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Abstract
We propose a forward–backward splitting dynamical system for solving inclusion
problems of the form 0 ∈ A(x) + B(x) in Hilbert spaces, where A is a max-
imal operator and B is a single-valued operator. Involved operators are assumed
to satisfy a generalized monotonicity condition, which is weaker than the standard
monotone assumptions. Under mild conditions on parameters, we establish the fixed-
time stability of the proposed dynamical system. In addition, we consider an explicit
forward Euler discretization of the dynamical system leading to a new forward back-
ward algorithm for which we present the convergence analysis. Applications to other
optimization problems such as constrained optimization problems, mixed variational
inequalities, and variational inequalities are presented and some numerical examples
are given to illustrate the theoretical results.
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1 Introduction

Let H be a real finite-dimensional Hilbert space endowed with an inner product and its
induced norm denoted by 〈·, ·〉 and ‖ · ‖, respectively. In this article we are interested
in the following inclusion problem: Find x∗ ∈ H such that

0 ∈ A(x∗) + B(x∗) (1)

where A : H −→ 2H is a multi-valued operator and B : H −→ H is a single-valued
operator. This problem has an important role in many fields such as optimization
problems, variational inequalities, equilibrium problems, saddle point problems, Nash
equilibrium problem in noncooperative games, fixed point problems, and others; see,
for instance, [8, 16] and references quoted therein.

For example, let f : H −→ (−∞,+∞], f 	≡ +∞ be a subdifferential and convex
function, and C be a closed, convex subset of H , then the constrained optimization
problem (COP): minx∈C f (x) is equivalent to the monotone inclusion 0 ∈ ∂ f (x) +
NC (x), where NC (x) is the normal cone to C at x (see, for instance, [45]).

Also, a variational inequality problem: find x∗ ∈ C such that 〈F(x∗), x −
x∗〉 ≥ 0, ∀x ∈ C , where C is a closed, convex subset of H , can be expressed
as an inclusion problem 0 ∈ A(x) where

A(x) =
{
F(x) + NC (x) if x ∈ C

∅ if x 	= C .

One of themost commonmethods for solving problem (1) is the forward–backward
splitting algorithm, introduced by Passty [42] and Lions and Mercier [37]. Afterward,
many modified versions of this algorithm are developed by numerous authors [19, 39,
49].

In recent years, dynamical systems have gained popularity due to their high perfor-
mance and low computational cost in addressing various problems such as inclusion
problems (IPs), mixed variational inequalities (MVIs), variational inequalities (VIs),
and constrained optimization problems (COPs) [1, 9, 11, 13, 14, 21, 25, 26, 28, 30, 34,
38, 47, 52, 59]. For example, Boţ et al. [11] investigated the global exponential stability
of the forward–backward–forward dynamical system proposed in [53], while in [9],
the authors applied second-order forward–backward dynamical systems to inclusion
problems. Additionally, [12] presented the strong convergence of continuous Newton-
like inertial dynamics with Tikhonov regularization for monotone inclusions. Despite
the widespread application of dynamical systems, much of the theoretical research on
these methods have focused on their asymptotic stability [26, 28, 47] or exponential
stability [11, 21, 25, 30, 31, 34, 38, 51, 52, 59].

Incorporating the concept of finite-time convergence, as proposed in [7], several
dynamical systems [32, 36] have been recently introduced, exhibiting finite-time con-
vergence, where the settling time relies on initial states and may escalate indefinitely
with the increasing deviation of the initial state from an equilibrium point. However, in
numerous practical scenarios like robotics and vehicle monitoring networks, obtaining
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accurate initial states are often challenging, if not impossible, beforehand. Conse-
quently, determining the settling time in advance becomes impractical. To address
this limitation, the concept of fixed-time convergence was introduced, wherein the
convergence time can be upper-bounded by a constant independent of initial states.
This concept was initially proposed by Polyakov in his seminal work [43] and has
since been further developed by numerous researchers, see, for example, [22, 33, 48,
55–57, 60].

The principles of fixed-time convergence and finite-time convergence have also
found application in various optimization and control contexts (see, for instance,
multi-agent control problems [60] and sparse optimization problems [23, 29, 54]).
For instance, Chen and Ren [17] introduced a sign projected gradient method exhibit-
ing finite-time convergence to address a category of convex optimization problems.
Garg and Panagou [24] proposed a gradient flowwith fixed-time convergence for solv-
ing unconstrained optimization problems. Romero and Benosman [46] explored four
dynamical systems demonstrating finite-time convergence, bridging the gap between
the q-rescaled gradient flow [58] and the normalized gradient flow [18]. Further-
more, Garg et al. [22] devised a fixed-time convergent proximal dynamical system for
addressing MVIs. Subsequently, Garg and Baranwal [23] applied it to tackle sparse
optimization problems with a non-smooth regularizer. More recently, Ju et al. [33]
extended the proximal dynamical system [34] and the forward–backward-forward pro-
jection dynamical system [11] to a fixed-time converging forward-backward-forward
proximal dynamical system for solvingMVIs. X. Ju et al. applied the proximal dynam-
ical system to study fixed-time convergence [35] and finite-time convergence [32] for
equilibrium problems (EPs).

The literature review presented above highlights the consideration of dynamical
system with finite-time or fixed-time convergence for solving various problems such
as MVIs and VIs [22, 33], EPs [32, 35], COPs [32], linear programming problems
[48], unconstrained optimization problems (UOPs) [17, 18, 24, 46, 58], and sparse
signal recovery problems [23, 29, 54]. However, their application in solving inclu-
sion problems has not been investigated. Specifically, the development of fixed-time
converging forward–backward splitting dynamical systems for inclusion problems
remains unexplored, which serves as the motivation for this study.

In this paper,we continue this research direction by considering a forward-backward
splitting first-order dynamical system associated with a fixed point reformulation
(see e.g. [3, 10, 15, 50]), for which we obtain the fixed-time stability. In addition,
we consider a discrete version of the proposed dynamical system, which leads to a
forward–backward method with relaxation. We establish the linear convergence of the
iterative sequence generated by this algorithm to the unique solution of the inclusion
problem.

The monotonicity assumption in inclusion problems is standard and challenging
to abandon, as even common results may prove invalid without this hypothesis. For
instance, if (A+B) lacks strongmonotonicity, the inclusion 0 ∈ (A+B)(x)may have
no solution. In this paper, we will adopt a generalized notion of monotonicity, allow-
ing the modulus of monotone operators to be negative. This broadened perspective
enables us to address a wider range of operators beyond those traditionally considered
monotone operators.
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The contributions of this article, in contrast to existing relevant research, can be
summarized as follows.

1. This work introduces a novel forward–backward splitting dynamical system with
fixed-time convergence for addressing inclusion problems. To the best of our
knowledge, this is the first study to propose a fixed-time convergent forward–
backward splitting dynamical system for solving inclusion problems. In contrast
to existing forward–backward splitting dynamical system methods for solving
inclusions, where the settling time for convergence to the solution cannot be explic-
itly determined, this work provides an explicit upper bound for the settling time
required to reach the solution.

2. Some applications to COPs, MVIs, VIs are given. By treating these problems as
special cases of inclusion problems, we explore the fixed-time stability of those
problems and provide upper bounds for settling time.

3. Unlike the monotonicity or strong monotonicity assumptions commonly imposed
on operators in prior works, this article introduces a requirement of generalized
monotonicity known asμ-monotonicity, wherein the modulus of the operator may
take negative values. Monotonicity has emerged as a standard assumption in the
study of inclusion problems. Generalized monotonicity enables us to broaden the
scope of operators considered in these inclusion problems

The remaining sections of the article are structured as follows. Section2 begins
by revisiting some fundamental definitions and concepts, forward–backward splitting
dynamical systems, finite-time, and fixed-time stabilities, along with the introduction
of several technical lemmas. In Sect. 3, we present the main results, including the
newly proposed fixed time forward-backward splitting dynamical system model and
its analysis. Section4 introduces a condition that is adequate for attaining a consistent
discretization, meaning a discretization that converges with a fixed number of time
steps, for dynamical systems represented by a broad category of differential inclu-
sions. As a specific example, it demonstrates that the forward-Euler discretization of
the modified proximal dynamical system is indeed consistent. Section5 explores the
applications of the forward-backward dynamical system in solving COPs, MVIs, and
VIs. To demonstrate the effectiveness and advantages of the proposed fixed-time con-
verging proximal dynamical system, Sect. 6 offers some numerical examples. Finally,
in Sect. 7, we provide some concluding remarks.

2 Preliminaries

In this section, we recall some well-known definitions useful in the sequel.

2.1 Some notions on convex analysis

Let g : H → R ∪ {+∞} be a proper, convex and lower semicontinuous (l.s.c.)
function. We call g subdifferentiable at x if the set

∂g(x) = {u ∈ H : g(y) ≥ g(x) + 〈u, y − x〉 ∀y ∈ H}
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is nonempty. Then, ∂g(x) is called the subdifferential of g at x , and vector u ∈ ∂g(x)
is called a subgradient of g at x . The function g is subdifferentiable on H if it is
subdifferentiable at each point of H . Note that if the function g is convex, l.s.c. and
has the full domain, it is continuous on the whole space [5, Corollary 8.30]. In this
case, g is subdifferentiable on H [5, Proposition 16.14]. In addition, let f and g be
proper, convex, l.s.c functions such that dom f ∩ int domg 	= ∅ or dom(g) = H , here
dom f = {x ∈ H , f (x) < +∞} denotes the domain of f , then ∂( f + g) = ∂ f + ∂g
[5, Corollary 16.38].

Let C be a closed, convex subset of H . The normal cone NC to C at a point x ∈ C
is defined by

NC (x) = {w ∈ H : 〈w, x − y〉 ≥ 0,∀y ∈ C} ,

and NC (x) = ∅ if x /∈ C . The indicator function ofC is defined as iC (x) = 0 if x ∈ C
and iC (x) = +∞ otherwise. Then, we have ∂iC (x) = NC (x) for all x ∈ H .

For every x ∈ H , the metric projection PC (x) of x onto C is defined by

PC (x) = argmin {‖y − x‖ : y ∈ C} .

Since C is nonempty, closed, and convex, PC (x) exists and is unique.
Finally, let f : H → R. The proximity operator of parameter λ > 0 of a function

f at x ∈ H is defined by

proxλ f (x) = argminy∈H
{
f (y) + 1

2λ
‖x − y‖2

}
∀x ∈ H .

For more details as well as for unexplained terminologies and notations we refer to
[5].

2.2 Monotone operators

Let A : H −→ 2H be a given operator. Recall that the domain of A is denoted by
dom A and defined by

dom A = {x ∈ H : A(x) 	= ∅}.

We define G(A) = {(x, u) ∈ H × H : u ∈ A(x)} the graph of A.

Definition 1 Let A : H −→ 2H be a given operator. The operator A is said to be μA-
monotone if 〈x − y, u − v〉 ≥ μA‖x − y‖2 for all x, y ∈ H , u ∈ A(x), v ∈ A(y) and
some μA ∈ R.

Definition 2 A μA-monotone operator A is said to be maximal if its graph is not
properly contained in the graph of any μA-monotone operator A′ : H −→ 2H [20].
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Remark 1 Observe that μA in the above definition can be negative. If μA = 0, μA-
monotonicity reduces to the classical monotonicity. If μA > 0, A (maximal) μA-
monotonicity degenerates to (maximal) strong monotonicity. Finally, if μA < 0, A is
called weakly-monotone.

One example of a maximal monotone operator is the subdifferential ∂ f of a lower
semicontinuous convex function f : H −→ (−∞,+∞], f 	≡ +∞ (see, e.g. [45]).

Definition 3 An operator B : H −→ H is said to be

• Lipschitz continuous with constant L ≥ 0 if ‖B(x) − B(y)‖ ≤ L‖x − y‖ for all
x, y ∈ H .

• β-cocoercive with constant β ≥ 0 if 〈B(x) − B(y), x − y〉 ≥ β‖B(x) − B(y)‖2
for all x, y ∈ H .

By the Cauchy inequality, it is clear that if an operator is β-cocoercive, then it is 1
β

Lipschitz continuous.
We recall here the resolvent of an operator A : H −→ 2H , which is a useful tool in
studying inclusion problems. The resolvent with the parameter λ of the operator A is
defined as follows

JλA = (I d + λA)−1,

where I d is denoted by the identity mapping.
Without monotonicity, the resolvent of a maximal operator may not be single-

valued. The lemma below shows that the singleton property of the resolvent is
maintained for generalized monotone operators with the appropriate values of the
parameter. It also shows that the resolvent is cocoercive. This result will be applied
several times in the sequel.

Lemma 2.1 [20] Let A : H −→ 2H be a μA-monotone operator and let λ > 0 be
such that 1 + λμA > 0. Then, the following statements hold

1. JλA is single-valued;
2. JλA is (1 + λμA)-cocoercive;
3. domJλA = H if and only if A is maximal μA-monotone

Formore details onmonotone operators, their application to optimization problems,
and properties of their resolvent we refer the readers to [4, 5, 20].

We denote by Fix(A) the set of fixed points and by zerA the set of zero points of an
operator A. The following lemma allows us to characterize zero points of the operator
A + B as fixed points of an appropriate associated operator.

Lemma 2.2 Let A : H −→ 2H be μA-monotone and B : H −→ H. Let λ > 0 be
such that 1 + λμA > 0. Then x∗ ∈ H is a zero point of inclusion problem (1) if and
only if JλA(x∗ − λB(x∗)) = x∗, i.e., if and only if x∗ ∈ Fix(JλA ◦ (I d − λB)).

Proof Since A is μA-monotone and λ > 0, 1 + λμA > 0, by Lemma 2.1, JλA is a
singleton. Then 0 ∈ A(x) + B(x) if and only if −B(x) ∈ A(x) which is equivalent
to x − λB(x) ∈ x + λA(x) or equivalent to x ∈ (

(I d + λA)−1 ◦ (I d − λB)
)
(x) =

JλA ◦ (I d − λB)(x). The proof is completed. ��
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2.3 Equilibrium points and stability

To establish the main results of the paper, we need to recall the stability concepts of
an equilibrium point of the general dynamical system

ẋ(t) = T (x(t)), t ≥ 0, (2)

where T is a continuous mapping from H to H and x : [0,+∞) → H .

Definition 4 [40]

(a) A point x∗ ∈ H is an equilibrium point for (2) if T (x∗) = 0;
(b) An equilibrium point x∗ of (2) is stable if, for any ε > 0, there exists r > 0

such that, for every x0 ∈ B(x∗, r), the solution x(t) of the dynamical system with
x(0) = x0 exists and is contained in B(x∗, ε) for all t > 0, where B(x∗, r) denotes
the open ball with center x∗ and radius r ;

(c) A stable equilibrium point x∗ of (2) is asymptotically stable if there exists r > 0
such that, for every solution x(t) of (2) with x(0) ∈ B(x∗, r), one has

lim
t→+∞ x(t) = x∗;

(d) An equilibrium point x∗ of (2) is exponentially stable if there exist r > 0 and
constants κ > 0 and θ > 0 such that, for every solution x(t) of (2) with x(0) ∈
B(x∗, r), one has

‖x(t) − x∗‖ ≤ κ ‖x(0) − x∗‖ e−θ t ∀t ≥ 0. (3)

Furthermore, x∗ is globally exponentially stable if (3) holds true for all solutions
x(t) of (2).

Definition 5 The equilibrium point x∗ is said to be

1. Finite-time stable if it is stable in the sense of Lyapunov, and there exists a neigh-
borhood B(r , x∗) of x∗ and a settling-time function T : B(r , x∗)\{x∗} → (0,∞)

such that for any x(0) ∈ B(r , x∗)\{x∗}, the solution of (2) satisfies x(t) ∈
B(r , x∗)\{x∗} for all t ∈ [0, T (x(0))) and limt→T (x(0)) x(t) = x∗.

2. Globally finite-time stable if it is finite-time stable with B(r , x∗) = R
n .

3. Fixed-time stable if it is globally finite-time stable, and the settling-time function
satisfies

sup
x(0)∈Rn

T (x(0)) < ∞.

Polyakov obtained the following results for fixed-stable time [43]:

Theorem 2.3 (Lyapunov condition for fixed-time stability). Suppose that there exists
a continuously differentiable function V : D → R, where D ⊆ H is a neighborhood
of the equilibrium point x∗ for (2) such that

V (x∗) = 0, V (x) > 0
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for all x ∈ D \ {x∗} and

V̇ (x) ≤ −(p1V (x)α1 + p2V (x)α2)α3 (4)

for all x ∈ D \ {x∗} with p1, p2, α1, α2, α3 > 0 such that α1α3 < 1 and α2α3 > 1.
Then, the equilibrium point x∗ of (2) is fixed-time stable such that

T (x(0)) ≤ 1

pα3
1 (1 − α1α3)

+ 1

pα3
2 (α2α3 − 1)

(5)

for any x(0) ∈ H. Moreover, take α1 =
(
1 − 1

2ξ

)
, α2 =

(
1 + 1

2ξ

)
, with ξ > 1 and

α3 = 1 in (4). Then the equilibrium point of (2) is fixed-time stable with the settling
time

T ≤ Tmax = πξ√
p1 p2

. (6)

In addition, if the function V is radially unbounded (i.e., ||x || → ∞ ⇒ V (x) →
∞) and D = H, then the equilibrium point x∗ of (2) is globally fixed-time stable.

It was shown in [41] that the settling time (5) gives a conservative convergence times
estimate, meanwhile settling time (6) presents a less conservative one for dynamical
system (2). We will apply this fundamental result to analyze the fixed-time stability
of solutions of inclusion problem (1) via appropriate dynamical systems in the next
section.

3 Forward–backward dynamical systems and fixed-time stability

In this section, we propose a novel forward–backward splitting dynamical system
model.We then characterize the solutions of inclusion problems via equilibrium points
of appropriate dynamical systems. Finally, the fixed-time convergence of the dynam-
ical system is established.

3.1 A nominal dynamical system for inclusion problems

For solving inclusion (1) we consider the nominal dynamical system

ẋ(t) = −σ (x(t) − JλA(x(t) − λB(x(t)))) , (7)

where σ is a positive constant.
The first result in this section gives a characterization for solutions of inclusion

problem (1) via equilibrium points of the dynamical system (7).

Proposition 3.1 Let A : H −→ 2H be a μA-monotone, let B : H −→ H and λ > 0
be such that 1 + λμA > 0. Then a point x∗ ∈ H is a solution of inclusion (1) if and
only if it is an equilibrium point of (7).
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Proof It follows from Lemma 2.2 and the definition of equilibrium points of the
dynamical system (7). ��

In the sequel we will use the below assumption.

(A) A is maximal μA-monotone, B is μB-monotone and L-Lipschitz continuous and
the parameter λ > 0 such that 1+ λμA > 0 and 2(μA + μB) + λμ2

A − λL2 > 0.

The lemma below provides conditions for the existence of λ > 0 satisfying assump-
tion (A).

Lemma 3.2 Let A : H −→ 2H be maximal μA- monotone and B : H −→ H be μB-
monotone and L-Lipschitz continuous. Then there exists a parameter λ > 0 satisfying
assumption (A) if and only if one of the following conditions on parametersμA, μB, L
is valid.

(B1) μA + μB > 0.
(B2) μA + μB = 0 and μ2

A > L2.
(B3) μA + μB < 0 and μA > L.

Proof Assume that there exists λ > 0 satisfying assumption (A). There are only three
cases that may occur: μA + μB > 0, μA + μB = 0, and μA + μB < 0. If the first
case occurs, (B1) holds.

When μA + μB = 0, the last condition in assumption (A) and the existence of
λ > 0 imply that μ2

A > L2. Hence (B2) holds.
As for the last case where μA + μB < 0, the last condition in assumption (A)

and the positiveness of λ imply that μ2
A > L2 which is equivalent to μA < −L or

μA > L .
IfμA < −L , there exists λ > 0 satisfying conditions in assumption (A) if and only

if there exists λ such that
−2(μA + μB)

μ2
A − L2

< λ < − 1

μA
hold. These inequalities hold

for some λ > 0 if and only if

L2 + μ2
A + 2μAμB < 0 (8)

holds. This inequality implies that 0 < μB . Because of μB-monotonicty and L-
Lipschitz continuity of B, one has μB ≤ L . It follows that L2 + μ2

A + 2μAμB ≥ 0,
for allμA. This means that the inequality (8) can not be satisfied and hence, there does
not exist λ > 0 satisfying assumption (A) when μA + μB < 0, μA < −L . Thus (B3)
holds.

We now prove for the sufficient condition of existence of λ > 0 fulfilled (A). We
assume that one of (Bi), i = 1, 2, 3 holds. We will consider each case in turn.

If μA + μB > 0, the existence of λ > 0 satisfying assumption (A) is obviously. In

particular, it holds for all λ ∈
(
0,

2(μA + μB)

L2

)
.

If μA + μB = 0 and μ2
A > L2, then the second condition on λ in (A) is satisfied

for all λ > 0. Also, the other condition on λ is fulfilled for some λ > 0 and for any
μA. This assures the existence of λ > 0.
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Finally, if μA + μB < 0 and μA > L , the last condition in (A) is fulfilled for

λ >
−2(μA + μB)

μ2
A − L2

> 0 and the first condition on λ is fulfilled for all λ > 0. Thus

the existence of λ satisfying the conditions in (A) is assured. ��
Remark 2 From Lemma (3.2), note that condition (A) does not imply the (strong)
monotonicity of A + B. If A is maximal monotone, (i.e. μA = 0) and B is strongly

monotone (i.e. μB > 0), then assumption (A) holds for all λ ∈
(
0,

2μB

L2

)
.

The following proposition plays an important role in our convergence analysis of
the proposed method.

Proposition 3.3 Let A : H −→ 2H , B : H −→ H and the parameter λ > 0 be such
that assumption (A) holds. Then, there exists δ ∈ (0, 1) such that

1. The operator T := JλA ◦ (I d − λB) is Lipchitz continuous with constant δ.
2. Fixed points of the operator T exist and are uniquely determined.
3. ‖JλA(x − λB(x)) − x∗‖ ≤ δ‖x − x∗‖ for all x∗ ∈ Fix(T ).

Proof (1) By Lemma 2.1, and the choice of λ we have that JλA is single-valued and

(1+λμA)-cocoercive. This implies that JλA is
1

1 + λμA
—Lipschitz continuous. We

derive that

‖JλA(x − λB(x)) − JλA(y − λB(y))‖2

≤ 1

(1 + λμA)2
‖(x − λB(x)) − (y − λB(y))‖2

= 1

(1 + λμA)2

(
‖x − y‖2 − 2λ〈x − y, B(x) − B(y)〉 + λ2‖B(x) − B(y)‖2

)

≤ 1

(1 + λμA)2

(
‖x − y‖2 − 2μBλ‖x − y‖2 + L2λ2‖x − y‖2

)

= 1

(1 + λμA)2

(
1 − λ

(
2μB − λL2

) )
‖x − y‖2 ∀ x, y ∈ H .

(9)

Note that under assumption (A) it holds that

1 − λ(2μB − λL2)

(1 + λμA)2
∈ [0, 1).

From the estimate (9) we conclude that T is τ -Lipschitz continuous with constant

τ =
√
1 − λ(2μB − λL2)

(1 + λμA)2
, where τ ∈ [0, 1).

Consequently, T is δ-Lipschitz continuous with some constant δ ∈ (0, 1).
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(2) By Part (1), T is a contraction operator. Also, A is maximal μA-monotone, by
Lemma 2.1, dom JλA = H . This implies that the fixed point x∗ of T exists and is
unique.

(3) It follows from Part (1) by noting that x∗ ∈ Fix(T ). ��
The next result presents conditions for the existence and uniqueness of zero points

of the sum of two generalized monotone operators.

Corollary 3.4 Let A : H −→ 2H be maximal μA-monotone, and B : H −→ H be
μB-monotone, L-Lipschitz continuous. Assume that one of the following conditions
holds

1. μA + μB > 0,
2. μA + μB = 0 and μ2

A > L2,
3. μA + μB < 0 and μA > L.

Then solutions of inclusion problem (1) exist and are uniquely determined.

Proof If one of the conditions is satisfied, by Lemma 3.2, there exists λ > 0 satisfying
assumption (A). Hence, Proposition 3.3 can be invoked. Consequently, JλA◦(I d−λB)

has a unique fixed point. It follows from Lemma 2.2 that the inclusion problem (1)
has a unique solution. ��

3.2 A novel dynamical system for fixed time stability of solutions of inclusion
problems

In order to analyze the fixed-time stability of solutions to inclusion problems of the
form (1) we introduce a modified dynamical system as follows

ẋ = −ϕ(x)(x − JλA(x − λB(x))), (10)

where

ϕ(x) :=

⎧⎪⎪⎨
⎪⎪⎩
c1

1

‖x − JλA(x − λB(x))‖1−κ1
+c2

1

‖x − JλA(x − λB(x))‖1−κ2

if x ∈ H \ Fix(JλA ◦ (I d − λB))

0 otherwise

(11)

with c1, c2 > 0, κ1 ∈ (0, 1) and κ2 > 1.
The next result shows the relationship between the equilibrium points of the dynam-

ical system above and those of (7).

Proposition 3.5 A point x ∈ H is an equilibrium point of (10) if and only if it is an
equilibrium point of (7).

Proof It follows from the definition (11) of ϕ with noting that ϕ(x) = 0 if and only if
x ∈ Fix(JλA ◦ (I d − λB)). ��
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CombiningProposition 3.5 andProposition 3.1 gives us a characterization for solutions
of the inclusion problem (1) via equilibrium points of the dynamical system (10).

Proposition 3.6 Let A : H −→ 2H , B : H −→ H and the parameter λ > 0 be such
that assumption (A) holds. Then x∗ is a solution of inclusion problem (1) if and only
if it is an equilibrium point of the dynamical system (10).

Proof It follows from Proposition 3.5 and Proposition 3.1. ��

3.3 Fixed-time stability analysis

We start this section by giving conditions so that solutions in the classical sense of the
given dynamical system exist and are uniquely determined.

Lemma 3.7 [22] Let T : H → H be a locally Lipschitz continuous vector field such
that

T (x̄) = 0 and 〈x − x̄, T (x)〉 > 0

for all x ∈ H \ {x̄}. Consider the following autonomous differential equation:

ẋ(t) = −β(x(t))T (x(t)), (12)

where

β(x) :=
⎧⎨
⎩c1

1

‖T (x)‖1−κ1
+ c2

1

‖T (x))‖1−κ2
if T (x) 	= 0

0 otherwise

with c1, c2 > 0, κ1 ∈ (0, 1) and κ2 > 1. Then, with any given initial condition, the
solution of (12) exists in the classical sense and is uniquely determined for all t ≥ 0.

Remark 3 Setting T (x) := x − JλA(x − λB(x)) for all x ∈ H . Then this vector field
satisfies the following property:

〈x − x, T (x)〉 > 0

for all x ∈ H \ {x}, where {x} = Fix(JλA ◦ (Id − λB)).
Indeed, byProposition 3.3, the set Fix(JλA◦(I d−λB)) is a singleton.Consequently,

the vector field in (7) has a unique equilibrium point x = x∗.
In addition, for all x ∈ H\{x}, it holds that

〈x − x, x − JλA(x − λB(x))〉 = ‖x − x‖2 + 〈x − x, x − JλA(x − λB(x))〉.
(13)
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By the Cauchy–Schwarz inequality and Proposition 3.3 with noting that x = x∗ one
has

〈x − x, x − JλA(x − λB(x))〉 ≥ −‖x − x‖‖x − JλA(x − λB(x))‖ ≥ −δ‖x − x‖2
(14)

for some δ ∈ (0, 1). Combining (13) and (14) one has

〈x − x, x − JλA(x − λB(x))〉 ≥ (1 − δ)‖x − x‖2 > 0

for all x ∈ H\{x}.
The following lemma is needed for the proof of the main theorem.

Lemma 3.8 [22] For every δ ∈ (0, 1), there is ε(δ) = log(δ)

log 1−δ
1+δ

> 0 satisfying that

(
1 − δ

1 + δ

)1−γ

> δ (15)

for any γ ∈ (1 − ε(δ), 1). Moreover, (15) is valid for any δ ∈ (0, 1) and γ > 1.

We are now ready for the main theorem of this section.

Theorem 3.9 Let A : H −→ 2H , B : H −→ H and λ be such that assumptions (A)
holds. Then, there exists ε > 0 such that the solution x∗ ∈ H of the inclusion problem
(1) is a fixed-time stable equilibrium point of (7) for any κ1 ∈ (1 − ε, 1) ∩ (0, 1) and
κ2 > 1 and the following time estimate holds:

T (x(0)) ≤ Tmax = 1

p1(1 − α1)
+ 1

p2(α2 − 1)

for some p1 > 0, p2 > 0, α1 ∈ (0.5, 1), α2 > 1.
In addition, if take α1 = 1 − 1

2ξ , α2 = 1 + 1
2ξ with ξ > 1 then the following time

estimate holds:

T (x(0)) ≤ Tmax = πξ√
p1 p2

for some constants p1 > 0, p2 > 0 and ξ > 1.

Proof By Proposition 3.3, the operator JλA ◦ (I d − λB) is Lipschitz continuous with
constant δ ∈ (0, 1). It follows that the vector field at the right-hand side of (7) is
Lipschitz continuous on H . By Remark 3 the assumptions in Proposition 3.7 are
satisfied. As a result, a solution of (10) exists and is uniquely determined for all
forward times.
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Consider the Lyapunov function V : H → R defined as follows:

V (x) := 1

2
‖x − x∗‖2.

The time-derivative of the Lyapunov function V along the solution of (10), starting
from any x(0) ∈ H\{x∗} with noting that x∗ ∈ Fix(JλA(I d − λB)) being unique
yields:

V̇ = −
〈
x − x∗, c1

x − JλA(x − λB(x))

‖x − JλA(x − λB(x))‖1−κ1
+ c2

x − JλA(x − λB(x))

‖x − JλA(x − λB(x))‖1−κ2

〉

= −
〈
x − x∗, c1

x − x∗

‖x − JλA(x − λB(x))‖1−κ1
+ c2

x − x∗

‖x − JλA(x − λB(x))‖1−κ2

〉

−
〈
x − x∗, c1

x∗ − JλA(x − λB(x))

‖x − JλA(x − λB(x))‖1−κ1
+ c2

x∗ − JλA(x − λB(x))

‖x − JλA(x − λB(x))‖1−κ2

〉
,

(16)

for all x ∈ H \ {x∗}. By Cauchy–Schwarz inequality, we obtain an upper bound for
the second term in the right hand side of (16) as follows

V̇ ≤ −
(
c1

‖x − x∗‖2
‖x − JλA(x − λB(x))‖1−κ1

+ c2
‖x − x∗‖2

‖x − JλA(x − λB(x))‖1−κ2

)

+
(
c1

‖x − x∗‖ · ‖x∗ − JλA(x − λB(x))‖
‖x − JλA(x − λB(x))‖1−κ1

+ c2
‖x − x∗‖ · ‖x∗ − JλA(x − λB(x))‖

‖x − JλA(x − λB(x))‖1−κ2

)
,

for all x ∈ H \ {x∗}. By the triangle inequality and Proposition 3.3, there exists
δ ∈ (0, 1) such that the following inequality

‖x − JλA(x − λB(x))‖ ≤ ‖x − x∗‖ + ‖JλA(x − λB(x)) − x∗‖
≤ (1 + δ)‖x − x∗‖, (17)

holds for all x ∈ H . Using the inverse triangle inequality we get

‖x − JλA(x − λB(x))‖ ≥ ‖x − x∗‖ − ‖JλA(x − λB(x)) − x∗‖
≥ (1 − δ)‖x − x∗‖, (18)

holds for all x ∈ H . Combining inequalities (17), (18) and Proposition 3.3 we obtain

V̇ ≤ −
(

c1
(1 + δ)1−κ1

‖x − x∗‖2
‖x − x∗‖1−κ1

+ c2
(1 + δ)1−κ2

‖x − x∗‖2
‖x − x∗‖1−κ2

)

+
(

δc1
(1 − δ)1−κ1

‖x − x∗‖2
‖x − x∗‖1−κ1

+ δc2
(1 − δ)1−κ2

‖x − x∗‖2
‖x − x∗‖1−κ2

)
= − q(c1, κ1)‖x − x∗‖1+κ1 − q(c2, κ2)‖x − x∗‖1+κ2 , (19)
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where q(ci , κi ) := ci
(1 − δ)1−κi

((
1−δ
1+δ

)1−κi − δ

)
for i = 1, 2. By Lemma 3.8, there

exists ε(δ) = log(δ)

log 1−δ
1+δ

> 0 such that q(c1, κ1) > 0 for any κ1 ∈ (1− ε(δ), 1) ∩ (0, 1)

and q(c2, κ2) > 0 for any κ2 > 1. Hence, (19) implies that

V̇ ≤ −
(
p(c1, κ1)V

α(κ1) + p(c2, κ2)V
α(κ2)

)
, (20)

here p(ci , κi ) = 2α(κi )q(ci , κi ) and α(κi ) = 1+κi
2 , for i = 1, 2. Note that p(c1, κ1) >

0, α(κ1) ∈ (0.5, 1) for any κ1 ∈ (1 − ε(δ), 1) ∩ (0, 1) and p(c2, κ2) > 0, α(κ2) > 1
for any κ2 > 1. Then the conclusion follows from Theorem 2.3. ��
Remark 4 Assumption (A) can be replaced by the following one:

(A’) The operator A is maximal strongly monotone with modulus μA > 0 and B is
β-cocoercive with β > 0.

Then if assumption (A’) is valid, Proposition 3.3, Theorem 3.9 still hold whenever
λ ∈ (0, 2β). Indeed, with assumption (A’), the operator A + B is strongly monotone.
Consequently, zer(A + B) is a singleton. Also, it can be proved that T := JλA ◦
(I d − λB) is δ-Lipschitz continuous with δ ∈ (0, 1) whenever λ ∈ (0, 2β), (see, for
example, the proof of Proposition 25.9 in [5]). Therefore, Proposition 3.3 still holds.
The proof of Theorem 3.9 under assumption (A’) is similar to the one above.

4 Consistent discretization of themodified forward–backward
dynamical system

Continuous-time dynamical systems, exemplified by equation (10), provide valuable
insights for devising accelerated strategies to tackle inclusion problems. Nevertheless,
in practice, discrete-time approaches are often applied with iterative methods. It’s
worth noting that while continuous-time dynamical systems exhibit fixed-time conver-
gence behavior, this might not persist in discrete-time implementations. A consistent
discretization scheme ensures that the convergence behavior of the continuous-time
dynamical system is maintained in the discrete-time domain (refer to, for instance,
[44]). In this section, we present a characterization of conditions conducive to achiev-
ing a consistent discretization of thefixed-time convergentmodified forward-backward
splitting dynamical system. This objective can be realized in a broader context of dif-
ferential inclusions by leveraging the concepts outlined in [6].

Theorem 4.1 [22] Consider the following differential inclusion

ẋ ∈ �(x) (21)

where � : H ⇒ H is an upper semi-continuous set-valued map satisfying that its
values are non-empty, convex, compact, and 0 ∈ �(x) for some x ∈ H. Assume that
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there exists a positive definite, radially unbounded, locally Lipschitz continuous and
regular function V : H → H such that V (x) = 0 and

sup V̇ (x) ≤ −
(
rV (x)1−

1
ν + sV (x)1+

1
ν

)
for all x ∈ H\{x}, with r , s > 0 and ν > 1, here

V̇ (x) = {w ∈ R : ∃u ∈ �(x) such that 〈z, u〉 = w,∀z ∈ ∂cV (x)}

and ∂cV (x)denotesClarke’s generalized gradient of the function V at the point x ∈ H.
Then, the equilibrium point x ∈ H of (21) is fixed-time stable, with the settling-time
function T satisfying

T (x(0)) ≤ νπ

2
√
rs

for any starting point x(0) ∈ H.

We now examine the forward-Euler discretization of (21):

xn+1 ∈ xn + γ�(xn) (22)

where γ > 0 is the time-step.
The theorem presented below characterizes the conditions under which a consistent

discretizationof a differential inclusion, featuring afixed-time stable equilibriumpoint,
is achieved.

Theorem 4.2 [22] Assume that the conditions of Theorem 4.1 are fulfilled, and the
function V satisfies the following quadratic growth condition

V (x) ≥ ρ‖x − x‖2

for every x ∈ H, where ρ > 0 and x is the equilibrium point of (21). Then, for all
x0 ∈ H and ε > 0, there exists γ ∗ > 0 such that for any γ ∈ (0, γ ∗], the following
holds:

‖xn − x‖ <

⎧⎨
⎩

1√
ρ

(√
r
s tan

(
π
2 −

√
rs
ν

γ n
)) ν

2 + ε, if n ≤ n∗

ε otherwise,

where xn is a solution of (22) starting from the point x0 and n∗ =
⌈ νπ

2γ
√
rs

⌉
.

Applying this result to the system (10) we get the following.

Theorem 4.3 Consider the forward-Euler discretization of (10):

xn+1 = xn − γ ϕ(xn)(xn − JλA(xn − λB(xn))), (23)
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where ϕ is given by (11) with c1, c2 > 0, κ1(ν) = 1−2/ν and κ2(ν) = 1+2/ν where
ν ∈ (2,∞), and γ > 0 is the time-step. Then for every x0 ∈ H, every ε > 0 and
every λ > 0 satisfying conditions in assumption (A), there exist ν > 2, r , s > 0 and
γ ∗ > 0 such that for any γ ∈ (0, γ ∗], the following is fulfilled:

‖xn − x∗‖ <

⎧⎨
⎩

√
2

(√
r
s tan

(
π
2 −

√
rs
ν

γ n
)) ν

2 + ε, if n ≤ n∗

ε otherwise,

where n∗ =
⌈ νπ

2γ
√
rs

⌉
and xn is a solution of (23) starting from the point x0 and

x∗ ∈ H is the unique solution of inclusion problem (1).

Proof We first note from the proof of Theorem 3.9 that for any given λ satisfying the
condition in (A), inequality (20) is valid for any κ1(ν) ∈ (1 − ε(δ), 1) ∩ (0, 1) with

ε(δ) = log(δ)

log
(
1−δ
1+δ

) > 0 and κ2(ν) > 1. The former implies that ν > max

{
2,

2

ε(δ)

}

and the latter is always fulfilled for any ν > 2. Therefore, for any given λ as in

assumption (A), inequality (20) holds for all ν > max

{
2,

2

ε(δ)

}
with p(c1, κ1(ν)) >

0, p(c2, κ2(ν)) > 0, α (κ1(ν)) = 1 − 1

ν
and α (κ2(ν)) = 1 + 1

ν
. Thus, all conditions

in Theorem 4.2 are satisfied with the Lyapunov function V (x) = 1

2
‖x − x∗‖2. The

conclusion of the theorem is followed from Theorem 4.2. ��

This result shows that for every ε > 0 the solution derived from applying forward-
Euler discretization to (10) enters an ε-neighborhood of the solution to the associated
inclusion problem within a fixed number of time steps, regardless of the initial condi-
tions.

Remark 5 In the case B = 0, the inclusion problem (1) reduces to 0 ∈ A(x) and the
the dynamical system (10) becomes

ẋ = −ϕ(x)(x − JλA(x)),

where

ϕ(x) :=
⎧⎨
⎩c1

1

‖x − JλA(x)‖1−κ1
+ c2

1

‖x − JλA(x)‖1−κ2
if x ∈ H \ Fix(JλA)

0 otherwise

with c1, c2 > 0, κ1 ∈ (0, 1) and κ2 > 1.
Then, all conclusions above still hold for solutions of the inclusion 0 ∈ A(x).
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5 Applications

In this section, we apply the proposed fixed-times stable forward-backward splitting
dynamical system (10) to address a range of optimization problems including con-
strained optimization problems (COPs), mixed variational inequalities (MVIs), and
variational inequalities (VIs).

5.1 Application to COP

Consider the constrained optimization problem (COP)

min
x∈H f (x) + g(x) (24)

where f : H −→ R is continuous differential and convex, and g : H −→ R is a
proper, l.s.c. convex real value function. Observe that g may not be differentiable and
if g ≡ 0, the constrained problem (24) become unconstrained optimization one.

Let T := ∇ f + ∂g. Then the problem of finding solutions of the COP (24) is
equivalent to finding zero points of the operator T , meaning that finding solutions of
COP (24) is equivalent to finding solutions of inclusion problem (1) with A = ∂g and
B = ∇ f . Also, note that in this case

JλA(x − λB(x)) = proxλg(x − λ∇ f (x))

and therefore, the dynamical system (10) becomes

ẋ(t) = −ϕ(x)(x − proxλg(x − λ∇ f (x))), (25)

where

ϕ(x) :=
⎧⎨
⎩c1

1

‖x −U (x)‖1−κ1
+c2

1

‖x −U (x)‖1−κ2
if x ∈ H \ Fix(U )

0 otherwise

with c1, c2 > 0, κ1 ∈ (0, 1) and κ2 > 1, U := proxλg ◦ (I d − λ∇ f ).
This is the proximal gradient dynamical system for COP studied in, for instance,

[2, 27, 31] where ϕ(x) ≡ ϕ0 > 0 is a constant. As in [35], we make the following
assumption on the function f .

(A1) The function f is strongly monotone with a constant μ > 0 and ∇ f is L-
continuous with constant L > 0, and λL2 < 2μ.

Observe that when f is strongly monotone with constant μ, ∇ f is also strongly
monotone with modulus μ. Therefore, assumptions (A) and (A’) hold when (A1) is
valid. By applying Theorem 3.9 with A = ∂g and B = ∇ f we obtain the fixed-time
stable convergence for COP (24).
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Proposition 5.1 Let x∗ be a solution to COP (24). Assume that assumption (A1) holds.
Then x∗ is the fixed-times stable equilibrium point of (25) with the settling time given
as follows:

T (x(0)) ≤ Tmax = 1

p1(1 − α1)
+ 1

p2(α2 − 1)

where p1 > 0, p2 > 0, α1 ∈ (0.5, 1), and α2 > 1 are some constants.
In addition, if take α1 = 1− 1

2ξ and α2 = 1+ 1
2ξ for some ξ > 1, then the following

time estimate holds

T (x(0)) ≤ Tmax = πξ√
p1 p2

.

Proof Its proof is followed by Theorem 3.9 with noting that JλA(x − λB(x)) =
proxλg(x − λ∇ f (x)). ��

5.2 Application to MVIP

We now consider mixed variational inequality problem (MVIP):

Find x∗ ∈ H such that 〈F(x∗), x − x∗〉 + g(x∗) − g(x) ≥ 0 for all x ∈ H , (26)

where F : H −→ H is a vector-valued operator and g : H −→ R is a proper, l.s.c.
convex function. TheseMVIPs can be expressed in inclusion problem (1) with B = F
and A = ∂g. In this case, we have that

JλA(x − λB(x)) = proxλg(x − λF(x)).

Consequently, the dynamical system (10) becomes

ẋ(t) = −ϕ(x)(x − proxλg(x − λF(x)) (27)

where

ϕ(x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
c1

1

‖x − proxλg(x − λF(x))‖1−κ1
+c2

1

‖x − proxλg(x − λF(x))‖1−κ2

if x ∈ H \ Fix(proxλg ◦ (I d − λF))

0 otherwise

with c1, c2 > 0, κ1 ∈ (0, 1) and κ2 > 1.
Then, it follows from Proposition 3.6 that x∗ ∈ H is a solution of MVIP (26) if

and only if it is an equilibrium point of the dynamical system (27).
In the casewhere g is convex, F isμ-stronglymonotone and L-Lipschitz continuous

and λ ∈ (0, 2μ/L2), by Theorem 3.9, it holds that x∗ ∈ H is fixed-time stable solution
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of MVIP (26) with the following settling time

T (x(0)) ≤ Tmax = 1

p1(1 − α1)
+ 1

p2(α2 − 1)
,

where p1 > 0, p2 > 0, α1 ∈ (0.5, 1), and α2 > 1 are some constants.
Moreover, if take α1 = 1− 1

2ξ and α2 = 1+ 1
2ξ for some ξ > 1, then the following

settling time holds

T (x(0)) ≤ Tmax = πξ√
p1 p2

.

5.3 Application to VIP

We now turn back to the variational inequality problem:

Find x∗ ∈ C such that 〈F(x∗), x − x∗〉 ≥ 0, ∀x ∈ C, (28)

where C is a closed convex subset of H , F : C −→ H is an operator. We denote this
problem by VIP(F,C). Note that VIPs are a special case of MVIs when g ≡ 0.

The VIPs (28) can be represented as the inclusion problem 0 ∈ (A + B)(x) with
B = F and A = NC . In this case

JλA(x − λB(x)) = PC (x − λF(x)).

Consequently, the dynamical system (10) becomes

ẋ(t) = −ϕ(x)(x − PC (x − λF(x))), (29)

where

ϕ(x) :=
⎧⎨
⎩c1

1

‖x −U (x)‖1−κ1
+c2

1

‖x −U (x)‖1−κ2
if x ∈ H \ Fix(U )

0 otherwise

with c1, c2 > 0, κ1 ∈ (0, 1) and κ2 > 1, U := PC ◦ (I d − λF).
From the Proposition 3.6 it holds that x∗ ∈ H is a solution of VIP(F,C) if and

only if x∗ is an equilibrium point of the dynamical system (29). In addition, if the
operator F satisfies the following assumption:

(A2) F is strongly monotone with modulus μ > 0 and Lipschitz continuous with
constant L > 0

then, by applying Theorem 3.9 to the operators A = NC , B = F we get the same
result as [22, Theorem 2].
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Theorem 5.2 For every λ ∈ (0, 2μ
L2 ), there exists ε > 0 such that the solution x∗ ∈ H

of the variational inequality problem VIP(F,C) is a fixed-time stable equilibrium
point of (29) for any κ1 ∈ (1 − ε, 1) ∩ (0, 1) and κ2 > 1. Also, the following settling
time holds

T (x(0)) ≤ Tmax = 1

p1(1 − α1)
+ 1

p2(α2 − 1)

where p1 > 0, p2 > 0, α1 ∈ (0.5, 1), and α2 > 1 are some constants.
Moreover, if α1 = 1 − 1

2ξ and α2 = 1 + 1
2ξ for some ξ > 1. Then the following

settling time holds

T (x(0)) ≤ Tmax = πξ√
p1 p2

.

6 Numerical Illustration

We present in this section some numerical examples to illustrate the theoretical results
obtained on the previous sections. The time-continuous dynamical systems are solved
by Runge–Kutta adaptive method (ode45 in MATLAB) on the time interval [0, Tmax ].

Example 1 We consider a monotone inclusion of the form (1) with

A = I , B = MT M,

where I is the identity matrix of size n and M is an arbitrary matrix of orderm×n. It is
clear that themonotone inclusion 0 ∈ A(x)+B(x) has a unique solution x∗ = 0. In our
experiments, we choose m = 10, n = 8, c1 = 20, c2 = 200, κ1 = 0.99, κ2 = 1.01
and λ = 0.005. By applying the dynamic system (10) with Tmax = 5, Fig. 1 represents
the solution of the above monotone inclusion which converges to x∗. Figure2 shows
the error convergence ‖x(t) − x∗‖2 of the solution x(t).

Example 2 We consider a COP which are widely used in statistics, machine learning,
and signal processing:

min
x∈Rn

f (x) + g(x)

where f (x) = 1

2
‖Qx − a‖2, g(x) = α‖x‖1, Q is an m × n matrix, a ∈ Rm is

the response vector and α > 0 is the regularization parameter. Let U = ∇ f + ∂g,
then the solution of the COP is zero points of the operator U . In other words, solving
the COP is equivalent to solving the inclusion problem (1) with A(x) = ∂g(x) and
B(x) = ∇ f (x) = QT (Qx − a).
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In the illustration, we choose

Q =

⎡
⎢⎢⎣

5 0 2 0 −1
−1 1 1 0 6
2 0 2 1 −1
0 0 0 2 3

⎤
⎥⎥⎦ , a =

⎡
⎢⎢⎣
5
8
7
6

⎤
⎥⎥⎦ ; α = 2.

It is clear that ∇ f is L-continuous and strongly monotone. Dynamical system (25)
with c1 = 20, c2 = 200, κ1 = 0.98, κ2 = 1.02, λ = 0.005 and Tmax = 30 creates the
solution x(t)which converges to the solution x∗ of the COP as shown in Fig. 3. Notice
that with a randomly initial point, the solid lines are for the solution x∗ obtained by
using "fmincon" function in MATLAB and dashed lines are for the solution x(t). The
error convergence ‖x(t) − x∗‖2 is also illustrated in Fig. 4.
Example 3 In this experiment, we consider a VIP: find x∗ ∈ C such that

〈F(x∗), x − x∗〉 ≥ 0, ∀x ∈ C,

where

C = {x ∈ Rn : −20 ≤ xi ≤ 20, i = 1, 2, ...n}.

We choose F(x) = Gx + u and u ∈ Rn is a given vector with

G = MT M + S + T ,

where M is a square matrix of size n, S is a skew-symmetric matrix of size n and T
is a diagonal matrix of size n with its diagonal entries being positive. The VIP can be

Fig. 1 Transient responses of dynamic system (10) for Example 1
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Fig. 2 Error convergence responses of dynamic system (10) for Example 1
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Fig. 3 Transient responses of dynamic system (25) and solution x∗ of Example 2
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Fig. 4 Error convergence responses of dynamic system (25) for Example 2

represented as the inclusion problem 0 ∈ (A + B)(x) with B = F and A = NC that
assumption (A) is satisfied. For the experiment, all entries of u, M, and S are generated
randomly in (−5, 5), while entries of T are generated randomly in (0,5), and n = 10.
The convergence of the solution x(t) generated by the dynamic system (29) is shown
in the Fig. 5 with parameter set: c1 = 100, c2 = 100, κ1 = 0.9, κ2 = 1.1, λ = 0.01
and Tmax = 1.

Example 4 We consider the following elastic-net logistic regression problem with an
L1-regularization term:

min
x∈R5

100∑
i=1

{log(1 + exp(−piq
T
i x)) + β‖x‖1}

where pi ∈ {−1, 1}, qi ∈ R
5, i = 1, 2, 3, ...100 are chosen randomly, β > 0. The

above elastic-net logistic regression problem can be solved by the dynamic system
(25), where f (x) = ∑100

i=1 log(1 + exp(−piqTi x)) and g(x) = β‖x‖1. The parameter
set chosen for numerical experimentation is: β = 2.5, c1 = 10, c2 = 10, κ1 =
0.9, κ2 = 1.1, λ = 0.01. Figure6 demonstrates the convergence of the solution x(t)
obtained using the dynamic system (25) with Tmax = 0.5 to the solution x∗.
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Fig. 5 Transient responses of dynamic system (29) for Example 3
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Fig. 6 Transient responses of dynamic system (25) for Example 4

7 Conclusion

This paper provides a modified forward–backward splitting dynamical system, ensur-
ing the existence, uniqueness, and convergence of its solution to the unique solution of
the inclusion problems within a fixed-time context. This achievement is attained under
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a generalized monotonicity of involved operators. Additionally, the paper demon-
strates that the forward-Euler discretization of the modified dynamical system serves
as a consistent discretization method. Finally, the paper presents some applications by
treating MVIs, VIs, and COPs as special cases of inclusion problems. Future research
directions include exploring the fixed-time stability of themodified forward–backward
splitting dynamical system in the broader context of infinite-dimensional Hilbert or
Banach spaces and investigating its stability under relaxed assumptions akin to those
in prior studies.
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