included participants (see appendix). As such, our 
sample may be biased towards less impulsive individuals which may not 
be representative of the wider community. Future research should 
consider the trade-off associated with unsupervised data collection. 

The use of gamified neurocognitive tasks to assess aspects of neu
rocognitive function may also have impacted our findings. Whilst 
gamification can enhance engagement and motivation (Lumsden et al., 
2016), the addition of game-like elements did cause some of the tasks to 
deviate from their traditional counterparts. For instance, enhanced 
complexity of the visual display which may affect the salience of visual 

cues, potentially impacting paradigms that rely on distractor cues such 
as the VMAC task. Further, the BrainPAC SST utilized a points element in 
which faster responses earned more points, potentially encouraging 
faster but less accurate responding and thus impacting SSRT 
calculations. 

Finally, the cross-sectional nature of the present study limits our 
ability to determine causal relationships between the variables of in
terest. The next natural step would be to conduct a longitudinal evalu
ation of the same predictors to determine the key mechanisms that 
predict the development of AE, PPU, and PUI over time. This would 
better inform intervention and prevention targets for non-substance 
addictive behaviors and could shed light on the relative contribution 
of impulsivity and compulsivity (in terms of cognition or traits) at 
different stages of addiction (e.g. as relates to duration of addictive 
symptoms). 

In conclusion, the present study revealed that different addictive 
behaviors may have unique neurocognitive mechanisms. There are 
likely partly distinct mechanisms or pathways to addiction depending 
on the addictive behavior in question. This has key implications for early 
intervention, in particular, our study supports the need for tailored 
treatments that focus on the specific behavior-related neurocognitive 
functions rather than assuming cognitive dysfunction is necessarily the 
same across addictions. 
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Table 7 
Linear regression model with bootstrapping for problematic use of the internet.   

β SE 95 % CI p    

Lower Upper  

Demographics      
Age  − 0.17  0.02  − 0.14  − 0.05  <0.001*** 
Sex (F)  − 0.15  0.54  − 3.07  − 0.98  <0.001*** 
Neurocognition      
SST: SSRT  0.01  2.90  − 4.81  6.37  0.801 
VMAC: VMAC score  − 0.00  5.13  − 10.66  9.10  0.886 
BART: M pre-committed 

pumps  
0.03  0.02  − 0.02  0.04  0.444 

CST: Switch cost latency  0.02  0.00  − 0.00  0.00  0.597 
EAT: Error awareness  − 0.09  0.01  − 0.03  − 0.00  0.028* 
SDT: w  − 0.07  0.76  − 2.81  0.22  0.093 
N-Back: 3-back d’  − 0.02  0.22  − 0.55  0.31  0.555 
DDT: Log k  − 0.10  0.18  − 0.75  − 0.04  0.025* 
Covariates      
DASS: Total score  0.37  0.03  0.15  0.29  <0.001*** 
SUPPS-P: Lack of 

perseverance and 
premeditation  
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CHI-T: Trait compulsivity 

score  
0.12  0.05  0.03  0.24  0.010* 

Note. β: Standardized coefficient; SE: Standard error; *p <.05, **p <.01, ***p 
<.001. 
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Appendix  

Table A1 
Variables that significantly differed between the sample retained in the study and the sample removed during data cleaning.   

Mean(SD)  

Variable Sample retained Sample removed Test statistic 

mYFAS symptom count 0.72 (1.79) 2.39 (2.95) 47366*** 
IAT score 16.3 (6.68) 22.46 (8.86) 45768*** 
Lack of perseverance and premeditation 7.52 (1.77) 8.84 (2.19) 6.02*** 

Note: ***p <.001; Mann-Whitney U test was used for non-parametric comparisons (mYFAS and IAT); t-test was used for parametric 
comparison (lack of perseverance and premeditation). 

Fig. A1. Histograms of addictive behaviors in the sample.  

Appendix A. Supplementary material 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.addbeh.2023.107904. 

References 

Adams, R. C., Lawrence, N. S., Verbruggen, F., & Chambers, C. D. (2017). Training 
response inhibition to reduce food consumption: Mechanisms, stimulus specificity 
and appropriate training protocols. Appetite, 109, 11–23. https://doi.org/10.1016/j. 
appet.2016.11.014 

Adams, R. C., Sedgmond, J., Maizey, L., Chambers, C. D., & Lawrence, N. S. (2019). Food 
addiction: Implications for the diagnosis and treatment of overeating. Nutrients, 11 
(9), 2086. https://doi.org/10.3390/nu11092086 

Albertella, L., Chamberlain, S. R., Le Pelley, M. E., Greenwood, L.-M., Lee, R. S., Den 
Ouden, L., Segrave, R. A., Grant, J. E., & Yücel, M. (2020). Compulsivity is 
measurable across distinct psychiatric symptom domains and is associated with 
familial risk and reward-related attentional capture. CNS Spectrums, 25(4), 519–526. 
https://doi.org/10.1017/S1092852919001330 

Albertella, L., Pelley, M. E. L., Chamberlain, S. R., Westbrook, F., Fontenelle, L. F., 
Segrave, R., Lee, R., Pearson, D., & Yücel, M. (2019). Reward-related attentional 
capture is associated with severity of addictive and obsessive-compulsive behaviors. 
Psychology of Addictive Behaviors, 33(5), 495–502. https://doi.org/10.1037/ 
adb0000484 

Albertella, L., Rotaru, K., Christensen, E., Lowe, A., Brierley, M.-E., Richardson, K., 
Chamberlain, S. R., Lee, R. S. C., Kayayan, E., Grant, J. E., Schluter-Hughes, S., 
Ince, C., Fontenelle, L. F., Segrave, R., & Yücel, M. (2021). The influence of trait 
compulsivity and impulsivity on addictive and compulsive behaviors during COVID- 

19. Frontiers in Psychiatry, 12, Article 634583. https://doi.org/10.3389/ 
fpsyt.2021.634583 

Albertella, L., Watson, P., Yücel, M., & Le Pelley, M. E. (2019). Persistence of value- 
modulated attentional capture is associated with risky alcohol use. Addictive 
Behaviors Reports, 10, Article 100195. https://doi.org/10.1016/j.abrep.2019.100195 

American Psychiatric Association. (2013). Diagnostic and statistical manual of mental 
disorders (5th ed.). Washington, DC: Author. 

Amlung, M., Vedelago, L., Acker, J., Balodis, I., & MacKillop, J. (2017). Steep delay 
discounting and addictive behavior: A meta-analysis of continuous associations. 
Addiction (Abingdon, England), 112(1), 51–62. https://doi.org/10.1111/add.13535 

Antons, S., & Brand, M. (2018). Trait and state impulsivity in males with tendency 
towards Internet-pornography-use disorder. Addictive Behaviors, 79, 171–177. 
https://doi.org/10.1016/j.addbeh.2017.12.029 

Antons, S., & Matthias, B. (2020). Inhibitory control and problematic Internet- 
pornography use – The important balancing role of the insula. Journal of Behavioral 
Addictions, 9(1), 58–70. https://doi.org/10.1556/2006.2020.00010 

Band, G. P. H., Van Der Molen, M. W., & Logan, G. D. (2003). Horse-race model 
simulations of the stop-signal procedure. Acta Psychologica, 112(2), 105–142. 
https://doi.org/10.1016/S0001-6918(02)00079-3 

Berridge, K. C., & Robinson, T. E. (2016). Liking, wanting, and the incentive-sensitization 
theory of addiction. American Psychologist, 71(8), 670–679. https://doi.org/ 
10.1037/amp0000059 

E. Christensen et al.                                                                                                                                                                                                                            

https://doi.org/10.1016/j.addbeh.2023.107904
https://doi.org/10.1016/j.appet.2016.11.014
https://doi.org/10.1016/j.appet.2016.11.014
https://doi.org/10.3390/nu11092086
https://doi.org/10.1017/S1092852919001330
https://doi.org/10.1037/adb0000484
https://doi.org/10.1037/adb0000484
https://doi.org/10.3389/fpsyt.2021.634583
https://doi.org/10.3389/fpsyt.2021.634583
https://doi.org/10.1016/j.abrep.2019.100195
https://doi.org/10.1111/add.13535
https://doi.org/10.1016/j.addbeh.2017.12.029
https://doi.org/10.1556/2006.2020.00010
https://doi.org/10.1016/S0001-6918(02)00079-3
https://doi.org/10.1037/amp0000059
https://doi.org/10.1037/amp0000059


Addictive Behaviors 150 (2024) 107904

9
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