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Abstract

Recently, several edge deployment types, such as on-premise edge clusters, Unmanned Aerial Vehicles (UAV)-attached edge devices, telecom-
munication base stations installed with edge clusters, etc., are being deployed to enable faster response time for latency-sensitive tasks. One fun-
damental problem is where and how to offload and schedule multi-dependent tasks so as to minimize their collective execution time and to achieve
high resource utilization. Existing approaches randomly dispatch tasks naively to available edge nodes without considering the resource demands of
tasks, inter-dependencies of tasks and edge resource availability. These approaches can result in the longer waiting time for tasks due to insufficient
resource availability or dependency support, as well as provider lock-in. Therefore, we present EdgeColla, which is based on the integration of
edge resources running across multi-edge deployments. EdgeColla leverages learning techniques to intelligently dispatch multi-dependent tasks,
and a variant bin-packing optimization method to co-locate these tasks firmly on available nodes to optimally utilize them. Extensive experiments
on real-world datasets from Alibaba on task dependencies show that our approach can achieve optimal performance than the baseline schemes.

c© 2024 Published by Elsevier Ltd.
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1. Introduction

Edge Computing (EC) is a distributed computing model which places
cloud computing [1] services closer to data sources to achieve faster re-
sponse time and real-time insights. Devices can offload their computa-
tional intensive tasks and latency-sensitive tasks to the edge and after
executions, the results are sent back to the devices. To this end, several
independent edge deployment types, such as on-premise edge clusters
[2], Unmanned Aerial Vehicles (UAV)-enabled EC [3,4], telecommuni-
cation base stations endowed with edge clusters1, edge nodes [2], etc.,
have been proposed. However, one fundamental problem is where and
how to offload and schedule multi-dependent tasks in such diverse de-
ployments so that their collective execution time is minimized and high
resource utilization is achieved. A common practice is to randomly
offload tasks individually to available edge nodes without considering
the resource demands of tasks, inter-dependencies of tasks and edge re-
source availability, as shown in Fig. 1 (a). Such a disjointed approach
would result in the longer waiting time for tasks due to insufficient re-
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Fig. 1. (a) An example of random multi-tasks dispatching without considering
their dependencies and cluster resource status, and (b) An example of intelligent
multi-tasks dispatching, where both tasks dependencies and cluster resource sta-
tus are considered.

source availability, dependency support, and vendor lock-in situations.
Hence it is not appropriate for latency-sensitive tasks.

For this reason, we wish to consider an approach that can seam-
lessly integrate all edge resources running across N deployments (i.e.,
on-premise edge clusters, edge nodes, telecommunication base stations
equipped with edge clusters, and UAVs attached with edge devices) in a
single pool as shown in Fig. 1 (b), such that these resources can be holis-
tically monitored from a Control Plane (CP), and multiple tasks can be
dispatched dynamically across these edge resources. This approach is
called Edge Federation (EF) [2,5]. For example, recently introduced
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EC frameworks, i.e., KubeEdge2, MicroK8s3, etc., have the capabilities
of integrating edge resources running across multiple deployments for
containerized tasks to eliminate provider lock-in situations. One of the
benefits that EF brings is minimized latency by serving devices from
the cluster closest to them [2,5–7]. The EF setup consists of a host

cluster and member cluster(s). Given N independent edge de-
ployments, the CP is deployed in one of the deployments as the host

cluster, while the remaining N − 1 deployments are regarded member

cluster(s), which can be added or removed from the CP. The EF
system is given as

EF =
⋃N

i=1
Edgei (1)

Through the CP, resource availability status, as well as running task
status can be obtained from all the deployments (host cluster and
member cluster(s)), thus enabling informed decisions on optimal
multi-task dispatching. The work presented in this paper differs consid-
erably from prior works [6,7], which addressed the problem of multi-
dependent task orchestration in a federated autonomous drone-enabled
EC system, while considering the drones’ flight time to avoid the loss
of jobs [8].

In this paper, we present EdgeColla, which leverages the Collabora-
tive Learning (CL) technique [9–11] to estimate multi-task resource re-
quirements and execution time, and to dispatch these tasks to the closest
member cluster having matching available resources, while consid-
ering their dependencies. The effectiveness of such a CL-based multi-
task dispatching method in N edge deployments is critically dependent
on the state information update process, in terms of the resource avail-
ability of all the clusters. One drawback of this concept is that the inac-
curate estimation of the multi-task resource requirements and execution
time would cause EF to perform poorly. Similarly, if multi-dependent
tasks are randomly dispatched, e.g., in an offloading strategy that dis-
patches tasks individually without considering their dependencies and
cluster resource status [12,13], EF might not yield optimal performance.
Therefore, we first investigate the accuracy of our trained linear re-
gression model by estimating the resource requirements and execution
time of multi-dependent tasks, using the Normalized Absolute Estimate
Error (NAEE) method. This serves as the estimation accuracy mea-
sure for the trained linear regression model. Then we adopt the gang-
scheduling [14] strategy and a variant bin-packing optimization method
to efficiently co-schedule and co-locate all the tasks, where both their
dependencies and cluster resource status are considered, such that their
actual completion time is minimized, as well as the optimal resource
usage is achieved. To avoid interference and resource contention among
co-located tasks, we provide isolation to co-located tasks through con-
tainerization [15]. Containerization provides isolation to running tasks
and enables tasks to be executed in any edge deployment regardless of
the architecture or provider.

We summarize the main contributions of our EdgeColla implemen-
tation as follows:

• An intelligent multi-dependent task dispatching method through
the joint optimization of their resource requirements and cluster
resource status is proposed.

• Specifically, we derive a CL-based multi-dependent task resource
requirement, and execution time, and cluster resource status es-
timation approach for an integrated edge system through the CP,
such that multi-dependent tasks are intelligently dispatched to the
closest edge cluster having sufficient available resources.

• To guarantee the optimal usage of cluster resources, we fur-
ther propose a variant bin-packing optimization approach through
gang-scheduling of multi-dependent tasks, which co-schedules
and co-locate tasks firmly on available nodes to avoid resource
wastage.

2https://kubeedge.io/en/
3https://microk8s.io/
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Fig. 2. An example of multi-dependent tasks, with each task’s CPU and memory
resource requirements denoted as 〈c,m〉, and execution time denoted as Eex.

• We show that EdgeColla is capable of minimizing the actual com-
pletion time of multi-dependent tasks using minimum resources
and we conduct extensive experiments to compare the perfor-
mance of EdgeColla with several existing approaches on real-
world datasets from Alibaba4, which provides information on task
dependencies.

1.1. Motivating examples

Dependency-awareness is critical for achieving optimal performance
in task dispatching and scheduling problems. In Fig. 2, we show an
example of multi-dependent tasks, where some of the tasks require the
output of another task(s), as well as other resources5, i.e., CPU 〈c〉 and
memory 〈m〉, for its execution. For example, T1, T2, and T3 are inde-
pendent tasks, i.e., they do not have dependencies and they can start
executing without requiring input from other tasks. Tasks T4 and T5

require input from T1 to be able to complete their executions. Simi-
larly, tasks T6, T7, and T8 depend on the completion of tasks T4, T5, and
T2, respectively. Deploying these tasks on the same cluster would en-
able dependent tasks to communicate and share data faster, compared
to individual tasks execution across different clusters [16]. The com-
plex inter-task dependency with heterogeneous resource demands and
diverse edge deployments with heterogeneous resource capacities make
resource management in EC a non-trivial task. Considering such de-
mands and resource capacities is necessary to achieve effective dis-
patching and scheduling, ultimately to achieve optimal performance
[17,18]. Hence a key objective of our EdgeColla is to reduce the collec-
tive execution time of such tasks and to improve cluster resource usage
by considering inter-task dependencies.

Given n multi-dependent tasks T1,T2, · · · ,Tn as shown in Fig. 2,
EdgeColla adopts the gang-scheduling [14] strategy and a variant bin-
packing optimization method to efficiently co-schedule and co-locate
them in a cluster. We consider EdgeColla as a Full Dependency and
Full Packing (FDFP) approach. Therefore, the scheduling time can be
expressed as

m∑
z=1

kz∑
i=1

S chzi
/kz (2)

where m is the number of scheduling units and kz is the number of tasks
within the z-th scheduling unit having tasks {Tz1 ,Tz2 , · · · ,Tzkz

}.
We illustrate the advantage of the scheduling approach in EdgeColla

over 3 other existing schemes as follows. (i) An approach that does
not consider task dependency but schedules 50% of any given multi-
dependent task by mainly focusing on task co-location. We refer to
this approach as No Dependency and Full Packing (NDFP), and it is
similar to the approach in [19]. (ii) An approach that schedules up to
15% of any given multi-dependent tasks at a time, but does not consider
task co-location. We refer to this approach as Partial Dependency and
No Packing (PDNP), which is similar to the approach in [20]. (iii) An
approach that schedules up to 40% of any given multi-dependent task

4https://github.com/alibaba/clusterdata/blob/master/cluster-trace-
v2018/trace-2018.md

5Here we focus on CPU and memory resources, since these resources are
limited in edge systems.
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Table 1
Scheduling orders and units of various schemes

Scheme Scheduling Order Scheduling Units
EdgeColla {T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T12} 1

PDNP T3 → T2 → {T1,T4} → {T6,T8} → {T5,T7} → {T10,T11} → {T12,T9} 7
PDFP T1 → T2 → T3 → {T4,T5} → {T6,T7,T8,T9} → {T10,T11,T12} 6
NDFP {T1,T2,T3,T4,T5,T6} → {T7,T8,T9,T10,T11,T12} 2
Random T1 → T2 → T3 → T4 → T5 → T6 → T7 → T8 → T9 → T10 → T11 → T12 12

with task co-location. We consider this approach as Partial Dependency
and Full Packing (PDFP), which is similar to the approach in [21]. (iv)
Finally the Random approach does not consider both task dependen-
cies and task co-location. We refer to this approach as No Dependency
and No Packing (NDNP). It is important to note that delays in schedul-
ing inter-dependent tasks directly impact their collective execution time.
For the multi-dependent tasks in Fig. 2 with n = 12 tasks, Table 1 lists
the scheduling orders and scheduling units for the schemes compared.
EdgeColla only needs one scheduling unit (m=1) that has k1 =12 tasks
and it also achieves the lowest execution time of 1

12

∑12
i=1Eexi . By con-

trast, Random has m = 12 scheduling units, each having a single task.
Hence it has the highest execution time of

∑12
i=1Eexi . Thus, EdgeColla

achieves the lowest scheduling and execution time. PDNP, PDFP, and
NDFP deploy individual or subsets of tasks at a time.

The remaining parts of this paper are structured as follows. Section 2
presents related work on learning-based resource allocation schemes
used in cloud and edge computing. In Section 3, we detail our proposed
EdgeColla for achieving high resource utilization and minimizing the
execution time of applications deployed on EF resources. In Section 4,
we compare the performance of our proposed EdgeColla against several
existing schemes through extensive experiments. Finally, we conclude
the paper in Section 5.

2. Related work

Effective multi-task dispatching techniques in edge systems can ben-
efit from resource availability status, multi-task resource requirements
and execution time, such that these tasks can be offloaded to the closest
edge cluster with sufficient resources. Information about task execution
time is most important for drone-based edge deployments [6,7]. This
is because a typical drone has limited flight time, which could possibly
lead to a delayed task execution if it is not taken into consideration [8].
Hence, the effective and accurate execution time estimation of multiple
task is needed to select a drone with corresponding flight time and re-
sources to execute tasks. Consequently, existing studies have presented
a huge number of learning methods to estimate tasks’ resource require-
ments and execution time, CL [6,9], Machine Learning (ML) [7,22,23],
Incremental Learning (IL) [24], scheduling [14,25–27] and statistical
models [28]. Previous works [6,7] focused on multi-dependent task or-
chestration in autonomous drone-enabled EC systems, while consider-
ing the drones’ flight time, to avoid the loss of jobs [8]. Specifically, the
authors in [6] proposed a multi-output linear regression model based on
CL to estimate multi-dependent tasks’ resource requirements and exe-
cution time, to select the closest drone deployment with matching re-
source availability and flight time to execute ready tasks at a given time.
In [7], the authors proposed an ML-based multi-dependent task dis-
patching method over a federated autonomous drone-enabled EC plat-
form, using the total estimated value of the multi-dependent tasks’ exe-
cution time to select a suitable drone. The authors of [9] proposed a dis-
tributed training scheme based on CL, where multiple Deep Reinforce-
ment Learning (DRL) agents are deployed on IoT devices to enable
joint resource allocation. The work in [22] proposed a method to predict
the execution time of a task, by first predicting its run-time parameters,
then it uses these run-time parameters to finally predict the execution
time of the task. In [23], two novel multi-model ML ensemble systems

with the mixture of experts and dynamic selection of experts were pre-
sented to predict the execution time of workflows in distributed environ-
ments. The work in [24] presented an online incremental approach for
the run-time prediction of scientific workflows in cloud computing en-
vironments using time-series monitoring data. In [25], the authors pro-
posed a cluster scheduling framework called Gandiva, which exploits
intra-job predictability to share GPUs efficiently across multiple jobs,
to achieve low latency. The authors of [26] proposed an approach that
can accurately predict the performance of a given job. Their main idea
is to run a set of instances of the entire job on the samples of the input,
and use the data from these training runs to create a performance model.
The work in [27] proposed a Deep Learning (DL) job scheduler, which
aims to minimize the training time for jobs. This scheduler is based
on an online prediction model used to accurately estimate the training
speed, as a function of the allocated resources in each job. In [14], the
authors proposed a scheduling algorithm for Bulk Synchronous Parallel
(BSP) jobs. They showed that their solution is robust against inaccurate
estimations. The work in [28] presented a cluster management system
called Quasar, using classification techniques to quickly and accurately
determine the impact of the scales of resources, types of resources, and
interference on performance for each workload and dataset. Then, it
uses the classification results to jointly perform resource allocation and
assignment. The authors of [29] proposed a deep DL-based Point of In-
terest Recommendation (Deep-PR) method for mobile edge networks,
where hidden feature components from both local and global sub-spaces
are deeply abstracted via representative learning schemes, so that rec-
ommendation accuracy can be ensured.

With limited edge resources, it is extremely important to avoid any
form of resource wastage, i.e., resource underutilization. Efficiently
managing edge resources directly dictates service quality and perfor-
mance [30]. As a result, task co-location has gained attention both in
academia and industry as an optimal solution for improving resource
utilization and system throughput in distributed systems. However, ef-
fective task co-location is a non-trivial task, as it requires an under-
standing of the computing resource requirements of co-running tasks
to determine how many of them can be co-located. To this end, task
co-location mechanism was proposed in [31], by accurately estimating
the resource level needed, to effectively determine how many tasks can
be co-located on the same host to improve the system throughput, tak-
ing into consideration the memory and CPU requirements of co-running
tasks. With the aim to maximize resource utilization, the authors of [32]
utilized Reinforcement Learning (RL) approach to co-locate interactive
services with batched ML workloads. Previous works [17,18] focused
on workload co-location in cloud environments rather than edge sys-
tems. To further improve edge resource management, a resource man-
agement scheme was proposed in [2,5] which unifies distributed edge
resources, such that they are holistically managed. Previous work in [2]
proposed a dependency-aware task scheduling scheme in such a unified
system. Existing EC applications are usually structured with inter-task
dependencies, where a task depends on input from other task(s). A
huge number of existing studies, i.e., [33–36] have tackled the problem
of scheduling such inter-dependent tasks or multi-dependent tasks, and
their common goal is to formulate a scheduling decision that minimizes
the average completion time of such tasks.

Existing works on CL-based approaches for task offloading and ex-
ecution in multi-edge deployments do not consider task dependencies
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Fig. 3. CL model training and aggregation.

and do not unify distributed edge resources, such that they are holisti-
cally managed and monitored from a single CP, where multi-tasks can
be timely dispatched and co-located without interference or resource
contentions. This motivates our research to extend existing schemes
by proposing EdgeColla to address these problems. Specifically, we
propose a CL-based multi-dependent task resource requirement and ex-
ecution time estimation method through a linear regression model, and
cluster resource status for an integrated edge system through the Control
Panel (CP), such that multi-dependent tasks are intelligently dispatched
to the closest edge cluster having sufficient available resources. We fur-
ther propose a variant bin-packing optimization approach through gang-
scheduling of multi-dependent tasks, which co-schedules and co-locates
tasks firmly on available nodes to avoid resource wastage. We finally
show that EdgeColla is capable of minimizing the actual completion
time of multi-dependent tasks using minimum resources through exten-
sive experiments and comparisons.

3. System model, problem formulation and algorithm framework

The goal of edge CL is to collaboratively learn a model from data
D1, · · · ,DN , stored across N distributed clusters, where each dataset
Di = {(xi, j, yi, j)}

ni
j=1 contains d-dimensional tensors of data features xi, j ∈

R1×d and c-dimensional tensor data labels yi, j ∈R1×c. The selection of
training data is an important topic in any learning problem. Given the
multiple tasks to be deployed, we should select the training data from
the historical data that have characteristics as close as possible to those
of the current multiple tasks to be deployed. This is critical to ensure
the accuracy of the model learned. For example, if the multiple tasks
to be deployed are Video Processing (VP) jobs, it is desired to select
the training data that include historical VP data if possible to build the
model.

Before now, a prevalent method is to integrate datasets in one cluster,
i.e., D =

⋃N
i=1Di, and use this integrated data D to train a model ΘS.

Recent CL approaches train models over distributed datasets without
the need for datasets aggregation, as shown in Fig. 3. The following
steps narrate the process of CL model training and aggregation in EF
systems:

1. The member cluster(s) Dedgei separately train their models
ΘDedgei

based on their local datasetsDi.

2. Then at time t > 0, the member cluster(s) send their models,
denoted as Θ

(t−1)
Dedgei

, 1≤ i≤N, to the host cluster, where global

update Θ
(t)
G is computed by aggregating all the member cluster

models [37–40]:

Θ
(t)
G =

N∑
i=1

Θ
(t−1)
Dedgei

(3)
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3. In response, Θ
(t)
G is distributed to the member cluster(s), where

it is used to update Θ
(t−1)
Dedgei

according to [38]

Θ
(t)
Dedgei

= Θ
(t)
G − Θ

(t−1)
Dedgei

, 1 ≤ i ≤ N (4)

4. At time t + 1, updates Θ
(t)
Dedgei

, 1 ≤ i ≤ N, from the
member cluster(s) are sent back to the host cluster(s),
where a global update is computed [38]:

Θ
(t+1)
G = Θ

(t)
G +

N∑
i=1

Θ
(t)
Dedgei

(5)

For member cluster(s) Dedgei with local datasetDi, the associated
ML problem is to solve the following optimization:

Θ?
Dedgei

= arg min
ΘDedgei

∈Rd×c

1
2ni

ni∑
j=1

‖xi, jΘDedgei
− yi, j‖

2
2

+
λ

2
‖ΘDedgei

‖2F (6)

where λ is the regularization parameter and ‖·‖F denotes the Frobe-
nius norm. Optimization (6) is solved using gradient-descent by up-
dating the model iteratively until convergence with formula Θ

(ι+1)
Dedgei

=

Θι
Dedgei

− η
( 1

ni
g
(
Θι

Dedgei

)
+ λΘι

Dedgei

)
, in which η is the learning rate,

g
(
Θι

Dedgei

)
= 1

ni
XT

i
(
XiΘ

ι
Dedgei

−Yi
)

is the gradient of the loss function,

Xi = [xT
i,1, · · · , x

T
i,ni

]T and Yi = [yT
i,1, · · · , y

T
i,n]T are the feature set and label

set, respectively.
As multi-dependent tasks arrive into the system, their features

fmt(ω, ε, γ), where ω is the number of instances, ε is the type of tasks,
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γ is the dependency depth, are fed into global model Θ?
G to estimate the

values of the resource requirements and execution time according to

fmt · Θ
?
G =

[
Ẽex1 T̃ 〈c,m〉1 Ẽex2 T̃ 〈c,m〉2 · · · ẼnT̃ 〈c,m〉n

]
(7)

where T̃ 〈c,m〉i and Ẽexi are the estimated resource requirements (in terms
of CPU and memory 〈c,m〉) and estimated execution time for task i,
respectively. Note that the dispatcher has the estimated values and the
update status of all the member clusters ∈ EF when deciding where
to dispatch tasks. We show that with these estimated values, multi-
dependent tasks can be intelligently dispatched with the aim of mini-
mizing their actual completion time using minimum resources in an in-
tegrated edge system, as shown in Fig. 4. We train our model based on
Keras6 with historical data from previously executed tasks/jobs. Keras
is a library that wraps TensorFlow7 complexity into a simple and user-
friendly Application Programming Interface (API).

Multi-dependent tasks resource requirements and execution time es-
timation values, and member clusters available resources denoted as
D〈c,m〉edgei

are needed to effectively dispatch multi-dependent tasks C to the
closest member cluster denoted as Dedgei?

with sufficient resources
denoted as D〈c,m〉edgei

. The closest member cluster is an edge deployment
with the minimum combined upload ∧↑C→Cedgei

and download ∧↓C→Cedgei
transmission loads:

C⇒ Dedgei?
(8)

where Dedgei?
is the solution of the following optimization:

min
Dedgei ∈EF

(
∧
↑

C⇒Dedgei
+∧

↓

C⇒Dedgei

)
s.t. D〈c,m〉edgei

is sufficient for tasks
(9)

If a selected member cluster Dedgei is a drone, in addition to meet-
ing the requirement that D〈c,m〉edgei

is sufficient, its flight time fi should also

be sufficient, such that the estimated execution time Ẽex ≤ fi, to avoid
job losses [8]. For example, autonomous drone systems such as Drone-
in-a-Box8 have the capabilities to fly intelligently and to estimate their
overall fight time f l

i , including from source location lc
i to destination

location ld
i to conduct on-demand tasks. Therefore, for drone deploy-

ments, constraint Ẽex ≤ fi should be added to optimization (9).
For task T ∈ C, its actual starting time and completion time are

denoted as Est and Ecp, respectively. Thus, its actual execution time is
given as

Eex = Ecp − Est (10)

Hence the collective execution time of a (n)-task C is given as

n∑
i=1

Eexi

n
(11)

Given a node I in each member cluster, let I〈c,m〉p denote
the p-th node’s resource availability. The estimated resource de-
mands and execution time of k-dependent tasks to be orchestrated,∑k

q=1 T̃ 〈c,m〉q and
∑k

q=1 Ẽexq , the updated resource availability status of
each member cluster cluster D〈c,m〉edgei

, and drones’ flight time fi (for
aerial deployments) are needed to make an effective dispatching deci-
sion on C at time t. Our system extends to handle massive requests
from multiple users u ∈ U [41]. For example, we consider a telecom
platform9 that provides EC services to connected cars and autonomous
vehicles. Suppose at t, there are n service requests from U at location
ld
i , where each user u is offloading C. The collective n request from U

can be dispatched as multi-job J, where J =
∑n

i=1 Ci, with the collective

6https://keras.io/
7https://www.tensorflow.org/
8https://dronehub.ai/
9https://stellar.tc/

resource demand estimation denoted as
∑k

q=1T̃ 〈c,m〉q = T̃ 〈c,m〉′ and the ag-
gregate execution time estimation as

∑k
q=1Ẽexq = Ẽex′. We can dispatch J

to the same member cluster by jointly considering the estimated total
resource requirements: ∑

J∈J
T̃ 〈c,m〉′ = T̃ 〈c,m〉′total (12)

where the edge or cluster resource capability is D〈c,m〉edgei
and the total esti-

mated execution time is ∑
J∈J

Ẽex′ = Ẽtotal
ex′ (13)

Let Dedgei?
be the closest edge having sufficient D〈c,m〉edgei?

and fi? to ac-

commodate T̃ 〈c,m〉′total and Ẽtotal
ex′ , we can dispatch J to Dedgei?

:

J⇒ Dedgei?
(14)

The estimated resource utilization of the cluster or edge for multi-job
deployment is given by

ρ̃〈c,m〉edgei
=

T̃ 〈c,m〉′total

D〈c,m〉edgei

(15)

For a member cluster Dedgei , let the aggregate execution time of
multi-job J be ∑

J∈J

∑k

q=1

Eexq

k
=

∑
J∈J

Eex′ = Etotal
ex′ (16)

and the total resources actually assigned for multi-job J be D〈c,m〉edgeiU
.

Proof. In IoT, edge, and cloud computing systems, timestamp10

values are assigned to various events or tasks based on when they occur,
i.e., to indicate a task’s starting time (Est), completion time (Ecp), etc.
Events are timestamped based on when they occurred for a range of use
cases. For example, it is used to deduce a task’s execution time, i.e., Eex

of a task as expressed in Equation (10). Therefore, for a set of multi-
job tasks, the aggregate execution time is expressed in Equation (16).
However, the actual execution time of tasks is unknown at this stage,
hence we replace it with the estimation values as expressed in Equation
(13). Specifically, the estimated execution time value is essential in
selecting a UAV or drone-based EC deployment with sufficient flight
time to avoid job losses [6–8,42].

Under the condition that estimated total resource demand T̃ 〈c,m〉′total is
accurate, i.e., T̃ 〈c,m〉′total ≈ D〈c,m〉edgeiU

, then the actually total resources D〈c,m〉edgeiU

assigned for J will not exceed D〈c,m〉edgei
. Similarly, under the condition that

estimated total execution time Ẽtotal
ex′ is accurate, i.e., Ẽtotal

ex′ ≈Etotal
ex′ , drone

Dedgei will have sufficient flight time fi for multi-job execution.
Our CL-based approach has significant advantages over non-learning

counterparts. By accurately estimating the resource requirements and
execution time of multiple tasks/jobs, our scheme can intelligently co-
locate multi-dependent tasks in the closest edge having sufficient re-
sources, such that these dependent tasks can communicate and execute
faster, ultimately minimizing the response time and improving resource
utilization. The accuracy of the estimated resource requirements and ex-
ecution time can be ensured by constructing multiple training datasets
for different multi-task/multi-job classes from historical data to learn
multiple models, one for a single multi-task/multi-job class. Given mul-
tiple tasks/jobs to be deployed, the model that is the most similar to them
is employed to estimate the resource requirements and execution time.
Since the estimated total resource demand T̃ 〈c,m〉′total and execution time
Ẽtotal

ex′ are accurate estimates of the actual total resource to be allocated
D〈c,m〉edgeiU

and actual execution time Etotal
ex′ , it is unlikely that the selected

10https://learn.microsoft.com/en-us/stream-analytics-query/timestamp-by-
azure-stream-analytics
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Table 2
Common notations

Notation Description
EF Integrated edge deployments
T Individual applications or tasks
〈c,m〉 CPU and memory resources
C A set of containerized applications
T̃ 〈c,m〉 Task resource requirement estimation
T̃ 〈c,m〉′total Estimated total resource requirements for jobs
T 〈c,m〉′total Actual total resources consumed for jobs
T 〈c〉′total,T

〈m〉′
total Actual CPU, memory resources consumed for jobs

Dedgei Individual edge deployment or member cluster

Dedgei?
Closest edge deployment with required resources

Ii A node in a cluster
I〈c,m〉i Resource capacity or availability of a node
D〈c,m〉edgei

Resource capacity/availability in edge/cluster
D〈c,m〉edgeiU

Actual resources used or assigned for jobs
D〈c〉edgeiU

,D〈m〉edgeiU
Actual CPU, memory assigned for jobs

D〈c,m〉edgeiARU Actual resource usage for executing jobs
ρ̃〈c,m〉edgei

Estimated resource utilization of jobs
ρ〈c〉edgei

, ρ〈m〉edgei
Actual cluster CPU, memory resource utilization

Est, Ecp Application or task starting time, completion time
Eex Application or task execution time
Etotal

ex′ Actual total execution time for jobs
Ẽex Application or task execution time estimation
Ẽtotal

ex′ Estimated total execution time for jobs
lci , l

d
i Drone’s current location and destination location

fi Drone’s flight time
∧
↑

C⇒Dedgei
Upload transmission

∧
↓

C⇒Dedgei
Download transmission

ωJ The number of instances of a job
εJ The type of a job
γJ Dependency depth of a job
fmt Set of multi-task runtime parameters
Θ Linear regression model
J, J A Job, A set of Jobs
u, U A User, A set of Users

drone edge Dedgei will not have sufficient resources. In other words, it is
very unlikely that

Etotal
ex′ > fi and/or D〈c,m〉edgeiU

> D〈c,m〉edgei
(17)

which would lead to job losses. By contrast, standard non-learning
schemes have no means to intelligently choose appropriate edge de-
ployments for ensuring that the selected edge Dedgei will have sufficient
resources, and the probability of (17) occurring can be much higher than
our EdgeColla approach. There also exist simple and effective measures
to guard against estimation errors. It is obvious that job losses may only
occur in underestimation scenarios. Instead of using the estimates of the
resource demand and execution time for selecting edge deployments,
we can add the two standard deviations of the estimation to the corre-
sponding estimates and use these ‘modified’ or ‘overly’ estimated val-
ues to select edge deployments. This will reduce the probability of (17)
occurring to almost zero. It is straightforward to provide both the esti-
mate and estimation standard deviation by dividing the training data into
multiple subsets and running the estimation procedure multiple times.

3.1. Problem formulation

The notations adopted are listed in Table 2. EdgeColla includes
an intelligent multi-dependent task dispatching method, which co-
locates tasks firmly on available nodes to avoid resource wastage in any
member cluster ∈ EF, while considering task dependencies. Our ob-
jectives are to maximize the actual cluster resource utilization and to

minimize the overall execution time of multi-dependent tasks, subject
to certain constraints.

3.1.1. Constraints
First, the collective resource demand estimation of J at any

given time t cannot exceed the available resources of a selected
member cluster ∈ EF. Since the actual total resources that need to
be assigned to multi-job D〈c,m〉edgeiU

is unknown at the scheduling stage, we

use the estimated total resource demand T̃ 〈c,m〉′total to replace it:

T̃ 〈c,m〉′total ≤ D〈c,m〉edgei
, ∀Dedgei ∈ EF (18)

Second, the aggregate execution time of J at any given time t cannot
exceed the flight time of any selected drone. Since the actual execution
time Etotal

ex′ is unavailable at the scheduling stage, we replace it with Ẽtotal
ex′ :

Ẽtotal
ex′ ≤ fi, ∀ fi ∈ EF (19)

Third, unused or inactive nodes Ii ∈Dedgei in a selected cluster would
be shut down. All the nodes can be expressed in one of these two states:
Active and Inactive. An Active node is a node that is running and cur-
rently considered for allocation or has at least 1 job being started, exe-
cuted or completed. An Inactive node is a node that is not running and
currently considered for allocation and not having at least 1 job that is
being started, executed or completed. These two states can be expressed
as follows:

∀c,m β (Ii) =

{
1, Active if Ji ∈ [Es, Ec, Eex]
0, Inactive if Ji /∈ [Es, Ec, Eex]

(20)

where β (Ii) = 1 indicates that node Ii is ready to accept new jobs
and at least a job Ji is being started, executed or completed, i.e.,
Ji ∈ [Es, Ec, Eex] on Ii; otherwise, β (Ii)=0.

3.1.2. Optimization formulation
As the actual resource utilization of a cluster/edge is unknown, we

maximize the estimated resource utilization:

Maximize ρ̃〈c,m〉edgei
(21)

subject to J⇒ Dedgei?
, ∃ (22)

Ẽtotal
ex′ ≤ fi, ∀ fi ∈ EF, ∃ (23)

T̃ 〈c,m〉′total ≤ D〈c,m〉edgei
, ∀Dedgei ∈ EF, ∃ (24)

β (Ii)∈ {0, 1}, ∃ (25)

Provided that the estimated resource utilization ρ̃〈c,m〉edgei
is accurate, lit-

tle optimality will be lost.
The constraints (22) to (24) indicate dispatching multi-job J to the

closest edge having sufficient resources and flight time. More specifi-
cally, (22) is J, guaranteeing that J is dispatched to a cluster, such that
dependent tasks within each J ∈ J can communicate and execute faster.
Constraint (23) guarantees that Ẽtotal

ex′ of J should not exceed fi of any
selected drone deployment and constraint (24) guarantees that T̃ 〈c,m〉′total

of J should not exceed D〈c,m〉edgei
of any selected member cluster ∈ EF.

We shall discuss the details of our multi-job dispatching principle in
Subsection 3.2 and Algorithm 2. Condition (25) guarantees that ac-
tive nodes (β (Ii) = 1) should be used for execution, and inactive nodes
(β (Ii) = 0) should be shut down. Hence, our aim is to minimize the
number of active nodes used for execution by co-locating jobs tightly
on each node to maximize resource utilization. We shall discuss the
details of our co-location strategy in Subsection 3.2 and Algorithm 3.

Then again, Ẽtotal
ex′ of J can be minimized depending on dispatching:

Minimize Ẽtotal
ex′ (26)

subject to J⇒ Dedgei?
, ∃ (27)

Note that the actual overall execution time Etotal
ex′ is unknown at this stage

and we use the estimated overall execution Ẽtotal
ex′ to replace it in the op-

timization. Again, provided that Ẽtotal
ex′ is accurate, little optimality will
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Algorithm 1 Linear Regression Estimation

Input: J arrives at time t from ldi ; fmt is fed into Θ?
G

Output:
∑

J∈J T̃ 〈c,m〉′J and
∑

J∈J ẼexJ ′

1: for J ∈ J do
2: Type of job J = εJ

3: Number of instances of job J = ωJ

4: Dependency depth of job J = γJ

5: for Ti ∈ J do
6: ( fmt)Ti

· Θ?
G = [T̃ 〈c,m〉Ti

ẼexTi
]

7: end for
8: T̃ 〈c,m〉′J = T̃ 〈c,m〉′J + T̃ 〈c,m〉Ti

9: ẼexJ ′ = ẼexJ ′ + ẼexTi

10: end for

Algorithm 2 Multi-Job Dispatching

Input: J arrives at time t within ldi ; Dedgei ∈ EF;
∑

J∈J T̃ 〈c,m〉′J ;∑
J∈J ẼexJ ′

Output: Dispatch J to Dedgei?
with matching D〈c,m〉edgei

and fi for
any selected drone, such that J⇒ Dedgei?

1: for Dedgei ∈ EF do
2: if

∑
J∈J T̃ 〈c,m〉′J ≤D〈c,m〉edgei

and
∑

J∈J ẼexJ ′≤ fi then
3: if Dedgei =arg min

Dedge j∈EDGE

(
QJ⇒Dedge j

)
then

4: J⇒ Dedgei = Dedgei?

5: else
6: Dispatch J to next Dedgei?

7: end if
8: end if
9: end for

10: if J cannot be composed as a whole then
11: for Dedgei ∈ EF do
12: for J ∈ U do
13: if T̃ 〈c,m〉′J ≤D〈c,m〉edgei

and ẼexJ ′≤ fi then
14: if Dedgei=arg min

Dedge j∈EF

(
QJ⇒Dedge j

)
then

15: J ⇒ Dedgei = Dedgei?

16: else
17: Dispatch J to next Dedgei?

18: end if
19: end if
20: end for
21: end for
22: end if

be lost. Constraint (27) guarantees that J is dispatched to a cluster, such
that dependent tasks within each J ∈ J can communicate and execute
faster. The details of our multi-job dispatching principle are given in
Subsection 3.2 and in Algorithm 2.

3.2. EdgeColla algorithm framework

Our EdgeColla approach consists of estimation, dispatching, and co-
location. These 3 components aim at providing optimal performance
for multi-task execution in an integrated edge system, such that op-
timization (21) and optimization (27) are achieved. The values of
the estimations are required by the dispatcher, as well as the update
state of the clusters for effective multi-job dispatching to the clos-
est member cluster Dedge? with the minimum combined upload and
download transmission loads:

QJ⇒Dedgei
= ∧

↑

J⇒Dedgei
+ ∧

↓

J⇒Dedgei
(28)

Algorithm 3 Multi-job Co-location

Input: J dispatched to closest member cluster Dedge? ,∑
J∈J T̃ 〈c,m〉′J , resource availability I〈c,m〉i of all nodes Ii ∈Dedge?

Output: J is co-located to Minimize
∑

Ii∈Dedge?
Ii

1: for Ii ∈ Dedge? do
2: if β (Ii) = 1 then
3: I〈c,m〉i = 〈c,m〉, i.e., initial resource available
4: for J ∈ J do
5: if Γ [J, Ii]=0 and T̃ 〈c,m〉′J ≤ I〈c,m〉i then
6: J ⇒ Ii

7: Γ [J, Ii] = 1
8: I〈c,m〉i = I〈c,m〉i − T̃ 〈c,m〉′J
9: end if

10: if I〈c,m〉i close to zero then
11: break
12: end if
13: end for
14: end if
15: end for

Our co-location approach involves co-locating these tasks firmly on
available resources. We detail the procedures of the 3 components of
EdgeColla as follows.

3.2.1. Resource and execution time estimation
As J arrives into the system, their collective resource requirement

T̃ 〈c,m〉′total and execution time Ẽtotal
ex′ are estimated. The CL process in Equa-

tions (3) ∼ (5) generates a global model. A set of runtime parameters
fmt(ω, ε, γ), where ω is the number of instances, ε is the type of tasks ,
and γ is the dependency depth, is fed into the global model Θ?

G to pro-
duce estimation values. Once the estimation values are produced, they
are used in the dispatching stage.

3.2.2. Dispatching
Our policy is to dispatch J to the closest member cluster Dedgei?

with matching or sufficient resources D〈c,m〉edgei?
and flight time fi? , such

that T̃ 〈c,m〉′total ≤D〈c,m〉edgei?
and Ẽtotal

ex′ ≤ fi? . The closest heuristic given in Equa-
tion (28) is to further minimize the overall response time of J. Closest
or Nearest is a popular task offloading heuristic in distributed systems,
since IoT and other end devices often need to communicate only with
the closest or nearest clusters and cloud servers. Existing studies, e.g.,
[6,7,18,43], adopted the closest principle as the task offloading policy.
Holistic dispatching of J treats each J ∈ J as a high-priority job. Algo-
rithm 2 describes the dispatching procedure.

With the collective estimated values of J and all
member clusters ∈ EF, and available resources D〈c,m〉edgei

are obtained
through the CP. The dispatcher selects the closest member cluster

Dedgei?
having sufficient resources (line 3). It dispatches J to Dedgei?

(line 4). If J cannot be dispatched to Dedgei?
, then J is dispatched to the

next Dedgei?
(line 6). If at any time t, the collective estimated values of

J are greater than any member cluster ∈ EF, i.e.,
∑

J∈J T̃ 〈c,m〉′J >D〈c,m〉edgei

and/or
∑

J∈J ẼexJ ′ > fi, ∀Dedgei ∈EDGE, then J cannot be composed as
a whole. The dispatcher can allow fractionally dispatching each J ∈ U
to the closest member cluster (line 10 ∼ 22). Note that fractionally
dispatching each J ∈ U to the closest member cluster would still
allow inter-dependent tasks within each J ∈ u to execute faster.

Recall that a multi-Job J is composed of jobs from multiple users.
The reason behind this multi-Job J formation is that it improves the ef-
ficiency of dispatching and scheduling of ready jobs at a time, given that
their collective resource demand and execution time estimation does not
exceed the resource capacity of the closest member cluster. There-
fore, we can define the size of a multi-Job J in terms of the total exe-
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cution time and resource requirement estimation using constraints (23)
and (24).

3.2.3. Co-location

At member cluster Dedge? , our co-location algorithm uses I〈c,m〉i

and
∑

J∈J T̃ 〈c,m〉′ to provide efficient co-location, such that fewer nodes
are used for execution in the EF system. Specifically, the gang schedul-
ing approach is adopted alongside our bin-packing optimization to co-
schedule and co-locate J at a time. Bin-packing is one of the most pop-
ular packing problems. The goal is to minimize the number of nodes
used, as given in optimization (29). Unlike other approaches, such as
First-Fit-Bin-Packing (FFBP) [44], it requires the next Ji to be placed
on an active node, otherwise; it is placed on a new node. Our approach
scans all J ∈ J and maps Ji to active nodes for full utilization. All
J ∈ J are co-located firmly on active nodes, so that resource wastage
is avoided and fewer nodes are used to execute all jobs concurrently.
Hence our co-location strategy is to find the solution to the following
problem:

Minimize
∑

Ii∈Dedge?

Ii (29)

subject to J⇒ Dedge? , ∃ (30)∑
J∈J

Γ [J, Ii] · T̃
〈c,m〉′
J ≤ I〈c,m〉i , ∀c,m (31)

where

Γ [J, Ii] =

{
1, if J ⇒ Ii

0, otherwise (32)

Constraint (30) is the multi-job J deployment constraint of guaranteeing
that J is dispatched to a cluster such that dependent tasks within each
J ∈ J can communicate and execute faster. As we have stated previously
that J cannot be dispatched as a whole to a cluster, the dispatcher can
allow fractionally dispatching each J ∈ J to closest member cluster.
Constraint (31) indicates that the total estimated resource requirements
of co-located jobs

∑N
i=1 T̃i

〈c,m〉′
cannot exceed I〈c,m〉i , the node’s available

resources. Constraint (32) means that if job Ji is placed on node Ii,
then Γ [Ji, Ii] = 1; otherwise, Γ [Ji, Ii] = 0. This is to guarantee that
each J ∈ J is placed in exactly one node. To solve this multi-job pack-
ing problem, we have adopted the Solving Constraint Integer Programs
(SCIP) solver, which is currently one of the fastest Mathematical Pro-
gramming (MP) solvers for this problem.

Algorithm 3 co-locates multi-dependent tasks firmly on nodes, such
that for any given job, resource wastage is avoided and fewer nodes
are used for execution. It takes the multi-task/job resource demand and
nodes available resources as input, then scans all J ∈ J and maps them
to active nodes for full utilization.

Note that in existing EC systems, the dispatcher and scheduler need
to understand the characteristics of both the applications, e.g, dependen-
cies, resource requirements, and edge resources in terms of availability.
Specifically, the scheduler should understand the resource requirements
of each sub-application, resource availability of each node, node avail-
ability, etc., and assumes the responsibility for executing the applica-
tions on the nodes so that the desired objectives are achieved. Therefore,
we utilize an ML linear regression model to provide the estimated re-
source requirements and execution time of ready tasks, so as to dispatch
these tasks to the closest member cluster having sufficient resources
and to quickly execute them. With this in mind, we aim to avoid the ex-
ecution delays due to the insufficient resources of the deployed member

cluster or due to tasks waiting in queues. However, if the estimation
values are not accurate, and depending on the level of inaccuracy, the
dispatcher and scheduler in Algorithms 2 and 3, respectively, would per-
form poorly, i.e., the overall execution of tasks would be delayed due to
the insufficient resources or long queues. For this reason, we first inves-
tigate the accuracy of our trained linear regression model for estimating

the resource requirements and execution time of multi-dependent tasks,
using the NAEE method. We will discuss NAEE in Section 4.3.1 and
Equation (36). This serves as the estimation accuracy measure for the
trained linear regression model.

3.2.4. Connection with optimization objectives
As stated previously, our objectives are to maximize the actual edge

cluster resource utilization and to minimize the overall execution time
of task-dependent jobs. Algorithms 2 and 3 together achieve these ob-
jectives. By dispatching task-dependent jobs to the closest edge having
sufficient resources and flight time (for drones), Algorithm 2 ensures
that the actual resources assigned to the execution of jobs D〈c,m〉edgeiU

are
sufficient and the dependent tasks can be executed faster, ultimately
leading to a smaller aggregate execution time Etotal

ex′ and better cluster
resource utilization. By intelligently packing dependent tasks tightly on
nodes, Algorithm 3 is capable of fully utilizing available resources at
edge clusters, ultimately leading to the actual resource assigned to the
execution of jobs D〈c,m〉edgeiU

as small as possible while guaranteeing it is
sufficient for the multi-dependent jobs.

More specifically, the Actual Resource Usage (ARU) of the cluster
for multi-job deployment J is given by

D〈c,m〉edgeiARU =
D〈c,m〉edgeiU

D〈c,m〉edgei

(33)

It can be seen that solving optimization (29) is directly linked to min-
imizing ARU (33). Let the actual CPU resource and the actual memory
resource assigned for J be D〈c〉edgeiU

and D〈m〉edgeiU
, respectively. Further

denote the actual CPU consumed and the actual memory consumed in
executing J as

∑
J∈J T 〈c〉′ and

∑
J∈J T 〈m〉′, respectively. Then the actual

CPU utilization ρ〈c〉edgei
and the actual memory utilization ρ〈m〉edgei

are de-
fined respectively by

ρ〈c〉edgei
=

∑
J∈J T 〈c〉′

D〈c〉edgeiU

(34)

ρ〈m〉edgei
=

∑
J∈J T 〈m〉′

D〈m〉edgeiU

(35)

Algorithms 2 and 3 are directly connected with minimizing Etotal
ex′ as

well as maximizing ρ〈c〉edgei
and ρ〈m〉edgei

.
Proof: The proposed EdgeColla runs all tasks in containers, which

helps to prevent lock-in situations among host and member clusters.
A container packages up all the dependencies of an application, such
that it runs quickly and reliably from one computing environment to
another11. Hence, the proposed Co-location strategy can co-locate mul-
tiple containers on the same node without resource contention among
the co-located containers. In this case, each container runs within its
allocated resources, i.e., T 〈c,m〉 in terms of CPU and memory resources.
We aim to minimize the ARU within each cluster as expressed in Equa-
tion (33) by employing our Dispatching and Co-location strategies in
Algorithms 2 and 3, respectively. Therefore, the actual resource utiliza-
tion of a cluster is expressed in Equations (34) and (35) for CPU and
memory, respectively.

4. Performance evaluation

In this section, we describe our experimental setup including cluster
resource configuration, the Alibaba cluster dataset, and the comparison
baselines. We perform extensive experiments to compare EdgeColla
against some existing schemes. We will also compare EdgeColla
against existing individual cluster schemes. We show that EdgeColla
can achieve the minimized actual execution time of multi-dependent
tasks, high resource utilization, load balancing, use fewer cluster re-
sources and avoid job losses in an integrated edge system.

11https://www.docker.com/resources/what-container/
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Table 3
Integrated-edge resource capacities

Edge Deployments Edge Devices and Total Weight for Aerial Deployments CPU Capacity (Cores) Mem Capacity Flight Time
Aerial Edge 1 Lenovo SE350 + HIVECELL + Xavier NX + Dell 3000 ≈13kg 30 274 GiB Sufficient
Aerial Edge 2 Snowcone + Huawei AR502H + INTELLIEDGE G700(x2) ≈14kg 22 38 GiB Sufficient
Aerial Edge 3 {Dell 3000 + Dell 5000 + aiSage + dynaEdge}(x4) ≈20kg 48 112 GiB Sufficient
Ground Edge 1 Stack Edge + DELL EMC + Snowball + ThinkSystem 132 3536 GiB NA
Ground Edge 2 AWS Snowball (x3) + Dell EMC VxRail(x2) 256 6640 GiB NA
Ground Edge 3 {HPE Edgeline + IBM Power Systems}(x6) 288 24 TiB NA

Table 4
Multi-job executions in integrated edge deployments, where the actual resource consumed for multi-job execution T 〈c,m〉′total and actual execution time Etotal

ex′ are taken
from the original Alibaba dataset, while the estimated resource demand T̃ 〈c,m〉′total and execution time Ẽtotal

ex′ are calculated by Algorithm 1

Dedgei J C T̃ 〈c,m〉′total T 〈c,m〉′total NAEE Ẽtotal
ex′ (s) Etotal

ex′ (s) NAEE
AerialEdge 1 5 35 〈23, 10.81〉 〈25.5, 10.48〉 〈0.10, 0.03〉 1134.18 735 0.54
AerialEdge 2 13 26 〈15.1, 7.48〉 〈17.7, 6.57〉 〈0.15, 0.14〉 158.16 957 0.83
AerialEdge 3 8 49 〈31.52, 15.38〉 〈36.5, 15.5〉 〈0.14, 0.01〉 1456.1 994 0.46
GroundEdge 1 34 159 〈101.17, 49.13〉 〈116.2, 48.05〉 〈0.13, 0.02〉 4204.51 3680 0.14
GroundEdge 2 68 318 〈202.35, 98.25〉 〈232.4, 96.1〉 〈0.13, 0.02〉 8409.03 7360 0.14
GroundEdge 3 81 344 〈217.45, 105.73〉 〈250.1, 102.67〉 〈0.13, 0.03〉 8567.2 8317 0.03

4.1. Experimental setup

Cluster Resources: Our EF setup consists of 3 aerial or drone clus-
ters and 3 ground or on-premise clusters, as summarized in Table 3. The
aerial clusters consist of various portable edge devices with combined
weights of up to 20 kg. For example, autonomous drones such as the
Bell ATP7012 have a payload capability of up to 31 kg and a flight time
og up to 45 minutes. Therefore, we assume that the selected drones
have sufficient flight time to execute ready multi-dependent job.

Multi-dependent Tasks: We employ the v-2018 version of the Al-
ibaba cluster dataset, which records the activities of about 4000 ma-
chines in a periods of 8 days. The entire dataset contains more than 14
million tasks with more than 12 million dependencies and more than 4
million jobs. Among these, we have deployed 209 jobs with a total of
931 tasks (including dependencies) for our experiments. The number of
tasks within each job ranges from (26, 344], while the task dependency
depth among the jobs ranges from (1, 16]. The multi-task dependencies
in the dataset are valuable for our investigation. Researchers have thor-
oughly investigated the v-2018 version of Alibaba cluster dataset and
used it for various task scheduling problems [45–47].

Comparison Baselines: We compare the scheduling approach of
EdgeColla with the following 3 existing schemes and the random ap-
proach, fixing their dispatching policies to that of EdgeColla:

1. An approach that does not consider tasks’ dependencies but sched-
ules 50% of any given multi-dependent task by mainly focusing on
task co-location. We refer to this approach as No Dependency and
Full Packing (NDFP), which is similar to the approach in [19].

2. An approach that schedules up to 15% of any given multi-
dependent task at a time but does not consider task co-location.
We refer to this approach as Partial Dependency and No Packing
(PDNP), which is similar to the approach in [20].

3. An approach that schedules up to 40% of any given multi-
dependent tasks with task co-location. We consider this approach
as a Partial Dependency and Full Packing (PDFP), which is simi-
lar to the approach in [21].

4. The Random approach schedules a single task individually and
assumes a node can only execute a task at a time.

12www.bellflight.com/products/bell-apt

4.2. Device mobility and communication
In a broader EC scenario, such as the EC-enabled Internet of Vehi-

cles (IoV), edge clusters are deployed on Road Side Units (RSU) and
directly in vehicles to facilitate faster application executions [48,49].
The RSUs and in-vehicle edge deployments can be added as new mem-
bers to existing integrated edge systems. Therefore, vehicles without
sufficient resources can offload their tasks to the closest RSU or other
available edge deployments, and after the execution of J ∈ J, the fi-
nal result is immediately transmitted back to the vehicle. However, the
fundamental challenge is how a moving vehicle, whose initial location
coordinate are {x, y}, can receive its final execution results at any cur-
rent location {x′, y′}. Moreover, given the current location of the vehi-
cle, more than one routing path may exist from the RSU to the vehicle.
Therefore, the routing path with the best transmission performance can
be determined as the optimal one for the final result transmission. To
this end, we propose an Integrated Edge-assisted Routing (IER) mech-
anism [48], whose goal is to find the fastest route to efficiently forward
execution results to the vehicle at its current location. Specifically, our
IER leverages the cooperation among participating EC deployments,
i.e., host and members to quickly forward the execution results to the
target vehicle.

4.3. Deployment results and performance comparison
Our investigation focuses on CPU and memory usage/utilization,

task deployment, scheduling, and execution time. The results obtained
by EdgeColla, PDFP, NDFP, PDNP, and Random are compared.

4.3.1. Resource and execution time estimation accuracy
As detailed in the previous section, to implement the proposed CL-

based intelligent multi-task dispatching and co-location strategy, we
train a linear regression model on a training dataset. In the real-time
application experiments, the trained model is used to estimate the re-
source requirements and execution time (Algorithm 1). The estimated
resource requirements and execution time13 are then employed to aid
our intelligent dispatching and co-location strategy (Algorithms 2 and
3). Clearly, the accuracy of Algorithm 1 impacts the achievable perfor-
mance of our EdgeColla. Therefore, we first investigate the accuracy of
our trained linear regression model.

The multi-job execution information across federated edge deploy-
ments, obtained according to the Alibaba dataset, are listed in Table 4,

13As the drone edges involved have sufficient flight time, the estimated execu-
tion time is not required in selecting drones.
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where the estimated resource demand T̃ 〈c,m〉′total and the estimated execu-
tion time Ẽtotal

ex′ are calculated using Algorithm 1, while the actual re-
sources consumed for multi-job execution T 〈c,m〉′total and the actual execu-
tion time Etotal

ex′ are taken from the original data. The Normalized Abso-
lute Estimate Error (NAEE) is defined as

NAEE =
|estimated value − actual value|

actual value
(36)

NAEEs are listed in Table 4 for the resource consumed and execu-
tion time, and serve as the estimation accuracy measure for the trained
multi-output linear regression model. The average NAEE across 6 de-
ployments is 0.13 for CPU resources, 0.04 for memory resources, and
0.36 for execution time. From Tables 3 and 4, it can be seen that
T̃ 〈c,m〉′total <D〈c,m〉edgei

and T 〈c,m〉′total <D〈c,m〉edgei
. In other words, each edge has suffi-

cient resources to execute the multi-dependent jobs deployed to it. This
further indicates the suitability or accuracy of the trained ML model to
provide the necessary information for our intelligent dispatching and
co-location strategy.

4.3.2. Performance comparisons across integrated edge-enabled CL
clusters

We applied our EdgeColla to orchestrate 209 jobs across 6 integrated
edge clusters and compare its performance with those of the benchmark
schemes. We first investigated multi-job J scheduled across the 6 in-
tegrated clusters, as depicted in Fig. 5. It can be observed that both
EdgeColla (FDFP) and NPFP are able to deploy 100% of all the jobs
in J. PDFP and PDNP are slightly inferior and could not deploy 100%
of the jobs in J on some clusters. Specifically, PDFP only achieves
77% of the multi-job deployments on AerialEdge 2, while PDNP
only achieves 83% and 77% on AerialEdge 1 and AerialEdge 2,
respectively. The Random approach could barely schedule 50% of J
to 5 clusters and the percentage of its scheduled jobs is much lower
compared to other schemes. Because it deploys a task randomly to
any available node, this results in longer delays for dependent tasks,
resource underutilization and inability to execute all jobs. Therefore,
we only show the results and performance comparisons for the multi-
dependent jobs/tasks that are deployed or scheduled successfully in the
integrated edge system.

Figure 6 compares the actual resource usage D〈c,m〉edgeiARU of EdgeColla
with those of the 3 baseline schemes and the Random approach. It can
be seen that EdgeColla consumes the fewest resources across the inte-
grated clusters with NPFP as the very close second best, while Random
is the worst and PDNP as the second worst. PDFP ranks in the middle,
in terms of resource usage across the integrated clusters. The actual re-
source utilization (CPU resource utilization ρ〈c〉edgei

and memory resource
utilization ρ〈m〉edgei

) comparisons are shown in Figs. 7 and 8, respectively.
Again, EdgeColla and NDFP are superior to PDFP, PDNP, and Random,
and they achieve the highest and close second highest resource utiliza-
tion across the integrated clusters, respectively, while PDNP and Ran-
dom achieve the second lowest and lowest resource utilization across
the integrated clusters, respectively.

Two other key metrics are the actual task/job scheduling time∑
J∈J

∑m
z=1

∑kz
i=1S chzi

/kz, where m is the number of scheduling units, kz

is the number of tasks within the z-th scheduling unit, and more im-
portantly, the actual execution time of multi-dependent jobs/tasks Etotal

ex′ .
Figs. 9 and 10 compare the actual task/job scheduling time and task/job
execution time of EdgeColla with those of the 4 benchmarks, respec-
tively. The results show that EdgeColla is the best, NDFP is the second
best, and PDFP is the third best, while Random is the worst and PDNP is
the second worst, in terms of both scheduling time and execution time.
The superior performance of EdgeColla over the other benchmarks is
overwhelmingly clear.

4.3.3. Performance comparisons in individual clusters
Figures 6 ∼ 10 show the performance of the schemes in terms of the

multi-job deployment, actual resource usage, and resource utilization,

task scheduling and execution time across the integrated clusters. We
now delve into the individual clusters to examine the performance of all
the schemes.

AerialEdge-1 is a drone attached with edge devices Lenovo

SE350, HIVECELL, Xavier NX, and Dell 3000, with a total resource
capacity of 30 Cores and 274 GiB memory, respectively. The entire
weight of the devices is ≈13kg. We deploy 5 jobs with a total of 35
tasks, where the job has a task dependency depth γ (2, 16]. Utilizing
the gang scheduling strategy, EdgeColla co-shedules and co-locates all
the 5 jobs at a time in nodes to minimize the overall used nodes. These
jobs are tightly co-located, which enables dependent tasks to commu-
nicate and share data effectively. As a result, EdgeColla achieves the
fastest scheduling time and execution time compared to NDFP, PDFP,
PDNF, and the Random approach. In addition, EdgeColla only uses
87% of cluster resources to execute the jobs. In the same cluster, NPFP,
PDFP, and PDNP utilize 93%, 93%, and 100% of the cluster resources,
respectively. The Random approach uses all the cluster resources as
well. It is observed that EdgeColla is 5 times and 3 times faster than
the second-best NPFP in both the scheduling time and execution time,
respectively. EdgeColla is more than 13 times and 5 times faster than
PDFP as well as more than 18 times and 6 times faster than PDNP in
the scheduling time and execution time, respectively. EdgeColla is 50
times and 21 times faster than the Random approach in the scheduling
time and execution time, respectively.

Like AerialEdge-1, AerialEdge-2 is also a drone and a small-
capacity cluster. It is made up of AWS Snowcone, Huawei AR502H,
and Intelliedge G700(x2) portable edge devices with a total weight
of ≈14kg, and total resource capacity of 22 Cores and 38 GiB memory,
respectively. Here, we deployed J = 13, where each J ∈ J has a task de-
pendency in the range of (1, 7]. The total number of tasks in J is 26. We
ensure that the attached edge resources are fully utilized by co-locating
the jobs tightly on them. As discussed earlier, the application contain-
ers provide isolation to co-located tasks, thereby eliminating interfer-
ence and resource contentions in the cluster. A single node is capable
of running several containerized tasks, given that available resources
are sufficient. In this cluster, EdgeColla consumes 9% fewer resources
than NDFP, and 18% fewer resources than PDFP, PDNP, and Random.
EdgeColla also gains 10% higher CPU utilization over NDFP, and 18%
higher CPU utilization over PDFP, PDNP, and Random, as well as 2%
higher memory utilization than NDFP, and 4% higher memory utiliza-
tion than PDFP, PDNP and Random. More significantly, EdgeColla is
2.4, 11 and 26 times faster in the scheduling time than NDFP, PDFP, and
PDNP, respectively, while it is 3, 5, and 8 times faster in the execution
time than NDFP, PDFP, and PDNP, respectively. Note that for Random,
PDFP, and PDNP, the results of the actual resource usage, resource uti-
lization, scheduling and execution time are 54%, 77% and 77% of the
multi-dependent jobs that can be scheduled on AerialEdge-2, respec-
tively.

AerialEdge-3 is the last of the drone clusters. It is attached
with Dell 3000, Dell 5000, aiSage, and dynaEdge(x4) portable
edge devices. It has a high load capacity of ≈20kg compared to
AerialEdge-1 and AerialEdge-2. It also has a higher resource ca-
pacity of 48 Cores and 112 GiB memory, respectively compared to the
previous drone clusters. In this cluster, we deploy J = 8 and a total of
49 tasks, where each J ∈ J has a task dependency depth γ ranging from
(2, 16]. In this cluster, EdgeColla, NDFP, and PDFP achieve reduced
D〈c,m〉edgeiARU by 11% and 21% compared with PDNP and Random, respec-
tively. EdgeColla, NDFP, and PDFP achieve 9% and 20% higher CPU
utilization as well as 2% and 4% higher memory utilization compared
to PDNP and Random, respectively. In terms of scheduling, EdgeColla
is about 4, 14, 45, and 96 times faster than NDFP, PDFP, PDNP, and
Random, respectively. It achieves 2, 4, 8, and 20.7 times faster exe-
cution time than NDFP, PDFP, PDNP, and Random, respectively. Not
surprisingly, Random has the worst scheduling time and execution time
performance.

GroundEdge-1 is an on-premise cluster. Generally, on-premise clus-
ters are higher than drone clusters in terms of resource capacities.
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Fig. 5. Multi-job dispatching and co-location across integrated edge-enabled CL clusters.
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Fig. 6. Actual resource usage across integrated edge-enabled CL clusters.
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Fig. 7. CPU utilization across integrated edge-enabled CL clusters.
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Fig. 9. Actual multi-job scheduling time across integrated edge-enabled CL clusters.
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Fig. 10. Actual multi-job execution time across integrated edge-enabled CL clusters.

This cluster particularly is a memory-intensive cluster. It is made of
Stack Edge, DELL EMC, AWS Snowball, and Lenovo ThinkSystem

on-premise edge devices, with a resource capacity of 132 Cores and a
memory capacity of 3536 GiB, respectively. Here, we deploy J = 34
with a total of 159 tasks. Each J ∈ J has a dependency depth γ rang-
ing from (2, 16]. It is observed that EdgeColla consumes the fewest
resources at 89%, followed by NDFP and PDFP at 91% each. PDNP
consumes 96% of the resources, while the Random approach uses all
the available resources. EdgeColla also achieves 2%, 2%, 7%, and
11% higher CPU utilization over NDFP, PDFP, PDNP, and Random,
respectively. Note that the clusters GroundEdge 1, GroundEdge 2,
and GroundEdge 3 are memory-intensive clusters, i.e., they have huge
memory capacities. Therefore, the jobs can only consume a few such
capacities, as shown in Fig. 8. It is worth noting that Random can only
schedule 49% of the tasks. By contrast, EdgeColla, NDFP, PDFP, and
PDNP all schedule 100% of the jobs. In terms of scheduling time,
EdgeColla is approximately 114, 180, and 406 times faster than NDFP,
PDFP, and PDNP, respectively. In terms of execution time, EdgeColla
is about 3, 6, and 12 times faster than NDFP, PDFP, and PDNP, respec-
tively. In this cluster, Random can only schedule 49% of all the tasks
within the jobs and it has the worst performance for scheduling time
and execution time.

GroundEdge-2 and GroundEdge-3 are the largest on-premise clus-
ters in terms of resource capacities. We deploy a combined J = 149
in these 2 clusters. The combined number of tasks deployed in both
clusters is 662. The task dependency depth γ of each J ∈ J is in
the range of (2, 16]. Random can only deploy 41% and 51% of
the tasks in these high-capacity on-premise clusters, respectively. In
GroundEdge-2, EdgeColla uses 1%, 3%, and 4% fewer resources,
compared with NDFP, PDFP, and PDNP, respectively. EdgeColla and
NDFP also achieve 2% and 4% higher CPU utilization over PDFP and
PDNP, respectively. All the schemes, except Random, achieve the same
memory utilization. In terms of scheduling time, EdgeColla is approx-
imately 58, 18, 34, and 95 times faster than NDFP, PDFP, PDNP, and
Random, respectively. In terms of execution time, EdgeColla is about
4, 7, 12, and 23 times faster than NDFP, PDFP, PDNP, and Random,

respectively. In GroundEdge-3, EdgeColla and NDFP use 2% and 3%
fewer resources than PDFP and PDNP, respectively. EdgeColla and
NDFP also achieve 2% and 3% higher CPU utilization than PDFP and
PDNP, respectively. In terms of memory utilization, all the 5 schemes
achieve the same utilization. In terms of scheduling time, EdgeColla
is 6.6 times faster than NDFP as well as 9.3 and 12 times faster than
PDFP and PDNP, respectively. In terms of execution time, EdgeColla
is 3, 6, and 12 times faster than NDFP, PDFP, and PDNP, respectively.
EdgeColla is 38.7 times faster and 24 times faster than Random in the
scheduling time and execution time, respectively.

4.4. Discussions

Overall, EdgeColla has demonstrated better performance in an inte-
grated EC system. It has consistently outperformed baseline schemes
(NDFP, PDFP, PDNP and Random) by achieving faster scheduling time
and excution time, and using fewer resources. Utilizing fewer re-
sources can allow for more tasks to be executed, thereby improving
the overall throughput of EC systems. Effective multi-task dispatching
of EdgeColla across the integrated clusters provides overall system load
balancing, thereby eliminating any resource overload problem. The per-
formance of EdgeColla can be attributed to its effective dispatching pol-
icy, gang-deployment and co-location of multi-dependent jobs, which
allows inter-dependent tasks within each job to communicate and share
data faster. Such fast execution is crucial for EC applications to per-
form better. The existing schemes do not consider task’s dependencies
or multi-task co-location, leading to edge resource wastage and under-
utilization, as well as causing execution delay.

5. Conclusions

This paper has presented an intelligent multi-dependent task dis-
patching and co-location scheme called EdgeColla. Specifically, we
derived a CL-based multi-dependent task resource requirements and ex-
ecution time estimation method for an integrated edge system through
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the control panel, such that multi-dependent tasks are intelligently dis-
patched to the closest edge cluster having sufficient resources. To guar-
antee the optimal usage of cluster resources, we further utilize a vari-
ant bin-packing optimization approach through gang-scheduling multi-
dependent tasks to co-schedule and co-locate tasks firmly on avail-
able nodes, so as to avoid resource wastage. Our experimental results
demonstrated that EdgeColla is capable of minimizing the actual com-
pletion time of multi-dependent tasks using minimum resources, and we
conducted extensive experiments to compare the performance of our
EdgeColla with several existing approaches using the real-world Al-
ibaba cluster dataset, which provides information on task dependencies
in an integrated edge system.
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