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Abstract
The broad usage of mobile devices nowadays, the sensitiveness of the information contained in them, and the shortcomings

of current mobile user authentication methods are calling for novel, secure, and unobtrusive solutions to verify the users’

identity. In this article, we propose TypeFormer, a novel transformer architecture to model free-text keystroke dynamics

performed on mobile devices for the purpose of user authentication. The proposed model consists in temporal and channel

modules enclosing two long short-term memory recurrent layers, Gaussian range encoding, a multi-head self-attention

mechanism, and a block-recurrent transformer layer. Experimenting on one of the largest public databases to date, the

Aalto mobile keystroke database, TypeFormer outperforms current state-of-the-art systems achieving equal error rate

values of 3.25% using only five enrolment sessions of 50 keystrokes each. In such way, we contribute to reducing the

traditional performance gap of the challenging mobile free-text scenario with respect to its desktop and fixed-text coun-

terparts. To highlight the design rationale, an analysis of the experimental results of the different modules implemented in

the development of TypeFormer is carried out. Additionally, we analyse the behaviour of the model with different

experimental configurations such as the length of the keystroke sequences and the amount of enrolment sessions, showing

margin for improvement.
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1 Introduction

The rapid digitalisation of the society, together with the

pervasiveness of mobile devices, is making room for

unprecedented human–computer interaction (HCI) scenar-

ios. Most people are now constantly connected to the

internet through their mobile devices, accessing remotely

their private data, and carrying out sensitive operations in

sectors such as Banking, Financial Services and Insurance

(BFSI), healthcare, e-commerce, and government, among

many others [1]. This trend has increased the amount of

cybercrimes observed [2], evidencing the need for novel

and reliable security methods that fulfil context-specific

constraints, such as: (i) continuous protection; (ii) user-

friendliness; (iii) limited processing load, compatible with

& Giuseppe Stragapede

giuseppe.stragapede@estudiante.uam.es

Paula Delgado-Santos

paula.delgadodesantos@telefonica.com

Ruben Tolosana

ruben.tolosana@uam.es

Ruben Vera-Rodriguez

ruben.vera@uam.es

Richard Guest

r.m.guest@soton.ac.uk

Aythami Morales

aythami.morales@uam.es

1 Biometrics and Data Pattern Analytics (BiDA) Lab,

Universidad Autonoma de Madrid, 28049 Madrid, Spain

2 Telefonica Research, Barcelona, Spain

3 School of Electronics and Computer Science, University of

Southampton, Southampton SO17 1BJ, United Kingdom

123

Neural Computing and Applications
https://doi.org/10.1007/s00521-024-10140-2(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-5949-8574
http://orcid.org/0000-0002-3776-2354
http://orcid.org/0000-0002-9393-3066
http://orcid.org/0000-0002-6338-8511
http://orcid.org/0000-0001-7535-7336
http://orcid.org/0000-0002-7268-4785
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-024-10140-2&amp;domain=pdf
https://doi.org/10.1007/s00521-024-10140-2


mobile environment specifications; and (iv) immunity to

spoofing. To meet such requirements, recent studies have

explored the feasibility of the user’s behavioural1 biometric

traits as an authentication method to create an additional

transparent security layer on top of traditional approaches

[3, 4]. In fact, such traits can be constantly verified in a

passive way [5, 6], i.e. without having the user to carry out

any specific entry-point authentication task, such as placing

their fingertip on the dedicated sensor, or typing a pass

code, thus addressing (i) and (ii). Such methods are also

convenient as mobile devices come equipped with several

sensors that can be treated as sources of biometric

modalities [7, 8]. Mobile behavioural biometric traits are

also captured as low-dimensional time-domain signals, i.e.

the acquisition and processing is fast (iii). Additionally, it

has been argued that spoofing behavioural biometrics

requires more advanced technical skills compared to their

physiological counterparts (iv) [2]. Keystroke dynamics

represents one of the most popular and high-performance

authentication methods among mobile behavioural bio-

metrics [9].

In the present work, we propose a novel transformer

architecture, TypeFormer, for mobile keystrokes dynamics

for the purpose of user authentication. Transformers are

recent deep learning (DL) networks, originally characterised

by an encoder–decoder architecture [10]. Since their pro-

posal, Transformers have been growing steadily due to their

wide-ranging modelling abilities in several application fields

such as computer vision, machine translation, reinforcement

learning, time-series analysis for classification and predic-

tion, etc. [11]. In particular, in the present study, we propose a

Transformer network based on a two-branch (temporal and

channel modules) architecture with long short-term memory

(LSTM) recurrent layers, Gaussian RANGE ENCODING

(GRE), a multi-head self-attention mechanism, and a block-

recurrent transformer layer (Fig. 3). TypeFormer is able to

map slices of keystroke sequences into a feature embedding

space where representations of sequences belonging to the

same subject (intra-subject variability) are closer than those

belonging to different subjects (inter-subject variability).

TypeFormer is trained with the triplet loss function, and the

similarity of the feature embeddings is measured with

Euclidean distance.

In this way, while subjects type freely on their devices,

TypeFormer might verify their identities passively by

comparing and processing continuously acquired data

samples with previously acquired and processed enrolment

data (Fig. 1).

In brief, the main contributions of the current work are

as follows:

• We propose TypeFormer, a novel Transformer architecture

for biometrics keystroke free-text verification (Fig. 3).

• We provide an analysis of the different modules that

compose the final architecture, starting from the

original Vanilla Transfomer, first considering only the

temporal module (with and without the recurrent

layers), then the channel module only, to reach the

final configuration of TypeFormer;

• We perform an in-depth comparison with recent state-

of-the-art keystroke verification systems based on

LSTM recurrent neural networks (RNN) and Trans-

formers. By replicating the experimental protocol and

adopting the same dataset [12], we outperform previous

approaches [13, 14] in terms of equal error rate (EER),

i.e. 3.25% using only five enrolment sessions consisting

in 50-keystroke sequences. As a result, we also reduce

the traditional performance gap existing between

mobile free-text and desktop fixed-text scenarios.

Finally, we also analyse the behaviour of the model

with different experimental configurations such as the

length of the keystroke sequences and the amount of

enrolment sessions.

• We make our experimental framework available to the

research community, aiming to contribute to advancing

the state of the art of keystroke biometrics2.

The remainder of the article is organised as follows: Sect. 2

describes key aspects of keystroke and Transformers. Then,

Sect. 3 presents the architecture of TypeFormer. The main

characteristics of the databases considered are reported in

Sect. 4. In Sect. 5, a detailed description of the experi-

mental setup is reported. Section 6 contains the experi-

mental results and the comparison with the state of the art.

Finally, in Sect. 7, we sum up our contributions and expose

future research lines.

2 Related works

2.1 Keystroke biometrics

Raw keystroke data generally consist in the timestamps of

the actions of pressing and releasing a key, the key code

typed, and additional features depending on the specific

acquisition device such as the pressure and the area size of

the finger. From the raw data, several features are com-

monly extracted:

1 In contrast with physiological biometrics, which pertains to the

biological characteristics of an individual, such as face or fingerprint,

all means that enable or contribute to differentiating between

individuals throughout the way they perform activities are labelled

as behavioural, i.e. gait, keystroke dynamics, handwritten signature,

etc. 2 https://github.com/BiDAlab/TypeFormer.
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• Latencies, i.e. the time intervals of press-to-press, press-

to-release (which is also known as the hold time),

release-to-release, and release-to-press (fly time) events.

• Frequencies, such as the number of times per second a

key is pressed or released.

• Error rates, related to the usage of backspaces or

deletion options.

• Screen coordinates (x, y) and their displacement, angles,

velocity, acceleration, etc.

Moreover, a typical classification of the keystroke systems

is based on the text format [15]: fixed text (also known as

text-dependent), in which the sequences of the keys typed

by the user are pre-determined, as in the case of login

credentials, and free text (text-independent), in which the

sequences of keys typed are arbitrary, as in the case of

messages. The latter entails additional challenges in com-

parison with the former, i.e. the unstructured and sparse

nature of the information captured, more frequent typing

errors, and differences in between enrolment and verifica-

tion sessions, leading to a higher intra-subject variability.

The performance might also be affected if the same subject

is able to speak different languages [16]. As a result, the

performance reachable in the free-text scenario is usually

worse than in the case of the fixed-text one [13].

Although biometric recognition based on keystroke has

been investigated for over a decade [17, 18], it can be still

considered a biometric modality at the early stages, espe-

cially for mobile devices. In fact, before their application to

mobile touchscreens, keystroke dynamics has been studied

on the mechanical keyboards of desktop and laptop com-

puters, for which, up to date, more in-depth evaluations

have been conducted, and commercial applications have

been proposed [17]. In addition, mobile devices entail

further challenges with respect to desktop ones, such as the

unconstrained and non-stationary acquisition conditions,

possibly due to the users’ activity, body position, emotional

state, etc. [19].

We describe next some of the key factors in the devel-

opment and evaluation of a keystroke dynamics system:

• Authentication performance, quantified through popular

metrics in the field of biometrics, such as EER, false

acceptance rate (FAR), false rejection rate (FRR), true

acceptance rate (TAR), accuracy, area under the curve

(AUC), etc.

• Number of data subjects included in the database for

development and evaluation of the technology.

• Amount of data required for each subject, i.e. number

and duration of enrolment and verification sessions.

• Text format: fixed text, transcript, or fully free text.

• Time interval between two acquisition sessions of the

same subject, which can be a major source of variability

due to biometric ageing, as observed in other beha-

vioural biometric modalities [20].

• Information acquired, such as the timestamps of the

actions of pressing and releasing a key, the key code

typed, and additional features depending on the specific

acquisition device such as the pressure.

• Instructions given to the subject during data acquisition

which can lead to a restricted acquisition environment.

• Other parameters such as the memory required to store

and deploy the model, prediction time, etc.

A typical issue of the field of keystroke biometrics is the

heterogeneity of databases, experimental protocols, and

metrics. Therefore, a rigorous comparison between the

different performance values is a difficult operation. To

Fig. 1 Graphical representation of the workflow of TypeFormer, the proposed biometric keystroke free-text verification system
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alleviate this aspect, Morales et al. provided a common

experimental framework for the fixed-text format by pre-

senting the Keystroke Biometrics Ongoing Competition

(KBOC) for user authentication using keystroke biometrics

[21].

2.2 Biometric keystroke verification

This section provides an overview of the key aspects of

previous keystroke verification systems presented in the

literature. The discussed studies are also reported in

Table 1 in chronological order. We consider systems

developed in both desktop (D) and mobile (M) scenarios.

2.2.1 Traditional approaches

In one of the earliest pioneering works on keystroke bio-

metrics [22], Monrose and Rubin proposed a free-text

keystroke algorithm by using the mean latency and stan-

dard deviation of digraphs and computing the Euclidean

distance between each test sequence and the reference

profile. Gunetti and Picardi [23] then extended the previous

algorithm to n-graphs. More recently, due to their popu-

larity, similar methods were used in [35] (2015) to study

the effect of the data size on the performance of free-text

keystroke, in [41] (2017) to study how detecting the user’s

position before authentication can significantly improve

performance, and in [43] (2017) for benchmarking the

large-scale database published, the Clarkson II database.

The inclusion of time-related features such as rhythm and

tempo was proposed in [28]. The random forest (RF)

classifier was adopted in [53] to assess which are the most

significant features of digraph-based algorithms (2020).

A very popular method for keystroke biometrics is

support vector machine (SVM). Following the previous

findings, in [30] and [38], combinations of the existing

digraphs method for feature extraction and a SVM classi-

fier to authenticate users were proposed. SVM was also

adopted in [29] and in [33] in conjunction with mobile

device background sensor data. Regardless of the classifier

used, fusing keystroke dynamics with simultaneous

movement sensor data included in mobile devices has

proved to be very beneficial in terms of authentication

results [5, 9, 52]. In a broad study (2018), Cilia et al. [49]

studied how differentiating typing modes (one or two

hands) and user activity (standing or moving) during the

development of a keystroke verification system based on

SVM can improve the authentication performance

significantly.

Among other classifiers, we mention Hidden Markov

Models (HMM), used in [24] to exploit typing rhythms in

keystroke dynamics, and then extended by Monaco et al.

[44] into Partially Observable Hidden Markov Models

(POHMM). With k-Nearest Neighbour (k-NN) [25] and

fuzzy logic [27], promising results have also been achieved

in the early days of mobile keystroke biometrics. In the

same epoch (2009), Killourhy and Maxion collected one of

the first public databases of the field, the CMU keystroke

dynamics database, and they carried out a benchmark

evaluation with 14 different algorithms including Man-

hattan, Euclidean, and Mahalanobis distances, k-Nearest

Neighbour, SVM (one-class), a neural network, fuzzy

logic, and k-means [26]. A similar benchmark study was

conducted in [42] on several algorithms such as Gaussian

and Parzen Window Density Estimation, one-class SVM,

k-NN, and k-means.

2.2.2 Deep learning approaches

The advent of DL-based systems has not spared the field of

keystroke biometrics, improving significantly the authen-

tication performance, in particular in the more challenging

free-text scenario. In [31] (2013), it was shown that a deep

neural network was capable of outperforming other algo-

rithms on the CMU keystroke dynamics database [26].

Approaches based on neural networks were also used for

complementary tasks to improve the authentication per-

formance, such as predicting the digraphs that are not

present among the enrolment sessions by analysing the

relation between the keystrokes [32]. In [39], a convolu-

tional neural network (CNN) was introduced in combina-

tion with a Gaussian data augmentation technique for the

fixed-text scenario, while in [34], a neural network was

applied to RGB histograms obtained from fixed-text key-

stroke data. Moreover, multi-layer perceptron (MLP)

architectures have also been explored [58] (M).

In [50], based on the observation that a RNN is a very

suitable structure to learn from time-series [60, 61], a

combination of a convolutional and a recurrent network

was proposed in order to extract higher level keystroke

features on the SUNY Buffalo database [51] (2019). The

convolution process is performed before feeding the

sequence to the recurrent network to characterise the key-

stroke sequence better. RNN variants are popular in key-

stroke biometrics, such as in [55] (birectional RNN) or in

[59] (M), in which keystroke sequences are arranged as an

image-like matrix and then processed by a CNN combined

with a gated recurrent unit (GRU) network. In 2021, Acien

et al. presented TypeNet [13], a Siamese LSTM RNN for

free-text keystroke biometrics. They considered the largest

public databases to date, collected by researchers from the

Aalto University, [54], and [12], with, respectively, around

168,000 and 68,000 subjects of free-text keystroke data

divided into 15 acquisition sessions per subject. In their

wide-ranging work, among other things, they achieved

state-of-the-art authentication results at large scale in terms
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Table 1 Summary of different approaches presented in the literature for keystroke dynamics verification

Study Database (Public) Number

of

subjects

Scenario Classifier1 Performance [%] Text

format

Data

amount

Monrose and

Rubin [22]

Self-collected (7) 42 D Weighted Euclidean

dist

90.7 (Acc.) for Fixed Text

23.0 (Acc.) for Free

Text

Fixed,

free

Few

sentences

Gunetti and

Picardi [23]

Self-collected (7) 205 D Different distance

measures

\ 0.005 (FAR),\ 5

(FRR)

Free 700–900

characters

Jiang et al.

[24]

Self-collected (7) 58 D HMM 2.54 (ERR) Fixed 20 strokes

on average

Saevanee

et al. [25]

Self-collected (7) 10 M k-NN 99.0 (Accuracy) Fixed 10-digit

numbers

Killourhy and

Maxion

[26]

CMU database (4) 51 D Manhattan dist., k-NN,

SVM, Mahalanobis,

NN, Euclidean dist.,

FL, k-means

0.096 (EER) with

Manhattan dist.

Fixed 10

keystrokes

Zahid et al.

[27]

Self-collected (7) 25 M FL, PSO 2.07 (FAR), 1.73 (FRR) Fixed 250

keystrokes

Hwang et al.

[28]

Self-collected (7) 25 M FF-MLP, RBFN, NN 4 (EER) Fixed 4 digits

Giot et al.

[29]

GREYC Web-based (4)

[29]

100 D SVM 15.28 (EER) Fixed 5 captures

Balagani

et al. [30]

Self-collected (7) 34 D SVM \ 1 (Average Error Rate) Free

text

500

keystrokes

Deng and

Zhong [31]

CMU database (4) [26] 51 D GMM, NN 3.5�5.5 (EER) Fixed,

free

1 sequence

Ahmed et al.

[32]

Self-collected (4) 53 D Neural network Controlled: 2.13 (EER, 0

FAR, 5 FRR)

Uncontrolled: 2.46

(EER, 0.01 FAR, 4.8

FRR)

Free 500 actions

Gascon et al.

[33]

Self-collected (7) 300 M SVM 92 (TAR at 1% FAR) Free 160

keystrokes

Alpar [34] Self-collected (7) 10 D NN, RGB histograms 90 (Acc.) Fixed 15

characters

Huang et al.

[35]

Clarkson I (4) [36] 39 D Same as [23] � 1 (Impostor Pass Rate) Free 1 k–10 k

keystrokes

Morales et al.

[21]

BiosecurID (4) [37] 300 D Manhattan 5.32 (EER) Fixed � 25

keystrokes

Çeker and

Upadhyaya

[38]

Clarkson I (4) [36] 34 D SVM � 0 (EER) Free 500

keystrokes

Çeker and

Upadhyaya

[39]

CMU database (4) [26],

GREYC Keystroke (4)

[40], GREYC Web-

Based (4) [29]

267 D CNN 2.02 (EER) Free Few

keystrokes

Crawford

et al. [41]

Self-collected (7) 36 M Decision Tree [ 93 (AUC) Free Few

keystrokes

Kim et al.

[42]

Self-collected (7) 150 D GDE, PWDE, 1-SVM,

k-NN, and k-means

(EER: 0.44 for Korean,

0.84 for English)

Free 100–1000

keystrokes

Murphy et al.

[43]

Clarkson II (4) [43] 103 D Same as [23] 2.17�10.7 (EER) Free 1000

keystrokes

Monaco et al.

[44]

CMU database (4) [26],

(4) [45], (4) [46], (4)

[47], (4) [48]

� 50 D POHMM 0.6–9 (EER), 60.7�97.1

(Accuracy)

Fixed,

free

0.12�55.18

events (on

average)

Cilia et al.

[49]

Self-collected (4) 24 M SVM 0.44�3.93 (EER) Fixed Sentence

based
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of EER (%) while attempting to minimise the amount of

data per subject required for enrolment. Following [13], in

[14], in 2022, we presented a preliminary attempt to use a

Transformer architecture for keystroke biometrics, out-

performing TypeNet in a specific experimental setup. We

selected [13] as a reference study for several reasons:

(i) They adopt the largest mobile free-text keystroke

databases available, the Aalto mobile keystroke database

[12], (ii) their experimental protocol is publicly available

on GitHub, allowing us to use the same sets of subjects and

metrics, for development and evaluation, and (iii) they

achieved state-of-the-art results for free-text mobile key-

stroke biometrics. Consequently, references [13] and [14]

are particularly relevant to the current study as they use the

same development and evaluation databases, and experi-

mental protocol, allowing a direct comparison of the pro-

posed systems (Sect. 6). Recently, in [62], a novel

approach called DoubleStrokeNet for recognising subjects

using bigram embeddings was proposed. DoubleStrokeNet

considers a Transformer-based neural network that distin-

guishes between different bigrams. Additionally, self-su-

pervised learning techniques were employed to compute

embeddings for both bigrams and users. The authors

experimented with the Aalto databases, reaching very

competitive results in terms of recognition performance.

Leveraging the temporal features of specific bigrams is a

route of potential interest in modelling subjects’ typing

behaviour. It is difficult to compare results across different

studies, which adopt different experimental settings, e.g.

training and evaluation data.

2.3 Introduction to transformers

The first Transformer was proposed by Vaswani et al. as a

new encoder–decoder architecture [10]. Such model, later

nicknamed the Vanilla Transformer, is based purely on

attention mechanisms, abandoning the idea of using con-

volutions or recurrence. The Vanilla Transformer was

Table 1 (continued)

Study Database (Public) Number

of

subjects

Scenario Classifier1 Performance [%] Text

format

Data

amount

Lu et al. [50] SUNY buffalo (4) [51],

Clarkson II (4) [43]

75 D CNN ? RNN 2.67 (EER) Free 30

keystrokes

Kim et al.

[52]

Self-collected (4) 50 M KS stat \ 0.05 (EER) Free � 200

keystrokes

Ayotte et al.

[53]

SUNY Buffalo (4) [51],

Clarkson II (4) [43]

101, 148 D RF 7.8 (EER) Free 200

digraphs

Acien et al.

[13]

Aalto databases (4)

[12, 54], SUNY Buffalo

(4) [51], Clarkson II

(4) [43]

168 K D;M RNN 9.2 (EER) for M, 2.2 for

D
Free 30–150

keystrokes

El-Kenawy

et al. [55]

RHU dataset [56], MEU-

Mobile KSD Dataset

[57]

101, 148 M Bi-RNN 99.02 (Acc.), 99.32 (Acc.) Fixed Few

keystrokes

Stylios et al.

[58]

Self-collected (4) 39 M MLP 97.18 (Acc.) Fixed � 2 min

sessions

Li et al. [59] SUNY buffalo (4) [51],

Clarkson II (4) [43]

101, 148 D CNN ? RNN 97.68 (Acc.), 88.62 (Acc.) Free 50

keystrokes

Stragapede

et al. [14]

Aalto Database M (4)

[12]

60 K M Transformer 3.84 (EER) Free 50

keystrokes

TypeFormer Aalto databases (4)

[12, 54], SUNY Buffalo

(4) [51], Clarkson II

(4) [43]

60 K D;M Transformer 3.25 (EER) Free 30–100

keystrokes

1HMM = Hidden Markov Models, k-NN = k-Nearest Neighbours, SVM = Support Vector Machine, NN = Neural Network, FL = Fuzzy Logic,

PSO = Particle Swarm, Optimisation, FF-MLP = Feed-Forward Multi-Layer Perceptron, RBFN = Radial Basis Function Network, GMM =

Gaussian Mixture Model, CNN = Convolutional NN, GDE = Gaussian, Density Estimator, PWDE = Parzen Window Density Estimator,

POHMM = Partially Observable HMM, RNN = Recurrent Neural Network, KS = Kolmogorov–Smirnov, RF = Random, Forest, Bi-RNN =

Bidirectional RNN, and MLP = Multi-Layer Perceptron
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proposed for the task of machine translation, achieving

remarkable results in comparison with existing systems in

terms of quality of text translation and time consumption.

In comparison with existing DL architectures such as

CNNs or RNNs, the main advantages of the Transformer

can be summarised as follows: (i) All sequences are pro-

cessed in parallel; (ii) a self-attention mechanism is intro-

duced to deal with long sequences; (iii) the training is more

efficient, modelling the whole sequences at once; and (iv)

inspection of the whole sequences at once, without the

need to summarise previous samples [10, 63, 64].

Later, several variations of the original Transformer

architecture have been proposed to overcome some of its

drawbacks and to deploy it in other application fields. In

fact, its quadratic computational complexity and its con-

siderable memory usage limited its application to longer

time-series signals. To alleviate these aspects, the Two-

stream Convolution Augmented Human Activity Trans-

former (THAT) was proposed by Li et al. for the task of

human activity recognition (HAR) [65]. Such architecture

was designed based on the assumption that, similarly to

images, time-series signals have information in two

dimensions. Therefore, the model comprises two modules:

(i) the temporal module (extracting time features from

unchanged data) and (ii) the channel module (extracting

channel features from transposed data). Then, the features

extracted by each of the modules are concatenated for the

prediction task. Another example of an interesting Trans-

former architecture variation is given by the block-recur-

rent transformer, that has been recently introduced by

Hutchins et al. for the task of auto-regressive language

modelling [64]. In this approach, thanks to the recurrent on

series-wise connexions, all previous temporal information

is retained. Furthermore, two attention mechanisms are

applied at the same time (full- and cross-attention).

In the light of these and other adaptations, the popularity

of Transformers increased in the past years due to the

remarkable results obtained in other fields such as com-

puter vision, reinforcement learning, time-series analysis

for classification and prediction, biometrics, etc. [11, 66].

Recently, this lead to the emergence of large pre-trained

Transformers, also referred to as foundation models (FMs),

renowned for their adaptability across diverse tasks. These

expansive pre-trained Transformers encompass varied

architectures tailored to specific tasks, including large

language models (LLMs) for natural language processing

[67], vision Transformers (ViT) for visual tasks [68], and

multimodal Transformers for tasks involving multiple

modalities. Despite the widespread adoption of these

sophisticated models, within the realm of behavioural

biometrics, a scarcity of data presents a significant chal-

lenge, thereby limiting the evaluation of these models in

this specific task domain within existing literature. A

thorough discussion of Transformers in different domains

is out of the scope of the current article. Nevertheless, we

recommend two excellent surveys about vision Trans-

formers [68] and Transformers for time-series [69].

A preliminary version of this work was published in [14]

as the first application of Transformers to keystroke bio-

metrics. This article significantly improves [14] in the

following aspects: (i) We propose a new Transformer

architecture, TypeFormer, leading to an improvement of

the authentication performance; (ii) we provide a more

extensive evaluation of the model, analysing the behaviour

of the system with different experimental conditions such

as the number of enrolment sessions and the length of the

keystroke sequences; and (iii) we provide an in-depth

analysis of state-of-the-art keystroke verification systems,

remarking key aspects such as the scenario (fixed or free

text) and database considered, classifier, and performance.

3 Proposed system: TypeFormer

This section contains a detailed description of all aspects of

the proposed keystroke verification system.

3.1 Feature extraction

The raw keystroke information available consists essen-

tially in the timestamp of the event of pressing (finger

down) and releasing (finger up) a key, together with the

ASCII code typed. Such data are processed to extract a set

of five features per character typed:

[hold latency, inter-key latency, press latency, release

latency, key pressed]

The above-mentioned features are shown in Fig. 2. Due

to the fact that the length of the free-text sequences is not

fixed, they are sliced or zero-padded to produce a fixed-size

input, (L ¼ 30; 50; 70; 100), depending on the specific

experiment (see Sect. 5). The ASCII code (key pressed) is

normalised in the range [0, 1].

3.2 TypeFormer architecture

Following the same idea presented in [65], TypeFormer

contains two modules, each of them in a specific branch, to

which the pre-processed Transfomer input sequences X

(Sect. 3.1) are fed (Fig. 3): a temporal module (temporal-

over-channel features) and a channel module (channel-

over-temporal features). In both channels, X is modelled

using a GRE to preserve the information position. The

output sequence is defined by an L1 normalised vector

representing the probability density function (PDF) of the

Gaussian distributions G. Moreover, the final GRE is cal-

culated by a weighted multiplication over several ranges,
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containing the behaviour of each of the samples in a dif-

ferent scenario.

The temporal module contains three ordered sets of

layers. Each of the sets of layers is composed, respectively,

by N, R, and M layers. The N and M layers are identical and

made of two sub-layers: a multi-head self-attention mech-

anism and a multi-scale keystroke LSTM RNN layer. The

multi-head self-attention mechanism connects the samples

among the whole sequence obtaining long-range depen-

dencies. The mechanism applies a weighted sum of the

different values V over the different queries Q and the

matching keys K. The output of the self-attention sub-layer

is the result of applying the attention mechanism to F in-

dependent heads. Then, the multi-scale keystroke LSTM

RNN layer is activated by ReLU functions. Each of the

scales contains a unique kernel. Following each sub-layer,

a residual connexion and a layer normalisation are included

(Add & Norm in Fig. 3).

Between the N and M layers, R recurrent layers are

included (graphically represented in detail on the right side

of Fig. 3). The structure of such layers is based on the

block-recurrent transformer architecture presented in [64].

Initially, the input sequence is shaped by a positional

encoding. Then, a recurrent form of attention is introduced

in the vertical and horizontal directions, based on two sub-

layers in each of the directions: (i) a multi-head self-at-

tention mechanism, which applies full-attention to the

sequences to obtain the matching values V and keys K, and

cross-attention to the current states (initialised to 0) to

extract the queries Q (replicated in F independent heads);

and (ii) a multi-scale keystroke CNN network, which

comprises a CNN with ReLU activations and unique ker-

nels for each of the scales. Every sub-layer is preceded by a

layer normalisation and followed by a residual connexion

(Add & Norm). While the multi-scale keystroke CNN

network remains unchanged, the multi-head self-attention

mechanism applies cross-attention to the sequences to

obtain the matching queries Q, and full-attention to the

current states to extract the keys K and the values V (such

mechanism is replicated in F independent heads). Fur-

thermore, the residual connexions are replaced by forget

gates, altering the current states.

The channel module input sequence X is transposed and

modelled by the GRE. Then, H layers (analogous to the

N and M layers of the Temporal Module) are included,

followed by a residual connexion and a layer normalisation

(Add & Norm).

Subsequently, each of the modules is followed by a

convolutional layer, after which the similarity of the output

features is concatenated into an output vector P and fed

into a sigmoid layer. Finally, for the authentication task

considered in the present study, the output feature

embedding vectors are compared using the Euclidean

distance.

The architecture of TypeFormer is based on a prelimi-

nary transformer version proposed in [14]. However, this

architecture has been modified leading to improved

Press (ASCII) ReleaseRelease

Q Q AA

HL IL

PL
RL

Time

Press (ASCII)

Fig. 2 Example of the keystroke features extracted from the Aalto

mobile keystroke database [12]. HL hold latency; IL inter-key latency;

PL press latency; RL release latency; and ASCII: key pressed

Fig. 3 Graphical representation of TypeFormer, based on a Trans-

former architecture for biometrics keystroke free-text verification. T
transposition operation; GRE Gaussian range rncoding; N, R, M, H:

Number of layers of each of the modules; X Pre-processed input

sequence; and P Output feature embedding vector
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biometric recognition performance. In particular, the main

changes can be summarised as follows: (i) The convolu-

tional layers in the temporal and channel modules have

been changed to LSTM RNN layers, which show better

ability to model time-domain signals [61]; and (ii) in the

temporal module, a set of block-recurrent transformer

layers based on [64] has been included between two sets of

identical recurrent layers, following the idea of [66]. The

block-recurrent block introduces a recurrent form of

attention, in alternative to using the dot-product or peri-

odicity-based series mechanism, which fix an attention

window size, summarising the sequence that the model has

previously seen. As presented in Table 2, this leads to

improved recognition results.

The specific details of the hyperparameter implementa-

tion for the proposed Transformer are described in

Sect. 5.1.

4 Databases description

4.1 The database

The Aalto mobile keystroke database is a large-scale

database for mobile keystroke biometrics involving around

260,000 subjects [12]. In this work, we have selected all

subjects that completed at least 15 acquisition sessions,

reducing the number of subjects to 62,454. The raw data

available in the Aalto mobile keystroke database consist in

the timestamps of the key press (finger down) and key

release (finger up) gestures with a 1-ms resolution. The

data were captured through a mobile web application in an

unsupervised way. Subjects were asked to read, memorise,

and type in their smartphone English sentences that were

randomly selected from a set of 1525 sentences obtained

from the Enron mobile mail [70] and the Gigaword

Newswire corpora [71]. Therefore, the text format adopted

is free text, with sentences containing at least three words

or 70 characters. Moreover, the volunteers were asked to

type as fast and accurately as possible. Concerning the

volunteers, they were selected from 163 countries,

approximately 68% of the subjects involved were English

native speakers, and around 31% of them took a typing

course.

5 Experimental protocol

5.1 TypeFormer hyperparameters

The best configuration found in terms of the hyperparam-

eters of the proposed Transformer is described below. To

achieve this, several combinations of hyperparameter were

adopted for different trainings. Then, the EER on the val-

idation set was used to select the best model among all

trainings. The Gaussian range encodings contain G ¼ 20

Gaussian distributions. The temporal module comprises

N ¼ 9, R ¼ 2, and M ¼ 1 layers with F ¼ 10 heads each,

while the channel module H ¼ 1 layer with F ¼ 5 heads.

In both modules, the multi-scale keystroke LSTM contains

three recurrent layers with kernel sizes 1, 3, and 5,

respectively. Each of them comprises D units and ReLU

activation functions, followed by dropout layers with a rate

of 0.1. The multi-scale keystroke CNN networks of the R

recurrent layers contain D units each (where D corresponds

to the keystroke sequence length L), ReLU activation

functions, and kernel sizes 1, 3, and 5, respectively, fol-

lowed by dropout layers with a rate of 0.1. Subsequent to

the temporal and channel modules, two convolutional

layers are included with D units, ReLU activation func-

tions, and kernel sizes 128 and 32, respectively. Each of the

convolutional layers is followed by dropout layers with a

rate of 0.5. Finally, a max-pooling layer followed by a

linear layer with sigmoid activation function is included.

The final output vector contains S ¼ 64 features.

5.2 Model development

In order to perform a fair comparison across different DL

architectures, in the current work, we replicate the public

experimental protocol presented by Acien et al. in [13].

Specifically, data belonging to the same non-overlapping

30,000 and 400 subjects have been used, respectively, for

the purpose of training and validation. Each subject data

are organised into 15 acquisition sessions. The triplet loss

function is employed for the training, and a margin of a ¼
1:0 was set on top of the Euclidean distance for each of the

pair combinations in the triplet. Additionally, the Adam

optimiser with a learning rate of 0.001 is used. The

Transformer is trained for 1000 epochs, considering

Table 2 Experimental results of

the different modules

implemented in the

development of TypeFormer, in

comparison with the Vanilla

Transformer [10] (E is the

number of enrolment sessions)

System E ¼ 1 E ¼ 2 E ¼ 5 E ¼ 7 E ¼ 10

Vanilla Transformer [10] 10.28 8.56 7.41 6.95 6.61

Temporal Module w/o Rec. layer 8.15 6.43 5.12 4.73 4.29

Temporal module w/ Rec. layer 7.12 5.49 3.94 3.63 3.15

Channel module 17.29 15.50 13.54 13.07 12.55

TypeFormer (Temp. ? Channel Module w/ Rec. Layer) 6.17 4.57 3.25 2.86 2.54
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roughly 30,000 triplets per epoch, arranged into 1024-se-

quence-sized batches. The triplets are formed by sampling

subjects randomly and with uniform distribution across the

training set. At the end of each training epoch, the model

performance is quantified in terms of EER, and according

to such metric, the best model is selected to be tested on the

final evaluation subset. TypeFormer is implemented in

PyTorch.

5.3 Model evaluation

We describe next the experiments considered in the present

study to validate the proposed TypeFormer. In all of them,

different subjects are used for training and evaluating the

keystroke verification model.

The first experiment analyses the performance of

TypeFormer over an evaluation set of U ¼ 1; 000 unseen

subjects obtained from the same database considered in

training. At the end of each of the training epochs, the best

model is selected using a separate validation subset. We

follow the same protocol as [13], considering E enrolment

sessions per subject. The genuine and impostor score dis-

tributions are subject-specific. For each subject, genuine

scores are obtained comparing the enrolment sessions (E)

with five verification sessions. The Euclidean distances are

computed for each of the verification sessions with each of

the E enrolment sessions, and then, values are averaged

over the enrolment sessions. Therefore, for each subject,

there are five genuine scores, one for each verification

session. Concerning the impostor score distribution, for

every other subject in the evaluation set, the averaged

Euclidean distance value is obtained considering one ver-

ification session and the above-mentioned five enrolment

sessions. Consequently, for each subject, there are 999

impostor scores. Based on such distributions, the EER

score is calculated per subject, and all EER values are

averaged across the entire evaluation set. The number of

enrolment sessions is variable (E ¼ 1; 2; 5; 7; 10) in order

to assess the performance adaptation of the system to

reduced availability of enrolment data. Additionally, also

the experiments are repeated changing the input sequence

length, L ¼ 30; 50; 70; 100, to evaluate the optimal key-

stroke sequence length.

6 Experimental results

Starting from the initial vanilla transformer proposed in

[10], to validate each part of final proposed system, Table 2

presents the experimental results of the different modules

implemented in the development of TypeFormer. The

results are obtained on the final evaluation dataset of the

Aalto mobile database. This analysis is carried out by

considering a variable number of enrolment sessions E ¼
1; 2; 5; 7; 10 along the columns and sequence length

Table 3 Intra-database

evaluation: system performance

results in terms of EER for the

final evaluation dataset of the

Aalto mobile database

Sequence length L System Number of enrolment sessions E

1 2 5 7 10

30 Acien et al. [13] 14.20 12.50 11.30 10.90 10.50

TypeFormer 9.48 7.48 5.78 5.40 4.94

50 Acien et al. [13] 12.60 10.70 9.20 8.50 8.00

Preliminary Transformer [14] 6.99 – 3.84 – 3.15

TypeFormer 6.17 4.57 3.25 2.86 2.54

70 Acien et al. [13] 11.30 9.50 7.80 7.20 6.80

TypeFormer 6.44 5.08 3.72 3.30 2.96

100 Acien et al. [13] 10.70 8.90 7.30 6.60 6.30

TypeFormer 8.00 6.29 4.79 4.40 3.90

Fig. 4 DET curves comparing the performance of TypeFormer with

TypeNet ([13]) for keystroke sequences of length L ¼ 50. E
corresponds to the number of enrolment sessions considered. The

solid black line y ¼ x corresponds to all possible EER points (for

which FAR = FRR by definition), whereas the grey lines, respec-

tively, represent the FRRs at 1% FAR (dotted) and FRRs at 10% FAR

(dashed)
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L ¼ 50. Although the Vanilla Transformer is solely based

on attention mechanisms, it shows the effectiveness of the

Transformer architecture in modelling keystroke sequen-

ces. First, this architecture is modified by including the

Gaussian range encoding (instead of the Positional

Encoding originally used in the Vanilla Transformer).

Then, the point-wise feed-forward networks of the Vanilla

Transformer are changed with LSTM recurrent layers

(Temporal w/o Rec. Layer). By doing so, we obtain an

improvement for all considered amounts of enrolment

sessions, and the recognition performance in terms of EER

is improved on average by a 28.70%. Following [64], a

block-recurrent transformer layer is introduced in the

temporal module in the case of the temporal with recurrent

layer configuration. This further reduces the EER by a

20.03% (Temporal w/ Rec. Layer). Finally, we considered

the combination of the temporal with recurrent layer and

channel module configurations, corresponding to the final

TypeFormer architecture.

Table 3 shows the results achieved by TypeFormer

considering different sequence lengths L. In addition, to

provide a better comparison of TypeFormer with recent

state-of-the-art keystroke biometric systems, we include

the results achieved by TypeNet in [13] and our prelimi-

nary study [14] on the same dataset as shown in the pre-

vious Table 2. In general, in Table 3, we can see that in all

cases, TypeFormer outperforms previous approaches over

the same evaluation set of 1000 subjects. In particular, the

performance improvement of TypeFormer averaged over

all cases in the table (E ¼ 1; 2; 5; 7; 10 and

L ¼ 30; 50; 70; 100) consists in 47.3% in relative terms

with respect to TypeNet [13], an LSTM RNN-based

system.

Additionally, considering only the results of Table 3

obtained by TypeFormer, it is possible to observe that in all

cases, the EER values decrease as the number of enrolment

sessions E increases. Such trend is predictable and con-

sistent for all sequence lengths L. Also, the rate of

improvement is higher going from E ¼ 1 to E ¼ 5 sessions

(relative improvement of almost 50% going from 6.17% to

3.25% EER for L ¼ 50) than from E ¼ 5 to E ¼ 10 (rel-

ative improvement of around 20% going from 3.25% to

2.54% EER for L ¼ 50).

Similarly, by carrying out an analogous analysis along

the rows, it is noticeable that increasing the input sequence

length L from 30 to 50, there is a significant improvement

(42.64% in relative terms on average over all considered

enrolment session amounts E) in terms of EER. Never-

theless, such trend is reversed when increasing the

sequence length L to 70 or 100 (respectively, a perfor-

mance degradation of 12.38% and 28.38% in relative terms

on average over all considered enrolment session amounts

E), leading to the conclusion that the optimal sequence

length must be around 50. This could be due to the fact that

the zero-padding operation carried out to equalise the

length of different keystroke sequences is not beneficial for

the Transformer-based architecture that relies on an

attention mechanism, that can perhaps be optimised. In

case of the RNN-based reference system [13], the longer

the input sequences, the better the results, showing the

beneficial effects of the masking layer included in their

network.

Table 4 Global EER (%), FRR at 1% FAR (%), and FRR at 1% FAR

(%) of TypeNet [13] and TypeFormer for different amounts of

enrolment sessions E. Such values correspond to the intersection

points of the DET curves with the straight lines plotted in Fig. 4. The

sequence length L ¼ 50

Enrolment sessions System Global EER (%) FRR at 1% FAR (%) FRR at 10% FAR (%)

E ¼ 1 Acien et al. [13] 18.20 38.99 23.19

TypeFormer 9.72 27.97 9.53

E ¼ 5 Acien et al. [13] 14.40 34.93 17.40

TypeFormer 6.32 17.47 4.68

E ¼ 10 Acien et al. [13] 13.16 32.42 14.91

TypeFormer 5.52 12.81 3.85

Table 5 Comparison of the performance achieved by the proposed

TypeFormer with related systems that followed different experimental

protocols in the studies in which they were originally proposed (E =

number of enrolment sessions = 5 and L = number of enrolment

sessions considered = 50)

System EER (%)

POHMM [72] 40.40

Digraphs [38] 29.20

CNN?RNN [50] 12.20

TypeNet [13] 9.20

Preliminary Transformer [14] 3.84

TypeFormer 3.25
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To provide a graphical representation of the differences

in the performance of the compared systems, Fig. 4 reports

the detection error trade-off (DET) curves computed for the

different number of enrolment sessions available (L ¼ 50).

The graph shows that our proposed approach outperforms

the LSTM RNN of TypeNet in all cases, i.e. E ¼ 1

(TypeFormer) enrolment session vs. E ¼ 10 (TypeNet).

This shows the ability of TypeFormer to model keystroke

dynamics. The DET curves shown in Fig. 4 are plotted

considering the entire global genuine and impostor score

distributions, i.e. by grouping all scores regardless of the

specific subject. The solid black line y ¼ x corresponds to

all possible EER points (for which FAR ¼ FRR by defi-

nition), whereas the grey lines, respectively, represent the

FRRs at 1% FAR (dotted) and FRRs at 10% FAR (dashed).

For E ¼ 5, TypeFormer achieves 6.32% of global EER,

while, by shifting the system threshold to set a FAR of 1%

and 10%, we obtain corresponding FRRs of, respectively,

17.47% and 4.68%. Table 4 contains all the intersection

points obtained from Fig. 4. We observe that setting the

system threshold to a high security level (corresponding to

FAR ¼ 1%) affects the usability of the system, i.e. it

increases the amount of false rejections for the legitimate

users. The computation of such metrics is limited to the

global scenario due to the higher amount of genuine scores.

Lastly, Table 5 presents a comparison of the proposed

TypeFormer with other systems presented in the literature

that were not originally evaluated according to the protocol

adopted in this work [12]: digraphs and SVM [38],

POHMMs [72], and a combination of RNNs and CNNs

[50]. The evaluation of the different system takes place on

the same set of 1000 subjects considering E ¼ 5 and

L ¼ 50. TypeFormer shows the best performance, with

EER absolute improvements of 37.15% (POHMM [72]),

32.45% (Diagraphs [38]), 8.95% (CNN ? RNN [50]),

5.95% (TypeNet [13]), and 0.59% (our preliminary

Transformer architecture [14]). Such results show the

potential of TypeFormer and Transformer-based architec-

tures in the challenging free-text mobile scenario. For

completeness, we also report the inference time for a single

feature extraction instantiation. Specifically, we consider as

input a biometric sample in the form of the pre-processed

five features described in Sect. 3.1 and a keystroke

sequence length L ¼ 50. The inference time is 46.4 ms on

average, considering all embeddings computed on the

evaluation set.3 The experiments are carried out on a

NVIDIA GeForce RTX 3070 Ti graphics card. In terms of

number of parameters, TypeFormer has approximately

1.8M, whereas the preliminary Transformer has 400K, and

TypeNet has 200K.

6.1 Analysis of the feature embeddings

The output feature embeddings extracted by TypeFormer

lie in a 64-dimensional space, and their pairwise relative

positioning is measured throughout the Euclidean distance.

In this scenario, mathematical methods like the popular

t-SNE [73] are useful to visualise data points in such high-

dimensional spaces. Figure 5 depicts the output feature

embedding space reduced to two dimensions through

t-SNE. For better visualisation, we include examples of 10

random subjects of the database (15 acquisition sessions

per subject). Apart from few outliers, most groups are

clearly separated, while data points belonging to the same

subjects are closer together. This is an indicator of small

intra-class variability and high inter-class variability.

7 Conclusions and future work

In the current article, we have proposed a novel Trans-

former-based architecture, TypeFormer, for the task of

free-text mobile keystroke authentication. TypeFormer

features two branches (temporal and channel modules)

with long short-term memory (LSTM) layers, Gaussian

range encoding (GRE), a multi-head self-attention mech-

anism, and a block-recurrent transformer layer, and it was

trained with triplet loss. Its output consists in feature

embedding vectors representing points in the output hyper-

space. The distance between embedding vectors is

Fig. 5 Two-dimensional graphical visualisation of the latent space

through t-SNE considering 15 sessions of 10 subjects [73]. Selected

parameters: perplexity ¼ 14, init ¼ 0pca0, n iter ¼ 1000

3 sklearn.manifold.TSNE -- scikit-learn 1.1.1
documentation.
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measured through the Euclidean distance, and it is less for

instances of data belonging to the same subject than for

ones of different subjects. The development of the model is

based on the Aalto mobile keystroke database [12], the

largest public databases of mobile keystroke dynamics.

First, we have performed an analysis to validate the dif-

ferent modules that are present in the final presented

Transformer architecture. Then, in order to compare

TypeFormer with the highest-performing systems recently

proposed in the literature, we have replicated the experi-

mental protocol of two recent studies [13, 14], by varying

the number of enrolment sessions (E ¼ 1; 2; 5; 7; 10), input

keystroke sequence lengths (L ¼ 30; 50; 70; 100), and

considering the same database repartition. In all cases,

TypeFormer outperformed previous approaches, reaching

as little as 3.25% EER considering E ¼ 5 and L ¼ 50. This

would be an absolute improvement of 5.95% EER with

respect to previous LSTM RNN-based model (the corre-

sponding relative improvement is around 65%) [13]. To

advance the state of the art of free-text mobile keystroke

biometrics, we make our proposed approach and experi-

mental framework public4.

Concerning future work, the next directions of research

will go towards exploring the effectiveness of Transform-

ers in modelling other biometric traits [74], including data

captured by mobile device sensors [9, 75] and synthetic

data [76]. To this end, we will consider the optimisation of

the Transformer architecture to improve the performance

with longer sequences. Additionally, more sophisticated

training approaches will be investigated, in terms of the

loss function, such as the implementation of hard triplet

mining, in order to force the model to learn from harder

comparisons [77], and output feature embedding distance

metrics. Finally, it would also be interesting to shed light

on explainability and privacy aspects of mobile keystroke

authentication [78, 79], i.e. investigating the subject

information contained in the feature embeddings, i.e.

gender, age, etc., to assess whether keystroke data should

be treated as privacy-sensitive biometric data. For this, the

Aalto mobile keystroke database can be useful due to the

the subject metadata available.

Acknowledgements This project has received funding from the

European Union’s Horizon 2020 research and innovation programme

under the Marie Skłodowska-Curie grant agreement No. 860315.

Moreover, it has been supported by INTER-ACTION (PID2021-

126521OB-I00 MICINN/FEDER) and Cátedra ENIA UAM-VER-
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