The University of Southampton
University of Southampton Institutional Repository

A new prediction model for birth within 48 hours in women with preterm labour symptoms

A new prediction model for birth within 48 hours in women with preterm labour symptoms
A new prediction model for birth within 48 hours in women with preterm labour symptoms
0002-9378
Stock, Sarah J.
e853179b-67bb-4db8-9318-80e46b4a3146
Horne, Margaret
1211fd4a-c533-4703-b655-a74146d343ad
Bruijn, Merel
204c7fbc-ca74-4d6a-83dd-322f5a7eb2a8
Morris, Rachel
c8870b5c-1703-4244-83bb-b4020543b2b1
Dorling, Jon
e55dcb9a-a798-41a1-8753-9e9ff8aab630
Jackson, Lesley
7715ef76-5e65-4f18-b2ae-f48a83ef520b
Chandiramani, Manju
051a4be9-fb77-47f6-b6ec-9ea4fa693c39
David, Anna L.
b1bdabf9-732b-424e-80a0-6e130752a206
Khalil, Asma
4a8ca35d-4afc-49ed-a295-1e8f1b8441bb
Shennan, Andrew
31b9fbc9-c314-4c6a-b183-09988219e22d
Van Baaren, Gert-Jan
161bb32d-344e-4763-bbfb-331001a51b06
Schuit, Ewoud
b51fdab6-7106-4b6c-ad9f-a18a39d89d3e
Harper-Clarke, Susan
90d31ec6-619f-4715-919b-056627a75210
Mol, Ben
6fc59452-d362-4a44-a6af-39207f78518c
Riley, Richard
10997621-4f9e-43cd-95d9-cd40cc8ff39c
Norman, Jane E.
015288c6-14ab-46bf-98eb-ca5325667922
Norrie, John
d648d104-39a0-481f-af0f-9a7209d50fb5
Stock, Sarah J.
e853179b-67bb-4db8-9318-80e46b4a3146
Horne, Margaret
1211fd4a-c533-4703-b655-a74146d343ad
Bruijn, Merel
204c7fbc-ca74-4d6a-83dd-322f5a7eb2a8
Morris, Rachel
c8870b5c-1703-4244-83bb-b4020543b2b1
Dorling, Jon
e55dcb9a-a798-41a1-8753-9e9ff8aab630
Jackson, Lesley
7715ef76-5e65-4f18-b2ae-f48a83ef520b
Chandiramani, Manju
051a4be9-fb77-47f6-b6ec-9ea4fa693c39
David, Anna L.
b1bdabf9-732b-424e-80a0-6e130752a206
Khalil, Asma
4a8ca35d-4afc-49ed-a295-1e8f1b8441bb
Shennan, Andrew
31b9fbc9-c314-4c6a-b183-09988219e22d
Van Baaren, Gert-Jan
161bb32d-344e-4763-bbfb-331001a51b06
Schuit, Ewoud
b51fdab6-7106-4b6c-ad9f-a18a39d89d3e
Harper-Clarke, Susan
90d31ec6-619f-4715-919b-056627a75210
Mol, Ben
6fc59452-d362-4a44-a6af-39207f78518c
Riley, Richard
10997621-4f9e-43cd-95d9-cd40cc8ff39c
Norman, Jane E.
015288c6-14ab-46bf-98eb-ca5325667922
Norrie, John
d648d104-39a0-481f-af0f-9a7209d50fb5

Stock, Sarah J., Horne, Margaret, Bruijn, Merel, Morris, Rachel, Dorling, Jon, Jackson, Lesley, Chandiramani, Manju, David, Anna L., Khalil, Asma, Shennan, Andrew, Van Baaren, Gert-Jan, Schuit, Ewoud, Harper-Clarke, Susan, Mol, Ben, Riley, Richard, Norman, Jane E. and Norrie, John (2020) A new prediction model for birth within 48 hours in women with preterm labour symptoms. American Journal of Obstetrics and Gynecology. (doi:10.1016/J.AJOG.2019.11.809).

Record type: Article

This record has no associated files available for download.

More information

Published date: 7 February 2020

Identifiers

Local EPrints ID: 493010
URI: http://eprints.soton.ac.uk/id/eprint/493010
ISSN: 0002-9378
PURE UUID: 0a5495a7-7082-4c02-86ac-fba8e0ad7f01
ORCID for Jon Dorling: ORCID iD orcid.org/0000-0002-1691-3221

Catalogue record

Date deposited: 21 Aug 2024 17:13
Last modified: 22 Aug 2024 02:10

Export record

Altmetrics

Contributors

Author: Sarah J. Stock
Author: Margaret Horne
Author: Merel Bruijn
Author: Rachel Morris
Author: Jon Dorling ORCID iD
Author: Lesley Jackson
Author: Manju Chandiramani
Author: Anna L. David
Author: Asma Khalil
Author: Andrew Shennan
Author: Gert-Jan Van Baaren
Author: Ewoud Schuit
Author: Susan Harper-Clarke
Author: Ben Mol
Author: Richard Riley
Author: Jane E. Norman
Author: John Norrie

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×