
1

2

4

5

6

7

8

9

10

11

12

13

15
16

17

18

19

20

21

22

Chinese Journal of Aeronautics, (2024), xxx(xx): xxx–xxx

CJA 3072 No. of Pages 23

31 May 2024
Chinese Society of Aeronautics and Astronautics
& Beihang University

Chinese Journal of Aeronautics

cja@buaa.edu.cn
www.sciencedirect.com
FULL LENGTH ARTICLE
o
An efficient uncertainty propagation method for

nonlinear dynamics with distribution-free P-box

processes
* Corresponding author.

E-mail address: leonwood@nwpu.edu.cn (C. GONG).

Peer review under responsibility of Editorial Committee of CJA.

Production and hosting by Elsevier

https://doi.org/10.1016/j.cja.2024.05.028
1000-9361 � 2024 Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and Astronautics.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Please cite this article in press as: ZHANG L et al. An efficient uncertainty propagation method for nonlinear dynamics with distribution-free P-box processes
Aeronaut (2024), https://doi.org/10.1016/j.cja.2024.05.028

Unc

t d P
o

f

Licong ZHANG

a
, Chunna LI

a
, Hua SU

a
, Yuannan XU

b
, Andrea Da RONCH

c
,

Chunlin GONGa,*

r

aFlight Vehicle Design Key Laboratory, School of Astronautics, Northwestern Polytechnical University, Xi’an 710072, China
bResearch and Development Department, China Academy of Launch Vehicle Technology, Beijing 100076, China
cFaculty of Engineering and Physical Sciences, University of Southampton, Southampton, England SO171BJ, UK

 

Received 9 October 2023; revised 15 November 2023; accepted 6 February 2024e
KEYWORDS

Nonlinear dynamics;

Uncertainty propagation;

Imprecise probability;

Distribution-free P-box pro-

cesses;

Chebyshev method
Abstract The distribution-free P-box process serves as an effective quantification model for time-

varying uncertainties in dynamical systems when only imprecise probabilistic information is avail-

able. However, its application to nonlinear systems remains limited due to excessive computation.

This work develops an efficient method for propagating distribution-free P-box processes in nonlin-

ear dynamics. First, using the Covariance Analysis Describing Equation Technique (CADET), the

dynamic problems with P-box processes are transformed into interval Ordinary Differential Equa-

tions (ODEs). These equations provide the Mean-and-Covariance (MAC) bounds of the system

responses in relation to the MAC bounds of P-box-process excitations. They also separate the pre-

viously coupled P-box analysis and nonlinear-dynamic simulations into two sequential steps,

including the MAC bound analysis of excitations and the MAC bounds calculation of responses

by solving the interval ODEs. Afterward, a Gaussian assumption of the CADET is extended to

the P-box form, i.e., the responses are approximate parametric Gaussian P-box processes. As a

result, the probability bounds of the responses are approximated by using the solutions of the inter-

val ODEs. Moreover, the Chebyshev method is introduced and modified to efficiently solve the

interval ODEs. The proposed method is validated based on test cases, including a duffing oscillator,

a vehicle ride, and an engineering black-box problem of launch vehicle trajectory. Compared to the

reference solutions based on the Monte Carlo method, with relative errors of less than 3%, the pro-
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1. Introduction

The dynamic response evaluation of nonlinear systems is crit-
ical in most engineering problems. Due to the unavoidable

uncertainty in practical applications, evaluating the response
solely under deterministic and precise conditions is inadequate.
Therefore, the Uncertainty Propagation (UP) in nonlinear
dynamics has become a research focus in recent years.1,2 The

task of the UP analysis is to calculate the uncertainty charac-
teristics of system responses based on the quantification mod-
els of input uncertainties. Different sources of uncertainties are

generally represented by different models. Aleatory uncertain-
ties, arising from the inherent physical randomness of systems
and excitations, can be represented by the probabilistic model,

when sufficient and precise data are available. However, the
uncertainties resulting from limited or poor-quality data, ter-
med imprecision (a form of epistemic uncertainties), have to

be represented by non-probabilistic models.3 When aleatory
uncertainties and imprecision appear together and result in
imprecise probabilistic information, both probabilistic and
non-probabilistic models are inapplicable. In such instances,

imprecise probabilities4 serve as suitable models for represen-
tation. Under these different types of uncertainty models, the
corresponding UP analyses for dynamical systems have also

been investigated.
Under the probabilistic model, uncertainties are quantified

using precise probability distributions, and the uncertain sys-

tems can be formulated as nonlinear stochastic dynamics. In
this field, a great number of classical analysis methods have
been developed, such as the Monte Carlo (MC) method,5 local
linearization method,6 stochastic linearization method,7

stochastic average method,8 path-integration method,9 Hamil-
tonian formulation10 and so on. Recently, the integration
methods based on probability conservation, including proba-

bility density evolution method11 and direct probability inte-
gral method,12,13 have become a focus. Several surrogate-
model-based methods have also been investigated, including

Polynomial chaos expansion,14,15 Kriging,16 and artificial neu-
tral networks,17,18 as well as dimension reduction approaches19

for high-dimensional surrogate-modelling. Frequency-domain

methods20,21 have also been recognized as powerful tools for
stochastic-dynamic analyses. Some other methods have proven
effective in specific fields; for instance, the unscented transfor-
mation,22 state transition tensors,23 and Gaussian mixture

models24 have been widely applied in flight mechanics. More-
over, numerous novel methods25–27 have been successively
developed. Although these probabilistic methods have

achieved success in solving various UP problems, they still face
the challenge that collecting sufficient information for con-
structing precise probability distributions of uncertainties

may not always be possible.
Non-probabilistic models3,28,29 can operate effectively with-

out relying on probabilistic information. The convex model,28

in particular, is the most well-known and is widely applied in
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the study of nonlinear dynamics. Wu et al.30,31 introduced
the Chebyshev interval method for UP analysis of nonlinear
dynamics. Then, Li et al.32 proposed a sparse regression
method to improve the efficiency of the Chebyshev method.

Wang et al.33,34 developed a Legendre-polynomial-based
method to propagate interval uncertainties in nonlinear
dynamics. These methods have been applied to a number of

engineering problems.35,36 However, they cannot handle corre-
lated or time-varying uncertainties, which commonly exist in
dynamical systems. Therefore, to quantify the correlation of

intervals, several improved convex models37–39 have been pro-
posed. For time-varying intervals, Jiang et al.40 proposed a
novel quantification model, namely the interval process. Based
on the interval process, various methods have been presented

for UP analyses of linear systems.41 Subsequently, for nonlin-
ear systems, an MC-simulation method,42 the Karhunen-
Loève expansion method,43 and a linearization method44 have

been gradually proposed.
Imprecise probabilistic information is also common in

practice, where imprecise probabilities are considered a more

appropriate quantification model. The P-box45 may serve as
a popular representative of imprecise probabilities. The P-
box has been investigated in numerous static uncertainty anal-

ysis problems;46–48 however, it has only recently gained interest
for dynamical problems. The quantification models of dynam-
ical uncertainties have been investigated by using the P-box
model. Li49 and Faes50 et al. proposed the definitions of para-

metric and distribution-free (non-parametric) P-box processes,
respectively, to describe time-varying uncertainties. Mean-
while, several UP methods have been proposed for dynamical

problems. Faes and Moens51 studied imprecise random fields
with parametrized kernel functions in linear dynamics. The
authors also developed analysis methods for estimating the

imprecise first excursion probabilities in linear dynamics.52,53

Faes et al.54 further proposed an operator-norm-based method
to calculate the imprecise probabilities. However, these meth-
ods are only valid for linear dynamics. For nonlinear dynam-

ics, very few approaches have been developed. Enszer et al.55

applied the Taylor expansion model to calculate the probabil-
ity bounds for nonlinear dynamics. Ni et al.56 proposed an

operator norm-based statistical linearization method for
bounding the first excursion probability of nonlinear struc-
tures. However, it should be noted that all of the aforemen-

tioned methods have only considered the parametric P-boxes
or processes. Because it is not always possible to obtain a com-
plete parametric description of P-boxes, distribution-free P-

box problems are also considered significant. However, in this
field, only Faes et al.50 suggested a propagation method when
defining the distribution-free P-box process, and this technique
is only suitable for linear dynamics. There is still a lack of

appropriate UP approaches for nonlinear problems with
distribution-free P-box processes.

In this work, the nonlinear dynamics with distribution-free

P-box processes is investigated and an efficient UP method for
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(a) Parametric P-box (b) Distribution-free P-box

Fig. 1 Visual depiction of the P-box.
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the nonlinear dynamics is proposed. The major contributions
of this work are as follows:

(1) The UP problem of nonlinear dynamics with
distribution-free P-box processes is first proposed and
defined. This problem is critical, as the precise proba-

bilistic information of excitations of nonlinear dynamics
is always challenging to obtain in practical engineering.

(2) A novel UP method is developed. The P-box analyses of

excitations and stochastic analyses of nonlinear systems
are decoupled by using the Covariance Analysis
Describing Equation Technique (CADET). This signifi-
cantly improves the efficiency of the UP analysis. Based

on the method, the bounds of the means and covariances
of the system responses, as well as their probability
bounds, can be obtained.

(3) The Chebyshev method is introduced to non-intrusively
solve the interval analyses in the UP procedure and fur-
ther improve the UP analysis efficiency.

The rest of this paper is organized as follows. In Section 2,
several issues about nonlinear dynamics with distribution-free

P-box processes are discussed. Section 3 introduces the pro-
posed UP method in detail. The proposed method is tested
by using two numerical examples and a Launch-Vehicle (LV)
ascent-trajectory problem in Section 4. Finally, the conclusions

are presented in Section 5.

2. Nonlinear dynamics with distribution-free P-box processes

Consider an N-degree-of-freedom nonlinear dynamic with an
M�dimensional time-varying uncertain excitation. This can
be mathematically expressed as follows:

_X tð Þ ¼ f X; tð Þ þ B tð ÞW tð Þ ð1Þ
where WðtÞ ¼ ½W1ðtÞ; W2ðtÞ; . . . ; WMðtÞ�T, denotes the
M�dimensional vector comprising the stochastic excitations;

XðtÞ ¼ ½X1ðtÞ; X2ðtÞ; . . . ; XNðtÞ�T, denotes the N-dimensional
vector comprising the state variables of the system;

fð � Þ ¼ ½f1ð � Þ; f2ð � Þ; . . . ; fNð � Þ�T, denotes the nonlinear vec-

tor function that describes the system; and BðtÞ denotes the
N by M input matrix. Under the probabilistic model, the
time-varying uncertain excitations, i.e., WmðtÞ (m= 1, 2, . . .,
M), can be described as stochastic processes. However, in prac-
tical engineering cases, it may not always be possible to obtain
precise probabilistic information about these excitations. To
address this issue, the P-box process was proposed to quantify

the time-varying excitations with imprecise probabilistic infor-
mation. The detailed concept of the P-box process will be
introduced in the following subsection.

2.1. Definition of distribution-free P-box processes

Before introducing the P-box process, the basic definition of

static P-box is given first. The P-box variable WP:B:, with the
superscript P.B. denoting the P-box, is described by the two

Cumulative-Distribution-Function (CDF) bounds, i.e., a lower

CDF FL
Wð�Þ and an upper CDF FU

Wð�Þ, as follows:
FL
W xð Þ 6 FW xð Þ 6 FU

W xð Þ ð2Þ
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where FWð�Þ denotes a possible CDF realization of the impre-

cise CDF bounded by FL
Wð�Þ and FU

Wð�Þ. Therefore, the P-box

variable WP:B: could be denoted by its CDF bounds as

½FL
W; F

U
W�, with all P-boxes that appear later in the text denoted

in a similar fashion.

P-box variables are typically categorized as parametric P-
box and distribution-free (non-parameterized) P-box, as
shown in Fig. 1(a) and (b), respectively. The distribution type

of a parametric P-box is known; however, the distribution
parameters are imprecise. The distribution-free P-box lacks
precise information in terms of both the distribution type
and parameters. This work focuses on the distribution-free

type of P-box variables, as it is common, in practical engineer-
ing, that a complete parametric description of the distributions
of probability bounds cannot be obtained.

When a distribution-free P-box is time-varying, it will
become a distribution-free P-box process whose CDFs are
distribution-free P-boxes at all times, as shown in Fig. 2. A

study50 recently proposed a mathematical definition based on
translation theory:

WP:B: tð Þ ¼ FL
W

� ��1
; FU

W

� ��1
h i�

U N tð Þð Þ ð3Þ

where � denotes the operator of composite mapping, ½FL
W; F

U
W�

denotes a distribution-free P-box, NðtÞ denotes a Gaussian
stochastic process with zero mean and unit variance, and

Uð � Þ denotes the standard normal CDF. The expression pre-
sented in Eq. (3) defines the CDF bounds of the imprecise

stochastic process at any time by ½FL
W; F

U
W� and the time-

correlation structure by NðtÞ.

ted
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Fig. 2 Visual depiction of the P-box process.
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As shown in Fig. 2, the sample trajectories of a distribution-

free P-box processWP:B:ðtÞ are no longer precise functions over
time, but interval-valued functions. Accordingly, the mean and

variance of WP:B:ðtÞ, denoted by lI
WðtÞ and ðr2

WÞIðtÞ, respec-
tively, are both interval-valued functions over time, with the

superscript I denoting the interval. If NðtÞ in Eq. (3) is a sta-

tionary Gaussian process, lI
WðtÞ and ðr2

WÞIðtÞ will become con-

stant intervals as denoted by lI
W and ðr2

WÞI, respectively. This
can be mathematically expressed as follows:

lI
W ¼ min

FW2 FL
W
;FU

W½ �
mean FWð Þ; max

FW2 FL
W
;FU

W½ �
mean FWð Þ

" #

r2
W

� �I ¼ min
FW2 FL

W
;FU

W½ �
var FWð Þ; max

FW2 FL
W
;FU

W½ �
var FWð Þ

" #

8>>>>>>><
>>>>>>>:

ð4Þ

where meanð�Þ and varð�Þ denote the operators for calculating
the mean and variance of the given CDF realization FW,

respectively, which can be expressed as follows:

mean FWð Þ ¼ R1
�1 FWð Þ�1�U gð Þd U gð Þð Þ

var FWð Þ ¼ R1
�1 FWð Þ�1�U gð Þ �mean FWð Þ

� �2

d U gð Þð Þ

8<
: ð5Þ

where g denotes the integration variable.

2.2. Uncertainty propagation problems under P-box processes

If only the CDF-bound information of the excitations for the

nonlinear system presented in Eq. (1) are available, they can be
described as distribution-free P-box processes, as follows:

WP:B: tð Þ ¼ WP:B:
1 tð Þ;WP:B:

2 tð Þ; . . . ;WP:B:
M tð Þ� �T ð6Þ

To define WP:B:
m ðtÞ (m= 1, 2, . . ., M) based on Eq. (3), M

static P-boxes are given as ½FL
Wm

; FU
Wm

� (m= 1, 2, . . ., M).

For simplicity, the M P-boxes are represented in vector form

½FL
W; F

U
W�, where FL

W ¼ FL
W1

; FL
W2

; . . . ; FL
WM

h iT
and

FU
W ¼ FU

W1
; FU

W2
; . . . ; FU

WM

h iT
.

Under WP:B: tð Þ, the nonlinear dynamical system can be
expressed as follows:

_XP:B: tð Þ ¼ f XP:B: tð Þ; t� �þ B tð ÞWP:B: tð Þ ð7Þ
The responses of the nonlinear system XP:B:ðtÞ also become P-
box processes. Therefore, the main objective of the UP analysis

is to obtain the CDF bounds of the responses, denoted by

½FL
X; F

U
X �, at any time instant t. This can be mathematically

expressed as follows:

FL
X x tjð Þ ¼ min

FW2 FL
W
;FU

W½ �
FX x FW; tjð Þ

FU
X x tjð Þ ¼ max

FW2 FL
W
;FU

W½ �
FX x FW; tjð Þ

8>><
>>: ð8Þ

where FW represents the realizations of the P-boxes ½FL
W; F

U
W�

that define the P-box processes WP:B:ðtÞ. Meanwhile, the eval-
uation of failure probability bounds is considered an impor-

tant task. When the first-passage problem25 is considered,
this can be mathematically expressed as follows:
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PL ¼ min
FW2 FL

W
;FU

W½ �
Pr max

t2 0;T½ �
X t FWjð Þj jð Þ > d

� 	

PU ¼ max
FW2 FL

W
;FU

W½ �
Pr max

t2 0;T½ �
X t FWjð Þj jð Þ > d

� 	
8>>>><
>>>>:

ð9Þ

where PL and PU denote the lower and upper bounds of the
first-passage probability, respectively; Prf�g denotes the prob-
ability operator; j � j denotes the absolute value operator; T

denotes the time duration; XðtjFWÞ denotes the system
response of concern, corresponding to FW; d denotes the given
threshold that limits the bounds of the safe domain.

In most engineering cases, the means and standard devia-

tions of the system responses have received more attention.
Based on the property presented in Eq. (4), the means and

standard deviations of XP:B:ðtÞ can serve as intervals and be
denoted as follows:

lI
X tð Þ ¼ lL

X tð Þ; lU
X tð Þ� �

rI
X tð Þ ¼ rL

X tð Þ; rU
X tð Þ� �

(
ð10Þ

Therefore, another objective of the UP analysis involves
calculating the lower and upper bounds of the mean and stan-

dard deviation of the responses,57 i.e., lL
XðtÞ, lU

XðtÞ, rL
XðtÞ, and

rU
XðtÞ. Because the means and standard deviations of the

responses are always dependent, the error bars58 can be used
to evaluate the overall uncertain extent of the responses. The

lower-and-upper-bound intervals of the error bars, i.e., eIL
and eIU, for P-box problems, can be expressed as follows:

eIL tð Þ ¼ lI
X tð Þ � rI

X tð Þ
eIU tð Þ ¼ lI

X tð Þ þ rI
X tð Þ

�
ð11Þ

The minimum value of the lower bounds eLL and the maxi-

mum value of the upper bounds eUU can be selected to quantify

the error bars as follows:

eLL tð Þ ¼ min
FW2 FL

W
;FU

W½ �
eIL t FWjð Þ

eUU tð Þ ¼ max
FW2 FL

W
;FU

W½ �
eIU t FWjð Þ

8><
>: ð12Þ

The essence of the problems presented in Eq. (8), Eq. (9),
and Eq. (12) is to find the realizations that result in the bounds

of the probabilistic characteristics of the system responses,

within the given P-boxes ½FL
W; F

U
W�.

In some studies, these realizations for linear systems are
searched by using an optimization technique.50 However, for
nonlinear dynamics, the methods based on optimizations have

the following shortages. First, finding the global optimum is
difficult, especially, when the stochastic analysis of nonlinear
systems is complex. Second, the optimization has to be per-

formed at many (even all) time nodes within the entire time
span. Third, for multi-dimensional P-box processes, construct-
ing the optimization problem has been shown to be difficult.
Therefore, there is an urgent need to obtain an efficient

method to achieve the UP analysis of nonlinear dynamics with
distribution-free P-box processes.

3. Proposed method

In this section, a novel method is proposed to efficiently ana-
lyze the UP problems presented in Section 2.2, based on the
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CADET and the Chebyshev method, which will be introduced
in the following subsections.

3.1. Transcription of P-box dynamics using CADET

First, the P-box problem presented in Eq. (7) is transformed
into an interval problem by using the CADET.

In the CADET, the nonlinear function fð � Þ of the stochas-
tic system presented in Eq. (1) is approximated by using the
linear equation based on the statistical linearization:59

f X; tð Þ � NllX þNRR ð13Þ
where lX denotes the N-dimensional mean vector of X, i.e.,
lX ¼ EðXÞ, R denotes the N-dimensional random-part vector

of X, i.e., R ¼ X� lX, and Nl and NR represent the corre-

sponding N by N real linear-coefficient matrices. In a proba-
bilistic sense, the optimal Nl and NR that provide a

minimum variance approximation can be, respectively,
expressed as follows:60

NllX ¼ R1
�1 f x; tð Þd FX xð Þð Þ

NR ¼ R1
�1 f x; tð ÞRTd FX xð Þð Þ � P�1

X

(
ð14Þ

where PX denotes the N by N covariance matrix of X, i.e.,

PX ¼ EðRRTÞ, and FXð�Þ denotes the joint CDF of X. Subse-
quently, when the excitation WðtÞ consists of white noise pro-
cesses, the nonlinear Ordinary Differential Equations (ODEs)

governing the propagation of the mean vector lX and covari-
ance matrix PX for the system responses can be established as
follows:59

_lX ¼ NllX þ BlW

_PX ¼ NRPX þ PXNR þ BPWB
T

�
ð15Þ

where lW denotes the mean vector of the excitations, i.e.,
lW ¼ EðWÞ, and PW denotes the covariance matrix of the exci-

tations, i.e., PW ¼ E½ðW� lWÞðW� lWÞT�. Of note, because
the joint CDF of X in Eq. (14), i.e., FXð�Þ, for calculating Nl

and NR is unknown, the ODEs in Eq. (15) cannot be solved
directly. To address this issue, a crucial Gaussian assump-

tion,59 i.e., the responses are previously assumed to be jointly
normal, is introduced. This Gaussian assumption follows from
the central limit theorem and has been verified to be valid in

practice.60 Based on this assumption, FXð�Þ can be described
by using only its mean vector lX and covariance matrix PX:

FX x; tð Þ � UX x; t lX;PXjð Þ ð16Þ
where UXð�jlX; PXÞ represents the normal distribution func-

tion with the mean vector lX and covariance matrix PX. By
substituting Eq. (16) into Eq. (14), NllX and NR can both

be described as functions of lX and PX. After that, the ODEs
in Eq. (15) can be fully defined as equations of lX and PX.
With the given initial values of lX and PX, the ODEs can be

solved by using any numerical method. The detailed method
used to solve the CADET Eq. (15) is provided in the Ref. 59

For Eq. (7), according to the property expressed in Eq. (4),

the components of the mean vector and covariance matrix of

WP:B:ðtÞ become intervals. The interval-valued mean vector

and covariance matrix of WP:B:ðtÞ are denoted as lI
W and PI

W,

respectively. By substituting lI
W and PI

W into Eq. (15), Eq.

(15) can be transformed into ODEs under interval parameters:
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_lI
X ¼ NI

ll
I
X þ BlI

W

_P
I

X ¼ NI
RP

I
X þ PI

XN
I
R þ BPI

WB
T

(
ð17Þ

where lI
X and PI

X denote the interval-valued mean vector and

covariance matrix of the system responses, respectively, corre-

sponding to lI
W and PI

W; N
I
l and NI

R also become intervals as

they are both functions of lI
X and PI

X.

Eq. (17) provides the interval bounds of the mean and vari-

ance of the system responses XP:B:ðtÞ, which are essential for
achieving the UP analysis presented in Section 2.2. However,
before solving Eq. (17), it is necessary to determine the bounds

of the interval inputs, i.e., flI
W; P

I
Wg. Meanwhile, an efficient

algorithm is needed to solve the ODEs under these interval
parameters. The methods for addressing these two issues will

be introduced in Sections 3.2 and 3.3.

3.2. Domain analysis for mean and variance of the input P-box
processes

In this subsection, the method for calculating flI
W; P

I
Wg is

introduced. In this work, the stochastic excitations are

assumed to be mutually independent. Therefore,

PW ¼ diagðr2
W1

; r2
W2

; . . . ; r2
WM

Þ, where r2
W1
, r2

W2
, . . ., and

r2
WM

represent the variances of the excitations. For simplicity,

these variances are expressed as a vector

r2
W ¼ ½r2

W1
; r2

W2
; . . . ; r2

WM
�T. For WP:B:ðtÞ, the values of its

variance vector are intervals and can be denoted by ðr2
WÞI.

The calculation of flI
W; P

I
Wg is accordingly simplified to that

of flI
W; ðr2

WÞIg. For each component of WP:B:ðtÞ, i.e.,

WP:B:
m ðtÞ (m = 1, 2, . . ., M), its bounds of the mean and vari-

ance are denoted by lI
Wm

and ðr2
Wm

ÞI, respectively. Because

WP:B:
m ðtÞ is defined based on the given P-box ½FL

Wm
; FU

Wm
� using

Eq. (3), lI
Wm

and ðr2
Wm

ÞI can be calculated by substituting

½FL
Wm

; FU
Wm

� into Eq. (4), which can be expressed as follows:

lI
Wm

¼ min
FWm2 FL

Wm
;FU

Wm
½ �

mean FWm
ð Þ; max

FWm2 FL
Wm

;FU
Wm

½ �
mean FWm

ð Þ
" #

r2
Wm

� �I ¼ min
FWm2 FL

Wm
;FU

Wm
½ �

var FWm
ð Þ; max

FWm2 FL
Wm

;FU
Wm

½ �
var FWm

ð Þ
" #

8>>>>><
>>>>>:

ð18Þ
The goal of solving the above minimization-and-

maximization problems is to find the realizations that result

in the bounds of its mean and variance within ½FL
Wm

; FU
Wm

�.
Therefore, introducing a method to generate CDF realizations
of the P-box, is the primary work for solving the optimiza-
tions. In this work, a discretization-based method is used,
which is described in the following subsections.

3.2.1. Generation of P-box realizations by discretization
technique

To generate the CDF realizations of the P-box ½FL
Wm

;FU
Wm

�, its
support interval is equally discretized to obtain Ns grid points,

denoted by xs ¼ ½x1;x2; � � � ;xNs
�T, as shown in Fig. 3. Then,

an Ns-dimensional interval domain is obtained, as follows:

FI
Wm

¼ FL
Wm

xsð Þ;FU
Wm

xsð Þ� � 2 IR�Ns ð19Þ
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A set of samples is subsequently collected within FI
Wm

,

denoted by Fs 2 FI
Wm

, which contains Ns elements. Based on

Fs and xs, a realization of ½FL
Wm

; FU
Wm

� and its inverse, denoted

by FWm
ðxÞ and ðFWm

Þ�1ðFÞ, respectively, can be generated by
the following interpolations:

FWm
xð Þ ¼ interp x xs;Fsjð Þ

FWm
ð Þ�1

Fð Þ ¼ interp F Fs;xsjð Þ

�
ð20Þ

where interpð � Þ denotes an interpolation operator. An exam-
ple of the realization generation is illustrated in Fig. 3. It
should be noted that if Eq. (21) is not satisfied, the sample vec-

tor Fs leads to an infeasible realization that is not monotonic,
as shown in Fig. 3.

CFs 6 0 ð21Þ
where

C ¼

1 �1 0 � � � 0

0 1 �1 . .
. ..

.

..

. . .
. . .

. . .
.

0

0 � � � 0 1 �1

2
666664

3
777775

Ns�1ð Þ�Nsð Þ

ð22Þ

Based on the above discretization, a continuous CDF real-
ization is parameterized into Ns variables that satisfy Eq. (21)

within FI
Wm

.

3.2.2. Domain analysis for mean and variance

According to the discretization procedure in Section 3.2.1, the
optimizations presented in Eq. (18) can be transformed into

optimization problems with Ns variables. For example, the
minimization of the mean is expressed as follows:

min
Fs2FI

Wm

mean FWm
ð Þ

s:t: CFs 6 0

ð23Þ

These Ns�dimensional optimizations can be easily solved.

However, from Eq. (5), it is obvious that the calculations of
mean and variance are not independent. As a result, the mean
and variance cannot be minimized or maximized simultane-
ously. Specifically, several multi-objective problems need to

be solved and can be expressed as follows:
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min
Fs2FI

Wm

mean FWm
ð Þ; var FWm

ð Þ½ �

min
Fs2FI

Wm

�mean FWm
ð Þ; var FWm

ð Þ½ �

min
Fs2FI

Wm

mean FWm
ð Þ;�var FWm

ð Þ½ �

min
Fs2FI

Wm

�mean FWm
ð Þ;�var FWm

ð Þ½ �

8>>>>>>>>><
>>>>>>>>>:

s:t: CFs 6 0

ð24Þ

The non-dominated solutions of these multi-objective prob-
lems will form the boundary of the 2-dimensional domain of
mean and variance for a P-box. The interval box directly gen-

erated by lI
Wm

	 ðr2
Wm

ÞI, with 	 denoting the tensor product, is

not the actual boundary. This will be validated and visualized
in several cases at the end of this subsection.

These multi-objective optimizations can be solved by cer-
tain heuristic multi-objective optimization algorithms. How-
ever, to avoid the randomness of heuristic algorithms, a
sampling-based approach is applied, in this work, to calculate

the boundary of the domain of mean and variance. The uni-

formly distributed samples within FL
Wm

are collected and the

samples that do not satisfy Eq. (21) are removed. Then, the

sample set is expressed as follows:

F kð Þ
s F kð Þ

s 2 FI
Wm

;CF kð Þ
s 6 0; k ¼ 1; 2; . . . ;NRm



� � ð25Þ
where NRm

denotes the number of feasible samples that satisfy

Eq. (21). Based on FðkÞ
s (k = 1, 2, . . ., NRm

), CDF realizations

of the P-box can be generated by performing the interpolation

presented in Eq. (20). Then, they are collected in the following
set:

F
kð Þ
Wm

xð Þ F kð Þ
Wm

xð Þ ¼ interp x xs;F
kð Þ
s



� �


 ; k ¼ 1; 2; . . . ;NRm

n o
ð26Þ

For the kth realization F
ðkÞ
Wm

ð�Þ, the corresponding mean lðkÞ
Wm

and variance ðr2
Wm

ÞðkÞ can be calculated by the integration pre-

sented in Eq. (5), as follows:

l kð Þ
Wm

¼ R1
�1 F

kð Þ
Wm

� ��1

�U gð Þd U gð Þð Þ

r2
Wm

� � kð Þ ¼ R1
�1 F

kð Þ
Wm

� ��1

�U gð Þ � l kð Þ
Wm


 �2

d U gð Þð Þ

8>><
>>: ð27Þ

where g denotes the integration variable. By calculating Eq.
(27) from k= 1 to NRm

, the sample set of the mean and vari-

ance of WP:B:
m ðtÞ, denoted by CWm

, can be obtained as follows:

CWm
¼ l kð Þ

Wm
; r2

Wm

� � kð Þ
k ¼ 1; 2; :::;NRmj

n o
;

m ¼ 1; 2; . . . ;M
ð28Þ

The interval bounds, i.e., lI
Wm

¼ ½lL
Wm

; lU
Wm

� and

ðr2
Wm

ÞI ¼ ½ðr2
Wm

ÞL; ðr2
Wm

ÞU�, can also be easily determined by

finding the minimum and maximum of the mean and variance,
respectively, within these samples. Accordingly, the interval

domain lI
Wm

	 ðr2
Wm

ÞI, denoted by IWm
, is also obtained. The

entire procedure for constructing CWm
and IWm

is illustrated
in Fig. 4.

By applying the above procedure to the M P-box processes,

the domains IWm
and CWm

(m = 1, 2, . . ., M) are obtained.
Then, the entire hypercube interval domain of the M means
and M variances is constructed as follows:
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Fig. 4 Flowchart of domain analysis for mean and variance.
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c

IW ¼ IW1

	 IW2
	 � � � 	 IWM

2 IR�2M ð29Þ
The complete sample set of M means and M variances are

constructed by the orthogonal combinations of the samples in
CWm

(m = 1, 2, . . ., M) as follows:

CW ¼ CW1
	 CW2

	 � � � 	 CWM

¼ l kð Þ
Ws; r2

Ws

� � kð Þ
k ¼ 1; 2; . . . ;NCj

n o ð30Þ

where

l kð Þ
Ws ¼ l kð Þ

W1
; l kð Þ

W2
; . . . ; l kð Þ

WM

h iT
r2
Ws

� � kð Þ ¼ r2
W1

� � kð Þ
; r2

W2

� � kð Þ
; . . . ; r2

WM

� � kð Þ� �T
NC ¼ NR1

�NR2
. . .�NRM

8>>>><
>>>>:

ð31Þ

where lðkÞ
Ws and ðr2

WsÞðkÞ denote the vectors consisting of the kth

set of samples of M means and variances, respectively; their

mth (m = 1, 2, . . ., M) component, i.e., lðkÞ
Wm

and ðr2
Wm

ÞðkÞ, is
from CWm

as presented in Eq. (28); NC denotes the total num-co
rre
586

587
588

590590

591

592
593

595595

596

597

598

599

Table 1 Cases of P-box,50 where B, N, W, and EXP represent

the beta, normal, Weibull, and exponential distributions,

respectively.

Case Symbol FL
WðxÞ FU

WðxÞ
1 WP:B:

1
min [B(1, 1), B(2, 5)] max [B(1, 1), B(2, 5)]

2 WP:B:
2

min [B(1, 0.2), B(5, 5)] max [B(1, 0.2), B(5, 5)]

3 WP:B:
3

min [N(0, 0.75), B(1,

0.2)]

max [N(0, 0.75), B(1,

0.2)]

4 WP:B:
4

min [W(0.1, 0.6), EXP

(0.5)]

max [W(0.1, 0.6), EXP

(0.5)]
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Un
ber of the samples within CW, and NRm
is the sample number of

CWm
.

To demonstrate the domains of the mean and variance intu-
itively, four representative cases of the distribution-free P-box

are collected and summarized in Table 1, withWP:B:
1 ,WP:B:

2 , and

WP:B:
3 obtained from the literature.50 The corresponding P-

boxes are presented in Fig. 5(a), Fig. 6(a), Fig. 7(a), and
Fig. 8(a). These P-boxes are discretized into 500 slices, i.e.,

Ns ¼ 500, and 3 uniformly distributed samples are collected
in each dimension. Then, the corresponding domains are pre-
sented in Fig. 5(b), Fig. 6(b), Fig. 7(b), and Fig. 8(b). As men-

tioned above, the actual domain of the mean and variance, i.e.,
CWm

, is a convex subset of the hypercube IWm
, which is due to

the interdependence between the mean and variance. Accord-
ingly, the uncertain ODEs presented in Eq. (17) have to be

solved based on the convex set CWm
, and the method for solv-

ing this problem will be introduced in the following subsection.

3.3. Chebyshev-polynomial-based method for interval ODEs

After determining the domain of the means and variances of
the excitations, the interval nonlinear ODEs presented in Eq.

(17) are completely defined. The Chebyshev method30 has been
proven to perform well in solving nonlinear dynamics under
interval uncertainties. Therefore, this method is applied and

modified to solve the interval ODEs, addressing the irregular
convex domain CW presented in Eq. (30).

For notational convenience, flX; PXg is denoted by y and
flW; PWg is denoted by z. For mutually independent excita-

tions, z represents flW; r
2
Wg 2 R2M, which is a 2M-

dimensional vector includingMmeans andM variances. Then,
the solution of CADET equations (15) can be expressed as
follows:

y z tjð Þ ¼ y _y ¼ fCADET y; z; tð Þjf g ð32Þ
where fCADETð�Þ denotes the vector function on the right-hand
side of Eq. (15). yðzjtÞ can be regarded as the vector function
with respect to z. At a certain time instant t, any component

of the vector function yðzjtÞ, denoted by yðzjtÞ 2 yðzjtÞ, can
be approximated by using the Chebyshev polynomial, denoted
by pyðtÞðzÞ, which can be generally expressed as follows:30

y z tjð Þ � py tð Þ zð Þ ¼ P
0<i1þi2þ���þi2M<d

ci1 ;i2 ;...;i2MCi1 ;i2 ;...;i2M zð Þ;

i1; i2; . . . ; i2M ¼ 0; 1; . . . ; d
ð33Þ

where d denotes the order of the Chebyshev polynomials,
Ci1 ;i2 ;...;i2Mð�Þ represents a 2M-dimensional Chebyshev polyno-

mial basis, as expressed in Eq. (34), and ci1 ;i2 ;...;i2M represents

the corresponding coefficient of the polynomial.

Ci1 ;i2 ;...;i2M zð Þ ¼ cos i1h1ð Þ cos i2h2ð Þ � � � cos i2Mh2Mð Þ ð34Þ
where ½h1; h2; . . . ; h2M�T, also denoted by h, is transformed

from z with a given range ½zL; zU� as follows:

h ¼ arccos
2z� zL þ zUð Þ

zU � zL


 �
ð35Þ

As discussed in Section 3.2.2, for Eq. (17), ½zL; zU� has been
determined as IW presented in Eq. (29). Then, the coefficients
ci1 ;i2 ;...;i2M can be determined by using the Chebyshev Colloca-

tion Method (CCM). The details regarding CCM are discussed
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in the literature.61 To use CCM, the Np interpolation points of

z need to be selected within the hypercube domain IW as

follows:

z kð Þ
p 2 IW k ¼ 1; 2; . . . ;Np



n o
ð36Þ

where zðkÞp denotes the kth set of interpolation points of z. As

discussed in the literature,61 the interpolation point number
Np can be determined as follows:

U
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Np ¼ 2 2Mþ dð Þ!
2Mð Þ!d! ð37Þ

The procedure for collecting Np interpolation points

using CCM is also detailed in the literature.61 Then, at each

set of interpolation points presented in Eq. (36), the ODEs
presented in Eq. (15) can be solved, which can be expressed
as follows:
n method for nonlinear dynamics with distribution-free P-box processes, Chin J
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c

of

y 1ð Þ
p tð Þ ¼ y 1ð Þ

p _y 1ð Þ
p ¼ fCADET y 1ð Þ

p ; z 1ð Þ
p ; t

� �


n o
y 2ð Þ
p tð Þ ¼ y 2ð Þ

p _y 2ð Þ
p ¼ fCADET y 2ð Þ

p ; z 2ð Þ
p ; t

� �


n o
..
.

y
Npð Þ

p tð Þ ¼ y
Npð Þ

p _y
Npð Þ

p ¼ fCADET y
Npð Þ

p ; z
Npð Þ

p ; t


 �




� 	

8>>>>>>>>><
>>>>>>>>>:

ð38Þ

where yðkÞp ðtÞ (k= 1, 2, . . ., Np) denotes the solved interpola-

tion samples of y corresponding to zðkÞp at time instant t, with

the component denoted by yðkÞp ðtÞ 2 yðkÞp ðtÞ. Based on yðkÞp ðtÞ
and zðkÞp (k= 1, 2, . . ., Np), the polynomial coefficient

ci1 ;i2 ;...;i2M presented in Eq. (33) can be determined using

CCM. Then, the Chebyshev-polynomial approximation
pyðtÞðzÞ is constructed.

Based on pyðtÞðzÞ, the value of yðtÞ corresponding to any

given z can be calculated without calling the CADET equa-

tions. As discussed in Section 3.2.2, z (=flW; r
2
Wg) are envel-

oped in a convex set CW, and the samples of z within CW have

been generated as presented in Eq. (30). The values of yðtÞ cor-
responding to all samples of z collected in CW, can be calcu-
lated by using pyðtÞðzÞ. Subsequently, the bounds, denoted by

yIðtÞ, can be obtained by finding the minimums and maxi-
mums. This is the so-called scanning method, which can be

expressed as follows:

yI tð Þ ¼ min
k¼1;2;...;NC

py tð Þ l kð Þ
Ws; r2

Ws

� � kð Þn o� �
;

�

max
k¼1;2;...;NC

py tð Þ l kð Þ
Ws; r2

Ws

� � kð Þn o� �� ð39Þ

where flðkÞ
Ws; ðr2

WsÞðkÞg is the kth set of samples within CW, and

NC is the total sample number of CW, as presented in Eq. (30)
and Eq. (31).

Because yðtÞ can represent any component of yðtÞ
(¼ flXðtÞ; PXðtÞg), the bounds of flI

XðtÞ; PI
XðtÞg can be

obtained by performing the procedure outlined from Eq.
(33) to Eq. (39) for each component of flXðtÞ; PXðtÞg. Of
note, Eq. (38) only needs to be solved once to generate

interpolation samples for all components of lXðtÞ and
PXðtÞ. Therefore, the number of solving the CADET func-
tion is only equal to the number of interpolation points
Np presented in Eq. (37).
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3.4. Uncertainty propagation and a P-box Gaussian assumption

Because the bounds of lI
XðtÞ and PI

XðtÞ have been obtained, the

bounds of error bars, at time instant t, can be easily deter-
mined as follows:

eLL tð Þ ¼ min
lX ;PX2 lI

X
tð Þ;PI

X
tð Þf g

lX � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag PXð Þp� �

eUU tð Þ ¼ max
lX ;PX2 lI

X
tð Þ;PI

X
tð Þf g

lX þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag PXð Þp� �

8>><
>>: ð40Þ

As discussed in Section 3.1, when solving the basic CADET
in Eq. (15), the Gaussian assumption presented in Eq. (16) is

utilized. This assumption is also meaningful for evaluating

the CDF bounds of system responses XP:B:ðtÞ. Because the
responses are assumed to be Gaussian processes, their distribu-

tion function is quantified based on lX and PX. When lI
X and

PI
X are interval values, at any time instant t, the distribution of

XP:B:ðtÞ is normal but the mean and variance are intervals.

Hence, XP:B:ðtÞ can be characterized as time-varying paramet-
ric Gaussian P-boxes, also referred to as parametric Gaussian

P-box processes. Therefore, the Gaussian assumption for basic
CADET can be extended to the P-box form. Regardless of the

distribution-free P-box processes of excitation WP:B:ðtÞ, the sys-
tem responses XP:B:ðtÞ can be approximated by the parametric
Gaussian P-box processes. This can be expressed mathemati-
cally as follows:

FL
X x; tð Þ � min

lX ;PX2 lI
X

tð Þ;PI
X

tð Þf g
UX x; t lX;PXjð Þ

FU
X x; tð Þ � max

lX;PX2 lI
X

tð Þ;PI
X

tð Þf g
UX x; t lX;PXjð Þ

8>><
>>: ð41Þ

The P-box Gaussian assumption and the CADET method
have the same applicable conditions for nonlinear systems.
Based on Eq. (41), it is possible to evaluate the CDF bounds

of the responses.
Notably, although the proposed method can provide both

the CDF bounds and error-bar bounds of the system

responses, its main task is to calculate the error-bar bounds.
The bounds of the first-passage probability presented in Eq.
(9) cannot be determined as the auto-correlations of system

responses, which are essential for the evaluation of the first-
passage probability, cannot be provided by the CADET
method. This issue deserves further investigation in the future.

ted
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Fig. 9 Flowchart of the proposed uncertainty propagation method.
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3.5. Entire procedure of proposed method

Based on the aforementioned approaches, it is possible to effi-
ciently solve the nonlinear dynamics with distribution-free P-

box processes. The entire procedure is concluded in the this
subsection, with the corresponding flowchart presented in
Fig. 9.

Step 1. Problem definition: As discussed in section 2, the

nonlinear dynamical system with the M�dimensional

WP:B:ðtÞ is defined as Eq. (7). WP:B:ðtÞ is defined by the M static

P-boxes, denoted as ½FL
W; F

U
W�, based on Eq. (3). The corre-

sponding UP problems are defined as Eq. (8) and Eq. (12).

Step 2. Problem transcription by the CADET: As discussed
in Section 3.1, the CADET equations, involving interval

parameters flI
W; P

I
Wg, are established as presented in Eq.

(17). Therefore, the original P-box problem stated in Eq. (7)

Unc
o
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has been transformed into the corresponding interval problem
as given by Eq. (17).

Step 3. Domain analysis of flI
W; P

I
Wg: As discussed in sub-

section 3.2, the domain of flI
W; P

I
Wg is analyzed, by the follow-

ing steps.

(1) As discussed in subsection 3.2.2, the CDF realization set

of ½FL
W; F

U
W� is generated using the discretization tech-

nique, which is denoted as fF ðkÞ
W m

ð�Þjk ¼ 1; 2; . . . ;NRmg
(m= 1, 2, . . ., M) and presented in Eq. (26) in detail.

(2) The means and variances corresponding to each F ðkÞ
W m

ð�Þ
are calculated by the integration presented in Eq. (27),
from k = 1 to NRm and m = 1 to M. Then, the convex

sample set CW presented in Eq. (30) and the correspond-
ing hypercube IW presented in Eq. (29) are constructed.
n method for nonlinear dynamics with distribution-free P-box processes, Chin J
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Step 4. Chebyshev method for solving interval ODEs: The
numerical ODE method and the corresponding discrete time
series ftjjj ¼ 1; 2; . . . ;Ntg are defined, and j = 1. flX; PXg
and flW; r

2
Wg are collect in the vectors, denoted as y and z,

respectively.

(1) As discussed in subsection 3.3, the order of Chebyshev
polynomial d is defined, and the required number of

interpolation points Np is determined by using Eq.

(37). The Np sets of interpolation points of z, denoted

as fzðkÞp jk ¼ 1; 2; . . . ;Npg, are obtained by using the

CCM within the hypercube IW, as presented in Eq. (36).

(2) The CADET equations corresponding to zðkÞp , presented

in Eq. (38), are solved by the numerical method. Then,

the corresponding Np sets of interpolation samples of

y at each discrete time instant, denoted by

fyðkÞp ðtjÞjj ¼ 1; 2; . . . ; Nt; k ¼ 1; 2; . . . ; Npg, are

obtained.

(3) At time instant tj, the Chebyshev-polynomial approxi-

mations of each component of y, presented in Eq. (33),

are constructed based on zðkÞp and yðkÞp ðtjÞ (k= 1, 2, . . .,

Np) by using the CCM.

(4) The values of y corresponding to all samples of z col-
lected in CW, are calculated by using the Chebyshev-
polynomial approximations. Subsequently, the bounds

of flI
XðtjÞ; PI

XðtjÞg are obtained based on Eq. (39).

Step 5. Uncertainty propagation: At time instant tj, the

bounds of error bars, denoted as eLLðtjÞ and eUUðtjÞ, are found

by Eq. (40). Then, the system responses XP:B:ðtÞ are assumed
to be parametric Gaussian P-box processes, and the CDF

bounds of the system responses, denoted as FL
Xðx; tjÞ and

FU
Xðx; tjÞ, are approximated by Eq. (41). Let j = j + 1.

Step 6. If j < Nt, return to step 4.3, otherwise, eLLðtÞ and

eUUðtÞ, as well as FL
Xðx; tÞ and FU

Xðx; tÞ, at each discrete instant

tj (j= 1, 2, . . ., Nt), are outputted.

Notably, the precision of the proposed transformation is
governed by the inherent nonlinearity of the system. Once

the nonlinear system is determined, the precision of the trans-
formation presented in Section 3.1 cannot be significantly
improved. The required computational cost increases as the

number of excitation dimensions M increases. Moreover, the
CADET is established based on a precondition that excitations
are white noise processes; therefore, the uncertainties of time

correlation for the excitations are not considered. However,
the method is still meaningful as white noise with imprecise
distribution information has also been commonly used in prac-
tical engineering.

4. Tests and setup

In this section, two numerical tests and an engineering applica-

tion are implemented to demonstrate the effectiveness of the
proposed method. The Runge–Kutta (RK) method is used to
solve the ODEs. The order of the Chebyshev polynomials d

is defined as 2. In subsection 3.3.2, Ns has been set to 500.
To test the accuracy of the method, the reference solutions

are obtained by using an MC-based approach. The CDF real-

izations of the P-box have been collected, as presented in Eq.
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(26). Then, for each realization, MC simulations are performed
to calculate the corresponding CDF and statistical moments of
the system response. Finally, the sets of CDF realizations and

statistical-moment samples for the system response can be
obtained, and the reference solutions of the CDF and error-
bar bounds can also be found within these sets. The detailed

procedure of the MC-based approach is provided in Appendix
A. In the following test cases, 10000-time MC simulations are
performed for each CDF realization.

All the computations are performed using a personal com-
puter with 16 GB of RAM and an Intel(R) Core(TM) i7-
9750H @ 2.60 GHz CPU.

The P-box-process excitations considered in these test cases

will be defined based on the four basic P-box processes. These
basic P-box processes are constructed based on the P-boxes

presented in Table 1 of Section 3.2.2, i.e., WP:B:
1 , WP:B:

2 , WP:B:
3 ,

and WP:B:
4 , by using Eq. (3) as follows:

WP:B:
i tð Þ ¼ FL

Wi

� ��1

; FU
Wi

� ��1
� ��

U N0 tð Þð Þ;
i ¼ 1; 2; 3; 4

ð42Þ

where the subscript i represents the case ID in Table 1, and
N0ðtÞ denotes a standard white Gaussian noise process. There-
fore, the excitations, in the following test cases, are considered

as white noise with imprecise distribution information. The
example of one sample trajectory of N0ðtÞ, denoted by n0ðtÞ,
is shown in Fig. 10(a). Based on n0ðtÞ, sample trajectories of

these basic P-box processes are generated, which are denoted
by x1ðtÞ, x2ðtÞ, x3ðtÞ, and x4ðtÞ, respectively, as shown in
Fig. 10(b)–(e), respectively.

It should be noted that the P-box for constructing WP:B:
4 ,

i.e., ½FL
W4

; FU
W4

�, has skewed distributions. The skewness of

FU
W4

is greater than 4, which is set to test the Gaussian

assumption.
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4.1. Numerical tests

4.1.1. Duffing oscillator analysis

First, a single-degree-of-freedom duffing oscillator system is
modeled as follows:

m€x tð Þ þ c _x tð Þ þ k x tð Þ þ e x tð Þð Þ3
� �

¼ u tð Þ ð43Þ

where €x, _x, and x denote the acceleration, velocity, and dis-
placement of the system, respectively; uðtÞ denote the excita-
tion of the system. m is equal to 1 kg, c, k, and e, are equal

to 0:5p, 4p2, and 1, respectively. The initial condition is given

as ½ _xðt0Þ; xðt0Þ�T ¼ ½0; 0�T.
Under an uncertain excitation, UP:B:ðtÞ is described as a

distribution-free P-box process, and the problem is expressed
as follows:

_V
P:B:

tð Þ ¼ 1
m

�cVP:B: tð Þ � k XP:B: tð Þ þ e XP:B: tð Þ� �3� �h i
þ 1

m
UP:B: tð Þ

_X
P:B:

tð Þ ¼ VP:B: tð Þ

8>><
>>: ð44Þ

where VP:B:ðtÞ and XP:B:ðtÞ denote the velocity and displace-

ment described as P-box processes, respectively. Four cases

of UP:B:ðtÞ, as shown in Table 2, are produced based on the lin-
n method for nonlinear dynamics with distribution-free P-box processes, Chin J
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(b) ω1(t) = [(FL W1)-1, (FU W1)-

1]◦Φ(n0(t))
(c) ω2(t) = [(FL W2)-1, (FU W2)-

1]◦Φ(n0(t))

(a) n0(t) 
(d) ω3(t) = [(FL W3)-1, (FU W3)-

1]◦Φ(n0(t))
(e) ω4(t) = [(FL W4)-1, (FU W4)-

1]◦Φ(n0(t))

Fig. 10 One of the sample trajectories for basic P-box processes.

Table 2 Cases of UP:B:ðtÞ.
Case UP:B:ðtÞ
1 UP:B:ðtÞ ¼ 4WP:B:

1 ðtÞ � 2

2 UP:B:ðtÞ ¼ 4WP:B:
2 ðtÞ � 2

3 UP:B:ðtÞ ¼ 1:5WP:B:
3 ðtÞ

4 UP:B:ðtÞ ¼ WP:B:
4 ðtÞ � 5
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ear transformations of the basic P-box processes defined by
Eq. (42) to assess the proposed method.

The problem is solved in the period of 0–5 s. The variable-
step RK solver is applied with a relative error tolerance smaller

than 1� 10�6. The error bars of VP:B:ðtÞ and the approximated

CDF bounds at 5 s of the four cases are shown in Figs. 11–14,rec

850

(a) Variation in error bar of VP.B. with time.

Fig. 11 Results of a duffing o
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Unc
or
and the reference solutions are also presented. To further
examine the error of the proposed method, compared to the
reference solutions, the relative errors of the calculated error
bars and CDF bounds, denoted by ee:b: and eF respectively,

are evaluated as follows:

ee:b: ¼ mean10
1
N1

PN1

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e tið Þ�eref tið Þ

eref tið Þ

� �2
r" #

eF ¼ mean10
1
N2

PN2

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F xið Þ � Fref xið Þð Þ2

q� �
8>>>><
>>>>:

ð45Þ

where N1 denotes the number of discrete instants of the refer-
ence solution and is equal to 10, eðtiÞ and erefðtiÞ denote the
lower and upper bounds of the error bars at ti for the proposed

method and MC-based method, respectively; and N2 denotes
the amount of discretization of the CDF, which is 10000,
FðxiÞ and FrefðxiÞ denote the value of CDF bounds at xi for

the proposed method and MC-based method. mean10½�� indi-

ted
 P
(b) Approximation of P-box of VP.B. at 5 s.

scillator analysis for Case 1.
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(a) Variation in error bar of VP.B. with time. (b) Approximation of P-box of VP.B. at 5 s.

Fig. 12 Results of duffing oscillator analysis for Case 2.

(a) Variation in error bar of VP.B. with time. (b) Approximation of P-box of VP.B. at 5 s.

Fig. 13 Results of duffing oscillator analysis for Case 3.

(a) Variation in error bar of VP.B. with time. (b) Approximation of P-box of VP.B. at 5 s.

Fig. 14 Results of a duffing oscillator analysis for Case 4.
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Table 3 Precision and efficiency of the proposed method in calculating VP:B:ðtÞ of duffing oscillator analysis.

Characteristic Value

Case 1 Case 2 Case 3 Case 4

Errors relative to the reference solutions (%) eUUðtÞ of VP:B:ðtÞ 1.32 1.20 1.34 0.91

eLLðtÞ of VP:B:ðtÞ 0.81 0.55 1.32 0.75

FU
V ðv; 5Þ 0.25 0.26 1.48 0.56

FL
Vðv; 5Þ 0.31 0.25 1.65 0.38

Computation time (s) Reference solutions> 1:25� 105

Proposed method 75.50 72.84 74.05 71.61

Fig. 15 Schematic of a quarter-car model with two degrees of

freedom and roughness of road.
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cates that the errors are evaluated by the mean of 10-time
repetitions.

The relative errors of eUUðtÞ and eLLðtÞ of VP:B:ðtÞ, and the

errors of the CDF bounds at 5 s, i.e., FU
V ðv; 5Þ and FL

Vðv; 5Þ,
are calculated, as shown in Table 3. Of note, all errors are less
than 2%. Therefore, in terms of precision, the proposed
method performs well in these cases. The proposed method

only requires about 0.06% of the time to obtain the reference

solutions. Finally, the CDF bounds of VP:B:ðtÞ at 5 s, presented

in Fig. 11(b), Fig. 12(b), Fig. 13(b), and Fig. 14(b), show that
the responses are approximate parametric Gaussian P-box
processes. This also holds for Case 4, with very skewed

distributions.
The precision of the proposed method under different non-

linearities is also investigated in this example. The proposed

method is tested in the duffing oscillator analysis based on
the different values of the coefficient of the cubic term
(e = 1, 2, 5, 10, 20, and 50) for Case 1. The relative errors dur-

ing the calculation of VP:B:ðtÞ are presented in Table 4, and the
results show that the error of the proposed method does not

vary significantly when the nonlinearity of the problems
changes.

4.1.2. Vehicle ride analysis

In the second example, a two-degree-of-freedom quarter-car
model30,32,33 presented in Eq. (46) is analyzed, and the corre-
sponding schematic is shown in Fig. 15.

_xs ¼ vs

_xu ¼ vu

_vs ¼ � 1
ms

cs vs � vuð Þ þ ks xs � xuð Þ þ Ks xs � xuð Þ3
� �

_vu ¼ 1
mu

cs vs � vuð Þ þ ks xs � xuð Þ þ Ks xs � xuð Þ3
�

þkt xr � xuð Þ þ Kt xr � xuð Þ3
�

8>>>>>>>>><
>>>>>>>>>:

ð46Þco
rre

c

Table 4 Relative errors in calculating VP:B:ðtÞ for Case 1 with diffe

Characteristics Errors relative to the reference solutions (

e= 1 e= 2 e

eUUðtÞ of VP:B:ðtÞ 1.32 1.39 1

eLLðtÞ of VP:B:ðtÞ 0.81 1.13 0

FU
V ðv; 5Þ 0.25 0.27 0

FL
Vðv; 5Þ 0.31 0.26 0
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Un
where xs and vs denote the sprung displacement and velocity,
respectively; xu and vu denote the unsprung displacement

and velocity, respectively, the initial condition is given as

½xsðt0Þ; xuðt0Þ; vsðt0Þ; vuðt0Þ�T = ½0; 0; 0; 0�T, the sprung mass
ms and unsprung mass mu are equal to 400 kg and 60 kg,
respectively, the suspension damping rate cs is equal to 1000,
the linear stiffness characteristics of the suspension and tire,

ks and kt, are equal to 1:5� 104 and 2� 105, respectively,
and the cubic stiffness characteristics of the suspension and

tire, Ks and Kt, are equal to 1:5� 106 and 2� 107, respectively.
It is supposed that the vehicle drives through a standard tri-

angular roadblock at a speed v = 10 m/s. Then, xr is computed
as follows:

xr ¼
6t; 0 6 t < 0:02

0:24� 6t; 0:02 6 t < 0:04

0; t P 0:04

8><
>: ð47Þ

te
rent values of e.

%)

= 5 e = 10 e = 20 e= 50

.88 1.09 1.77 1.43

.76 1.07 1.39 2.44

.36 0.21 0.25 0.29

.17 0.27 0.29 0.37

n method for nonlinear dynamics with distribution-free P-box processes, Chin J
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Table 5 Cases of WP:B:ðtÞ.
Case WP:B:

1 WP:B:ðtÞ ¼ 6� 10�3WP:B:
1 ðtÞ � 3� 10�3

2 WP:B:ðtÞ ¼ 6� 10�3WP:B:
2 ðtÞ � 3� 10�3

3 WP:B:ðtÞ ¼ 2:25� 10�3WP:B:
3 ðtÞ

3 WP:B:ðtÞ ¼ 2� 10�3WP:B:
4 ðtÞ � 1� 10�2

(a) Variation in error bar of XP.B. s with time.

Fig. 16 Results of vehicle

Table 6 Precision and efficiency of the proposed method in calcula

Characteristic

Errors relative to the reference solutions (%) eUUðtÞ of XP:B:
s ðtÞ

eLLðtÞ of XP:B:
s ðtÞ

FU
Xs
ðxs; 0:3Þ

FL
Xs
ðxs; 0:3Þ

Computation time (s) Reference solution

Proposed method

(a) Variation in error bar of XP.B. s with time.

Fig. 17 Results of vehicle
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Afterward, the standard triangular roadblock is considered
to be rough. Under the distribution-free P-box process model,

due to additional roughness WP:B:ðtÞ, xrðtÞ is transformed into

a P-box process XP:B:
r ðtÞ as follows:

XP:B:
r tð Þ ¼ xr tð Þ þWP:B: tð Þ ð48Þ
(b) Approximation of P-box of XP.B. s at 0.3 s.

ride analysis for Case 1.

ting XP:B:
s ðtÞ for vehicle ride analysis.

Value

Case 1 Case 2 Case 3 Case 4

0.46 0.93 0.97 0.99

0.60 0.24 0.58 0.57

0.70 0.48 0.49 1.99

0.28 0.75 1.14 0.75

s> 1:45� 105

87.47 89.13 90.63 87.94

(b) Approximation of P-box of XP.B. s at 0.3 s.

ride analysis for Case 2.
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(a) Variation in error bar of XP.B. s with time. (b) Approximation of P-box of XP.B. s at 0.3 s.

Fig. 18 Results of vehicle ride analysis for Case 3.

(a) Variation in error bar of XP.B. s with time. (b) Approximation of P-box of XP.B. s at 0.3 s.

Fig. 19 Results of vehicle ride analysis for Case 4.

Fig. 20 Concept of the launch-vehicle-flight-dynamic model.
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Four cases ofWP:B:ðtÞ, as shown in Table 5, are obtained by
using the linear transformations of the basic P-box processes

defined by Eq. (42) to assess the proposed method.
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Subsequently, after neglecting the effect of WP:B:ðtÞ on the

three-order term, the problem of nonlinear dynamics with
the P-box process can be defined as follows:

_X
P:B:

s tð Þ ¼ VP:B:
s tð Þ

_X
P:B:

u tð Þ ¼ VP:B:
u tð Þ

_V
P:B:

s tð Þ ¼ fs

_V
P:B:

u tð Þ ¼ fu þ kt
mu
WP:B: tð Þ

8>>>>><
>>>>>:

ð49Þ

where, fs and fu denote the nonlinear functions of vs and vu in
Eq. (46), respectively.

The problem is solved in a period of 0–1 s, and a variable-
step RK solver is applied with a relative error tolerance smaller

than 1� 10�4. The error bars of XP:B:
s ðtÞ and their approxi-

mated CDF bounds at 0.3 s for the four cases are shown in

Fig. 16 to Fig. 19. The relative errors of eUUðtÞ and eLLðtÞ of

XP:B:
s ðtÞ, as well as the errors of the CDF bounds at 0.3 s,

i.e., FU
Xs
ðxs; 0:3Þ, and FL

Xs
ðxs; 0:3Þ, are calculated, as shown in

Table 6. Of note, all error values are less than 1.2%. This indi-
n method for nonlinear dynamics with distribution-free P-box processes, Chin J
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Table 7 Basic parameters of launch vehicle.

Parameter Symbol Value

Total launch vehicle Total mass (t) mLV 35.40

Total length (m) L 18.26

Maximum diameter (m) D 1.67

Substage 1 Substage mass (t) m1 22.68

Propellent mass (t) mp1 20.80

Propulsion (kN) P1 912

Working time (s) t1 61.60

Substage 2 Substage mass (t) m2 7.05

Propellent mass (t) mp2 6.25

Propulsion (kN) P2 270

Working time (s) t2 65.20

Substage 3 Substage mass (t) m3 3.65

Propellent mass (t) mp3 3.32

Propulsion (kN) P3 155

Working time (s) t3 59.6
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cates that the proposed method demonstrated good precision.
Nevertheless, the proposed method requires less than 0.07% of

the time required for obtaining the reference solutions. This
Fig. 21 Baseline trajecto
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Unc
orr

ec
shows that the proposed method is more efficient in terms of
computational time. Finally, the responses are approximate
parametric Gaussian P-box processes as shown in Fig. 16(b),

Fig. 17(b), Fig. 18(b), and Fig. 19(b). Although, for Case 4,

the relative error of FU
Xs
ðxs; 0:3Þ is close to 2%, the Gaussian

assumption provides a satisfactory accuracy of the error bars
in this case.
4.2. Application in uncertainty propagation of LV ascent
trajectory

The concept of the LV-flight-dynamic model is illustrated in
Fig. 20. The corresponding three-degree-of-freedom dynamic
equations are expressed in a vector form presented in Eq.

(50), which describes the motion of the center of mass of an
LV.

_v ¼ 1
mLV

GþRþ Pþ Fcð Þ
_r ¼ v

�
ð50Þ

where v ¼ ½vx; vy; vz�T denotes the velocity vector of the LV,

r ¼ ½x; y; z�T denotes the position vector of the center of mass

of the LV, mLV denotes the mass of the LV, and G, R, P, and
Fc signify gravity, aerodynamic force, propulsion, and control

Proo
f

ry of launch vehicle.
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(a) Variation in the error bar of VP.B. z with time. (b) Approximation of the P-box of VP.B. z at 32.7 s.

Fig. 22 Results of launch-vehicle trajectory analysis of VP:B:
z ðtÞ.

(a) Variation in error bar of ZP.B. with time. (b) Approximation of P-box of ZP.B. at 32.7 s.

Fig. 23 Results of launch-vehicle trajectory analysis of ZP:B:ðtÞ.
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force on the LV, respectively. The detailed expansion of the
model is presented in Appendix A.

In practical engineering, the values of the aforementioned
forces cannot be obtained analytically and are always provided

in the form of complex discrete tables. Therefore, the dynamic
model is usually too complex to be modified arbitrarily and the
calculation of LV trajectory is generally regarded as a black-

box problem.

4.2.1. Uncertainty propagation problems

Consider a three-stage LV, with the basic parameters of this

LV presented in Table 7 and other necessary parameters pre-
sented in Appendix B. The flight-program angle and control
program formulated for flying the LV, according to a certain

trajectory, are presented in Eq. (51). Based on these parame-
ters, the baseline trajectory is simulated, as shown in Fig. 21.

Unc
o
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uPR tð Þ ¼

p
2
; 0 s 6 t < 10 s

p
2
þ p

2
� p

60

� �
t�10
150

� �2 � 2 t�10
150

� �h i
; 10 s 6 t < 160 s

p
60
; t > 160 s

8>><
>>:

ð51Þ
The actual flight of the LV will usually be affected by var-

ious uncertainties.62,63 Among these uncertainties, the most

common time-varying uncertainty is the atmospheric environ-
ment. At an earlier phase of design, because precise atmo-
sphere information is usually unavailable, the P-box process

model is chosen to describe the uncertainties.

Let x ¼ ½vT; rT�T, then, the dynamic model presented in Eq.
(50) is expressed as follows:

_x ¼ f x; tð Þ ð52Þ
n method for nonlinear dynamics with distribution-free P-box processes, Chin J
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Table 8 The precision and efficiency of the proposed method

in calculating VP:B:
z ðtÞ and ZP:B:ðtÞ for launch-vehicle trajectory

analysis.

Characteristic Value

Errors relative to the reference

solutions (%)
eUUðtÞ of
VP:B:

z ðtÞ
0.89

eLLðtÞ of
VP:B:

z ðtÞ
0.53

FU
Vz
ðvz; 32:7Þ 0.77

FL
Vz
ðvz; 32:7Þ 2.95

eUUðtÞ of
ZP:B:ðtÞ

2.22

eLLðtÞ of
ZP:B:ðtÞ

0.65

FU
Z ðz; 32:7Þ 0.79

FL
Zðz; 32:7Þ 2.99

Computation time (s) Reference

solutions
> 4:12� 106

Proposed

method

7812.59
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o

where fð � Þ denotes the nonlinear vector function presented in
Eq. (50), and t denotes the flight time. The wind causes addi-
tional acceleration due to the variations in aerodynamic forces.
Therefore, the problem is formulated as follows:
Fig. 24 Error bar of launch
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_X
P:B:

tð Þ ¼ f XP:B: tð Þ; t� �
þBðtÞ WP:B:

x tð Þ;WP:B:
y tð Þ;WP:B:

z tð Þ; 0; 0; 0
h iT ð53Þ
where XP:B: ¼ ð VP:B:
x ;VP:B:

y ;VP:B:
z ;XP:B:;YP:B:;ZP:B:

h iT
Þ denote

the vector comprising the LV velocities and positions, which

is described as P-box processes, WP:B:
x ðtÞ, WP:B:

y ðtÞ, and

WP:B:
z ðtÞ denote the additional accelerations in the three degrees

of freedom described by the distribution-free P-box processes.

Based on the linear transformations of the basic P-box pro-

cesses defined by Eq. (42), WP:B:
x ðtÞ, WP:B:

y ðtÞ, and WP:B:
z ðtÞ are

defined as follows: f

WP:B:

x tð Þ ¼ 2� 10�2WP:B:
1 tð Þ � 1� 10�2

WP:B:
y tð Þ ¼ 2� 10�2WP:B:

2 tð Þ � 1� 10�2

WP:B:
z tð Þ ¼ 7:5� 10�3WP:B:

3 tð Þ

8><
>: ð54Þ

o

BðtÞ as the input matrix is expressed as follows:r

B 6�3ð ÞðtÞ ¼

Q 3�3ð Þ
O 3�3ð Þ

� �
Q 3�3ð Þ ¼ diag c q

mLV

� �
ð55ÞP
where q denotes the dynamic pressure, and c denotes a con-

stant coefficient equal to 8.785 m2.

 

-vehicle ascent trajectory.
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4.2.2. Results and discussion

The problem is solved in a period of 0–187 s. The variable-step

RK solver is applied with a relative error tolerance smaller

than 1� 10�3. The error bars of VP:B:
z ðtÞ and ZP:B:ðtÞ, as well

as their approximated CDF bounds at 32.7 s with maximum
dynamic pressure, are shown in Fig. 22 and Fig. 23. The rela-

tive errors of eUUðtÞ and eLLðtÞ for VP:B:
z ðtÞ and ZP:B:ðtÞ, as well as

the CDF bounds at 32.7 s, i.e., FU
Vz
ðvz; 32:7Þ, FL

Vz
ðvz; 32:7Þ,

FU
Z ðz; 32:7Þ, and FL

Zðz; 32:7Þ, are calculated, as shown in

Table 8. It can be observed that all errors are less than 3%,

which satisfies the standards for the majority of practical engi-
neering applications. The proposed method saves about
99.81% computational time compared to the MC-based

approach. This shows that the proposed method is capable
of handling the engineering black-box problem with satisfac-
tory precision. Moreover, the response of this practical engi-

neering system, i.e., the position and velocity of the LV, are
still approximate parametric Gaussian P-box processes, as
shown in Fig. 22(b) and Fig. 23(b).

Eventually, the entire LV trajectory under distribution-free

P-box processes can be presented in the form of error bars, as
shown in Fig. 24. The results efficiently obtained by the pro-
posed method will provide valuable guidance for trajectory

design under imprecision probabilistic information.

5. Conclusions

This work defines the Uncertainty Propagation (UP) problem
of nonlinear dynamics with distribution-free P-box processes.
This problem is meaningful for engineering applications,

where only imprecise probabilistic information of dynamic
excitations is available. Then, a novel method is presented to
efficiently solve the UP problem.

(1) The proposed UP analysis method decouples the analy-
ses of distribution-free P-box and stochastic analyses of
nonlinear systems. As a result, a large portion of the

computational cost is significantly reduced. Moreover,
an extended Gaussian assumption in P-box form is con-
sidered, i.e., the system responses are approximately

parametric Gaussian P-box processes. This assumption
makes it possible to evaluate the CDF bounds of the
response by only obtaining the interval bounds of means

and variances.
(2) The tests performed in this work verify the accuracy of

the proposed method. The calculation of error bars
shows that compared to the reference solutions, the rel-

ative errors of the proposed method are typically less
than 1%. The evaluation of CDF bounds shows that
the proposed method reaches the relative errors of less

than 3%. The Gaussian assumption is therefore effective
in providing the error bars with satisfactory precision. In
addition, the error of probability-bound evaluation

based on the assumption is also acceptable.
(3) Based on the efficiency of the Chebyshev method for

solving interval ODEs, the proposed method only

required less than 0.2% calculation time of the reference
solutions.

Unc
orr

ec
1100

Please cite this article in press as: ZHANG L et al. An efficient uncertainty propagatio
Aeronaut (2024), https://doi.org/10.1016/j.cja.2024.05.028
(4) The capacity of the method in solving complex black-

box problems is demonstrated by the engineering appli-
cation of the LV trajectory.
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Appendix A. The detailed procedure of the MC-based method
to calculate reference solutions is introduced as follows:

For simplicity, a one-dimension excitation, denoted by

WP:B:ðtÞ, is considered as the example, where WP:B:ðtÞ is defined
based on a P-box ½FL

W; F
U
W� using Eq. (3). As discussed in Sec-

tion 3.2, the CDF realization set of ½FL
W; F

U
W�, denoted by SF,

can be obtained using Eq. (26), which is concisely expressed

as follows:

SF ¼ F
kð Þ
W F

kð Þ
W 2 FL

W;F
U
W

� �
; k ¼ 1; 2; . . . ;NR




n o
ðA1Þ

where F
ðkÞ
W denotes the kth CDF realization of ½FL

W; F
U
W� within

SF, and NR is the total number of realizations within SF.
Then, the problems presented in Eq. (8) and Eq. (12) can be

formulated as finding the realizations that result in the bounds
of the probabilistic characteristics of the system response,
within SF. For example, the calculation of CDF bounds can

be formulated as follows:

FL
X x tjð Þ ¼ min

F
kð Þ
W 2 SF

k ¼ 1; 2; . . . ;NR

FX x F
kð Þ
W ; t




� �

FU
X x tjð Þ ¼ max

F
kð Þ
W 2 SF

k ¼ 1; 2; . . . ;NR

FX x F
kð Þ
W ; t




� �

8>>>>>>>>><
>>>>>>>>>:

ðA2Þ

For the kth CDF realization F
ðkÞ
W , the calculation of the cor-

responding CDF of the system response can be achieved using
NMC�time MC simulations. Therefore, NMC sample trajecto-

ries of WP.B.(t) corresponding to F
ðkÞ
W , denoted by xðkÞðtÞ

(2 RNMC , 8t), are generated by using translation theory as

follows:

x kð Þ tð Þ ¼ F
kð Þ
W

� ��1

�U g tð Þð Þ ðA3Þ

where gðtÞ (2 RNMC , 8t) denotes a vector function comprising

NMC sample trajectories of a standard white Gaussian noise
process, which can be easily generated. Then, the MC simula-
tions for obtaining CDF of the system response corresponding

to F
ðkÞ
W can be achieved based on xðkÞðtÞ.
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After performing the aforementioned calculation on F
ðkÞ
W

from k = 1 to NR, the set of CDF realizations for the system

response is established. The solutions of Eq. (A2), termed ref-
erence solutions, can be found within the set. Finally, The
flowchart illustrating the procedure to calculate reference solu-

tions using MC simulations is presented in Fig. A1.

Fig. A1 Flowchart of the Monte-Carlo-based method.
1150
1151c
Appendix B. The detailed expansion of the LV-flight-dynamics
model is expressed below:
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_vx
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_vz

2
64

3
75 ¼ 1

mLV
GB

P� Xc

Yc

Zc

2
64

3
75þ 1

mLV
GV

�X

Y

Z

2
64

3
75

þ gr
r

xþ R0x

yþ R0y

zþ R0z

2
64

3
75þ gxe

xe

xex

xey

xez

2
64

3
75� A

xþ R0x

yþ R0y

zþ R0z

2
64

3
75� B

vx

vy

vz

2
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3
75

_x

_y

_z

2
64

3
75 ¼

vx

vy

vz

2
64

3
75

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ðB1Þ
where m denotes the mass of LV, ½P; 0; 0�T denotes the com-

ponent of propulsion P, ½Xc;Yc;Zc�T denotes the components

of control force Fc, which is equal to ½0; 0; 0�T in this work,

and ½X;Y;Z�T denotes the components of aerodynamic force
R, which are calculated as follows:

X ¼ CxqSR

Y ¼ Ca
yqSRa

Z ¼ �Ca
yqSRb

8><
>: ðB2Þ
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where a and b denote the angle of attack and sideslip angle,

respectively. Cx denotes the drag coefficient, Ca
y represents

the derivative of the lift coefficient with respect to a, SR

denotes the reference surface area, and q represents the
dynamic pressure, which is computed as follows:

q ¼ 1

2
qv2 ðB3Þ

where q denotes the atmospheric density and v denotes the
resultant velocity of the LV flight as:

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2x þ v2y þ v2z

q
ðB4Þ

GB and GV denote the coordinate-transform matrixes and
are expressed as follows:

GB ¼
cosucosw � sinu cosu sinw

sinu cosw cosu sinu sinw

� sinw 0 cosw

2
64

3
75

GV ¼
cos hcosr � sin h cos h sinr

sin h cosr cos h sin h sinr

� sin r 0 cos r

2
64

3
75

8>>>>>>>><
>>>>>>>>:

ðB5Þ

where, u and w represent the pitch angle and yaw angle,
respectively. These parameters describe the flight attitude of
the LV. h and r denote the flight path angle and flight path azi-

muth angle, respectively. These parameters describe the flight
direction of the LV. These angles are derived as follows:

h ¼ arctan
vy
vx

r ¼ � arcsin vz
v

u ¼ hþ a

w ¼ rþ b

8>>><
>>>:

ðB6Þ

Moreover, A and B, in Eq. (B1) denote the matrixes to describe

the inertial force caused by the rotation of the earth as follows:

A ¼
x2

ex � x2
e xexxey xexxez

xexxey x2
ey � x2

e xeyxez

xexxez xeyxez x2
ez � x2

e

2
64

3
75

B ¼
0 �2xez 2xey

2xez 0 �2xex

�2xey 2xex 0

2
64

3
75

8>>>>>>>>><
>>>>>>>>>:

ðB7Þ

where xe denotes the earth-rotation rate and ½xex; xey; xez�T
denotes the components of the vector xe. ½R0x; R0y; R0z�T pre-

sented in Eq. (B1) represents the components of the vector R0,

which describes the position of the launch point. gr and gxe
represent the components of gravitational acceleration, and

are calculated as follows:

gr ¼ � l
r2

1þ J ae
r

� �2
1� 5sin2/
� �h i

gxe ¼ �2 l
r2
J ae

r

� �2
sin/

8<
: ðB8Þ

where l and J denote the constant characteristics of gravity, ae
denotes the length of the semi-major axis of the earth under an
ellipsoid model. The semi-minor axis is denoted as be. r denotes

the geocentric distance of the LV and is calculated as follows:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ R0xÞ2 þ ðyþ R0yÞ2 þ ðzþ R0zÞ2

q
ðB9Þ
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/ denotes the geocentric latitudinal and is derived as
follows:

sin/ ¼ ðxþ RoxÞxex þ ðyþ RoyÞxey þ ðzþ RozÞxez

rxe

ðB10Þ

In addition, the flight height of the LV can also be obtained
by using r and / as follows:

h ¼ r� aebeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2esin

2/þ b2ecos
2/

q ðB11Þ

Finally, these equations are solved according to a given
flight-program angle. Generally, they are provided in the fol-
lowing format:

u
 ¼ uPR tð Þ
w
 ¼ 0

�
ðB12Þ

To achieve the flight program, the corresponding a and b
are expressed as follows:

a ¼ Au½ðuPR � xezt� hÞ�
b ¼ Aw½ðuex sinu� xey cosuÞt� r�

�
ðB13Þ

where Au and Aw represent constant coefficients. The values

of the parameters involved in the dynamic model are presented
in Table B1.

Table B1
Parameters of the dynamic model for launch-

vehicle trajectory.
P
A

1281
Parameter
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rr

Value
1282

1283

Launch point
 R0x (m)
 0
1284

R0y (m)
 6,378,145
1285

R0z (m)
 0
1286

Gravity
 l (m3=s2)
 3:986� 1014
1287
J
 1:624� 10�3
1288
Aerodynamic coefficients
 Cx
 0.2 c

1289
Ca

y (1=
�
)
 0.07
1290
SR (m2)
 2.19

1291
Earth
 ae (m)
 6,378,145

e

1292
be (m)
 6,356,760

1293
xe (rad/s)
 7:292� 10�5
1294
xex (rad /s)
 7:292� 10�5
1295

1296

xey (rad /s)
 0
1297

xez (rad /s)
 0
1298

o

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312
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