Advancing all Silicon MOSCAP Ring Modulators with Ultra-thin sub-5 nm Insulator
Advancing all Silicon MOSCAP Ring Modulators with Ultra-thin sub-5 nm Insulator
We demonstrate silicon/SiO<inline-formula><tex-math notation="LaTeX">$_{2}$</tex-math></inline-formula>/polysilicon lateral MOS-Capacitor (MOSCAP) RRM operating above 50GHz with modulation amplitude enhanced by a large plasma absorption within the MOS junction. A MOSCAP ring resonator modulator (RRM) model has been built using Lumerical software, in which the plasma effect is defined by adopting a reported superlinear rather than linear plasma absorption equation, which aligns well with our experimental results. The performance of the MOSCAP RRMs has been analyzed with different thicknesses of insulator oxide (<inline-formula><tex-math notation="LaTeX">$ t_{\text{ox}}$</tex-math></inline-formula>). The modulation performance is enhanced with thinner <inline-formula><tex-math notation="LaTeX">$ t_{\text{ox}}$</tex-math></inline-formula> down to 3 nm, giving a lower insertion loss and larger optical modulation amplitude (OMA) when benchmarked with a conventional depletion type RRM with a low <disp-formula><tex-math notation="LaTeX"> \begin{equation*} V_{\pi }L \end{equation*} </tex-math></disp-formula>of 2.6-4.0 V <inline-formula><tex-math notation="LaTeX">$\cdot$</tex-math></inline-formula> mm under a bias voltage <inline-formula><tex-math notation="LaTeX">$V_{\text{b}}$</tex-math></inline-formula> 0-3V. High-speed operation of the MOSCAP RRM with radius 15 <inline-formula><tex-math notation="LaTeX">$\mu$</tex-math></inline-formula>m demonstrated an average power insertion loss (IL<inline-formula><tex-math notation="LaTeX">$ _{\text{ave}}$</tex-math></inline-formula>) of 3.5 dB and one level insertion loss (IL<inline-formula><tex-math notation="LaTeX">$ _{\text{one}}$</tex-math></inline-formula>) of 2 dB for achieving a 3 dB dynamic ER at a data rate of 30 Gb/s and bit-error-rate (BER) <disp-formula><tex-math notation="LaTeX"> \begin{equation*} < 1 \times 10^{-12} \end{equation*} </tex-math></disp-formula>. The same performance is possible at 50 Gb/s when feed-forward-equalization is enabled on the detection side. We also show the possibility of operating at 224 Gb/s using 4-level pulse amplitude modulation (PAM-4) for a MOSCAP RRM incorporating two active segments. The MOSCAP RRM provides an attractive solution to surpass the performance of the conventional depletion-type RRM, for which future performance scaling is limited with increased doping density towards <inline-formula><tex-math notation="LaTeX">$1 \times 10^{19} cm^{-3}$</tex-math></inline-formula>.
Absorption, Bandwidth, Capacitance, Modulation, Optical losses, Optical waveguides, Voltage, electro-optic modulators, integrated optoelectronics, optical interconnects, silicon photonics
1-7
Chang, Tzu-Yun
ff72fe64-8c68-4481-8642-3bef30536f21
Ebert, Martin
f412aa6c-50da-4d94-b56e-a0e718d1cb1e
Li, Ke
444eef2f-af9f-4137-9732-b690a6eadf4a
Zhu, Junbo
1944168b-715c-4ff7-a874-36931f3e39fe
Yan, Xingzhao
320b9089-1fb3-485a-8c1f-45fb1f86efa0
Du, Han
f68d2391-e6fb-4fbc-bbe0-86ce9a871352
Banakar, Mehdi
2da59916-a7af-4cab-bc5b-bfe28e29d974
Tran, Dehn t.
a6700a4a-b080-461b-bc08-e9a7fa3820e9
Littlejohns, Callum g.
d2837f04-0a83-4bf9-acb2-618aa42a0cad
Scofield, Adam
a7b85128-b9fe-49c8-9b29-7a7e0520f20d
Yu, Guomin
08f4e587-41fc-4a73-b137-1434c9db6598
Shafiiha, Roshanak
77208b62-c6e4-4878-94ed-43e60c862366
Zilkie, Aaron
64f8de79-8a8a-423f-a5a3-9f5dcebea407
Reed, Graham t.
ca08dd60-c072-4d7d-b254-75714d570139
Thomson, David j.
17c1626c-2422-42c6-98e0-586ae220bcda
Zhang, Weiwei
1a783f97-c5ac-49e9-a5a0-49b8b2efab36
1 January 2024
Chang, Tzu-Yun
ff72fe64-8c68-4481-8642-3bef30536f21
Ebert, Martin
f412aa6c-50da-4d94-b56e-a0e718d1cb1e
Li, Ke
444eef2f-af9f-4137-9732-b690a6eadf4a
Zhu, Junbo
1944168b-715c-4ff7-a874-36931f3e39fe
Yan, Xingzhao
320b9089-1fb3-485a-8c1f-45fb1f86efa0
Du, Han
f68d2391-e6fb-4fbc-bbe0-86ce9a871352
Banakar, Mehdi
2da59916-a7af-4cab-bc5b-bfe28e29d974
Tran, Dehn t.
a6700a4a-b080-461b-bc08-e9a7fa3820e9
Littlejohns, Callum g.
d2837f04-0a83-4bf9-acb2-618aa42a0cad
Scofield, Adam
a7b85128-b9fe-49c8-9b29-7a7e0520f20d
Yu, Guomin
08f4e587-41fc-4a73-b137-1434c9db6598
Shafiiha, Roshanak
77208b62-c6e4-4878-94ed-43e60c862366
Zilkie, Aaron
64f8de79-8a8a-423f-a5a3-9f5dcebea407
Reed, Graham t.
ca08dd60-c072-4d7d-b254-75714d570139
Thomson, David j.
17c1626c-2422-42c6-98e0-586ae220bcda
Zhang, Weiwei
1a783f97-c5ac-49e9-a5a0-49b8b2efab36
Chang, Tzu-Yun, Ebert, Martin, Li, Ke, Zhu, Junbo, Yan, Xingzhao, Du, Han, Banakar, Mehdi, Tran, Dehn t., Littlejohns, Callum g., Scofield, Adam, Yu, Guomin, Shafiiha, Roshanak, Zilkie, Aaron, Reed, Graham t., Thomson, David j. and Zhang, Weiwei
(2024)
Advancing all Silicon MOSCAP Ring Modulators with Ultra-thin sub-5 nm Insulator.
Journal of Lightwave Technology, .
(doi:10.1109/JLT.2024.3440040).
Abstract
We demonstrate silicon/SiO<inline-formula><tex-math notation="LaTeX">$_{2}$</tex-math></inline-formula>/polysilicon lateral MOS-Capacitor (MOSCAP) RRM operating above 50GHz with modulation amplitude enhanced by a large plasma absorption within the MOS junction. A MOSCAP ring resonator modulator (RRM) model has been built using Lumerical software, in which the plasma effect is defined by adopting a reported superlinear rather than linear plasma absorption equation, which aligns well with our experimental results. The performance of the MOSCAP RRMs has been analyzed with different thicknesses of insulator oxide (<inline-formula><tex-math notation="LaTeX">$ t_{\text{ox}}$</tex-math></inline-formula>). The modulation performance is enhanced with thinner <inline-formula><tex-math notation="LaTeX">$ t_{\text{ox}}$</tex-math></inline-formula> down to 3 nm, giving a lower insertion loss and larger optical modulation amplitude (OMA) when benchmarked with a conventional depletion type RRM with a low <disp-formula><tex-math notation="LaTeX"> \begin{equation*} V_{\pi }L \end{equation*} </tex-math></disp-formula>of 2.6-4.0 V <inline-formula><tex-math notation="LaTeX">$\cdot$</tex-math></inline-formula> mm under a bias voltage <inline-formula><tex-math notation="LaTeX">$V_{\text{b}}$</tex-math></inline-formula> 0-3V. High-speed operation of the MOSCAP RRM with radius 15 <inline-formula><tex-math notation="LaTeX">$\mu$</tex-math></inline-formula>m demonstrated an average power insertion loss (IL<inline-formula><tex-math notation="LaTeX">$ _{\text{ave}}$</tex-math></inline-formula>) of 3.5 dB and one level insertion loss (IL<inline-formula><tex-math notation="LaTeX">$ _{\text{one}}$</tex-math></inline-formula>) of 2 dB for achieving a 3 dB dynamic ER at a data rate of 30 Gb/s and bit-error-rate (BER) <disp-formula><tex-math notation="LaTeX"> \begin{equation*} < 1 \times 10^{-12} \end{equation*} </tex-math></disp-formula>. The same performance is possible at 50 Gb/s when feed-forward-equalization is enabled on the detection side. We also show the possibility of operating at 224 Gb/s using 4-level pulse amplitude modulation (PAM-4) for a MOSCAP RRM incorporating two active segments. The MOSCAP RRM provides an attractive solution to surpass the performance of the conventional depletion-type RRM, for which future performance scaling is limited with increased doping density towards <inline-formula><tex-math notation="LaTeX">$1 \times 10^{19} cm^{-3}$</tex-math></inline-formula>.
Text
Advancing_all_Silicon_MOSCAP_Ring_Modulators_with_Ultra-thin_sub-5_nm_Insulator
- Version of Record
More information
Accepted/In Press date: 7 August 2023
Published date: 1 January 2024
Additional Information:
Publisher Copyright:
Authors
Keywords:
Absorption, Bandwidth, Capacitance, Modulation, Optical losses, Optical waveguides, Voltage, electro-optic modulators, integrated optoelectronics, optical interconnects, silicon photonics
Identifiers
Local EPrints ID: 493020
URI: http://eprints.soton.ac.uk/id/eprint/493020
ISSN: 0733-8724
PURE UUID: 01993a72-4432-48d7-8cda-3be35b4039c4
Catalogue record
Date deposited: 21 Aug 2024 17:16
Last modified: 21 Aug 2024 17:19
Export record
Altmetrics
Contributors
Author:
Tzu-Yun Chang
Author:
Martin Ebert
Author:
Ke Li
Author:
Junbo Zhu
Author:
Xingzhao Yan
Author:
Han Du
Author:
Mehdi Banakar
Author:
Dehn t. Tran
Author:
Callum g. Littlejohns
Author:
Adam Scofield
Author:
Guomin Yu
Author:
Roshanak Shafiiha
Author:
Aaron Zilkie
Author:
Graham t. Reed
Author:
David j. Thomson
Author:
Weiwei Zhang
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics