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A B S T R A C T

Background: Clinician-led quality control into oncological decision-making is crucial for optimising patient care.
Explainable artificial intelligence (XAI) techniques provide data-driven approaches to unravel how clinical
variables influence this decision-making. We applied global XAI techniques to examine the impact of key clinical
decision-drivers when mapped by a machine learning (ML) model, on the likelihood of receiving different
oesophageal cancer (OC) treatment modalities by the multidisciplinary team (MDT).
Methods: Retrospective analysis of 893 OC patients managed between 2010 and 2022 at our tertiary unit, used a
random forests (RF) classifier to predict four possible treatment pathways as determined by the MDT: neo-
adjuvant chemotherapy followed by surgery (NACT + S), neoadjuvant chemoradiotherapy followed by surgery
(NACRT + S), surgery-alone, and palliative management. Variable importance and partial dependence (PD)
analyses then examined the influence of targeted high-ranking clinical variables within the ML model on
treatment decisions as a surrogate model of the MDT decision-making dynamic.
Results: Amongst guideline-variables known to determine treatments, such as Tumour-Node-Metastasis (TNM)
staging, age also proved highly important to the RF model (16.1 % of total importance) on variable importance
analysis. PD subsequently revealed that predicted probabilities for all treatment modalities change significantly
after 75 years (p < 0.001). Likelihood of surgery-alone and palliative therapies increased for patients aged
75–85yrs but lowered for NACT/NACRT. Performance status divided patients into two clusters which influenced
all predicted outcomes in conjunction with age.
Conclusion: XAI techniques delineate the relationship between clinical factors and OC treatment decisions. These
techniques identify advanced age as heavily influencing decisions based on our model with a greater role in
patients with specific tumour characteristics. This study methodology provides the means for exploring
conscious/subconscious bias and interrogating inconsistencies in team-based decision-making within the era of
AI-driven decision support.

1. Introduction

As with all cancers managed within the UK, Oesophageal cancer
(OC) treatment plans are determined by a multidisciplinary team
(MDT). Since their introduction in the mid-1990s, they have been shown
to improve cancer outcomes, especially within OC, which remains the

6th leading cause of cancer-related death globally and is still charac-
terised by dismal 5 & 10-year survival rates [1,2]. With MDTs, the
incidence of futile surgical procedures, operative mortality, and
incomplete disease burden assessment (“cancer staging”) dropped
significantly [3–5]. However, this same framework which centralises a
diverse group of domain experts in a single place and time is also
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vulnerable to challenges stemming from increased caseload pressure,
reduced preparation time, interpersonal dynamics. Perhaps most
importantly they continue to experience inadequate time for reflection
or self-audit for the decisions they make, thereby limiting experiential
growth, and in some cancer types leading to a growing pursuit to
pre-select MDT cases by complexity as a means of improving workflow
[6–13].

Objective, data-driven insight into oncological decision-making al-
lows clinicians to interrogate, validate and ensure the appropriateness of
their treatment choices over time which directly impacts patient out-
comes and quality of life, something exemplified in OC [14]. OC treat-
ment decisions are highly complex; heavily influenced by primary
tumour characteristics, metastatic spread and the physiological robust-
ness of the patient [15,16]. Peak incidence is between 85 and 89 years,
with this cohort often experiencing polypharmacy, poor nutrition,
frailty and disability, all of which impact clinical outcomes [17,18].
Almost 80 % of patients over the age of 85 years have two or more
co-morbidities (increasing co-morbidity is known to be a negative
prognostic marker of 90-day mortality post-surgical resection [19])
leading to age historically acting as a barometer of perceived risk for
intensive therapeutic interventions [20–23]. Judicious patient selection
is critical; surgery alone is a monumental physiological stressor, further
compounded by toxicity associated with neoadjuvant therapies (NAT),
while even eligibility for palliative oncological therapies necessitates
significant physiological reserve [24].

Additionally, while it is established that treatment decisions should
be based on “physiological” over “chronological” age [25], it has
recently been shown through ML that age plays a disproportionate role
in treatment choice for curative OC patients at MDT. This bias is
particularly evident when determining eligibility for multimodal versus
unimodal therapy even when chronological age is not necessarily a
guarantee of a negative outcome [26,27]. It is not yet clear whether this
is a conscious or unconscious bias nor if there is interplay between age
and a patient’s performance status (an oncological surrogate measure of
baseline physical activity and thus a marker of resilience to otherwise
deconditioning therapies). Implicit bias is a recognised aspect of
healthcare, and while such bias has been reported for OC treatment
allocation based on gender, race and socioeconomic status previously,
how it manifests within more clinical parameters is currently unknown
[28–31].

OC decision-making clearly carries high stakes, and yet while many
of the clinical variables considered at MDT may be known or derived
from guidelines, experience and current oncological doctrine [16,32,
33], the relative weighting of these factors within the final decision is
not currently known. This is salient when we consider the
well-established literature surrounding vulnerabilities of cancer MDTs
to inefficiency and sub-optimal decision-making in surgical oncology
[7–9,11,13,34].

Machine Learning (ML), a branch of Artificial Intelligence (AI), is
rapidly evolving within this aspect of healthcare, offering huge potential
in multiple avenues relevant to OC. ML techniques can characterise
complex patterns within current decision-making paradigms, inform
future decision-making within human-AI and Group-AI collaborative
(HAIC) processes, theoretically transforming multi-disciplinary team
(MDT) efficiency [35–37]. Over the last decade, AI-based decision--
support has also developed within MDT-type use cases with a view to
changing the narrative from one of “human-versus-AI” to “human--
and-AI” [38]. The architectures being tested within oncology have
ranged from traditional tree-based ML models and neural networks,
through complex natural-language decision-support systems aiming to
assimilate up-to-date clinical knowledge such as IBM’s Watson, to more
recently still, conversation-style, Large Language Model-based (LLM)
architectures such as ChatGPT [39–42]. This utility of AI however must
be balanced with sufficient transparency and explainability to preserve
clinician-AI trust within the recommendations and insights generated
[43–45].

Within OC there clearly remains a research gap in how clinicians
routinely utilise clinical variables in for oncological decision-making.
The aim of this study was therefore to demonstrate a viable approach
to leveraging eXplainable AI (XAI) in order to characterise in-detail, the
influence these clinical variables exert (of which some may have sub-
conscious impact) on OC treatment decisions. Combining explainable
ML techniques, our goal is to offer clinicians a clearer perspective into
decision-making variation for OC patients in a trustworthy and
explainable fashion. This in turn sets the foundations for trust in future
Human-AI collaborations within the inevitable clinical decision-support
space and represents a novel application of XAI in OC surgical oncology
to date.

2. Materials and methods

This study was a retrospective complete-case analysis of oesophageal
cancer patients at a single specialist cancer centre (University Hospitals
Southampton) under the ethical approval of IRAS 233065.

2.1. Patient selection and data collection

OC patients who underwent MDT discussion from 2010 to 2022 were
identified from a prospectively maintained oesophagectomy database
combined with unit-submission records for the UK National Oesopha-
gogastric Audit (NOGCA). Patients selected underwent either a curative
pathway (surgery ± NAT) or a non-curative (palliative) pathway (best
supportive care, palliative stenting, palliative chemotherapy, palliative
radiotherapy or a combination thereof). Definitive chemoradiotherapy
was excluded as this strategy occurred too infrequently for adequate
model training. Clinical staging was assessed on baseline imaging,
computer tomography (CT) and/or Positron Emission Tomography
(PET), and tissue biopsies in accordance with the American Joint
Committee on Cancer (AJCC) Tumour-Node-Metastasis (TNM) staging
system.

2.2. Statistical analysis

Data analyses and model training were conducted using R (version
4.2.2) and Python (version 3.10.11). Sub-group comparison of contin-
uous variables was made by Kruskal-Wallis analysis (adjusted with the
Benjamini-Hochberg correction).

2.3. Data pre-processing and feature selection

Clinicopathological data within this study were analysed as struc-
tured tabular data. ‘Label encoder’ was employed within python to
encode categorical variables for analysis. Features were selected
through a combination of a priori domain expertise and established
features form current UK clinical guidelines for OC management [16,19,
27,32,33,46].

2.4. Treatment classification model development and performance

MDT treatment-decisions were modelled using a Random forests
(RF) classifier in Python (“Ranger” Library, sklearn v1.2.2) using vari-
ables consistently available to the MDT prior to a final treatment deci-
sion (Table 1 & Supplemental Table 1). Using k = 5 cross validation,
optimal max depth was determined as 6 which was used to train the final
model on the whole dataset. The remaining hyper-parameters were set
as default as RF models are not sensitive to small variations in these. The
Random Forests algorithm is well-established and capable of handling
higher-order interactions within classification tasks using both numer-
ical and categorical features to produce strong predictive performance
[47,48]. It has been utilised in numerous healthcare settings [49–51]
and has already been shown to perform well in classification tasks as
related to MDT treatment plans [48]. As this pilot study aimed to test
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whether XAI techniques could enhance complex decision-making pro-
cesses, unlike linear models, random forest models can capture in-
teractions, non-linear relationships, is recognisable and accessible for
the analysis and future reproducibility.

Year of diagnosis was incorporated into model training within
defined time-periods (termed “Epoch” for the purposes of this study)
relative to the dissemination of key randomised clinical trials to account
for, (and assess changes in) clinical practice over time. Treatment out-
comes were classified into neoadjuvant chemotherapy prior to surgery
(NACT + S), neoadjuvant chemoradiotherapy prior to surgery (NACRT
+ S), surgery-only (Surgery) or palliative therapy (Palliative). Model
performance was assessed via multi-class area-under-the-curve (AUC)/
Receiver Operator Characteristic (ROC), balanced accuracy and cali-
bration. For evaluating initial model-generalisability we used a 5-fold

cross validated approach, following which hyperparameters were fixed
allowing for training on the whole dataset. This preserves statistical
power during partial dependence analysis as we discover what the
model has learned [52,53]. For assessment of different algorithmic
performances see Thavanesan et al., 2023 [48].

2.5. Variable importance analysis

Variable importance analysis of the final model was undertaken
using all variables included for model-training (Table 1, Supplemental
Table 1). The ‘sk-learn’ library function was employed; for RF, the sig-
nificance of a feature is determined by averaging its value over all trees
in the forest. Each characteristic gains greater significance as the im-
purity lowers. The total of these normalised importance values is 1.

Table 1
Patient demographics and model predictor variables by sub-group. Referral unit statistics are provided in Supplementary Table. Performance status is measured as per
the Eastern Cooperative Oncology Group (ECOG) Performance status scale.

Pre-treatment variables “NACT + S” (N = 209)
(%)

“NACRT + S” (N = 196)
(%)

“Surgery-only” (N = 102)
(%)

“Palliative” (N = 386)
(%)

Total (N = 893)
(%)

Gender
Male 179 (85.6 %) 137 (69.9 %) 80 (78.4 %) 280 (72.5 %) 676 (75.7 %)
Female 30 (14.4 %) 59 (30.1 %) 22 (21.6 %) 106 (27.5 %) 217 (24.3 %)
Median Age, Years (Range) 65.7 (21–81.8) 66.6 (40.0–81.0) 73.4 (33.7–83.0) 74.8 (32.0–96.7) 69.1 (21.0–96.7)
ECOG Performance status
0 120 (57.4 %) 138 (70.4 %) 34 (33.3 %) 68 (17.6 %) 360 (40.3 %)
1 84 (40.2 %) 54 (27.6 %) 56 (54.9 %) 122 (31.6 %) 316 (35.4 %)
2 5 (2.4 %) 3 (1.5 %) 12 (11.8 %) 124 (32.1 %) 144 (16.1 %)
3 0 (0 %) 1 (0.5 %) 0 (0 %) 69 (17.9 %) 70 (7.8 %)
4 0 (0 %) 0 (0 %) 0 (0 %) 3 (0.8 %) 3 (0.3 %)
cT stage
1 0 (0 %) 0 (0 %) 8 (7.8 %) 1 (0.3 %) 9 (1.0 %)
2 35 (16.7 %) 44 (22.5 %) 49 (48.0 %) 40 (10.4 %) 168 (18.8 %)
3 149 (71.3 %) 138 (70.4 %) 43 (42.2 %) 211 (54.7 %) 541 (60.6 %)
4 25 (12.0 %) 14 (7.1 %) 2 (2.0 %) 134 (34.7 %) 175 (19.6 %)
cN stage
0 40 (19.1 %) 64 (32.7 %) 53 (52.0 %) 82 (21.2 %) 239 (26.8 %)
1 138 (66.0 %) 112 (57.1 %) 42 (41.2 %) 131 (33.9 %) 423 (47.4 %)
2 31 (14.8 %) 19 (9.7 %) 6 (5.9 %) 121 (31.3 %) 177 (19.8 %)
3 0 (0 %) 1 (0.5 %) 1 (1.0 %) 52 (13.5 %) 54 (6.0 %)
cM stage
0 209 (100 %) 196 (100 %) 102 (100 %) 162 (42.0 %) 669 (74.9 %)
1 0 (0 %) 0 (0 %) 0 (0 %) 224 (58 %) 224 (25.1 %)
Tumour location
Oesophagus
Proximal 0 (0 %) 3 (1.5 %) 0 (0 %) 18 (4.7 %) 21 (2.4 %)
Middle 5 (2.4 %) 22 (11.2 %) 7 (6.8 %) 59 (15.3 %) 93 (10.4 %)
Distal 103 (49.3 %) 148 (75.5 %) 64 (62.7 %) 235 (60.9 %) 550 (61.6 %)
GOJ
GOJ Siewert 1 24 (11.5 %) 8 (4.1 %) 4 (3.9 %) 20 (5.2 %) 56 (6.3 %)
GOJ Siewert 2 39 (18.7 %) 10 (5.1 %) 19 (18.6 %) 54 (14.0 %) 122 (13.7 %)
GOJ Siewert 3 23 (11.0 %) 1 (0.5 %) 5 (4.9 %) 0 (0 %) 29 (3.2 %)
GOJ Siewert Undefined 15 (7.2 %) 4 (2.0 %) 3 (2.9 %) 0 (0 %) 22 (2.5 %)
Tumour Histology
Adenocarcinoma 197 (94.3 %) 134 (68.4 %) 93 (91.2 %) 274 (71.0 %) 698 (78.1 %)
Squamous Cell (SCC) 12 (5.7 %) 62 (31.6 %) 9 (8.8 %) 112 (29.0 %) 195 (21.8 %)
Co-morbidities
History of MI (MI) 9 (4.3 %) 11 (5.6 %) 10 (9.8 %) 34 (8.8 %) 64 (7.2 %)
Chronic heart failure (CHF) 1 (0.5 %) 1 (0.5 %) 2 (2.0 %) 17 (4.4 %) 21 (2.4 %)
Chronic pulmonary disease (CPD) 26 (12.4 %) 28 (14.3 %) 19 (18.6 %) 48 (12.4 %) 121 (13.5 %)
Connective tissue disease 2 (1.0 %) 5 (2.6 %) 1 (1 %) 0 (0 %) 8 (0.9 %)
Peripheral vascular disease (PVD) 6 (2.9 %) 7 (3.6 %) 5 (4.9 %) 21 (5.4 %) 39 (4.4 %)
Cerebrovascular disease (CVD) 8 (3.8 %) 6 (3.1 %) 7 (6.7 %) 65 (16.8 %) 86 (9.6 %)
Dementia 0 (0 %) 0 (0 %) 0 (0 %) 10 (2.6 %) 10 (1.1 %)
History of Peptic Ulcer Disease
(XPUD)

8 (3.8 %) 7 (3.6 %) 5 (4.9 %) 14 (3.6 %) 34 (3.8 %)

Uncomplicated diabetes (DM
uncomp)

21 (10.0 %) 20 (10.2 %) 16 (15.7 %) 60 (15.5 %) 117 (13.1 %)

Complicated diabetes (DM comp) 0 (0 %) 1 (0.5 %) 1 (1.0 %) 3 (0.8 %) 5 (0.6 %)
Leukaemia 0 (0 %) 0 (0 %) 3 (2.9 %) 1 (0.3 %) 4 (0.5 %)
Lymphoma 1 (0.5 %) 2 (1.0 %) 3 (2.9 %) 4 (1.0 %) 10 (1.1 %)
Mild liver disease 2 (1.0 %) 0 (0 %) 0 (0 %) 4 (1.0 %) 6 (0.7 %)
Hemiplegia 0 (0 %) 0 (0 %) 0 (0 %) 2 (0.5 %) 2 (0.2 %)
Renal failure 0 (0 %) 1 (0.5 %) 3 (2.9 %) 33 (8.5 %) 37 (4.1 %)
AIDS 0 (0 %) 0 (0 %) 0 (0 %) 0 (0 %) 0 (0 %)
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2.6. Partial-dependence analysis

Partial-dependence (PD) analysis visualises how given predictor
variables may influence predicted probabilities of a specified outcome
across a range of values within the trained ML model including tree-
based algorithms and allows for causal interpretations [53]. PD has
been utilised previously to evaluate and explain predictive models in a
wide array of use-cases [43,54–56]. PD selectively perturbs variables of
interest incrementally while preserving the remaining variables to
generate new predicted probabilities from the model after each pertur-
bation. These may then be plotted either for individual patients (indi-
vidualised conditional expectation plots), as an averaged curve, or as
probability contours providing an intuitive, visual, model-agnostic
approach to global interpretability of the ML model and so was chosen
for this study especially as it offers causal interpretations.

Tools such as Local Interpretable Model-agnostic Explanations
(LIME) and Shapley Additive exPlanations (SHAP) offer insight into
predictions at the instance-level (although SHAP values can be aggre-
gated over predictions to provide global insights too) [57,58]. Such local
explanation tools are however principally beneficial in explaining pre-
dictions for individual patients once a clinical decision-support tool has
already been deployed. PD, (as with variable importance) by compari-
son offers clinicians value earlier in the development of such HAIC
processes by conveying global model interpretability as a surrogate
microcosm of their team’s decision-making paradigm and increasing
trust in the validity of the underlying model as a result. While PD allows
for causal interpretation, LIME creates new hyper-localised models for a
given instance and is thus inappropriate for this, while SHAP has been
shown to be unreliable in causal interpretations [59].

3. Results

3.1. Clinical cohort demographics

Of 938 initially identified cases, 13 were excluded as relating to
patients who underwent failed endoscopic resection prior to salvage
oesophagectomy. A further 32 cases with cT stages “cT0” (N= 4), “cTis”
(N= 3) and “cTX” (N= 25) were excluded for low numbers and to allow
examination of any ordinal relationships. The final cohort of 893 cases
are summarised by predictor variable in Table 1 with additional referral
unit data presented in Supplementary Table 1. Treatment-allocation

over time was plotted to visualise general trends within the context of
the landmark CROSS (NACRT + S) and FLOT4 (NACT + S) trials as well
as assessed on PD by epoch for effect on treatment probabilities (Sup-
plemental Figs. 1 and 2 respectively) [60,61].

3.2. Model performance

Classification performance for the RF classifier model using multi-
class ROC AUCs is illustrated in Fig. 1. All classes were separable with
excellent AUCs, (NACT + S 0.90, NACRT + S 0.88, Surgery-only 0.88,
Palliative therapies 0.99) with reasonable calibration (Supplemental
Fig. 3) and mean balanced accuracy (0.795 ± 0.008). This again aligns
with previous experience of the use of random forest models classifying
curative OC treatment plans in a smaller dataset [48].

3.3. Variable importance

Variables such as clinical TNM stage and tumour characteristics
(location& histology) comprise standard criteria for treatment planning
within national guidelines with cM stage and performance status key
differentiators for curative versus palliative pathways [16]. On relative
variable importance however, age notably ranked third when trained on
the full cohort (Fig. 2a) after cM stage and performance status, followed
by, epoch, cN stage, cT stage, referring location, tumour site and his-
tological subtype. In view of its consistently high ranking, we focussed
on age in PD analysis both in isolation and in combination with these
variables to examine their interrelations further. Within a second
‘curative-only’ model age ranked first, further validating its focus within
this study (Fig. 2b).

3.4. Influence of age on treatment decisions

Variation in treatment probability due to age alone was investigated
using individual conditional expectation plots (Fig. 3). In all groups, a
noticeable change in probabilities occurs after 75 years. Patients pre-
dicted for surgery-alone experience a probability rise between 75 and 85
years after which they return to pre-75-year baselines. For NAT, prob-
abilities fall sharply after 75 years, however this decline starts as early as
70 years in the NACT + S group. Palliative pathway probabilities are
largely consistent prior to 75 years however a clear upshift is seen
beyond this time point.

Fig. 1. Multiclass ROC curve for random forests treatment classifier representing a "one vs others" class-prediction performance. K = 5 Cross-validation was con-
ducted using an 80:20 split. Mean ROC is presented ±1x Standard Error of the Mean.
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The patient cohort was segregated into two subgroups (<75 years vs
75+ years) to statistically test for age-related differences between
treatment classes (Supplemental Table 2). No significant difference was
found between treatment groups within the younger subgroup or be-
tween NACT vs NACRT within the older cohort. A significant difference
is seen between the palliative cohort against curative treatments as well
as between Surgery and both NAT modalities within the older cohort.

3.5. Age vs tumour staging

The relationship between age and tumour staging (cT/cN) stage was
assessed (Fig. 4a & b, purple regions represent low probability, yellow
regions represent high probability). For surgery-alone strategies, age
proved minimally influential under 75, directed instead by disease-
stage. From 75 to 85yrs however, probabilities increase independently
of staging. The probability contours demonstrated most variation for the

surgery-alone group at approximately cT2 N0 indicating this group may
experience significant variability in treatment plans. For NACT + S,
highest likelihood (yellow) was focussed on cT3-4 N1 for under 75s after
which likelihood dropped in line with advancing age. A similar pattern
was observed for NACRT + S however the high probability zone is
comparatively larger, extending from cT1-3 and cN0-1. For palliative
therapies, advancing age acted synergistically with stage. As cM stage
only applies to non-curative patients it could not be meaningfully
assessed across pathways, however it demonstrates a binary influence
across all treatments (Supplemental Fig. 4).

3.6. Age vs tumour characteristics

Tumour location demonstrated a hierarchical influence, conferring
greater likelihood for surgery-alone strategies with progressively more
distal tumours (Fig. 4c). A similar, exaggerated effect is seen in NACT +

Fig. 2. Variable importance plot of relative importance for each predictor variable contributing to the Random Forests classifier model. Importance values are
plotted for all patients (a) and curative patients only (b) in rank order with most important at the top. “Epoch” is a time variable split into three key time periods:
“Pre-CROSS trial”, “Cross-to-FLOT4” and “Post-FLOT4 trial”.
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S cases whereas this grouping is closer for NACRT + S. Mid-distal
oesophageal tumours showed higher likelihood for NACRT + S while
GOJ type 1–2 and proximal oesophageal tumours exhibited a lower
probability. Proximal tumours were associated with highest likelihood
for palliative pathways. Across modalities age continued to exert little
influence under 75 years.

Histology separated base probabilities for all treatment choices
independently of age (Fig. 4d). Irrespective of age, adenocarcinomas
were more likely to receive surgery-only and NACT+ S over SCCs which
were more likely to be assigned NACRT + S or palliative pathways.
Palliative therapy likelihood rose in step with advancing ages regardless

of histology.

3.7. Age vs performance status

The relationship between age and PS demonstrated clear clustering
into two patient cohorts across modalities: PS0-1 and PS2-4 (Fig. 4e).
Under 75 years, age exerts minimal influence on surgery-alone proba-
bility. In older patients, PS0-1 cases experience a probability rise while
PS2-4 patients follow a consistent low-probability trajectory, confirming
that advanced age forced selection of the fittest patients for surgery-
alone strategies. PS0-1 patients were significantly more likely to get

Fig. 3. Individual conditional expectation plots for predicted probability of treatment decision against age. Predicted probability (y axis) of each treatment pathway
is plotted against the age range of the cohort (x axis) for each patient (blue lines). The averaged curve is also provided (orange dotted line).

Fig. 4. 2-Dimensional Partial Dependence contour plot of Age vs cT Stage (a) and cN stage (b) on predicted probability of a treatment pathway. Averaged Partial
Dependence Plot of Age vs Tumour Location (c), Tumour Histology (d) and Performance status (e) on treatment decision probability to visualise interrelationships
between the covariates. Interrelation between disease the co-variate and patient age is mapped against four distinct OC treatment modalities: Surgery (S), NACT + S,
NACRT + S and Palliative management. The x-axis delineates the age range of the patient cohort, while the y-axis captures the co-variate levels on a continuous axis.
Intensity of the colour gradients within the contour plot signifies the likelihood of selecting a particular treatment, with yellow shades indicating higher probability
while purple regions indicate lowest probability and numbered contours equate to that probability (e.g., 0.24 = 24 %).
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either NAT modality under 75 years after which probabilities re-
converged with the PS2-4 cohort. PS2-4 patients were again much
more likely to be assigned palliative pathway designation for across all
age groups while PS1 patients only start to converge with the PS2-4
cohort after 75 years.

4. Discussion

4.1. Summary of findings

This study applied XAI techniques to quantify the influence specific
clinical variables exert on the probability of a given treatment decision
by the OC MDT. The study’s findings of a model demonstrating strong
AUC, balanced accuracy and calibration show that ML combined with
XAI techniques can act as a vehicle to interrogate and analyse team-
based decision-making dynamics with a granularity superior to clas-
sical statistical approaches. The ability to extract quantifiable objective
insights, the majority of which align with observed clinical practice
reinforces trust within the underlying model as a microcosm of the
human MDT from which it draws inferences. As a proof-of-principle, the
modelling in this study was not aimed towards clinical outcomes
downstream of the decision (such as survival or quality of life), instead
intentionally focussed on the route towards the treatment-decision itself
in the first instance.

4.2. Age as a potential subconscious bias

Age, while not traditionally a criterion within management guide-
lines proved significant to OC treatment decisions, a finding consistent
with our previous work which we are able to examine in detail here
[48]. An important checkpoint within the seventh decade of life is
highlighted which splits patients into two cohorts experiencing differing
probabilities for treatment pathways. Patients over 75 years remain
more likely to receive surgery-alone or palliative strategies and less
likely to be offered NAT. As previous studies have historically high-
lighted a change in risk profile at 75 years this remains in keeping with
our findings [62,63]. Furthermore, this study indicates age may act as a
surrogate marker of patient fitness even in the presence of functional
metrics such as performance status. We shared these findings with our
MDT and asked if they recognised chronological age as an influential to
their decision making. Initially, members believed that age was not a
routine consideration in their decision-making. However, after engaging
in reflective feedback sessions, they recognised that age did play a role,
albeit subconsciously though they had not initially been able to place a
specific age cut-off. This led some members to consider other possible
subconscious influences and whether these were biases or simply based
on experience [31].

4.3. Variability in treatment decisions

We have explained the relationship within our model between
disease-staging co-variates and age, with the former more important in
the under-75 group and the latter driving choices thereafter. Of interest,
we observed the greatest variability in decision-making (depicted by a
broad range of partial dependencies) for surgery-only strategies in those
with cT2N0-1 disease. This fits a long-established controversy within the
UK regarding the optimal management of this cohort. By definition
cT2N0 disease breaches the muscularis propria with further potential for
submucosal lymphatic invasion, leading to unpredictable tumoral
behaviour within this group [64]. Compounded with historically high
rates of under-staging, this cohort poses a therapeutic dilemma – utilise
potentially toxic NAT (presuming undetected nodal disease) and risk
deconditioning patients out of surgical fitness with potentially no
additional survival advantage [65,66].

NAT decisions were mainly influenced by advancing age over staging
with NACRT deployed over a wider age and staging range than NACT,

but a drop in use of NAT altogether in older patients. This is attributable
to a broadly held view that NACT regimes such as FLOT (Fluorouracil,
Leucovorin, Oxaloplatin, Docetaxel) may be more toxic or less tolerated
than NACRT [24,67–71]. It is worth noting however that while suc-
cessful completion of all cycles for NACT regimens (e.g., pre- and
post-operative FLOT) are lower versus NACRT, a high proportion still
manage all pre-operative cycles to reach surgery [68,72]. Furthermore,
concern over adverse effects with NACRT on tissue friability and anas-
tomotic leakage rates intra- and post-operatively has prompted some
Chinese units to favour NACT, even in OSCC for those with perceived
poor treatment tolerance or frailty [69,71,73]. PD analysis suggested
that NACT + S use within our unit dropped during epoch 2 (CROSS--
FLOT4) but without rebounding post-FLOT4 as NACRT + S did after
CROSS. This may be due to slower uptake by those keenly established in
using NACRT + S especially while clinical equipoise persists regarding
survival advantage. Modelling with trial epochs thus allows for changes
in practice over time and requires periodic re-evaluation following
future trials [68,74]. Predictably, staging was synergistic with age on
palliative pathway prediction reflecting the combination of disease
burden and frailty associated with advanced age.

4.4. Age as a surrogate marker of functional fitness

The interrelation between age and performance status is particularly
interesting within this study as the former has historically been appro-
priated as a surrogate marker of frailty, prejudicing older patients away
from aggressive treatments [17,63,75]. PD analysis grouped patients
into two dominant clusters independently of age: PS0-1 versus PS2-4.
The PS2-4 cluster experienced a significantly lower likelihood for NAT
and were much more likely to be offered palliative treatments fitting a
well-established prognostic significance of pre-treatment patient phys-
ical activity. Metabolic Equivalents or METS (measured by oxygen
consumption at rest and used in anaesthesia to quantify perioperative
functional capacity) are predictive of poor outcomes at scores of 4 or less
[76]. Physical activity commensurate with such scores approximate to
PS2 or worse, suggesting that this clustering reflects anticipation for
treatment-related morbidity in this cohort. While national guidance on
stratifying PS in curative OC cases is not currently offered, PD analysis
allows for ML-driven benchmarking of observed clinical practice against
current recommendations, a concept being explored in other surgical
specialties [77].

4.5. Tumour characteristics on neoadjuvant therapy choice

Tumour characteristics also outweighed age in the under-75s in
driving treatment probabilities. GOJ tumours were more likely to
receive surgery-alone versus oesophageal lesions and significantly more
likely to receive NACT than NACRT. This is partly over concern for
collateral radiation-induced damage to the planned gastric conduit at
surgery, and in part to a historical body of trial data focussed primarily
on oesophageal tumours [60,78–81]. Across NAT, these decisions
remain consistent until late into the 7th decade, at which point the
deleterious effect of age is observed. High oesophageal tumours were
additionally more likely to receive palliative outcomes versus distal le-
sions, in keeping with the significant challenges curative management
for such lesions pose, and where resection in particular may be extensive
[82]. Histology and age followed a similar pattern with adenocarci-
nomas more likely to receive surgery or NACT + S independently of age
while SCCs were favoured for NACRT + S and palliative outcomes. This
fits with the radiosensitivity of SCC subtypes coupled with greater po-
tential for tumour response however a survival benefit from NACRT for
adenocarcinomas however remains debateable [83,84].

4.6. Implications of this study

In 2016, Cancer Research UK, demonstrated that MDTs within the
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UK were operating under significant strain and resource scarcity [6].
Among many of their key findings was a significant challenge for MDTs
finding the time to audit and reflect on their decision-making processes.
Although numerous studies have, in recent years, demonstrated the
capabilities of AI to support, replicate, or even beat the human clinician
in clinical tasks, none to date have considered the benefit of AI in
auditing or unpicking the human decision-making process [85]. This
study shows that AI may also provide significant benefit as vehicle for
early-warnings of subtle shifts in practice, sub-conscious or even un-
conscious bias, and identifying areas where variability indicates a
definitive knowledge gap which may in turn guide research questions
downstream. XAI techniques offer the best way forward by championing
accurate, capable high-functioning AI while balancing this with the need
for transparent, auditable processes. When working in symbiosis with
human counterparts within the MDT, this can provide for the ideal of
“AI-augmented clinicians” [38].

4.7. Study limitations and strengths

This was a single-centre retrospective analysis of 893 OC patients
over a 13-year period during which a number of shifts in oncological
practice have undoubtedly occurred in both NACT regimens and
emerging immunotherapies. However, little clarity has been achieved
even now in optimal NAT regimens or management of cT2N0 patients.
The strength of this study is in its novel use of XAI on a large single-
centre cohort of nearly 900 patients evaluating both curative and non-
curative treatment pathways which broadens its generalisability. We
have demonstrated how transparency can be introduced for team-based
oncological treatment decisions, detailing clear shifts in human
decision-making when faced with specific clinicopathological scenarios
in oncological settings known to suffer chaotic leadership styles [86].
This approach allows us to examine and re-examine the robustness of
our decision-making to standardise practice for OC patients (especially
given that there is evidence to indicate heterogeneity of decision-making
even between OC MDTs [87]) and can be applied to other MDTs
regionally, nationally or internationally in future for direct comparison
of MDTs as well as being translatable to MDTs from other cancer types.
Where MDTs have little time across cancer types for audit, self-reflection
or learning [6,7,11,12,88], global XAI could be integrated into MDT
workflows as part of annual departmental audits for quality control,
sense-checking shifts in practice. Training data drift can be tracked to
ensure models remain appropriate and true to the local population [89].
As CDSS tools the evolve, local XAI techniques such as LIME and SHAP
may be integrated within the user-interface to offer additional
instance-level explanations in real-time tailored to the individual patient
[57,58]. While the present study is not designed to determine the clin-
ical justification for decisions influenced by variables such as age, it
highlights scenarios for MDTs to focus upon during clinical governance
processes while introducing clinicians to the capabilities of AI-derived
decision support.

However, while XAI techniques explain recommendations, this does
not automatically guarantee clinician uptake of that recommendation. A
recent study testing clinicians’ fluid-prescriptions when offered addi-
tional advice from simple AI or XAI noted little difference on self-
reporting, in outcome whether explanations were provided or not,
questioning whether explanations were of material benefit above an AI
recommendation [90]. The study faced some methodological chal-
lenges, namely the reliability of self-reporting, sample size and the
generalisability of the clinical scenario. The question it raises however is
valid, engagement often depends on the user’s level of technical un-
derstanding, the effectiveness of communication methods for explana-
tions, and whether clinicians perceive the explanations as beneficial
beyond ML experts [37,91]. Despite this, the prevailing wind within
healthcare remains a need for trustable AI solutions which open the
“black box”. Bridging the gap to non-technical clinicians must the occur
through education programs to ensure they can critically appraise not

only AI models but the explanations which may accompany their out-
puts [92].

4.8. Future work

Future work will include applying the technique to external centres
to compare and contrast our findings both within OC but also in other
cancer-types. Testing other well-known ML algorithms from more
inherently interpretable options such as decision-tree models and more
complex ensemble learners such as eXtreme Gradient Boost may also be
useful in evaluating insights across algorithms. Furthermore, ongoing
work within this space will inevitably lead to the co-development of ML-
derived decision-support tools trained on human-led MDT decisions. By
applying Responsible Research and Innovation (RRI) frameworks we are
currently engaging with and including stakeholders’ opinions (oncolo-
gists, radiologists, psychologists, computer scientists, and patient rep-
resentatives) to identify strategies for optimal implementation,
acceptability and usability of such an ML-derived tool [93]. We are
incorporating principles to support multidisciplinary scientific collabo-
ration, anticipate key future challenges and reflect on better practices
for responsible data governance. The need for explainable and prefer-
ably interpretable models built on RRI principles is paramount, espe-
cially now with the potential for AI in healthcare to transform the
practice of medicine in general. The approach presented here represents
a route towards trust within these frameworks by first offering global
insight into team-level decision-making when mirrored by ML. While
the model used in this study is tailored to our local MDT, the process can
be performed either on a population-level for scalability or targeted to a
specific unit, to enhance data diversity and representativeness of un-
derrepresented demographic groups or geographical areas). Under-
standing decision-drivers, some of which we argue are sub-conscious in
practice, is invaluable for the pursuit of personalised medicine for OC
patients and essential in building clinician-patient trust in future
implementations of AI within OC.

5. Conclusion

This study applied XAI methods to highlight how significant, yet
sometimes subconscious factors like age may influence treatment de-
cisions for OC patients. While treatment choices are often framed by
clinical factors, age remains salient even with functional metrics like
performance status delineating patients into a fitter cohort, more likely
to undergo all curative treatments, versus an unfit less-eligible group.
The uniformity in predicted probabilities for curative treatments persists
only until the 7th decade of life. After this, a notable rise in the proba-
bility for surgery-alone and palliative options is juxtaposed against a
decline in neoadjuvant therapy (NAT) prospects. Our analysis not only
emphasizes age’s pivotal role amidst traditional clinical drivers but also
showcases the clarity and insight achievable with ML in navigating
complex treatment landscapes. This explainability is crucial for
clinician-engagement and trust within future AI-based decision support
tools.
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Glossary

Co-morbidity the simultaneous presence of two or more clinical
conditions within a patient

CROSS trial A landmark clinical trial published in 2012 which
demonstrated the survival benefit of providing neoadjuvant
chemoradiotherapy prior to surgery for oesophageal cancer
patients

FLOT4 trial A landmark clinical trial published in 2017 which
demonstrated the efficacy of the neoadjuvant chemotherapy
regimen of 5-Fluoro Uracil (5FU), Oxaloplatin, Leucovorin
and Docetaxel over the previous gold-standard chemotherapy
regimen of the day for OC

Multidisciplinary Teams This is a clinical framework for shared
decision-making in cancer care defined by the presence of
multiple separate domain experts at the time of determining a
course of treatments. MDTs typically comprise cancer
surgeons, oncologists, radiologists, pathologists, specialist
nurses, palliative care physicians, administrative and clerical
team members as well as many other allied health care
professions

Multimodal therapy the use of multiple oncological strategies for a
patient’s cancer care. Within Oesophageal Cancer this
specifically relates to the use of neoadjuvant therapies as well
as formal surgical resection

Neoadjuvant therapy the provision of cancer treatments (typically
chemotherapy, radiotherapy, hormone therapy or
immunotherapy) prior to formal surgical resection of a

tumour to downstage (shrink or improve the size and invasion
of) the cancer

Oesophagectomy the surgical removal of part of the oesophagus and
typically a portion of the proximal stomach

Performance Status The Eastern Cooperative Oncology Group
(ECOG) performance status is a clinical grading scale from
0 to 5 (0 = Fully active, able to carry on all pre-disease
performance without restriction, 5 = dead) which has been
traditionally used within surgical oncology to evaluate a
patient’s physical activity levels as a barometer of
physiological reserve and fitness for therapeutic interventions

Polypharmacy The simultaneous use of multiple medications
Tertiary referral unit A specialist clinical centre or hospital which has

particular expertise in managing a specific clinical condition
Unimodal therapy within Oesophageal cancer this typically relates to

forgoing neoadjuvant therapy and proceeding directly to
surgery
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[63] D. Tougeron, H. Hamidou, M. Scotté, F. Di Fiore, M. Antonietti, B. Paillot,
P. Michel, Esophageal cancer in the elderly: an analysis of the factors associated
with treatment decisions and outcomes. https://doi.org/10.1186/1471-2407-1
0-510, 2010.

[64] P. Vining, T.J. Birdas, Management of clinical T2N0 esophageal cancer: a review,
J. Thorac. Dis. 11 (2019) S1629–S1632, https://doi.org/10.21037/jtd.2019.07.85.

N. Thavanesan et al. Computers in Biology and Medicine 180 (2024) 108978 

10 

https://doi.org/10.1186/s12877-016-0329-8
https://doi.org/10.1186/s12877-016-0329-8
http://refhub.elsevier.com/S0010-4825(24)01063-1/sref18
http://refhub.elsevier.com/S0010-4825(24)01063-1/sref18
https://doi.org/10.1093/bjsopen/zraa035
https://doi.org/10.1503/cjs.007611
https://doi.org/10.1503/cjs.007611
https://doi.org/10.1001/archsurg.2009.203
http://refhub.elsevier.com/S0010-4825(24)01063-1/sref22
http://refhub.elsevier.com/S0010-4825(24)01063-1/sref22
https://doi.org/10.1016/S0140
https://doi.org/10.1186/s12957-019-1630-8
https://doi.org/10.1186/s12957-019-1630-8
https://doi.org/10.1308/147363512x13448516926748
https://doi.org/10.1308/147363512x13448516926748
https://doi.org/10.1016/j.ejso.2023.106986
https://doi.org/10.1177/107327481302000208
https://doi.org/10.1038/s41416-018-0028-7
https://doi.org/10.1093/dote/doab083
https://doi.org/10.1093/dote/doab083
https://doi.org/10.1016/j.ejca.2023.04.002
https://doi.org/10.7861/fhj.2020-0233
https://doi.org/10.1016/j.mpsur.2017.09.010
https://doi.org/10.7759/cureus.18894
https://doi.org/10.1016/j.suronc.2010.07.007
https://doi.org/10.1016/j.suronc.2010.07.007
https://doi.org/10.1007/s11605-022-05575-8
https://doi.org/10.1038/s41746-023-00797-9
https://doi.org/10.1038/s41746-023-00797-9
https://orcid.org/0000-0002-4927-5086
https://doi.org/10.1016/S01406736(19)326261
https://doi.org/10.1016/S01406736(19)326261
https://doi.org/10.3390/cancers15051596
https://doi.org/10.3390/cancers15051596
https://doi.org/10.1111/ans.18749
https://doi.org/10.1111/codi.17091
https://doi.org/10.3390/s20174693
https://doi.org/10.3390/s20174693
https://doi.org/10.1186/s12911-019-0874-0
https://doi.org/10.1186/s12911-023-02103-9
https://doi.org/10.1186/s12911-023-02103-9
https://doi.org/10.1136/bmjhci-2023-100920
https://doi.org/10.1093/bjs/znac044
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.ejso.2023.106986
https://doi.org/10.1097/SLA.0000000000004794
https://doi.org/10.1097/SLA.0000000000004794
https://doi.org/10.3389/fpubh.2022.1008137
https://doi.org/10.1111/cns.14237
http://refhub.elsevier.com/S0010-4825(24)01063-1/sref52
http://refhub.elsevier.com/S0010-4825(24)01063-1/sref52
https://doi.org/10.1080/10618600.2014.907095
https://doi.org/10.1080/10618600.2014.907095
https://doi.org/10.1016/j.scitotenv.2022.155070
https://doi.org/10.1109/JBHI.2021.3073056
https://doi.org/10.3390/jpm12111930
https://doi.org/10.3390/jpm12111930
http://refhub.elsevier.com/S0010-4825(24)01063-1/sref57
http://refhub.elsevier.com/S0010-4825(24)01063-1/sref57
http://refhub.elsevier.com/S0010-4825(24)01063-1/sref58
http://jmlr.org/papers/v/.html
https://doi.org/10.1016/S1470-2045(15)00040-6
https://doi.org/10.1016/S0140-6736(18)32557-1
https://doi.org/10.1245/s10434-020-08653-w
https://doi.org/10.1245/s10434-020-08653-w
https://doi.org/10.1186/1471-2407-10-510
https://doi.org/10.1186/1471-2407-10-510
https://doi.org/10.21037/jtd.2019.07.85


[65] J.P. Dolan, T. Kaur, B.S. Diggs, R.A. Luna, B.C. Sheppard, P.H. Schipper, B.H. Tieu,
G. Bakis, G.M. Vaccaro, J.M. Holland, K.M. Gatter, M.A. Conroy, C.A. Thomas, J.
G. Hunter, Significant understaging is seen in clinically staged T2N0 esophageal
cancer patients undergoing esophagectomy, Dis. Esophagus 29 (2016) 320–325,
https://doi.org/10.1111/dote.12334.

[66] S.R. Markar, C. Gronnier, A. Pasquer, A. Duhamel, H. Beal, J. Théreaux,
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