arXiv:2407.17032v1 [cs.LG] 24 Jul 2024

Gymnasium: A Standard Interface for Reinforcement
Learning Environments

Mark Towers' Ariel Kwiatkowski' Jordan Terry!
University of Southampton & Farama Foundation Farama Foundation
Farama Foundation akwiatkowski@farama.org jkterry@farama.org

mtbgl7@soton.ac.uk

John U. Balis * Gianluca De Cola * Tristan Deleu *
Independent Researcher Farama Foundation Mila, Université de Montréal
Manuel Goulao * Andreas Kallinteris * Markus Krimmel *
NeuralShift Electrical and Computer Engineering Farama Foundation

Technical University of Crete
Chania, Greece

Arjun KG * Rodrigo Perez-Vicente * Andrea Pierré * Sander Schulhoff *
EarthBrain Farama Foundation Brown University University of Maryland
Jun Jet Tai * Hannah Tan * Omar G. Younis *
Coventry University Independent Researcher University of Bologna
Abstract

Gymnasium is an open-source library providing an API for reinforcement learning
environments. Its main contribution is a central abstraction for wide interoperability
between benchmark environments and training algorithms. Gymnasium comes
with various built-in environments and utilities to simplify researchers’ work along
with being supported by most training libraries. This paper outlines the main design
decisions for Gymnasium, its key features, and the differences to alternative APIs.

1 Introduction

With the publication of a Deep Q-Networks (DQN) [s], Reinforcement Learning (RL)
was awoken from its Artificial Intelligence (AI) winter, showing that a general neural network-based
algorithm can achieve expert-level performance across a range of complex tasks. In later years, deep
neural network-based RL led to agents defeating professionals in Go [], DoTA 2

[1, Starcraft 2 [s] along with many more. As a result, public
interest in RL research has grown significantly recently, both within academia and industry. At the
same time, OpenAl Gym [,] emerged as the first widely adopted common API.
Gymnasium is a maintained fork of Gym, bringing many improvements and API updates to enable
its continued usage for open-source RL research.

J_fCo-ﬁrst authors
“Alphabetically ordered

In Listing 1, we provide a simple program demonstrating a typical way that a researcher can use a
Gymnasium environment. Full API documentation, release notes and in-depth tutorials are available
athttps://gymnasium.farama.org.

import gymnasium as gym

env = gym.make ("LunarLander-v3", render_mode="human")

observation, info = env.reset(seed=42)

for _ in range(1000):
action = env.action_space.sample() # insert your policy here
observation, reward, terminated, truncated, info = env.step(action)

if terminated or truncated:
observation, info = env.reset()

env.close()

Listing 1: Example script for taking 1000 random actions within Lunar Lander environment with a
human rendering

In the remainder of this paper, we describe the structure and development of Gymnasium. In Sections
2 and 3, we outline the design decisions for the project and the environment API specification,
respectively. In Section 4 we list the environments provided in Gymnasium by default, as well as
some notable third-party projects compatible with it. Finally, in Section 5, we provide an overview of
other tools and approaches for building RL environments.

2 Design Decisions

As Gymnasium has evolved with new features, bug fixes, and feedback from the community, we
prioritized the following aspects of its design:

Environment Focused API Gymnasium keeps its focus entirely on the environment side of RL
research, abstracting away the aspect of agent design and implementation. The only restriction
on the agent is that it must produce a valid action as specified by the environment’s action space.
Furthermore, Gymnasium’s environment interface is agnostic to the internal implementation of
the environment logic, enabling if desired the use of external programs, game engines, network
connections, etc. The only requirement is that the environment subclass’s gym.Env and two core
functions (Env.reset and Env . step) are implemented. Therefore, Gymnasium provides numerous
tools for interacting with environments and their implementation.

Reproducibility In academia, it is crucial that any experimental results are reliably reproducible.
Gymnasium has several features with this goal in mind:

* Environment versioning - Creating an environment requires the specification of the version
created, e.g., gym.make ("CarRacing-v2"). This versioning enables fair comparisons
between agents for the same environment and easy referencing for academic papers. Im-
portantly, version numbers allow bug fixes and incremental feature changes over time.” For
example, the robotics environments were updated from v2 to v3 with feature changes, then
v4 to use an improved physics engine, and finally to v5 that makes them more consistent
with new features and bug fixes.

* Recreating environments - Gymnasium makes it possible to save the specification of a
concrete environment instantiation, and subsequently recreate an environment with the same
specification.

“It is important to note however that while environment versions can provide easy reference to the environment
dynamics used, this should never fully replace specifying a project’s version as sources of modifications/changes
to agent behavior can originate outside of the environment’s version, e.g., wrapper implementation, neural
network library.

https://gymnasium.farama.org
https://farama.org/Gymnasium-MuJoCo-v5-Environments

* Episodic seeding - Randomness is a common feature of RL environments, particularly when
generating the initial conditions. Gymnasium automatically handles seeding the random
number generator and maintaining its state behind the scenes. The user can simply specify
the seed through env.reset (seed=seed) to manage the seed across episodes and separate
initializations.

Easy customization via Wrappers It is often useful to modify an environment’s external interface
— whether it is its inputs (actions) or outputs (observations, rewards, termination). To this end,
Gymnasium provides a suite of wrappers that can be easily applied to an existing environment, along
with an interface that allows users to implement their own wrappers. This significantly simplifies
many pre- and post-processing steps useful in research.

Environment vectorization Vectorization is common practice in RL research, where multiple
copies of the same environments are run concurrently, making it possible to batch the policy inference
and improve effective sampling performance. In Gymnasium, we support an explicit gym. VectorEnv
base class which includes some environment-agnostic vectorization implementations, but also makes
it possible for users to implement arbitrary vectorization schemes, preserving compatibility with the
rest of the Gymnasium ecosystem. Vectorized environments also have their own versions of wrappers,
allowing for a similar level of consistent customization as regular environments.

3 Environment Specification

In this section, we describe the structure of a valid Gymnasium environment. A more detailed API
specification is available on the Env documentation page.

3.1 Observation & Action Spaces

In Gymnasium, every environment has an associated observation and action space defining the
sets of valid observations and actions, respectively. This data is the interaction point between the
environment and the agent so the space helps specify what information is available to the agent and
what it can do. Gymnasium’s built-in spaces can be split into two main categories: fundamental (Box,
Discrete, MultiDiscrete, MultiBinary, Text) and composite (Tuple, Dict, Sequence, Graph, OneOf)
that are made up of one or more subspaces. These spaces allows for continuous or discrete actions or
observations that can be arbitrarily nested to combine data. Finally, Gymnasium provides functions
to flatten and batch spaces to simplify their usage along with concatenate and iterate functions of
samples.

3.2 Starting an episode

Before an agent can start taking actions in an environment, an initial observation must be generated
through env.reset (seed, options). This function has two arguments: seed for reseeding the
environment’s random number generator (see Section 2), and options that enable customizing the
initial conditions of the environment. The function returns the initial observation (an element of the
observation space), as well as a dictionary with arbitrary keys that holds useful metadata about the
initialization.

3.3 Stepping through an episode

The main mode of interacting with an environment is through the env. step(action) function. As
input, it takes an action belonging to the environment’s action space used to update the environment’s
internal state. As output, it returns the resultant observation, the reward obtained in this transition,
two flags indicating whether the environment reached a terminal state or if the episode has truncated
due to exceeding the time limit, and a dictionary holding additional metadata about the step.

3.4 Rendering an environment

It is often useful to visualize the environment to gain deeper insights into an agent’s
behaviour. In Gymnasium, the render mode must be defined during initialization:

https://gymnasium.farama.org/api/env/
https://gymnasium.farama.org/api/spaces/#fundamental-spaces
https://gymnasium.farama.org/api/spaces/#composite-spaces

gym.make (env_id, render_mode="..."). Then, whenever env.render () is called, the vi-
sualization will be updated, either returning the rendered result without displaying anything on the
screen for faster updates or displaying it on screen with the “human” rendering mode.

3.5 Metadata, environment spec

In addition to observation and action spaces, environments are described by env.metadata and
env.spec. The former specifies various static details about the environment: supported rendering
modes, recommended rendering framerate, and potentially other environment-specific information.
The latter contains a complete specification of the environment initialization, making it possible to
easily create an identically initialized copy of the environment via gym.make (env. spec).

4 Built-in Environments

For ease of use by researchers, Gymnasium includes a suite of implemented, extensively tested, and
researched environments such as CartPole, Lunar Lander, and MuJoCo-based environments. In this
section, we describe the provided environments, each of which has a dedicated web page detailing its
structure, as well as some popular third-party environments compatible with Gymnasium.

Figure 1: Example renderings from Environments within Gymnasium.

* Classic control and Toy text - Common tasks/problems from the literature that test the basic
limits of an agent including CartPole, Mountain Car and Blackjack. These environments are
helpful for easily testing the implementation of an algorithm before scaling to more complex
domains.

* Box2d - A suite of 2D control problems using the Box2D game engine including Lunar
Lander, Car Racing and Bipedal Walker. These are a mixture of image-based observation,
continuous actions and generally more complex environments than classic control.

* 2D and 3D Robotics - Robotic control tasks using MuJoCo [Todorov et al., 2012], a physics-
based simulator including Half-cheetah, Humanoid, Ant and more. These provide a relative
challenge for robotics using continuous observations and actions. For a project with more
diverse robotics tasks, see Gymnasium Robotics [de Lazcano et al., 2023].

* Third party - Arcade Learning Environments [Bellemare et al., 2013] for playing Atari
2600 ROMs, Safety Gymnasium [Ji et al., 2023] for testing safe RL algorithms in robotics
environments, HighwayEnv [Leurent, 2018] for simulating various driving situations and
PyFlyt [Tai et al., 2023] for drone flying simulation. For a more complete list, see the third
party environment page.

5 Related Work

While Gym gained significant popularity following its release, there are other competing environment
APIs, though significantly less common. Notably, DmEnv [Muldal et al., 2019] provides a similar
interface as Gymnasium, and is often used in projects by Google DeepMind. PettingZoo [Terry et al.,

https://gymnasium.farama.org/environments/classic_control/
https://gymnasium.farama.org/environments/toy_text/
https://gymnasium.farama.org/environments/box2d/
https://gymnasium.farama.org/environments/mujoco/
https://robotics.farama.org/
https://gymnasium.farama.org/environments/third_party_environments/
https://gymnasium.farama.org/environments/third_party_environments/

] provides an API for multiagent environments, and MO-Gymnasium [,] for
multi-objective environments. Both of these libraries are fully compatible with Gymnasium.

As the complexity and capabilities of RL algorithms grow, it is often useful to improve the perfor-

mance of RL environments. To this end, projects such as EnvPool [,] and Sample
Factory [,] implement C++ environments that enable highly performant and
parallelized sampling. Other projects, such as Gymnax [,], Jumanji [, 1,
Brax [s] and PGX [R] use Jax [s] to

enable high parallelization and hardware acceleration of environment updates.

Finally, various dedicated training libraries exist, many of them being compatible with Gymnasium.
This includes CleanRL [,] with simple, single-file implementations; Stable Baselines
31 s] with a wide range of supported workflows; RLLib [s] with
highly performant and parallelizable algorithms; and many more.

6 Conclusion

Gymnasium serves as a robust and versatile platform for RL research, offering a unified API that
enables compatibility across a wide range of environments and training algorithms. By focusing
on key aspects such as reproducibility, easy customization through wrappers, and environment
vectorization, Gymnasium ensures a streamlined and efficient workflow for researchers. The future
of Gymnasium will be shaped by its active community, hopefully continuing to serve as a centrepiece
of the open-source RL research community for many years to come.

References

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253-279,
jun 2013.

C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dgbiak, C. Dennison, D. Farhi, Q. Fischer,
S. Hashme, C. Hesse, et al. Dota 2 with large scale deep reinforcement learning. arXiv preprint
arXiv:1912.06680, 2019.

C. Bonnet, D. Luo, D. Byrne, S. Surana, V. Coyette, P. Duckworth, L. I. Midgley, T. Kalloniatis,
S. Abramowitz, C. N. Waters, A. P. Smit, N. Grinsztajn, U. A. M. Sob, O. Mahjoub, E. Tegegn,
M. A. Mimouni, R. Boige, R. de Kock, D. Furelos-Blanco, V. Le, A. Pretorius, and A. Laterre.
Jumanji: a diverse suite of scalable reinforcement learning environments in jax, 2023. URL
https://arxiv.org/abs/2306.09884.

J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke,
J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transformations of
Python+NumPy programs, 2018. URL http://github.com/google/jax.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba. Openai
gym. arXiv preprint arXiv:1606.01540, 2016.

R. de Lazcano, K. Andreas, J. J. Tai, S. R. Lee, and J. Terry. Gymnasium robotics, 2023. URL
http://github.com/Farama-Foundation/Gymnasium-Robotics.

F. Felten, L. N. Alegre, A. Nowé, A. L. C. Bazzan, E. G. Talbi, G. Danoy, and B. C. da. Silva.
A toolkit for reliable benchmarking and research in multi-objective reinforcement learning. In

Proceedings of the 37th Conference on Neural Information Processing Systems (NeurlPS 2023),
2023.

C. D. Freeman, E. Frey, A. Raichuk, S. Girgin, I. Mordatch, and O. Bachem. Brax - a differentiable
physics engine for large scale rigid body simulation, 2021. URL http://github.com/google/
brax.

S. Huang, R. F. J. Dossa, C. Ye, J. Braga, D. Chakraborty, K. Mehta, and J. G. Aradgjo. Cleanrl:
High-quality single-file implementations of deep reinforcement learning algorithms. Journal
of Machine Learning Research, 23(274):1-18, 2022. URL http://jmlr.org/papers/v23/
21-1342.html.

https://arxiv.org/abs/2306.09884
http://github.com/google/jax
http://github.com/Farama-Foundation/Gymnasium-Robotics
http://github.com/google/brax
http://github.com/google/brax
http://jmlr.org/papers/v23/21-1342.html
http://jmlr.org/papers/v23/21-1342.html

J. Ji, B. Zhang, J. Zhou, X. Pan, W. Huang, R. Sun, Y. Geng, Y. Zhong, J. Dai, and Y. Yang. Safety
gymnasium: A unified safe reinforcement learning benchmark. In Thirty-seventh Conference
on Neural Information Processing Systems Datasets and Benchmarks Track, 2023. URL https:
//openreview.net/forum?id=WZmlxIuIGR.

S. Koyamada, S. Okano, S. Nishimori, Y. Murata, K. Habara, H. Kita, and S. Ishii. Pgx: Hardware-
accelerated parallel game simulators for reinforcement learning. In Advances in Neural Information
Processing Systems, 2023.

R. T. Lange. gymnax: A JAX-based reinforcement learning environment library, 2022. URL
http://github.com/RobertTLange/gymnax.

E. Leurent. An environment for autonomous driving decision-making. https://github.com/
eleurent/highway-env, 2018.

E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg, J. Gonzalez, M. Jordan, and I. Stoica.
Rllib: Abstractions for distributed reinforcement learning. In International conference on machine
learning, pages 3053-3062. PMLR, 2018.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

A. Muldal, Y. Doron, J. Aslanides, T. Harley, T. Ward, and S. Liu. dm_env: A python interface for
reinforcement learning environments, 2019. URL http://github.com/deepmind/dm_env.

A. Petrenko, Z. Huang, T. Kumar, G. S. Sukhatme, and V. Koltun. Sample factory: Egocentric 3d
control from pixels at 100000 FPS with asynchronous reinforcement learning. In Proceedings of
the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual
Event, volume 119 of Proceedings of Machine Learning Research, pages 7652-7662. PMLR, 2020.
URL http://proceedings.mlr.press/v119/petrenko20a.html.

A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann. Stable-baselines3:
Reliable reinforcement learning implementations. Journal of Machine Learning Research, 22
(268):1-8, 2021. URL http://jmlr.org/papers/v22/20-1364 .html.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,
M. Lai, A. Bolton, et al. Mastering the game of go without human knowledge. nature, 550(7676):
354-359, 2017.

J. J. Tai, J. Wong, M. Innocente, N. Horri, J. Brusey, and S. K. Phang. Pyflyt-uav simulation
environments for reinforcement learning research. arXiv preprint arXiv:2304.01305, 2023.

J. Terry, B. Black, N. Grammel, M. Jayakumar, A. Hari, R. Sullivan, L. S. Santos, C. Dieffendahl,
C. Horsch, R. Perez-Vicente, et al. Pettingzoo: Gym for multi-agent reinforcement learning.
Advances in Neural Information Processing Systems, 34:15032-15043, 2021.

E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026-5033. IEEE,
2012. doi: 10.1109/IROS.2012.6386109.

O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi, R. Powell,
T. Ewalds, P. Georgiev, et al. Grandmaster level in starcraft ii using multi-agent reinforcement
learning. Nature, 575(7782):350-354, 2019.

J. Weng, M. Lin, S. Huang, B. Liu, D. Makoviichuk, V. Makoviychuk, Z. Liu, Y. Song, T. Luo,
Y. Jiang, Z. Xu, and S. Yan. EnvPool: A highly parallel reinforcement learning environment
execution engine. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors,
Advances in Neural Information Processing Systems, volume 35, pages 22409-22421. Curran As-
sociates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/8caaf08e49ddbad6694fae067442ee21-Paper-Datasets_and_Benchmarks.pdf.

https://openreview.net/forum?id=WZmlxIuIGR
https://openreview.net/forum?id=WZmlxIuIGR
http://github.com/RobertTLange/gymnax
https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env
http://github.com/deepmind/dm_env
http://proceedings.mlr.press/v119/petrenko20a.html
http://jmlr.org/papers/v22/20-1364.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/8caaf08e49ddbad6694fae067442ee21-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8caaf08e49ddbad6694fae067442ee21-Paper-Datasets_and_Benchmarks.pdf

	Introduction
	Design Decisions
	Environment Specification
	Observation & Action Spaces
	Starting an episode
	Stepping through an episode
	Rendering an environment
	Metadata, environment spec

	Built-in Environments
	Related Work
	Conclusion

