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Abstract—Changes in oceanic variables, such as sea surface
temperature (SST) and chlorophyll-a (Chl-a), have important
implications for marine ecosystems and global climate change.
The deep learning methods relying on convolutional neural
networks can be employed to extract the spatial correlation for
the prediction of oceanic variables. However, these methods are
inflexible in the cases where some regions, e.g., land and islands,
are invalid for the prediction of oceanic variables. By contrast,
graph convolutional networks (GCN) are capable of capturing
the large-scale spatial dependency existing in irregular data.
Therefore, in this paper, we propose a GCN-based method for
the prediction of oceanic variables, i.e., SST and Chl-a, referred
it to as OVPGCN, to achieve high-accuracy. The proposed
OVPGCN consists of three modules aiming to fully extract the
spatial correlation and temporal dependency via modeling the
multi-characteristics of the spatio-temporal dynamic evolution.
In particular, three modules are implemented to extract the
stationary and non-stationary variations in the recent spatio-
temporal sequences, the spatial differences between different
sites, and the periodic features in historical data, respectively.
The well-designed OVPGCN is applied to the monthly SST and
Chl-a prediction in the Bohai Sea and the Northern South China
Sea (NSCS). The performance demonstrates that the proposed
OVPGCN is highly effective and enables to achieve much higher
prediction accuracy than the state-of-the-art methods.

Index Terms—Oceanic variables prediction, sea surface tem-
perature (SST), chlorophyll-a (Chl-a), deep learning, graph
convolutional network (GCN).

I. INTRODUCTION

OCEAN accounts for approximately the seven-tenths of
the earths surface and acts as the earths thermostat and

conveyor belt. The changes of oceanic variables, such as sea
surface temperature (SST) and chlorophyll-a (Chl-a), have
a significant impact on the global or local climate, marine
ecosystem, and even vegetation [1–3]. For instance, SST can
affect the precipitation distribution and its anomaly variation
may lead to droughts and floods [4]. In order to quickly
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respond to climate change and avoid the impending ocean
crisis, it is of paramount importance to predict the spatio-
temporal evolution of the key oceanic variables, as early and
accurately as possible.

The methods for forecasting oceanic variables can in general
be classified into two categories, namely the physics-based
methods and the data-driven methods. Straightforwardly, the
physics-based approaches conduct prediction via designing the
models by integrating the relevant physical and dynamical
equations [5], such as the coupled ocean-atmosphere general
circulation models (GCMs) [6]. Due to the boom in the
application of high-performance computational device, the
physics-based methods have been comprehensively developed
in the past decade, with the motivation to achieve high accu-
racy and resolution [7]. However, the existing physics-based
methods suffer from extremely high computation complexity
and require the prior knowledge of a large number of oceanic
variables. Furthermore, the errors may be introduced by the
parameter initialization, which hinders the model from reliable
prediction in practical applications [8].

By contrast, the data-driven methods predict oceanic vari-
ables relying purely on the observational data, without access
to the prior knowledge and the embedded physical processes.
The data-driven methods exploit the historic data to learn
the underlying evolution rules via mining the spatio-temporal
variations of the oceanic variables. To take these advantages,
the traditional learning-based methods, such as support vector
regression (SVR) and artificial neural networks (ANN), have
been widely introduced for the prediction of single point of
oceanic variables [9–11]. However, these traditional learning-
based methods are in general only feasible for handling
the relatively simple nonlinear associations, but not suitable
for forecasting the complex spatio-temporal evolution in the
oceanic variable field consisting of multiple observation points.

In this regard, researchers have resorted to the more ad-
vanced deep learning (DL) methods for the prediction of
oceanic variables. This is also the result of development of
the ocean satellite observations and ocean data assimilation
technologies, which make a large amount of marine environ-
mental data with high resolution available [12]. Specifically,
the recurrent neural network (RNN)-based methods, such as
the long short-term memory (LSTM) and gate recurrent unit
(GRU) [13, 14], have been designed for solving the temporal
sequence modeling problems, where the dynamic loop mech-
anism and long-term memory are obtained using control gates
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Fig. 1. Prediction of oceanic variables based on the DL methods with different
convolution operations and the multi-characteristics of the spatio-temporal
dynamic evolution.

[15–17]. In [18], the authors applied a LSTM model for SST
prediction, showing that the LSTM outperforms SVR and also
the multilayer perceptron regression. In comparison with the
conventional learning-based methods, LSTM and GRU are
capable of exploiting the temporal information for perfor-
mance improvement, but they fail to make use of the spatial
correlation within the ocean, and hence the performance can
be further improved for spatio-temporal prediction problems.

To this end, by considering that convolutional operation
can mine local spatial correlation based on extracting neigh-
borhood information [19], the convolutional long short-term
network (ConvLSTM) [20], which integrates the convolutional
operation into LSTM, has also been proposed for precipitation
prediction and widely used for the prediction of SST, sea
surface height, sea ice, etc. [21–26]. For example, in [27], the
daily sea ice concentration (SIC) prediction in the Northeast
Passage has been improved by using a ConvLSTM-based
algorithm to extract the spatio-temporal variation of SIC.
Owing to the advantages of ConvLSTM over the conventional
DL methods, many variant methods have been proposed for
prediction of spatio-temporal processes [28–30]. Besides, the
CNN-based methods, which endeavor to improve the spatial
domain feature extraction, have also catched wide attentions
for the prediction of oceanic variables [31–33]. As an example,
in [34], the authors proposed a multi-scale CNN method for
forecasting SST evolution, which allows to enlarge the recep-
tive field and be free from the local connectivity limitations,
and thereby enhancing the prediction accuracy.

A. Motivation

The above-mentioned conventional DL-based prediction
methods have to be operated with regular grid structure. This
makes them inflexible for some implementation and unable
to filter out some noisy regions, e.g., land and islands. To
tackle these shortcomings, in this paper, we formulate the
prediction of oceanic variables as a graph regression problem
and solve it using graph convolutional network (GCN) [35].
The underneath potential is that GCN is able to carry out
the convolutional operation on the non-Euclidean and irreg-
ular data, by regarding and modeling the large-scale global
connections as edges of a graph, as shown in Fig. 1.

To date, there have been some preliminary researches on the
introduction of GCN for the prediction of oceanic variables.

Specifically, the authors of [36] firstly applied GCN to forecast
the SST evolution associated with a typical phenomenon: El
Niño-Southern Oscillation (ENSO), demonstrating that GCN
outperforms CNN for the ENSO forecast up to six months
ahead. In [37], the authors designed a graph based on the
geographic distance information of the offshore wind nodes.
Based on it, the proposed algorithm can maximize the high-
dimensional spatial correlation features of these nodes to
improve the prediction accuracy of wind speed. Zhang et
al. [38] proposed a memory graph convolutional network
(MGCN) framework, which consists of memory and graph
layers, for the SST prediction. More specifically, in MGCN,
the memory layer captures the temporal changes of the SST
sequence, whereas the graph layers are functioned to learn
the spatial relationship. Note that, in the aforementioned
papers, the graph convolution is operated in the spectral-
domain, by drawing the correlation relationships after the
Fourier transformer of data. On the other hand, there is a
class of GCN, such as GraphSAGE [39], which implement the
graph convolutional operation based on the spatial relationship
of nodes. Furthermore, in [40], a time-series graph network
(TSGN) was proposed to jointly capture the spatial correlation
and temporal dynamics, which combines GraphSAGE with
LSTM.

In reality, the spatio-temporal evolution of oceanic variables
are not only relied on the short-term temporal patterns, but
also on the long-term changes and geographical differences.
To our knowledge, the existing GCN-based approaches in the
literatures for oceanic variable prediction focus mainly on the
mining of the spatio-temporal features existing in the recent
historical sequences, i.e., short-term correlation, as shown in
Fig. 1. However, they ignore or are incapable of mining
the multi-characteristics of the dynamic evolution of oceanic
variable fields, such as the spatial differences, as well as
the periodicity existing in the long-term temporal evolution,
as shown in Fig. 1. As the result, the existing GCN-based
methods fail to fully extract the joint spatio-temporal depen-
dencies for achieving the best possible prediction performance,
especially when the training samples are not sufficient. There-
fore, to fill this research gap, i.e, to capture all information
of spatio-temporal evolution embedded in data and achieve
the maximum performance, in this paper, a novel GCN-based
spatio-temporal prediction model is designed, which carries
out prediction by exploiting the multi-characteristics of the
spatio-temporal dynamic evolution of the oceanic variable
fields, as to be detailed in our forthcoming discourses.

B. Contributions

In this paper, we propose a GCN-based spatio-temporal
model to attain the high-accuracy and stable prediction of
oceanic variables based on monthly data, which is termed
as the OVPGCN. OVPGCN is constituted by three mod-
ules, namely the spatio-temporal correlation feature extraction
(STCFE) module, bias correction (BC) module, and periodic
dependency mining (PDM) module. With the aid of these
modules, OVPGCN is enabled to fully extract the spatial
correlations and temporal dependency existing in the data
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of oceanic variables. In more detail, the gridded data of
oceanic variable are mapped to the nodes of the graph data,
as shown in Fig. 2. Based on the distance-based topology
graph construction, the relationship graph of dynamic ocean
patterns is designed to construct the dual graph as inputs to
STCFE module. Furthermore, inspired by [41, 42] in the field
of traffic forecasting, multiple ST-Conv blocks are introduced
to extract the high-level features of both the spatio-temporal
stationary and non-stationary variations in STCFE module.
By contrast, the spatial differences between different sites are
captured by the BC module, while the periodic characteristics
of the oceanic variables are mined by the PDM module from
the historical data. Finally, the outputs obtained from these
three modules are integrated by a multi-module fusion (MMF)
module to provide the final prediction results. In summary, the
main contributions of this paper are stated as follows.

1) An OVPGCN framework for the prediction of oceanic
variables is proposed, which enables to extract the multi-
characteristics of the spatio-temporal dynamic evolution of
oceanic variables. In contrast to the existing works focusing
mainly on extracting the short-term spatio-temporal features,
OVPGCN invokes a PDM module to mine the periodic vari-
ations of oceanic variables and a BC module to capture the
spatial differences between various sites of the ocean.

2) A GCN-based framework is designed in OVPGCN to
overcome the problem of data irregularity, via graph rep-
resentation and modeling of large-scale global connections.
The developed STCFE module in OVPGCN takes the dual
graphs as inputs and is constituted by several spatio-temporal
convolutional blocks, which enhance the feature extraction of
spatio-temporal correlations.

3) The proposed OVPGCN is applied to both SST and Chl-
a prediction. Extensive experiments are carried out to validate
the functions of OVPGCN, and to demonstrate its superiority
to the state-of-the-art methods.

The rest of the paper is organized as follows. Section II
details the proposed OVPGCN framework for prediction of
oceanic variables. Section III reports the experimental results
and provides our analysis for SST and Chl-a prediction.
Finally, we summarize the research observations and discuss
the possible future work in Section IV.

C. Formulation of the Oceanic Variable Prediction Problem

The format of the oceanic variable dataset is usually grid-
ded, according to the geographical locations, which can be
naturally mapped to the nodes of the graph data, as shown
in Fig. 2. In our work, we define V = (v1, v2, . . . , vN ) as
the node set of an undirected graph G = (V,E), where each
node vi is a valid grid, defined by its latitude and longitude,
and E is a set of edges, defining the connections between
nodes. Furthermore, all connectivity information is stored in an
adjacency matrix A ∈ RN×N , with Ai,j > 0 if (vi, vj) ∈ E
and Ai,j = 0 if (vi, vj) /∈ E.

II. METHODS

In our study, the univariate prediction of oceanic variables
is investigated. Taking the SST prediction as an example,

graph

Fig. 2. An example of the gridded data mapped to a graph data. The locations
of coasts and islands are considered to be invalid grids, as shown by the white
grid points.

where SST is the only input variable and also the only output
variable. Let X 1:τ = (X1,X2, . . . ,Xτ ) ∈ RN×τ be the
dynamic feature sequences of N nodes over τ time steps,
where Xt = (xt1, x

t
2, . . . , x

t
N )T ∈ RN denotes the feature

value of this individual variable of the N nodes at time t.
Then, the goal of oceanic variable prediction is to predict the
future sequences over the following Tl time steps, which can
be formulated as:

X̂ τ+1:τ+Tl = arg maxX τ+1:τ+Tl
P (X τ+1:τ+Tl | X 1:τ ) (1)

where X̂ τ+1:τ+Tl =
(
X̂τ+1, . . . , X̂τ+Tl

)
represents the

predicted sequences from τ + 1 to τ + Tl.

A. Overview of Proposed OVPGCN

To further exploit the multi-characteristics embedded in the
spatio-temporal dynamic evolution of oceanic variables, we
propose an OVPGCN model based on the graph structure
to achieve the prediction of oceanic variables. The overall
framework of OVPGCN is shown in Fig. 3. In detail, the
inputs to the OVPGCN are the dynamic graph sequences X 1:τ ,
which are mapped from the historical gridded data of the
oceanic variable. As shown in Fig. 3, X 1:τ are first fed into
the graph construction (GC) module to generate three dynamic
feature sequences of graph, and construct their correspond-
ing adjacency matrices. Then, the spatio-temporal correlation
feature extraction (STCFE), bias correction (BC), and the
periodic dependency mining (PDM) modules are tailored to
mine the multi-characteristics of the spatio-temporal evolution
of the oceanic variables. The functionalities of these three
modules can be highlighted as follows: (i) the most recently
occurred ocean flows explicitly have an influence on the future
ocean flows. Hence, the STCFE module is designed to mine
the future complex spatio-temporal correlation with the past
historical data. (ii) The nodes (sites) of different areas in the
oceanic variable dataset have the spatial differences that may
be caused by different factors, such as seabed topography and
regional propagation conditions. When the number of samples
is limited, it is often difficult for the STCFE module to fully
explore the spatial differences of nodes. In this regard, the BC
module is introduced to capture the spatial differences of the
different nodes, and hence improve the prediction performance
and robustness of the SCEE module. (iii) The PDM module is
implemented to mine the periodic characteristic of the oceanic
variable from the historical data so as to improve the accuracy
of long-term prediction. After the processing of these three
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Fig. 3. Overall network structure of OVPGCN, including the GC, STCFE, BC, PDM, and MMF modules. Detailed definitions of these symbols, such as Xa,
X e, X r , are given in Section II-B.
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Fig. 4. An example for showing the construction of the time series segments.
t0 denotes the current or reference time and Tl denotes the size of predicting
window. Tr corresponds to the time segment contained in sequence X r ,
Te corresponds to the time segment contained in sequence X e, and Ta

corresponds to the time segment contained in sequence Xa.

modules, their outputs are effectively merged to obtain the
final prediction results in the multi-module fusion (MMF)
module. As seen in Fig. 3, these colored rectangles represent
the feature vectors generated after the previous operation. For
instance, the first green rectangle in the BC module signifies
the graph feature vector obtained by passing X e through the
‘GCN Block’. Below we analyze these modules one-by-one
in detail.

B. Graph Construction

In this part, we define the three feature sequences of graph
nodes and their corresponding adjacency matrices, as shown
in Fig. 3, to obtain the inputs to the STCFE, BC and PDM
modules. It is assumed that the reference time is t0 and the
size of prediction window is Tl. Firstly, the feature sequences
of graph nodes to be input to these three modules are denoted
respectively as the recent segment (X r), earlier segment (X e),
and annual-periodic segment (X a), which are detailed as
follows:

1) X r is comprised of the feature sequences of graph nodes
over Tr time steps before t0. As shown by the red part of Fig.

4, Tr is a segment of the historical time series directly adjacent
to the time for prediction. In detail, X r is constructed as

X r = (Xt0−Tr+1,Xt0−Tr+2, . . . ,Xt0) ∈ RN×Tr (2)

2) X e is comprised of the feature sequences of graph nodes
over Te time steps close to Tr, as shown by the green part of
Fig. 4. In detail, X e is constructed as

X e = (Xt0−Tr−Te+1,Xt0−Tr−Te+2, . . . ,Xt0−Tr ) ∈ RN×Te
(3)

3) X a is comprised of the feature sequences of graph nodes
over Ta time steps close to Te. As shown by the blue part
of Fig. 4, Ta is a segment of historical time series having
the same month attributes as the forecasting time window Tl.
Specifically, in Fig. 4, Tl is the time interval between July
and September in 2020, and Ta represents the time segment
between July and September in 2017, 2018 and 2019. In detail,
X a is constructed as

X a = (Xt0−12∗(Ta/Tl)+1, . . . ,Xt0−12∗(Ta/Tl)+Tl ,

Xt0−12∗(Ta/Tl−1)+1, . . . ,Xt0−12∗(Ta/Tl−1)+Tl , . . . ,

Xt0−12+1, . . . ,Xt0−12+Tl) ∈ RN×Ta .
(4)

The original adjacency matrix A in Fig. 3 is generated based
on the spatial distance between nodes. The spatial distance
between nodes i and j is given by

di,j =

√(
vlat
i − vlat

j

)2
+
(
vlon
i − vlon

j

)2 (5)

where vlat
i and vlon

i denote the relative position explained by
the latitude and longitude of node i. Then, the element of
adjacency matrix A is computed as:

Ai,j =

{ 1
di,j

, di,j ≤ dmin
0, otherwise

(6)
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where dmin is a threshold. The nodes located with the distance
larger than dmin are considered to be disconnected in the
graph.

In the ocean, the spatiotemporal correlation between nodes
is not only dependant on the distance relied, but also con-
tributed by the variation relationship of ocean patterns. Specif-
ically, the correlations among nodes in graphs measured us-
ing topological distances are fixed. However, in the spatio-
temporal dynamic evolution of the ocean, the correlations
among nodes during different time segments exhibit variabil-
ity. For instance, during the summer months with typhoons
compared to the regular autumn months, nodes of the same dis-
tance on the central node have different correlations with that
central node. Therefore, in our model, an additional adjacency
matrix Ac is introduced to construct a graph Gc = (V,E)
to depict the ocean-pattern relationships. The ocean-pattern
relationships graph can avoid the limitations of the above-
mentioned distance-dependant graph and closely connect the
nodes having similar variations. Specifically, the ocean-pattern
relationship of these nodes is measured using the Pearson
correlation coefficient of

pi,j =

∑t0
t=t1

(Xr(t,i) − X̄r(i))(Xr(t,j) − X̄r(j))√∑t0
t=t1

(Xr(t,i) − X̄r(i))
2
√∑t0

t=t1
(Xr(t,j) − X̄r(j))

2

(7)
where t1 = t0 − Tr + 1, Xr(i) are the historical sequences of
node i in Xr, Xr(t,i) represents the value of Xr(i) at time t.
X̄r(i) represents the average value of Xr(i) in the period from
t1 to t0. Then, Ac has the element value of

Ac
i,j =

{
pi,j , pi,j 6= 0
0, pi,j = 0

(8)

C. Spatio-Temporal Correlation Feature Extraction

The objective of the STCFE module is mainly to capture
the spatio-temporal correlation existing between the recent
segment X r and the sequence to be predicted. In our paper,
by introducing the relationship graph Gc = (V,E) of dynamic
ocean patterns to this module, it is capable of avoiding
the deficiency of the distance-based topology graph, which
captures the spatial-temporal correlation based only on the
distance from neighbors. Furthermore, as shown in Fig. 3,
multiple ST-Conv blocks are designed to extract the high-
level features of both the spatio-temporal stationary and non-
stationary variations. Owing to these characteristics, the ca-
pability of the STCFE module to mine the spatio-temporal
correlation features can be improved.

In detail, as shown in Fig. 3, the STCFE module consists
of the multiple ST-Conv Blocks and a graph convolutional
(Gconv) layer. In each of the ST-Conv Blocks, there are two
parallel Gconv layers for capturing the spatial dependency
with neighborhoods and a ‘Temporal Gated-Conv’ layer for
exploiting the temporal dependency with nearby observations
along the temporal dimension. Specifically, the Gconv layer
performs the spatial-domain graph convolutional operation
[43], expressed as:

h
′

vi = W 1hvi + W 2

∑
jεN (i)

ei,j · hvj (9)

where h
′

vi is the updated representation of node vi by ag-
gregating its own features hvi with neighbors features hvj ,
ei,j denotes the edge weight between node vi and node vj ,
N (i) = {vj ∈ V |ei,j ∈ E} represents the neighborhood of
node vi, and finally W 1 and W 2 are the learnable parameters.

In our method, the function fG(·) is used to represent the
Gconv layer, which performs the operations on the distance
topology graph, with the value of ei,j given by AAAi,j . By
contrast, the function fGc(·) is for the Gconv layer of the lower
branch in ST-ConvBlock, which is operated on the relationship
graph Gc of the dynamic ocean patterns, with the value of ei,j
is denoted by AAAci,j . Therefore, the feature map to the input of
the first ‘Temporal Gated-Conv’ layer can be obtained as:

F (1) = (ReLU(fG(X r)) +ReLU(fGc(X r)))�W 3 (10)

where � denotes the element-wise Hadamard product, W 3

is a learnable parameter matrix and the rectified linear unit
(ReLU) activation function is used.

Inspired by [44], the entire convolution structure on time
axis is introduced to capture the temporal dynamic features
of ocean variations. In detail, the ‘Temporal Gated-Conv’
layer contains a 1-D causal convolution (1-D Conv) operation
followed by the gated linear units (GLU) as a non-linearity
function [41], which can be written as:

fΓ(F (k)) = (F (k) + (Φ ∗ F (k)))� σ(Φ ∗ F (k)) (11)

where the function fΓ(·) is used to represent the operation
of the Temporal Gated-Conv layer, F (k) denotes the feature
map of the kth ST-Conv Block input to the ‘Temporal Gated-
Conv’ layer, ‘∗’ represents the convolution operation, Φ is the
parameters of the convolution kernel, and σ(·) is the sigmoid
function.

After stacking the two ST-Conv Blocks in Fig.3, an extra
Gconv layer is implemented as the output layer in the STCFE
module, giving the output expressed as:

F r = fG(fΓ(F (2))) (12)

D. Bias Correction

In [34], the natural differences among different sites are
considered so as to correct the prediction results by adding a
self-defined and fixed bias correction map. However, designing
this kind of maps requires the specialized domain knowledge,
and different maps have to be designed for different prediction
areas. Moreover, the performance of prediction varies in differ-
ent time periods due to these natural differences. Therefore,
to mitigate the challenge while simultaneously improve the
accuracy and robustness, we design a BC module, as shown
in Fig. 3, to learn the spatial differences, and correspondingly
output an adaptive correction map for correcting the prediction
results.

In detail, as shown in Fig. 3, X e is the input to the ‘GCN
Block’ in the BC module, which produces the feature vector
F̂ e having the same size as the recent-time segment X r. The
‘GCN Block’ consists of three cascaded Gconv layers, each
of which is followed by a ReLU function. Next, the network
generated F̂ e is subtracted from the real data X r to obtain a
spatial difference feature matrix. Then, this matrix is sent to
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the Gconv layer, which further mines the spatial relationship
to finally produce the bias correction map as

F e = fG(X r − F̂ e) (13)

E. Periodic Dependency Mining

The function of this module is to capture the annual periodic
features of the oceanic variables in historical data, so as to
generate the future sequence X̂ a for improving the long-term
prediction results. The motivation here can be highlighted
as follows. The evolution of oceanic variables presents the
periodic nature and can be exploited to enhance prediction
accuracy. However, the existing prediction methods only use
the recent data for forecasting, and hence it is difficult to
mine the periodicity for achieving better performance. For
example, when the 6-lead prediction is considered, using
the data from December to February to predict an oceanic
variable in August may lead to undesirable performance. This
is because the evolution characteristics of an oceanic variable
in winter is different from that in the predicted month in
summer. In contrast, the August to be predicted has similar
evolutionary characteristics to the historical Augusts. Note that
here a possible solution is that we can directly feed all the
historical data to the model, and let the model automatically
learn the periodicity. For example, we can input the historical
data of 3 years instead of 3 months (December to February)
to make prediction. However, for this kind of schemes, it may
be challenging to train the network in the case of insufficient
data samples and furthermore the performance is limited by
the model complexity. Therefore, in this paper, we only use the
same historically segmental time series as the segment to be
predicted so that the future sequences can be predicted using
a simple network. To be more specific, as shown in Fig. 3, the
PDM module consists of a Gconv layer followed by a ReLU
function, a ‘Temporal Gated-Conv’ layer and an output Gconv
layer to jointly process the graph-structured time series. The
predicted sequence X̂ a is computed as:

X̂ a = fG(fΓ(ReLU(fG(X a)))) (14)

F. Multi-Module Fusion

Finally, as shown in Fig. 3, the MMF module is operated to
integrate the outputs of the STCFE, BC, and PD, to provide the
final prediction for the whole lead time series. First, the output
F e of BC module and the output F r of STCFE module are
combined, and the output of which is further processed using
a Gconv layer, yielding the predicted sequence

X̂ r = fG(F e + F r) (15)

After the bias correction, the impact of periodic charac-
teristics is then taken into account. In practice, the variation
of some forecasting sub-regions presents the periodic patterns
and seasonal differences, and in this case, the output of the
PD module is more important. On the other side, the periodic
characteristics is not obvious in some sub-regions. In this case,
the output of the STCFE module mainly mining the short-term
spatio-temporal evolution is more crucial. Consequently, when
the outputs of X̂ r and X̂ a are fused for forecasting different

sub-regions and time series, they should be weighted differ-
ently via the learning from the historical data. Hence, when
taking account of the above-mentioned, the final prediction
results provided by the MMF module can be written as

X̂ τ+1:τ+Tl = W r � X̂ r + W a � X̂ a (16)

where W r and W a are learning parameters, reflecting the
degrees of influence of X̂ r and X̂ a on the final prediction
results.

To train the OVPGCN network, the loss function introduced
is expressed as

L =

Tl∑
t=1

∥∥∥X̂ τ+t−1:τ+t −X τ+t−1:τ+t

∥∥∥2

(17)

where X τ+t−1:τ+t is the data of ground truth. For clarity,
the implementation procedures of our OVPGCN algorithm are
summarized as Algorithm 1.

Algorithm 1: Training of OVPGCN Algorithm
Input: Historical sequence X 1:τ , prediction step size Tl,

label X τ+1:τ+Tl , maximum epoch γ, and
learning rate λ.

Output: Predicted future sequence X̂ τ+1:τ+Tl .
1 Step 1: Graph Construction (GC)
2 Construct three feature sequences: X r, X e and X a;
3 Construct their corresponding adjacency matrices: A or

Ac, using Eq.(5)-(8).
4 Step 2: Training OVPGCN
5 Initialize STCFE, BC, PDM and MMF modules;
6 for each traing epoch do
7 a) Generate spatio-temporal correlation features F r,

based on Eq. (9)-(12), using STCFE module;
8 b) Generate bias correction map F e, as equation

(13), using the BC module;
9 c) Generate the predicted sequence X̂ a, based on Eq.

(14), using the PDM module;
10 d) Fuse F r, F e, and X̂ a, according to Eq. (15) and

(16), using the MMF module;
11 e) Predict X̂ τ+1:τ+Tl and update modules’

parameters using gradient descent.
12 end

III. EXPERIMENTS

A. Data and Study Area

In this study, we consider the spatio-temporal prediction
of two oceanic variables, namely SST and Chl-a, that are
commonly considered in the open literature. The studying
areas are the Bohai Sea and the Northern South China Sea
(NSCS). Note that, the Bohai Sea is located in the north of
China, bounded by 37◦ - 41◦N and 117.5◦ - 121.5◦E, and the
NSCS is bordered by the mainland of China in the west area,
bounded by 17◦ 25◦ N and 108◦ 121◦E.

The monthly mean SST data used in the experiment are ob-
tained from the ERAInterim of European Centre for Medium-
range Weather Forecasts (ECMWF). The temporal coverage of
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(a) Bohai (b) NSCS

Fig. 5. MAE of the prediction results when different numbers of Gconv layers
are respectively employed.

the SST datasets is from January 1979 to August 2019 with a
spatial resolution of 0.125◦. The monthly mean surface Chl-
a 5.0 data are downloaded from the Ocean Colour Climate
Change Initiative (OC-CCI) with a spatial resolution of 4 km.
The temporal coverage of the Chl-a datasets spans the period
from January 1998 to December 2020. As there are missing
data in the Chl-a 5.0 dataset, the Data Interpolating Empirical
Orthogonal Functions (DINEOF) method [45] is introduced
in this study to generate the estimate for the missing Chl-
a data because of various improper conditions, such as the
cloud obscuring measurements and the contamination of high
sun glint. The effectiveness of DINEOF has been studied in
detail in [46].

B. Experiment Settings for Prediction

The experimental settings for the SST and Chl-a prediction
are as follows. All our experiments are operated on a single
NVIDIA 1070 GPU, and the PyTorch framework is used to
build the neural network. The learning rate is set to 0.001.
The size of the mini-batch is set to 4, and the model is
trained by 100 epochs. We select 70% of the data as the
training samples, while the remaining 30% of the data are used
as the testing samples. During training, an adaptive moment
estimation (Adam) optimizer is applied. The implementation
of our model and that of the baseline methods related to GCN
are based on PyTorch Geometric (PYG) library [47]. Note that
in our work, dmin is set to

√
2 . As shown in Fig. 4, Tr and

Te are set to 6, and Ta is three times the size of Tl. We use
1-step, 3-steps, and 6-steps prediction to represent the lead
prediction of 1 month, 3 months, and 6 months, i.e., we have
Tl equaling to 1, 3, and 6. Additionally, pi,j is set to 0 if the
absolute value of pi,j less than 0.3, to reduce computation.

1) Baseline Models: The following neural network methods
are selected as the baselines for comparison with our model,
which are:
(a) CNN [31]: The CNN model is a three-layer network

structure for forecasting ENSO [31], which is highly
correlated to SST prediction. Note that the CNN model
has been slightly modified by removing the max-pooling
layer and fully connected layer to achieve the prediction
for all grid points in two-dimensional area.

(b) CNN-LSTM [48]: The CNN-LSTM, consisting of three
convolutional layers, a flattening layer, and an LSTM
layer, was proposed to predict Chl-a.

TABLE I
ABLATION EXPERIMENT OF ST-CONV BLOCK IN BOHAI SEA

Module MAE(◦C)
1-step 3-steps 6-steps

(i) w/o TGL, w/o Gc 0.725 0.971 1.098
(ii) w TGL, w/o Gc 0.712 0.967 1.015
(iii) w TGL, w Gc 0.690 0.873 0.989

TABLE II
ABLATION EXPERIMENT OF ST-CONV BLOCK IN NSCS

Module MAE(◦C)
1-step 3-steps 6-steps

(i) w/o TGL, w/o Gc 0.676 0.978 1.227
(ii) w TGL, w/o Gc 0.628 0.965 1.083
(iii) w TGL, w Gc 0.578 0.959 1.037

(c) ConvLSTM [22]: ConvLSTM was proposed to overcome
the drawbacks of LSTM in handling the spatio-temporal
data. The ConvLSTM-assisted baseline model is the same
as that in [22].

(d) GCN [35]: GCN treats data as an undirected graph and
uses a layer-wise propagation rule that is based on a
first-order approximation of the spectral convolutions on
graphs. This basline model consists of three layers of
GCN and ReLU functions.

(e) GraphSAGE [39]: GraphSAGE carries out the graph
convolution operations by aggregating the information of
neighboring nodes. This basline model consists of three
layers of GraphSAGE and ReLU functions.

(f) TSGN [40]: TSGN uses a LSTM network to aggregate
the features of time series data and establishes a graph
neural network model to jointly capture the graph-relied
spatial correlation and temporal dynamics. TSGN was
used to predict SST in the Pacific Northwest [40].

During the experiments, the six baseline models are trained
using the same hyperparameters, as above-mentioned during
the OVPGCN training.

2) Performance Metrics: Three performance metrics are
selected to measure the performance of the SST and Chl-a
prediction, which are the root mean square error (RMSE),
mean absolute error (MAE) and mean absolute percentage
error (MAPE), given as

RMSE =

√∑n
i=1 (pi − oi)2

n
(18)

MAE =

∑n
i=1 |pi − oi|

n
(19)

MAPE =
100%

n

n∑
i=1

∣∣∣∣pi − oioi

∣∣∣∣ (20)

respectively, where pi is the predicted value, oi is the true
value, and n denotes the total number of testing samples.

C. Ablation Study

1) Analysis of Gconv Layers: The SST datasets of the
Bohai Sea and the NSCS are selected for the ablation ex-
periment analysis. The influence of the different number of
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TABLE III
RMSE(◦C) PERFORMANCE OF STCFE, BC, AND PD MODULE ON THE SST DATA

STCFE BC PD Bohai Sea NSCS
1-step 3-steps 6-steps 1-step 3-steps 6-steps
0.942 1.272 1.413 0.870 1.298 1.601

X 0.876 1.116 1.255 0.728 1.197 1.296
X X 0.835 1.069 1.171 0.816 0.829 0.987
X X X 0.829 0.948 1.024 0.648 0.687 0.761

TABLE IV
MAE(◦C) PERFORMANCE OF STCFE, BC, AND PD MODULE ON THE SST DATA

STCFE BC PD Bohai Sea NSCS
1-step 3-steps 6-steps 1-step 3-steps 6-steps
0.725 0.971 1.098 0.676 0.978 1.227

X 0.690 0.873 0.989 0.578 0.959 1.037
X X 0.666 0.847 0.915 0.665 0.626 0.761
X X X 0.643 0.739 0.796 0.471 0.537 0.606

graph convolutional layers on the prediction performance is
first investigated. Then, the ablation experiments of the ST-
Conv Block are carried out. The above-mentioned experiments
are conducted based only on the STCFE module to easily
select the appropriate parameters. Furthermore, we carry out
extensive ablation study in the context of OVPGCN to demon-
strate the effectiveness of the STCFE, BC, and PD modules.

In this part, only the input X r is utilised to analyze the
influence of the number of Gconv layers on the prediction
result. The comparison of MAE with different numbers of
Gconv layers is shown in Fig. 5. As shown by the results,
for both the Bohai Sea and NSCS data, the network with 2-
layers achieves the relatively poorer performance, especially
for the Bohai Sea data. By contrast, the prediction performance
of the networks with 3-layers and 4-layers are similar. The
results reveal that adding more layers may not always improve
the prediction performance, which is due to the degradation
problem of the deep learning networks [21]. Therefore, when
also considering the implementation complexity, the network
with the 3 Gconv layers is chosen as a suitable network for
further experiments.

ReLU

Gconv
Gconv

ReLU

ReLU

Gconv T
em

p
o
ral

G
ated

-C
o
n
vReLU

Gconv
Temporal

Gated-Conv

i) w/o TGL, w/o   i) w/o TGL, w/o   ii) w TGL, w/o   ii) w TGL, w/o   

iii) w TGL, w   iii) w TGL, w   

Fig. 6. The structure of three modified ST-Conv Blocks.

2) Analysis of ST-Conv Block: To analyze the necessity
of the ‘Temporal Gated-Conv’ layer and two parallel Gconv
layers with the added relationship graph Gc, three modified
ST-Conv Blocks in the STCFE module are considered, which
are shown in Fig. 6 and explained as follows:

i) w/o TGL, w/o Gc: It denotes the modified ST-Conv Block
including only one Gconv layer with a ReLU function.
Thus, the network in the STCFE module consisting of
two cascade Block i) and one Gconv layer is referred as
a basic network;

ii) w TGL, w/o Gc: It adds the ‘Temporal Gated-Conv’ layer
on the basis of Block i);

iii) w TGL, w Gc: It adds the relationship graph Gc and
two parallel Gconv layers on the basis of Block ii). This
structure corresponds to the architecture of the ST-Conv
Block utilized in the OVPGCN model as depicted in Fig.
3.

The results are shown in Table I and Table II. From the
comparison of i) and ii), we can see that the MAE of prediction
for both study area is reduced by adding the ‘Temporal
Gated-Conv’ layer. Specifically, the MAE is decreased by
0.013, 0.004, and 0.083, respectively, when 1-step, 3-steps
and 6-steps prediction are carried out for the Bohai Sea data.
Correspondingly, for the NSCS data, the MAE is decreased
by 0.048, 0.013, and 0.144, respectively. Hence, the ‘Tem-
poral Gated-Conv’ layer is capable of mining the temporal
dependencies as well as the correlations existing in both the
temporal domain and spatial domain, which can be exploited
to improve the prediction accuracy. As shown in Table I and
Table II, using the Block iii), i.e., the ST-Conv Block in our
OVPGCN, achieves the best performance among the three
cases. Therefore, by further introducing the dynamic graph Gc,
the prediction performance can be improved. This is because
when multiple ST-Conv blocks are implemented, the network
can enhance the connectivity of nodes and take full advantages
of the stationary and non-stationary correlation characteristics
of the spatio-temporal data.

3) Performance of STCFE, BC, and PDM Modules: To
show the performance of these modules, a range of experi-
ments are conducted. The experimental results of RMSE and
MAE are shown in Table III and Table IV, respectively, for
the Bohai Sea and NSCS. Note that the first rows in the
tables correspond to a initial standard 3-layer Gconv network
without adding any other modules, which is defined as a basic
network. By contrast, the other rows in Table III and Table IV
correspond to the basic network with added STCFE, STCFE
and BC, and STCFE, BC and PDM, respectively, as indicated
in the tables. From the results shown in Table III and Table
IV, several groups of observations can be obtained as follows.
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TABLE V
PREDICTION RESULTS OF SST

Models Metrics Bohai Sea NSCS
1-step 3-steps 6-steps 1-step 3-steps 6-steps

CNN
RMSE 1.163 1.623 1.703 0.966 1.710 1.976
MAE 0.916 1.260 1.325 0.769 1.405 1.653

MAPE(%) 0.317 0.438 0.461 0.257 0.469 0.551

CNN-LSTM
RMSE 1.085 1.240 1.408 0.819 1.057 1.163
MAE 0.858 0.977 1.097 0.654 0.855 0.944

MAPE(%) 0.300 0.342 0.384 0.219 0.285 0.315

ConvLSTM
RMSE 0.998 1.229 1.280 0.764 0.954 1.059
MAE 0.776 0.943 1.014 0.587 0.738 0.831

MAPE(%) 0.270 0.330 0.356 0.197 0.247 0.278

GCN
RMSE 1.251 1.560 1.590 1.409 1.734 1.782
MAE 0.908 1.165 1.209 1.014 1.311 1.346

MAPE(%) 0.315 0.406 0.422 0.339 0.439 0.451

GraphSAGE
RMSE 0.933 1.267 1.314 0.858 1.335 1.506
MAE 0.719 0.971 1.053 0.668 1.009 1.169

MAPE(%) 0.250 0.339 0.369 0.223 0.374 0.392

TSGN
RMSE 0.879 1.162 1.215 0.793 1.295 1.366
MAE 0.676 0.893 0.937 0.608 0.943 1.008

MAPE(%) 0.236 0.313 0.328 0.204 0.316 0.338

OVPGCN
RMSE 0.829 0.948 1.024 0.600 0.687 0.761
MAE 0.643 0.739 0.796 0.471 0.537 0.606

MAPE(%) 0.226 0.260 0.280 0.158 0.180 0.203

First, the basic network performs the worst, and adding
the STCFE module to the basic network is able to increase
the prediction performance of the basic network. Specifically,
when the STCFE module is employed for the 1-step prediction,
the RMSE can be improved by 0.066 and 0.142, and the MAE
can be improved by 0.035 and 0.098, respectively, for the
Bohai Sea and NSCS data. Hence, the results verify that the
STCFE module is capable of mining the spatio-temporal dy-
namic correlations existing in the data sequences. Furthermore,
when the BC module is employed plus the STCFE module,
the prediction performance can be enhanced in most cases.
Specifically, when the 3-steps prediction is considered, the
RMSE can be improved by 0.047 and 0.368, and the MAE can
be improved by 0.026 and 0.333, respectively, for the Bohai
Sea and NSCS data. Therefore, it is effective to correct the
spatial differences. However, as seen in Table III and Table
IV, the prediction performance of using 1-step prediction for
NSCS data gets worse in terms of both RMSE and MAE.
The reason behind this may be that the 1-step prediction is
relatively simple and the temperature change in the NSCS is
smaller than that in the Bohai Sea, leading to the over-fitting
problem of the model. Finally, when further adding the PDM
module, the prediction results demonstrate that the periodic
patterns existing in the data can be mined for improving the
prediction accuracy. Therefore, with the aid of the STCFE, BC
and PD modules, the multi-characteristics of the ocean spatio-
temporal evolution can be fully exploited for improving the
prediction performance.

D. Experiment Results and Analysis for SST Prediction

Next, we compare our method with six baseline algotirhms,
as mentioned in Section III-B, for the SST prediction in the
Bohai Sea and NSCS.

Table V shows the RMSE, MAE, and MAPE values ob-
tained by the different prediction algorithms based on the
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Fig. 7. RMSE comparison of SST prediction in different calendar months
between OVPGCN, TSGN, GraphSAGE, ConvLSTM and CNN-LSTM: (a)
Bohai Sea and (b) NSCS.

datasets of the Bohai Sea and NSCS. Note that the Kelvin
(K) is used to calculate the MAPE of SST to avoid some
cases that the true values are close to 0◦C, resulting in a very
large MAPE value. From Table V, we can see that for given
prediction steps, CNN yields the poorest performance, as it has
a simple structure with finite feature extraction capability, and
in particular, it is unable to exploit the chronological depen-
dency of the input data. Both CNN-LSTM and ConvLSTM
outperform CNN, owing to their introduction of the LSTM
network to mine the temporal dependency in the SST data.
Moreover, as shown in Table V, ConvLSTM is slightly better
than CNN-LSTM.

All the above-mentioned three methods extract the spatial
correlation features through the convolution operation. By
contrast, the other four methods in Table V carry out the
graph convolution operation, via modeling the large-scale
global connections as the edges of the graph. As the results
shown in Table V, the performance obtained by GraphSAGE
is significantly better than that obtained by GCN. This implies
that the spatial domain convolution in GraphSAGE is better
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1-step prediction: (a) Bohai Sea and (b) NSCS.
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Fig. 9. The box plot of the MAE comparison for 1-step, 3-steps, 6-steps, and
12-steps SST prediction by OVPGCN.

than the spectral domain convolution in GCN, when they are
employed to perform SST prediction.

From Table V, we can explicitly see that our proposed
OVPGCN outperforms all the legacy baseline algorithms and
attains the best performance. Specifically, for the Bohai Sea,
it outperforms the TSGN, which provides the best prediction
results among the six baseline algorithms, about 0.050, 0.214
and 0.191 of the RMSE, when the 1-step, 3-steps, and 6-
steps predictions are implemented. In terms of MAPE, our
OVPGCN method outperforms TSGN by 0.010, 0.053, and
0.048, also when these predictions are considered. Similarly,
for the NSCS area, when the 1-step, 3-steps, and 6-steps
predictions are implemented, it outperforms the TSGN by
0.193, 0.608, and 0.605 of RMSE, and by 0.046, 0.136, and
0.135 of MAPE. Based on the experimental results shown in
Table V, we can conclude that our approach is in general
capable of outperforming the six legacy schemes for the SST
prediction, owing to its capability to effectively mine the
information about the multi-characteristics of oceanic spatio-
temporal evolution.

To further illustrate the performance of the proposed
OVPGCN, Fig. 7 compares the average RMSE attained by
OVPGCN and other four baseline algorithms in different
calendar months for 1-step prediction. For both the Bohai sea
and NSCS, compared to the other four baseline algorithms,
it can be observed that the proposed OVPGCN has the
lowest RMSE in most cases. Furthermore, these four baseline
algorithms exhibit notable variations in performance across
different calendar months. For instance, for the Bohai Sea data,
TSGN’s predictive performance is closest to that of OVPGCN,
with its best performance attained in April but the highest
RMSE exhibited in September. By contrast, for the NSCS data,
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Fig. 10. Example of qualitative results obtained by the OVPGCN for the SST
predictions of next 3-steps (months) in NSCS. (a) Predicted SST fields. (b)
True SST fields. (c) Deviation between observed and predicted SST fields.

the ConvLSTM generally outperforms the other four baseline
algorithms. Furthermore, the OVPGCN performs better on the
NSCS data than it does on the Bohai Sea data. The reason
behind is that, the seasonal SST variation in the Bohai Sea
is larger than that in the NSCS, resulting in that it is more
difficulty to predict the SST in the Bohai Sea area. From
these results, it can be implied that the proposed OVPGCN
model enables a relatively stable SST prediction performance
throughout a year. Correspondingly, the temporal trends of
the real and predicted SST values of OVPGCN from the last
five years of the test sample are present in Fig. 8. It can
be observed that the predicted results by the OVPGCN fit
well with the real SST data. As shown by the results, the
real SST exhibits clearly a monthly periodic characteristics.
Our proposed method can efficiently extract this periodicity,
resulting in a good periodic fitting with the real SST data.

Next, Fig. 9 shows the box plot for the MAE compari-
son of OVPGCN for 1-step, 3-steps, 6-steps, and 12-steps
SST prediction. It can be observed that, as the step size
of prediction increases, the MAE error of the OVPGCN
model does not exhibit a rapid increase. Moreover, for short,
medium, and long-term prediction, the distribution of MAE
remains relatively concentrated, without significant deviations.
Hence, the OVPGCN model can achieve stable long-term SST
prediction.

Fig. 10 shows an example of the spatial distributions of SST
prediction in NSCS for the next 3 steps, namely for predicting
the SST of July, August and September using the data before
July. From top to bottom, the predicted SST fields by the
proposed OVPGCN, the true SST fields, and the deviation
between them are shown sequentially. The results demonstrate
that the difference between the observed true values and the
predicted results are in general small and acceptable, even
when the prediction deviation becomes relatively larger, as
the step size of prediction becomes bigger.

E. Experiment Results and Analysis for Chl-a Prediction

Chl-a is a paramount variable in the ocean, which is used
as a key indicator of ecosystem changes. Therefore, in this
section, we depict the performance of OVPGCN for Chl-a
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TABLE VI
PREDICTION RESULTS OF CHL-A

Models Metrics Bohai Sea NSCS
1-step 3-steps 6-steps 1-step 3-steps 6-steps

CNN
RMSE 2.570 2.957 3.057 1.002 1.087 1.103
MAE 1.525 1.764 1.829 0.271 0.307 0.313

MAPE(%) 1.394 1.612 1.673 0.255 0.289 0.295

CNN-LSTM
RMSE 2.147 2.248 2.110 0.778 0.792 0.811
MAE 1.350 1.440 1.319 0.295 0.313 0.299

MAPE(%) 1.258 1.230 0.384 0.284 0.303 0.288

ConvLSTM
RMSE 2.052 2.398 2.683 0.835 0.916 0.989
MAE 1.179 1.578 1.774 0.252 0.316 0.329

MAPE(%) 1.092 1.469 1.650 0.240 0.302 0.315

GCN
RMSE 2.549 2.859 2.868 1.127 1.157 1.150
MAE 1.302 1.668 1.693 0.294 0.328 0.327

MAPE(%) 1.190 1.538 1.562 0.277 0.311 0.310

GraphSAGE
RMSE 2.139 2.583 2.582 0.870 0.972 0.971
MAE 1.239 1.554 1.577 0.254 0.292 0.294

MAPE(%) 1.146 1.440 1.460 0.242 0.278 0.280

TSGN
RMSE 2.117 2.532 2.523 0.875 0.966 0.970
MAE 1.200 1.507 1.507 0.256 0.288 0.291

MAPE(%) 1.108 1.395 1.394 0.242 0.274 0.277

OVPGCN
RMSE 1.727 1.852 1.911 0.738 0.718 0.711
MAE 0.991 1.081 1.106 0.216 0.222 0.225

MAPE(%) 0.918 1.003 1.023 0.206 0.212 0.215

prediction and compare it with other benchmarks. Table VI
shows the RMSE, MAE and MAPE results obtained by our
proposed OVPGCN and the baseline prediction algorithms on
the Chl-a prediction. From the results of Table VI, we can ex-
plicitly see that our proposed OVPGCN algorithm outperforms
all the other benchmarks in terms of these three performance
metrics. Specifically, for the Bohai Sea, it outperforms the
TSGN, respectively, by 0.390, 0.680 and 0.612 in terms of
RMSE, when the 1-step, 3-steps, and 6-steps predictions are
implemented. For the NSCS area, it outperforms the TSGN,
respectively, by 0.137, 0.248, and 0.259 in terms of RMSE,
again when the 1-step, 3-steps, and 6-steps predictions are
considered. Besides, from the results shown in Table VI, we
can observe that for the multi-steps Chl-a prediction, the MAE,
RMSE, and MAPE values obtained in the prediction of the
NSCS area are lower than the corresponding values in the
prediction of the Bohai Sea area. This is because about 84% of
the Chl-a values in the NSCS data fall in a small range of 0-1
mg ·m−3, making the model obtain very accurate predictions
reflected by the low these three metric values.

From the results given in Table VI, we can conclude that in
general, the performance of GraphSAGE is better than that of
CNN, explaining that the graphic convolutional operation is
capable of mining the spatial correlation for Chl-a prediction.
Moreover, TSGN is in general superior to GraphSAGE, which
reflects that implementing an LSTM network to aggregate
the neighboring node features enables to capture the temporal
information. The results in Table VI show that the performance
achieved by the six baseline methods, especially in the cases
for the three CNN-based methods, is not very stable when
the predictions of multi-step are carried out. Specifically,
this is reflected by the inconsistent results of the multi-step
predictions. As shown in Table VI, TSGN performs better
than ConvLSTM in both the 3-steps and 6-steps predictions,
but worse than ConvLSTM in the 1-step prediction. The
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Fig. 11. RMSE comparison of Chl-a prediction in different calendar months
between OVPGCN, TSGN, GraphSAGE, ConvLSTM and CNN-LSTM: (a)
Bohai Sea and (b) NSCS.

unstable performance is also reflected in the differences for
the prediction of different areas. While CNN achieves the
poorest performance in the prediction of Bohai Sea, it out-
performs GCN in the prediction of NSCS. By contrast, TSGN
outperforms CNN-LSTM, in terms of MAE and MAPE, but
generates a higher RMSE than CNN-LSTM when the NSCS
prediction is considered. The reason behind may be that the
relatively small number of Chl-a training samples makes it
difficult for these baseline algorithms to be fully optimized.
Additionally, the range of Chl-a data in the NSCS is relatively
large, with the values distributed in 0.01 - 126.85 mg ·m−3,
but most of them below 1 mg ·m−3, which results in the
inconsistency of the three performance indicators. Finally,
the proposed OVPGCN is capable of exploiting the spatial
differences and mining the spatial-temporal correlations from
multiple perspectives, making it achieve stable prediction, even
when there are only a small number of samples are available.
Consequently, no matter which area is predicted and what the
prediction lead time is, the OVPGCN is highly effective to
mine the embedded spatio-temporal information to attain the
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Fig. 12. Temporal trend of the real and predicted SST values for 1-step
prediction: (a) Bohai Sea and (b) NSCS.

best possible prediction.
Fig. 11 compares the average RMSE yielded by the

OVPGCN and other four baseline algorithms in different
calendar months for the 1-step Chl-a prediction. It can be seen
that the proposed OVPGCN achieves the lowest prediction
RMSE than the other four baseline algorithms in both the
Bohai Sea and NSCS, especially in cold seasons. Compared
to the OVPGCN, the performance of these baseline models ex-
hibits significant fluctuations in RMSE during the 12 calendar
months in the Bohai Sea, showing instability. Additionally,
OVPGCN performs better in the Chl-a prediction for the
NSCS than that for the Bohai Sea, which is similar to the
SST predictions in Section III-D. In conclusion, the proposed
OVPGCN algorithm is high-reliability for Chl-a prediction and
enables a stable Chl-a prediction performance in all seasons. It
can also be seen from the Fig.12, which presents the temporal
trend of real and predicted Chl-a values for 1-step prediction.

Fig. 13 shows the box plot for the MAE comparison of
OVPGCN for 1-step, 3-steps, 6-steps, and 12-steps Chl-a
prediction. From Fig. 13, we can see that for the long-term
12-steps prediction, the predictive performance of OVPGCN
does not show a significant decrease, indicating that proposed
OVPGCN is capable of making use of the temporal correlation
and the annual periodic feature for improving the accuracy of
Chl-a prediction.

Finally, the spatial distributions of OVPGCN used for Chl-
a prediction in the NSCS is demonstrated in Fig. 14. As
illustrated in Fig. 14, the Chl-a values of the nodes located
in the deep offshore waters, which are far away from land,
are small and have low fluctuations. As a result, the deviation
of the prediction results does not change much, as the step-
size of prediction becomes bigger. However, in some coastal
areas near land, such as the areas in the blue and red boxes,
the prediction error is relatively big and becomes larger as
the step-size of prediction increases. This is because mining
the characteristics of the spatio-temporal evolution in coastal
waters is challenging due to the large Chl-a spatial gradient
and the complicated time-varying property under the influence
of human activities. Nevertheless, the overall performance
of OVPGCN is still acceptable. However, the prediction
performance in the coastal regions can be possibly further
enhanced with a specifically-designed algorithm, if we have
comprehensive knowledge and information about the Chl-a in

(a) Bohai Sea (b) NSCS

Fig. 13. The box plot of the MAE comparison for 1-step, 3-steps, 6-steps,
and 12-steps Chl-a prediction by OVPGCN.
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Fig. 14. Example of qualitative results of the OVPGCN model for the Chl-a
predictions of next 3-steps (months) in NSCS. (a) Predicted Chl-a fields. (b)
Observed Chl-a fields. (c) Deviation between observed and predicted Chl-a
fields.

these regions, which is left to our future research study.

IV. CONCLUSION

Accurate prediction of oceanic variables is paramount for
maintaining a healthy ocean ecosystem and providing early
warning of extreme climate variations. In this paper, a novel
OVPGCN algorithm has been developed for monthly oceanic
variables prediction, with the objective to fully extract the
spatial correlation and temporal dependency by modeling the
multi-characteristics of spatio-temporal dynamic evolution of
oceanic variables. In our method, the time-series of oceanic
variable fields are represented by graph to overcome the data
irregularity and to model the large-scale global connections.
The PDM module is designed to extract the periodic char-
acteristics of oceanic variables. The BC module is designed
to capture the spatial differences between various regions
in the ocean. Whereas, the STCFE module is proposed to
enhance the feature extraction of the spatio-temporal corre-
lations, which has the dual graph inputs and several spatio-
temporal convolutional blocks. With the aid of these dedicated
modules, our studies demonstrate that OVPGCN is capable
of providing high-reliability prediction results. Specifically,
to show its effectiveness, the monthly SST and Chl-a data
from the Bohai Sea and NSCS were used to train and test the
algorithm. For the 6-steps SST prediction, OVPGCN achieves
a remarkable reduction of 15.72% and 28.14% in RMSE
compared to the state-of-the-art methods in the Bohai Sea and
NSCS, respectively. Likewise, for the 6-steps Chl-a prediction,
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OVPGCN reduces the RMSE by 9.43% and 12.33% in the
Bohai Sea and NSCS compared to the current state-of-the-art
approaches. In summary, the experimental results demonstrate
that OVPGCN outperforms all the six baseline algorithms in
both SST and Chl-a prediction. Moreover, even when there
are only a small number of data samples available, when
the data are unevenly distributed, or when the data values
are distributed in a wide range, OVPGCN is still capable of
performing efficiently and providing a stable Chl-a prediction.

In this paper, the OVPGCN relies solely on training data
to learn the underlying characteristics, but it is difficult to
interpret physically. In our future work, we will endeavor
to develop a physics-guided prediction framework based on
OVPGCN, to take the advantage of the prior and available
knowledge about the ocean physical laws.
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