

Methodology Objectives Background

Age plays a central role for curative treatment options in **Oesophageal Cancer (OC).**

Machine learning (ML) detailed learn relationships between clinical variables and the probability of these treatments

Can ML map the influence age exerts on curative OC treatment decisions?

post-oesophagectomy cases between 2010-2020 at University Hospital Southampton with 19 pre-

treatment variables

at MDT

Random Forests model (Python) to classify

Neoadjuvant Chemotherapy (NACT) + Surgery or

Neoadjuvant CRT (NACRT) + Surgery as decided

predicted curative treatment:

Surgery,

Variable Importance Partial Dependence Analysis (PD) used to quantify importance of Age in decisionmaking and its relationship to the nearest most important factors

Results

Variable importance for random forests model

Age is highly important on Variable **Importance** Analysis (26% of total importance) for curative OC treatment decisions

The **next five** most important

When patients enter their **70s** the predicted probability of receiving Surgery alone **rises** while NACT+S falls. NACRT+S relatively unaffected

Influence of Age <u>alone</u> on curative OC treatment decisions

Age vs Tumour Histology

Histology influences choice of NAT independent of age (NACRT 个 in SCC, NACT 个 in Adeno). >70, Age drives up base probability of Surgery and away from NAT

factors were then analysed against **Age**

Age vs cT stage

< 70 yrs, decisions driven by cT stage for Surgery alone and NACT +S while > 70 yrs Age drives decisions. NACRT+S largely unaffected by age until late 70s

Age vs Performance Status

When < 70 Higher PS scores \uparrow chance of Surgery, \downarrow NACRT, minimal effect on NACT. > 70 **Age** synergises PS scores on probability of Surgery/NACRT and **↓NACT**

Location influences choice of NAT independent of age (NACRT 个 in oesophageal tumours, NACT 个 in GOJ tumours). > 70, Age drives up base probability of Surgery and away from NAT

Age vs cN stage Chemo Surgery

When < 70 decisions again driven by cN stage for Surgery and NACT, versus when > 70 where Age drove decisions. More complex relationship for NACRT

Conclusions

remains crucial factor in curative choosing options treatment for OC

A clear shift in predicted probability occurs in the 7th decade of life - with advanced Age even driving decisions over traditional staging parameters

Acknowledgements

Studentship for Thavanesan from the Institute For Life Sciences

Underwood | Walters Laboratory

This influence varies across treatment modalities – advanced age increases probability of surgery alone but negatively impacts probability of receiving NAT, especially NACT)

This study is a novel use within OC of ML techniques to precisely map shifts in predicted probabilities for curative treatment decisions. It offers proof-of-concept that ML can provide datadriven insight into human-decision making in oncological settings.