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1 BACKGROUND 

In urban areas, pedestrian comfort and safety are paramount considerations in architectural design. 
Traditionally, studies on pedestrian wind comfort rely on scale model testing or computational fluid 
dynamics (CFD), which are time-consuming and costly, hindering rapid iteration in early-stage design. 
This paper presents a deep learning approach for predicting pedestrian-level wind around buildings, 
focusing on skywalks and lift-up designs. Current research uses 2D projections of geometries, encoding 
height information to forecast time-averaged velocities at pedestrian height. Our approach embeds 3D 
details of the skywalks and lift-up designs into the projections, enabling the model to learn flow patterns 
around these structures and deliver predictions much faster than CFD solutions - We validate our deep 
learning model’s performance on previously unseen configurations, demonstrating its effectiveness in 
accurately predicting pedestrian-level wind. This approach offers a valuable tool for architects, urban 
planners, and wind engineers design safer and more comfortable spaces in urban areas.   
 
Lift-up designs provide sheltered outdoor areas beneath elevated buildings, allowing wind to penetrate 
and ventilate the surrounding areas, improving air circulation and thermal comfort while dispersing 
pollutants [1–3]. Skywalks enhance pedestrian safety, mobility and provide convenient links between 
buildings [4]. However, the flow patterns around such structures are often complex with the potential to 
create difficult conditions for pedestrians. 
 
Recent machine learning approaches to pedestrian-level wind assessments have shown very promising 
results, with architectures including Convolutional Neural Networks, Generative Adversarial Networks, 
and Gaussian Process models [5–12]. Despite these advances, current methods use 2D projections of 
urban morphology, limiting their ability to predict flows around architectural features like bridges or 
lift-up designs. Weerasuriya, et al trained a neural network to predict flow velocities at discrete 
locations around isolated lift-up buildings [13] and optimise designs for pedestrian wind and thermal 
comfort, achieving inference times of less than one minute [14]. Our model can predict the three 
components of wind across an entire area in fractions of a second, capturing the flow characteristics and 
interactions between two buildings connected by a skywalk. 

2 METHODOLOGY 
We developed an automated pipeline to generate 490 unique, simplified geometries, each consisting of 
two buildings connected by a skywalk, using parametric design Figure 1. The design space for the 
building geometries includes various dimensions for Building 1, the skywalk, and Building 2. The 
height (h) for Building 1 and Building 2 ranges from 10 to 100 metres, while the width (w) and depth 
(d) range from 10 to 80 metres. The distance from the ground (z) is either 0 or 3 metres, and the distance 
from the datum (y) is set at 0, 10, or 20 metres. The skywalk has fixed dimensions: a height of 3 metres, 
a width of 20 metres, and a depth of 3 metres. Its distance from the ground (z) is fixed at 6 metres, with 
the same distance from the datum (y) options as the buildings (0, 10, or 20 metres). We used a Latin 
hypercube sampling method to select combinations of geometries from the design space. Eight RANS 
CFD simulations with different wind directions were produced for each geometry using OpenFOAM's 
steady-state SIMPLE solver with a standard k-ε turbulence model employing the coefficients provided 
by Hargreaves and Wright [15]. The domain was cylindrical, with a diameter of 1600 m and height of 
300 m. The inflow profile was logarithmic with a reference velocity of 5 m/s at 10 m height. 
 

mailto:adam.p.clarke@cranfield.ac.uk


14th UK Conference on Wind Engineering, Southampton, 4-6th September 2024 
________________________________________________________________________ 

DOI 10.5258/WES/P0017 
 

The CFD data was post-processed into pairs of 256x256 pixel images. The geometry data consisted of 
two channels containing the heights of the top and bottom of structures. The flow data comprised three 
channels storing the velocity components 2 m from the ground. The area of one pixel is 0.75 m². The 
generated data was split into training, validation, and test sets with a ratio of 7:2:1. 
 

 
Figure 1, Schematic representation of the geometries. 

The model used was an MLP-Mixer modified for this task introduced in [16]. It takes in the two-
channel geometry data and returns a three-channel image representing the predicted flow field. A mean 
squared error (MSE) loss over all pixels was used as the objective function to train the model for 20 
epochs, taking approximately 3 hours on a single A100 GPU and achieving a training loss of 0.000052. 

3 RESULTS AND DISCUSSION 
A test set containing 392 previously unseen geometries was retained to evaluate our deep learning 
model’s performance. The mean inference time for a single image was 0.03 seconds, significantly faster 
than the CFD solution, which took approximately 4 hours giving the model great potential for uses in 
optimisation frameworks by facilitating rapid iteration. We used MSE, peak signal-to-noise ratio 
(PSNR), and structural similarity index (SSIM) to compare the deep learning predictions to the CFD 
predictions, following the framework introduced in [17]. These metrics provide a good indication of 
pixel-wise error, image quality, and perceptual error, the ability for humans to make accurate judgment. 
— These metrics are important in the preliminary design process where results are used to guide 
direction rather than quantification.  
 
We conducted a series of experiments to determine the optimal set of hyperparameters for this model. 
We found that reducing patch size and neighbourhood benefits the model. However, the absence of 
neighbourhood mixing negatively impacts the model’s performance, as it removes the ability to 
consider spatially local information. Conversely, a larger patch size and neighbourhood may introduce 
unnecessary complexity and noise overwhelming the model. While increasing the model's depth 
initially aids learning, excessive depth reduces effectiveness, indicating high variance and overfitting. 
Additionally, increasing the training data size from 30% to 100% of the combined training and 
validation sets significantly improves model performance. Although the rate of improvement slows 
between 70% and 100%, the results suggest that further performance gains might be possible with 
additional training samples. 
 
The best model achieved an average SSIM of 0.991 and PSNR of 42.352 dB, indicating a high degree 
of similarity and quality when comparing the predictions and the ground truths. Our model captures 
complex wind flow behaviours around buildings, including downwash on the leading edges, updrafts on 
the leeward side of lift-up buildings, increased velocity as the wind wraps corners, and reversal of flow 
direction in the wake regions. Figure 2 illustrates these captured flow features. Additionally, we are 
able to see that the model correctly predicts decreases in velocity in the vicinity of the skywalk. 
To further assess the model’s ability to generalise beyond the scope of the training data, we produced 
additional unseen test samples. These samples included an additional building upwind, designed as 
either a standard or lift-up structure, to interrupt the approaching flow. The model outputs demonstrated 
its ability to characterise the resulting flow around the buildings. However, a more in-depth study is 
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required to fully understand the extent of this capability, encompassing a variety of building densities, 
configurations, and morphologies. 
 
One limitation of this study is the use of floating buildings in the CFD simulations for the lift-up design 
geometries. This simplification omitted the core of the building that would realistically support it. 
However, the results presented here demonstrate that 2D model inputs can be effectively enhanced by 
embedding a limited set of 3D information, providing the model with enough context to permit accurate 
predictions for structural design features such as lift-up structures and skywalks. 
 
 

 
 

 
Figure 2, Top: Visualisation of the velocity magnitude computed by the CFD solver for the z-normal 

plane (left) and x-normal plane (right) for a single geometry with non-lift-up (A) and lift-up (B) 
buildings. Bottom: Comparison of model predictions and ground-truth for the x-, y-, and z-components 

of wind velocity for the same geometry. 

4 CONCLUSION 
This paper demonstrates the capability of a modified MLP-Mixer architecture in predicting pedestrian-
level wind flows around lift-up designs and skywalks. The model effectively captures complex flow 
characteristics and correlates well with CFD solutions across MSE, PSNR, and SSIM metrics. Its high 
accuracy and rapid inference speed make it a valuable tool for preliminary designs. Further research is 
needed to explore the model’s ability to generalise more complex morphologies. The framework 
presented here sets a precedent for using surrogate models for structures with intricate design elements 
such as cantilevers, podiums, and tunnels. 
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