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ABSTRACT
Recognising IoT devices through network fingerprinting con-
tributes to enhancing the security of IoT networks and supporting
forensic activities. Machine learning techniques have been exten-
sively utilised in the literature to optimise IoT fingerprinting accu-
racy. Given the rapid proliferation of new IoT devices, a current
challenge in this field is around how to make IoT fingerprinting
scalable, which involves efficiently updating the usedmachine learn-
ing model to enable the recognition of new IoT devices. Some ap-
proaches have been proposed to achieve scalability, but they all
suffer from limitations like large memory requirements to store
training data and accuracy decrease for older devices.

In this paper, we propose ScaNeF-IoT, a novel scalable network
fingerprinting approach for IoT devices based on online stream
learning and features extracted from fixed-size session payloads.
Employing online stream learning allows to update the model with-
out retaining training data. This, alongside relying on fixed-size
session payloads, enables scalability without deteriorating recogni-
tion accuracy. We implement ScaNeF-IoT by analysing TCP/UDP
payloads and utilising the AggregatedMandrian Forest as the online
stream learning algorithm. We provide a preliminary evaluation of
ScaNeF-IoT accuracy and how it is affected as the model is updated
iteratively to recognise new IoT devices. Furthermore, we compare
ScaNeF-IoT accuracy with other IoT fingerprinting approaches,
demonstrating that it is comparable to the state of the art and does
not worsen as the classifier model is updated, despite not requiring
to retain any training data for older IoT devices.

CCS CONCEPTS
• Applied computing → Network forensics; • Security and
privacy→Mobile and wireless security; • Computer systems
organization→ Sensor networks; • Computing methodolo-
gies → Online learning settings.
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1 INTRODUCTION
Security and forensics in IoT networks have become prominent
nowadays, as IoT applications are pervasive in many environments,
such as smart homes, university campuses and enterprise networks.
Among the existing IoT security and forensics techniques, net-
work fingerprinting allows to recognise individual IoT devices by
analysing their traffic. More precisely, network fingerprinting of
IoT devices (hereinafter, IoT fingerprinting) analyses the traffic of
a device and estimates the identity of the device itself, without
relying on any identifier it might include in the packets it sends.
Malicious or suspicious activities can be detected by comparing
this estimate with the device identity associated with the identi-
fier reported in the traffic (e.g., its MAC address). For example, IoT
fingerprinting allows security practitioners to detect unknown ma-
licious devices that are spoofing the MAC or IP address of legit
devices to avoid suspicion. Additionally, authorised devices infected
by a malware might start unusual network activities, which can
prevent an IoT fingerprinting mechanism from recognising these
devices and, consequently, enable security practitioners to identify
them as suspicious.

IoT fingerprinting commonly involves passively analysing net-
work traffic, without any direct interaction with the devices, which
could otherwise allow an attacker to understand that their be-
haviour is being analysed. Most IoT fingerprinting approaches em-
ploy machine learning (ML) techniques to train models to recognise
known IoT devices based on features extracted from network traffic.
Several studies have shown the effectiveness and accuracy of pas-
sive IoT fingerprinting based on ML [24, 33, 35]. Most of these stud-
ies rely on supervised learning [1–4, 6, 7, 9, 14, 15, 23, 26, 28, 30, 31],
where a classifier is trained to recognise a set of IoT devices using
a dedicated class for each device. Other ML approaches used for
IoT fingerprinting are based on semi-supervised [5, 34, 35, 39] and
unsupervised [10, 32] techniques.

An important trend in the IoT field is the staggering and relent-
less increase of active IoT devices [36]. When an ML-based IoT
fingerprinting mechanism is used, the classifier should be retrained
often to ensure new devices can be recognised accurately. However,
this aspect is largely neglected in literature. In fact, most of the IoT
fingerprinting approaches proposed in literature are designed and
evaluated to handle a fixed number of devices, without assessing
their behaviour when new devices are introduced [11], i.e., without
assessing their scalability. Marchal et al. [21] define the scalability
of IoT fingerprinting as the ability “to manage a large number of
IoT device types and learn to identify new types as they emerge‘’.
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A naive approach would be to retain all the available training data,
augment it whenever training data for new IoT devices is available
and, finally, retrain the classifier from scratch. Although sound in
principle, this approach is impractical because it requires a large,
growing amount of training data; also, training amodel from scratch
on all the training data can be very time consuming.

A few approaches for scalable IoT fingerprinting have been pro-
posed in literature. Some use a binary classifier for each device and
introduce further binary classifiers as training data for new IoT
devices becomes available. This approach requires an ever growing
number of classifiers, whichmight lead tomemory exhaustion. Also,
additional mechanisms are needed to break ties when more classi-
fiers return a positive outcome for the same device. Furthermore,
the accuracy of this approach tends to degrade over time because
existing classifiers are never retrained to ensure they can prop-
erly distinguish the devices introduced latest. Other approaches
are based on Class Incremental Learning (CIL), where the classifier
is retrained using both data for new IoT devices and a selection
of data for known devices. As time goes by, the selection of data
for known devices needs to be capped in size for memory/disk
constraints, which implies fewer samples for each device can be
retained and, therefore, the classifier accuracy tends to worsen
for older devices; this phenomenon is commonly referred to as
catastrophic forgetting.

This paper aims to address the limitations of existing approaches
for scalable IoT fingerprinting. We propose to make use of online
stream learning (OSL) techniques [12, 13] to minimise the overhead
of retraining the classifier in terms of (i) storage to retain previous
training data and (ii) retraining time. This improves scalability as it
makes it easier to fingerprint larger amounts of IoT devices. An OSL
classifier can be updated on the fly by providing new training data;
previous training data does not need to be retained and replayed,
which eliminates storage requirements. The internal model of an
OSL classifier is automatically extended to adapt to the new training
samples, and each training sample only needs to be processed once
to be learned, which helps decrease the retraining time significantly.

While OSL-based IoT fingerprinting inherently supports scal-
ability, its practicality depends on the accuracy it can provide in
recognising IoT devices. Our focus is, thus, on assessing the OSL
classifier accuracy rather than its retraining overhead. Therefore,
the research question we explore in this work is: how does OSL-
based IoT fingerprinting compare with other scalable approaches in
terms of device recognition accuracy?

This paper introduces ScaNeF-IoT, a novel approach for scalable
network IoT fingerprinting. Besides relying on an OSL-based classi-
fier to achieve scalability, it uses fixed-size traffic session payloads
as features to feed the classifier. This type of features allows to
cap the time required to fingerprint a session, which, on average,
enables faster detection of unusual network activities.

We implement ScaNeF-IoT using the Adaptive Mondrian Forest
(AMF) [25] as OSL algorithm and focusing on UDP/TCP sessions.
We evaluate our implementation in terms of IoT device recognition
accuracy using the IoT Traces dataset [31] and comparing the re-
sults with two state of the art scalable IoT fingerprinting approaches,
namely AutoIoT [11] and IoT-Portrait [38]. The authors of these
works evaluated their approaches using the same dataset; to enable
a fair comparison, our experiments employ the same evaluation

strategy as theirs. The former is compared with over the whole
dataset, with ScaNeF-IoT showing comparable device recognition
accuracy. The comparison with the latter, instead, assesses the accu-
racy across a number of retrainings, demonstrating that ScaNeF-IoT
performs better than IoT-Portrait most of the time.

The novelty of this paper lies in the fact that ScaNeF-IoT is the
first approach proposed for scalable IoT fingerprinting that is based
on OSL. The main contributions of this work are:

• a novel approach for scalable IoT fingerprinting, based on
OSL and fixed-size session payloads;

• an implementation of the approach, based on AMF and
UDP/TCP payloads;

• an experimental evaluation based on the IoT Traces
dataset [31], with an accuracy comparison with two other
scalable IoT fingerprinting approaches, AutoIoT [11] and IoT-
Portrait [38], showing comparable results with the former
and outperforming the latter.

The rest of the paper is organised as follows. Section 2 discusses
the research works carried out in the field. Section 3 presents the
ScaNeF-IoT approach. Section 4 presents the experimental evalu-
ation. Finally, conclusions and future works are presented in Sec-
tion 5.

2 RELATEDWORK
This section discusses academic works that propose approaches for
scalable IoT fingerprinting.

Miettinen et al. [24] are the first to propose a scalable IoT fin-
gerprint mechanism, called IoT Sentinel. A binary random forest
classifier is trained for each considered device type; then, if there
are multiple matches from different classifiers, ties are broken when
using the edit distance. They use Damerau-Levenshtein [8] distance
as a metric to compare fingerprints obtained from sequences of
packets and select the device type with the closest match based on
the computed dissimilarity scores. Ma et al. [19, 20] employ a simi-
lar approach to fingerprint IoT devices behind Network Address
Translation (NAT). They use a binary convolutional neural network
(CNN) for each IoT device. Using a binary classifier for each IoT de-
vice type is impractical, because the number of required classifiers
keeps increasing linearly as new IoT devices are introduced.

Fan et al. [11] propose AutoIoT, which identifies new IoT devices
using a few labelled samples based on multi-task learning. The
traffic features undergo a preprocessing phase for feature reduction
via principal component analysis (PCA) to feed the classifier. The
classifier consists of a CNN with two fully connected layers, one for
distinguishing between IoT and non-IoT devices, and the second
for determining new device types. At the device type identification
task, the distribution of the incoming features is compared against
the known distribution to detect the presence of new types using
the Kolmogorov-Smirnov test. The new data is transferred into
low-dimension features and clustered using K-means and elbow
methods to determine the optimal number of clusters, which are
then labelled automatically. Finally, the model is updated by extend-
ing the fully connected layer to include the new types of devices
via transfer learning. AutoIoT is evaluated using the IoT Traces
dataset [31] and achieves over 95% accuracy in the identification of
IoT/non-IoT devices. While the transfer learning for updating the



ScaNeF-IoT: Scalable Network Fingerprinting for IoT Devices ARES 2024, July 30–August 02, 2024, Vienna, Austria

model shows over 99% overall accuracy, the method provides lower
performance when using the YourThings dataset [29]; over 95%
with the identification of IoT/non-IoT devices, over 89% with the
identification of new device types, and less than 99% with transfer
learning. However, The study does not evaluate experimentally how
the approach performs when new IoT devices are introduced; rather,
it tests the transfer learning by setting some devices as unknown
and then updating the model with them.

Another approach for scalable IoT fingerprinting is based on
Class incremental learning (CIL) with knowledge replay. It splits
the problem incrementally into sequential tasks, where in each task
a classifier is trained to recognise new devices (i.e., classes) as well
as old devices [22, 37]. This is implemented by reusing samples
from previous tasks, called exemplars [22, 37]. While this method
can prevent catastrophic forgetting (i.e., a reduction in recognition
accuracy for older classes) because the model is retrained with older
devices too, it can also lead to memory exhaustion as more and
more new classes are introduced over time [18]. Wang et al. [38]
propose IoT-Portrait, an IoT fingerprinting mechanism that relies
on a transformer network and a multi-classifier. They use active
scanning for automatic labelling and passive scanning for finger-
printing. The transformer network is used for capturing significant
network behaviour characteristics. After extracting features us-
ing the transformer, the classification model is trained using the
corresponding labels. To avoid catastrophic forgetting when new
devices join the network, the authors use a fixed-memory size to
hold both old and new classes. The results show 85% F1 score with
a fixed-memory size of 10,000 exemplars of 15 IoT devices using
the IoT Traces dataset [31].

3 SCANEF-IOT APPROACH AND
IMPLEMENTATION

This section introduces the ScaNeF-IoT approach for scalable net-
work fingerprinting of IoT devices. Figure 1 highlights the key
stages of the proposed approach. Network traffic generated by IoT
devices is first preprocessed to (i) identify sessions, (ii) extract their
payload and (iii) produce fixed-size payloads. Section 3.1 details
the operations involved in this step. The resulting payloads are
used as feature vectors to feed an OSL classifier, which outputs
the identifier of the corresponding IoT device. More details on this
step and how it enables scalability are discussed in Section 3.2.
The implementation of the ScaNeF-IoT approach is described in
Section 3.3.

3.1 Preprocessing
In this work, we adopt an approach similar to Kotak and Elovici [16],
where images are generated from session payloads. We use packet
headers to identify bi-directional sessions. The payloads of a session
are concatenated and either trimmed or padded to a fixed size to
generate the feature vector corresponding to that session. Rather
than creating an image, we produce a fixed-size payload ready to
be fed to the chosen classifier.

Using fixed-size payloads allows to generate feature vectors
without waiting for the end of longer sessions, which, on average,
can permit to classify a session earlier. This better fits situations
where it is fundamental to take security countermeasures promptly

in case anomalies are detected. While, in this way, a possibly large
part of the payload might not be considered for the classification,
other works in the literature have shown that considering only
the initial segment of a network communication is sufficient to
accurately fingerprint IoT devices [16].
The preprocessing stage consists of three steps, as shown in Figure 2.

(1) Session identification. By network session, we refer to
the traffic exchanged between two different endpoints using
the same protocol. For example, in TCP or UDP, a session
is uniquely identified by the following 5 values included in
each packet header: source IP address, source port number,
destination IP address, destination port number and protocol
(TCP or UDP).

(2) Session payload extraction. The payloads of the packets
within a same session are extracted and concatenated in a
single, session-specific buffer in hexadecimal format. Empty
payload sessions are ignored.

(3) Fixed-size payload generation. Once the buffer reaches a
size equal to or greater than a prefixed value 𝑆 , the payload
is trimmed to 𝑆 and becomes ready for classification. In case
the session ends before the buffer reaches a size of 𝑆 , then it
is padded with 0x00 bytes.

A fixed-size payload extracted from a session initiated by an IoT
device 𝑥 (i.e., with 𝑥 as source of the first packet of the session) is
used to train the classifier model to recognise 𝑥 . Note that payloads
might be encrypted.

3.2 Classification
The classification stage relies on an Online stream learning (OSL)
algorithm to achieve scalability. Indeed, OSL techniques allow for
incremental updates of the model as new training data is avail-
able, without the need for retraining the model from scratch every
time [13] and, therefore, for storing training data for later retrain-
ing. This approach also helps address the problem of concept drift,
where the distribution of the data changes over time and deviates
from the one learned by the ML model [13]. Indeed, these algo-
rithms typically employ adaptive mechanisms to adjust to changes
in the data distribution over time, making them suitable for dynamic
environments such as IoT networks.

When up-to-date labelled data becomes available pertaining to
new IoT devices or more recent behaviour of known IoT devices,
this data can be used to incrementally retrain the OSL model to
enable recognising those new devices or behaviours. Contrarily to
the IoT fingerprinting scalability approaches detailed in Section 2,
which require keeping the whole or a selection of the training data
used previously, ScaNeF-IoT relies on the adaptability properties
of OSL to enable updating the classifier model using the new data
only. This allows to scale the model seamlessly to recognise new IoT
devices once the corresponding training data becomes available.

3.3 Implementation
To run the experimental evaluation detailed in Section 4, we have
implemented the ScaNeF-IoT approach as described below.

3.3.1 Preprocessing implementation. We identify UDP and TCP
sessions using the ’session’ option in the SplitCap [27] tool, which
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Figure 1: ScaNeF-IoT approach.

Figure 2: Preprocessing steps.

allows splitting network traffic in different sessions. We tested
different values for the buffer size 𝑆 to assess how it affects the
accuracy of the classifier [16].

3.3.2 Classification implementation. We choose the Aggregated
Mondrian Forests (AMF) as the OSL algorithm for the classification
stage. AMF is an online learning algorithm for random forests that
can efficiently update the model as new labelled data arrives sequen-
tially in a streaming setting [25]. It builds upon the Mondrian Forest
(MF) methodology introduced by Lakshminarayanan et al. [17] and
incorporates principles from the Infinite Mondrian Process (IMP)
proposed by Mourtada et al. [25] to deliver AMF.

When AMF classifies a sample, it utilises an ensemble of decision
trees (DT) generated through the MP. Each DT in the ensemble
provides a prediction for the sample based on its features. These
individual predictions are then aggregated to produce a final pre-
diction for the sample.

During training, When a new sample is presented for training,
AMF updates the structure of its DTs to incorporate information
from the sample. This may involve splitting nodes, creating new leaf
nodes, or adjusting existing nodes based on the sample’s features.
After updating the DT structure, AMF computes a prediction for
the sample using each pruned tree. These individual predictions
are then aggregated using a variant of the context tree weighting
(CTW) algorithm. This aggregation process assigns weights to each

prediction based on its reliability, considering factors such as the
tree’s performance on past samples. The final prediction for the
sample is obtained by computing a weighted average of all the
predictions from the pruned trees.

By updating its DT structure and prediction function in an online
streaming setting, AMF adapts and learns from the data incremen-
tally, without requiring full retraining from scratch. Consequently,
enabling it to make accurate predictions even in the presence of
changing or evolving patterns in the data.

4 EVALUATION
This section describes how we evaluate ScaNeF-IoT to assess its
accuracy in fingerprinting IoT devices, as well as its scalability as
the classifier model learns new IoT devices.
Dataset. We use the IoT Traces dataset [31], which consists of
network traffic traces captured in a network with 23 IoT devices
and 7 non-IoT devices (e.g., smartphones, tablets, and laptops). The
dataset is a collection of 20 pcap files of approximately 9.5 GB total
size, spanning over 20 days. It includes 148788 sessions (97945 for
IoT devices, 50843 for non-IoT devices). In this research, we only
focus on IoT device sessions. Table 1 provides further details on the
IoT devices in the dataset and how many TCP and UDP sessions
are available for each.
Evaluation approach. Our experiments aim to assess ScaNeF-IoT
accuracy in fingerprinting IoT devices through comparisons with
relevant related works. We first evaluate the ScaNeF-IoT accuracy
over the whole dataset for different values of the buffer size 𝑆 , and
compare it with the performance AutoIoT is reported to have on the
very same dataset [11] (see Section 4.1). Then, we analyse how the
ScaNeF-IoT accuracy varies as we incrementally train the classifier
model with new IoT devices (see Section 4.2); in this experiment,
the comparison is made with IoT-Portrait [38], which employs
an incremental learning approach and provides an experimental
evaluation based on the same dataset we use.

To enable a fair comparison with alternative approaches pro-
posed by other researchers, we employ the same accuracy metrics
they use in their experiments. In particular, we consider the overall
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of a classifier, defined as:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠
(1)

To assess the accuracy of the classifier in fingerprinting a specific
IoT device 𝑥 , we use the F1 Score 𝐹1𝑥 defined as:

𝐹1𝑥 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑥 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑥

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑥 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑥
(2)
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Table 1: The Payload Sessions Extracted from the IoT Traces
Dataset

# IoT Device Name Sessions TCP Sessions UDP Sessions

1 Amazon-Echo 3491 3407 84
2 Belkin-Wemo-

Motion-Sensor
48883 48786 97

3 Belkin-Wemo-Switch 8939 7032 1907
4 Blipcare-Blood-

Pressure-Meter
4 4 0

5 Dropcam 35 35 0
6 HP-Printer 150 150 0
7 iHome-Power-Plug 153 153 0
8 Insteon-Camera-

wired
8702 4055 4647

9 Insteon-Camera-
wireless

102 1 101

10 Light-Bulbs-LiFX-
Smart-Bulb

52 34 18

11 Nest-Dropcam 29 29 0
12 NEST Protect Smoke

Alarm
84 84 0

13 Netatmo Weather Sta-
tion

2338 2338 0

14 Netatmo Welcome 2728 2688 0
15 PIX-STAR Photo-

Frame
1118 1118 0

16 Samsung-SmartCam 10053 9082 971
17 Samsung-Smart-

Things
24 24 0

18 TP-Link-Day-Night-
Cloud-Camera

1541 1109 432

19 TP-Link-Smart-Plug 239 232 7
20 Triby-Speaker 131 129 2
21 Withings-Aura-

Smart-Sleep-Sensor
3584 3584 0

22 Withings-Smart-
Baby-Monitor

5545 5545 0

23 Withings-Smart-
Scale

20 20 0

where 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑥 =
𝑇𝑃𝑥

𝑇𝑃𝑥+𝐹𝑃𝑥 and 𝑅𝑒𝑐𝑎𝑙𝑙𝑥 =
𝑇𝑃𝑥

𝑇𝑃𝑥+𝐹𝑁𝑥
, with 𝑇𝑃𝑥 ,

𝐹𝑃𝑥 , 𝑇𝑁𝑥 and 𝐹𝑁𝑥 defined as:
• 𝑇𝑃𝑥 : number of feature vectors corresponding to device 𝑥
(i.e., generated from sessions initiated by 𝑥 ) that are classified
as 𝑥 ;

• 𝐹𝑃𝑥 : number of feature vectors corresponding to a device
other than 𝑥 that are classified as 𝑥 ;

• 𝑇𝑁𝑥 : number of feature vectors corresponding to a device
other than 𝑥 that are not classified as 𝑥 ;

• 𝐹𝑁𝑥 : number of feature vectors corresponding to device 𝑥
that are not classified as 𝑥 .

Furthermore, we ensure using the same set of devices and the same
validation strategy they employ.

4.1 Accuracy evaluation
In this experiment, we assess how the accuracy of ScaNeF-IoT , as
defined in Equation 1, is affected by the buffer size. We test three
different buffer sizes: 265, 784 and 1024 bytes. Additionally, we

make a comparison with the classification performances reported
by Fan et al. for AutoIoT [11], which is described in Section 2. Like
them, we use all 23 IoT devices included in the IoT Traces dataset
and adopt a 30% holdout validation strategy, splitting the dataset
into training and test sets in a 7:3 ratio. We consider a sequential
split according to the timestamp by preserving the last 30% of each
IoT device payload in the test set.

Figure 3 shows the results of this experiment. While ScaNeF-IoT
always showcases an accuracy comparable to AutoIoT, a buffer size
of 784 bytes leads to a slightly higher accuracy overall (99.29% with
784 bytes against 99.18% with 265 and 99.24% with 1024).

Figure 3: Accuracy comparison between AutoIoT and ScaNeF-
IoT with different buffer sizes, based on a 30% holdout vali-
dation strategy.

However, since the difference in accuracy is very small, we look
at the F1 score of each device, as defined in Equation 2, to analyse
the extent to which different buffer sizes affect the fingerprinting
of individual devices. For each buffer size, we assess how many
devices are fingerprinted with the highest F1 score by ScaNeF-IoT
when configured with that buffer size. We distinguish between
cases where the F1 score is strictly higher than with the other two
buffer sizes, and cases where it is equal to the F1 score obtained
with any or both of the other two buffer sizes. The results reported
in Figure 4 show that ScaNeF-IoT configured with a buffer size of
784 bytes provides the highest F1 score for 19 devices out of 23
(strictly higher than the others for 4 devices, equal to the others
for 15 devices). Instead, ScaNeF-IoT configured with a buffer size of
1024 bytes achieves the highest F1 score in 17 cases (strictly higher
in 2 cases, equal in 15 cases), while using 265 bytes as buffer size
leads to the highest F1 score for 14 devices (for 1 strictly higher, for
12 as high as the others). Therefore, for the following experiments,
we configure ScaNeF-IoT with a buffer size of 784 bytes.

Although the F1 score is at least 90% for the large majority of IoT
devices, ScaNeF-IoT exhibits a less than satisfactory performance
for a few devices. Table 2 details precision, recall and F1 score
obtained for each device when using ScaNeF-IoT configured with
a buffer size of 784 bytes. Also, the table reports the support for
each device, which is the number of feature vectors used for the
testing. The dataset is heavily imbalanced, as evidenced by the
widely varying support values across devices, which contributes to
the lower F1 scores observed in some devices.
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Figure 4: F1 score comparison for each IoT device when using ScaNeF-IoT with different buffer sizes.

4.2 Scalability evaluation
This experiment aims to assess how ScaNeF-IoT fingerprinting
accuracy varies as the classifier model is updated to recognise new
devices. We compare ScaNeF-IoT’s performance with a state of the
art scalable IoT fingerprinting approach, namely IoT-Portrait [38],
which is described in Section 2.

To ensure fairness in the comparison, we scale up the model
in the same way IoT-Portrait does. As explained in Section 2, IoT-
Portrait employs CIL and, therefore, arranges its classification activ-
ities over time across a number of sequential tasks. At the beginning
of each task, a set of new IoT devices is introduced and the classifier
model is retrained to recognise these new devices as well as all the
IoT devices introduced in the previous tasks; in the first task (i.e.,
task 0), the classifier model is trained to fingerprint an initial set of
IoT devices.

IoT-Portrait is evaluated using the IoT Traces dataset with 3 IoT
devices in task 0 and 2 new IoT devices in each of the following 6
tasks. Table 3 details which IoT devices are new in each task. To
assess ScaNeF-IoT, we update the classifier model using the same
sets of IoT devices that Wang et al. used to evaluate IoT-Portrait.
Some of these IoT devices are under-represented in the dataset,
which can lead to poor accuracy, as discussed in Section 4.1. Also,
we adopt a 6:4 ratio for training and testing since the same is used to
assess IoT-Portrait. The test set for each task includes payloads from

new devices introduced and payloads from older devices presented
in previous tasks. The accuracy is calculated for each task as defined
in Equation 1, and is reported in Table 3.

Figure 5 shows the comparison between IoT-Portrait and ScaNeF-
IoT in the accuracy they provide across all 7 tasks. ScaNeF-IoT
performs better than or equally to IoT-Portrait in all tasks but task
3, where the accuracy drops to 71%.

Figure 5: Accuracy comparison between ScaNeF-IoT and IoT-
Portrait as new IoT devices are introduced.
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Table 2: Precision, recall, F1 score and support for each IoT
device using ScaNeF-IoT with 784 bytes buffer size.

# IoT Device Name Precision Recall F1 Support

1 Amazon-Echo 0.99 0.96 0.97 1047
2 Belkin-Wemo-

Motion-Sensor
1.00 1.00 1.00 14665

3 Belkin-Wemo-Switch 1.00 0.99 0.99 2682
4 Blipcare-Blood-

Pressure-Meter
1.00 1.00 1.00 1

5 Dropcam 1.00 0.27 0.43 11
6 HP-Printer 1.00 0.82 0.90 45
7 Insteon-Camera-

wired
1.00 1.00 1.00 2611

8 Insteon-Camera-
wireless

1.00 0.90 0.95 31

9 Light-Bulbs-LiFX-
Smart-Bulb

1.00 0.31 0.48 16

10 NEST-Protect-Smoke-
Alarm

1.00 1.00 1.00 25

11 Nest-Dropcam 0.83 0.56 0.67 9
12 Netatmo-Weather-

Station
0.87 1.00 0.93 701

13 Netatmo-Welcome 0.99 0.98 0.98 818
14 PIX-STAR-Photo-

Frame
1.00 1.00 1.00 335

15 Samsung-Smart-
Things

0.00 0.00 0.00 7

16 Samsung-SmartCam 1.00 1.00 1.00 3016
17 TP-Link-Day-Night-

Cloud-Camera
0.98 0.97 0.97 462

18 TP-Link-Smart-Plug 1.00 0.93 0.96 72
19 Triby-Speaker 1.00 0.85 0.92 39
20 Withings-Aura-

Smart-Sleep-Sensor
0.99 0.99 0.99 1075

21 Withings-Smart-
Baby-Monitor

0.99 1.00 1.00 1664

22 Withings-Smart-
Scale

1.00 1.00 1.00 6

23 iHome-Power-Plug 1.00 0.89 0.94 46

Table 3: Fingerprinting accuracy of ScaNeF-IoT as the classi-
fier model is scaled up to recognise new IoT devices.

# Device Name Task Accuracy

1 Samsung-SmartCam 0 99.97
2 Belkin-Wemo-Motion-Sensor
3 Withings-Smart-Baby-Monitor
4 Belkin-Wemo-Switch 1 96.11
5 Amazon-Echo
6 Netatmo-Welcome 2 94.33
7 Netatmo-Weather-Station
8 TP-Link-Day-Night-Cloud-Camera 3 71.15
9 PIX-STAR-Photo-Frame
10 TP-Link-Smart-Plug 4 94.14
11 HP-Printer
12 Triby-Speaker 5 93.47
13 Dropcam
14 Samsung-Smart-Things 6 94.74
15 Withings-Smart-Scale

This outlier is mostly caused by the misclassification of a large
proportion of Belkin-Wemo-Motion-Sensor samples as TP-Link-
Day-Night-Cloud-Camera, as reported in the task 3 confusion ma-
trix in Figure 6. The F1 score for these two devices in task 3 is 73%
and 12%, respectively.

Figure 6: Task 3 confusion matrix

In the following task, once the classifier model has been updated
to recognise the two new IoT devices, the overall accuracy goes
back to 94%. Also, the misclassifications of Belkin-Wemo-Motion-
Sensor and TP-Link-Day-Night-Cloud-Camera samples are reduced
significantly, as shown in Figure 7, with F1 score for these two
devices equal to 98% and 73%, respectively.

Figure 7: Task 4 confusion matrix
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5 CONCLUSION
Scalable approaches to IoT fingerprinting are required to cope with
the fast pace at which new IoT devices are developed. The novel
approach we propose, ScaNeF-IoT, achieves scalability by using an
OSL classifier to reduce storage requirements and retraining time.
The research question we address in this paper is whether ScaNeF-
IoT can offer a device recognition accuracy comparable to that pro-
vided by existing scalable IoT fingerprinting approaches, namely
AutoIoT and IoT-Portrait. Our experiments show that ScaNeF-IoT
performs similarly to AutoIoT when assessed on all the IoT devices
included in a same dataset, and outperforms IoT-Portrait when
incrementally introducing new IoT devices. While this is a prelimi-
nary evaluation, the results are promising towards establishing OSL
as the ML classifier to use to achieve scalable IoT fingerprinting.

This line of research can be developed further by assessing and
comparing the retraining time against existing approaches. Also,
other OSL algorithms beyond AMF can be tested, as well as com-
bining different types of features (e.g., statistics of the sessions)
to explore the possibility to improve the detection accuracy even
further.
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