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BASIC METRIC GEOMETRY OF THE BOTTLENECK DISTANCE

MAURICIO CHE A, FERNANDO GALAZ-GARCÍA B, LUIS GUIJARRO B, INGRID MEMBRILLO SOLIS C,
AND MOTIEJUS VALIUNAS

Abstract. Given a metric pair (X,A), i.e. a metric space X and a distinguished closed set A ⊂

X, one may construct in a functorial way a pointed pseudometric space D∞(X,A) of persistence
diagrams equipped with the bottleneck distance. We investigate the basic metric properties of the
spaces D∞(X,A) and obtain characterizations of their metrizability, completeness, separability, and
geodesicity.

1. Introduction

In recent years, persistent homology has received considerable attention as it has shown not only
to be a powerful tool in data analysis but to provide new perspectives in the study of abstract
metric spaces. In persistent homology, the small, medium and large-scale topological features of
geometric objects are encoded in a persistence diagram, a multiset of points in the (extended) plane.
The construction of such diagrams starts with a filtration of a topological space, and records the
exact birth and death times of generators of the persistent homology associated to that particular
filtration [20]. Most common filtrations come from the Vietoris–Rips complexes over a given metric
space or from sublevel sets of natural functions defined on some topological space. In either case, the
obtained persistence diagram contains topological information regarding different levels or scales of
the underlying problem of interest [9]. In applications to data analysis, it is crucial to compare the
topological features of the analyzed data quantitatively, which in turn might be filtrated or sampled
using different methods. Therefore, most applications of persistent homology require not only being
able to compute persistence diagrams, but a measure of similarity between such objects.

The bottleneck distance was the first measure of similarity that appeared in the literature to
compare persistence diagrams [11]. It is well-known that the bottleneck distance is an (extended)
pseudometric [17]. The successful introduction of the bottleneck distance gave rise to alternative
similarity measures for persistence diagrams. For instance, the p-Wasserstein metrics, for 1 ≤ p <
∞, form a one-parameter family of similarity measures between persistence diagrams, which, in
contrast to the bottleneck distance, are metrics [12]; in the limit, one may think of the bottleneck
distance as another member of this family. Out of all the similarity measures that have been
defined in persistent homology, only the bottleneck distance has been shown to be equivalent to
the interleaving distance, a pseudometric defined for persistent modules, the algebraic analogues of
persistence diagrams [17].

Several authors have studied the topological and geometric properties of the spaces defined by
the bottleneck distance, D∞(R2

≥0,∆), and the p-Wasserstein metrics, Dp(R
2
≥0,∆), where R

2
≥0 =

{(x, y) ∈ R
2 : 0 ≤ x ≤ y}, ∆ = {(x, y) ∈ R

2
≥0 : x = y}, and 1 ≤ p < ∞, as well as those
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of generalizations of these spaces [4, 5, 10, 13]. In [6, 10], the authors study the geometry and
topology of spaces of generalized persistence diagrams Dp(X,A), 1 ≤ p < ∞. These spaces are a
generalization of the spaces defined in [16, Definition 4]. When (X,A) = (R2

≥0,∆), one recovers the

usual space of persistence diagrams, where the coordinates of a point (x, y) ∈ R
2
≥0 are interpreted

as the birth at scale x and death at scale y of a topological feature of the space under consideration.
The spaces of persistence diagrams are constructed in a functorial way: for each p ∈ [1,∞], there
exists a functor Dp which assigns to a metric pair (X,A), i.e. a metric space X and a distinguished
non-empty closed subset A ⊂ X, a space of (generalized) persistence diagrams Dp(X,A) equipped
with either the bottleneck distance, when p = ∞, or the p-Wasserstein metric, when 1 ≤ p <∞. The
topology and geometry of the spaces Dp(R

2
≥0,∆), 1 ≤ p < ∞, were analyzed in [16, 19]. We note,

however, that in previous works, the geometric and topological properties of spaces of persistence
diagrams equipped with the bottleneck distance had not been completely investigated, since their
study requires the use of distinct methods from those used in the study of the p-Wasserstein spaces
of persistence diagrams. A further motivation for the study of the spaces Dp(X,A) is that, when
X = R

2n
≥0 = {(x1, y1, . . . , xn, yn) : 0 ≤ xi ≤ yi for i = 1, . . . , n} and A = ∆n = {(x1, y1, . . . , xn, yn) ∈

R
2n
≥0 : xi = yi for i = 1, . . . , n} for n ≥ 2, one may consider the resulting spaces of generalized

persistence diagrams as the parameter spaces for rectangle-decomposable persistent modules. These
objects arise in multiparameter persistent homology and have received considerable attention in
recent years (see, for example, [1, 2, 3, 18]).

The present work aims to fill some gaps in our basic understanding of the topological and geomet-
ric properties of the spaces of persistence diagrams equipped with the bottleneck distance. First of
all, we note that, given a metric pair (X,A), the space D∞(X,A) is not necessarily a metric space:
the (generalized) bottleneck distance function d∞ might be a pseudometric that is not a metric.
This appears to be the case for most common examples of spaces of (generalized) persistence di-
agrams equipped with the bottleneck distance, including the usual space of euclidean persistence
diagrams.

Theorem A (Metrizability). The pseudometric space D∞(X,A) is a metric space if and only if
X \ A with the restricted metric of X is a discrete space.

If X is complete, then Dp(X,A) is a complete metric space provided 1 ≤ p < ∞ (see [10,
Theorem B (1)]). Here, we obtain the following characterization of completeness for Dp(X,A) for
all p ∈ [1,∞].

Theorem B (Completeness). For any p ∈ [1,∞], the space Dp(X,A) is complete if and only if
X/A is complete.

Corollary C. For any p ∈ [1,∞], if X is complete, then so is Dp(X,A).

We also consider the separability of D∞(X,A). For 1 ≤ p < ∞, if (X,A) is separable, then
Dp(X,A) is also separable (see [10, Theorem B (2)]). This is no longer the case for D∞(X,A).
Indeed, for instance, the usual space of euclidean persistence diagrams with the bottleneck distance,
D∞(R2

≥0,∆), is not separable (see Example 5.3), although this particular fact seems to be known
already (see [7, Theorem 5]). Here, we obtain the following characterization of separability for
D∞(X,A). Given r > 0 and a subset Y ⊆ X, we let Br(Y ) denote the open r-neighborhood of Y in
X, i.e. Br(Y ) = {x ∈ X : d(x, y) < r for some y ∈ Y }. Given y ∈ X, we write Br(y) for Br({y}).

Theorem D (Separability). The pseudometric space D∞(X,A) is separable if and only if the subset
BD(A) \Bδ(A) ⊆ X is totally bounded for all D > δ > 0.

Finally, we give a criterion for D∞(X,A) to be a geodesic pseudometric space when X is proper.
Given x, y ∈ X, we call a rectifiable path γ : [0, 1] → X a geodesic from x to y if γ(0) = x, γ(1) = y,
and γ has length d(x, y). A pseudometric space X is geodesic if any two points of X can be joined
by a geodesic.
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Theorem E (Geodesicity). Let X be a proper metric space. Then the pseudometric space D∞(X,A)
is geodesic if and only if any two points x, y ∈ X/A such that either d(x, y) < d(x,A) or y = A can
be joined by a geodesic in X/A.

Corollary F. If X is proper and geodesic, then D∞(X,A) is geodesic.

Our results are related to some of the theorems in [6], where the authors study the spaceD∞(X,A)
of persistence diagrams σ such that the subdiagram {{x ∈ σ : d(x,A) ≥ δ}} is finite for every δ > 0.
We point out that D∞(X,A) is a closed subspace of D∞(X,A). However, the spaces D∞(X,A)
and D∞(X,A) do not necessarily satisfy the same metric properties. For instance, if X is a metric
space then so is D∞(X,A) (see the proof of [10, Lemma 2.4(2)]); the analogous statement for
D∞(X,A), however, is far from being true (see Theorem A). In [6, Theorem 6.2], the authors
showed that if X is separable then so is D∞(X,A), but this is not necessarily true for D∞(X,A)
(see Example 5.3). Moreover, if A is distance minimizing (that is, for every x ∈ X there exists
a ∈ A such that d(x, a) = d(x,A)) then there always exists an optimal bijection between two
diagrams in D∞(X,A) [6, Theorem 4.9], and if in addition X is geodesic then so is D∞(X,A) [6,
Theorem 5.10]. These two statements are no longer true for D∞(X,A): see Example 6.6. The
characterization of completeness of D∞(X,A) (see [6, Theorem 6.3 & Proposition 6.10]) does agree
with the characterization for D∞(X,A) (see Theorem B); however, the proof given in [6] does not
seem to be easy to adapt for the space D∞(X,A).

It is also worth mentioning that in [6] the authors consider extended pseudometric spaces (see
Definition 2.1), which are not necessarily metric spaces. Our results also hold if we replace metric
pairs with pseudometric ones, and our proofs can be readily adapted with minimal modifications.
The sole exception is the proof of Theorem E (see Section 6), which relies on the uniqueness of
ultralimits in metric spaces. Ultralimits in a pseudometric space need not be unique. Nevertheless,
our arguments remain valid if we select ultralimit points arbitrarily from their possible values. For
simplicity, we have stated all our results for metric pairs.

Our article is organized as follows. In Section 2, we recall the definition of the functors Dp,
along with necessary background on persistence diagram spaces. Section 3 contains the proof of
Theorem A. We then prove Theorem B and Corollary C in Section 4. Finally, we prove Theorem D
in Section 5, and Theorem E together with Corollary F in Section 6.

Acknowledgements. The authors wish to thank the referees for their helpful comments.

2. Preliminaries

In this section, we collect preliminary material that we will use in the rest of the article. The
contents of this section are based on [10], where the reader may find further details. We refer the
reader to [8] for basic results on the geometry of metric spaces.

Definition 2.1. Let X be a set.

(1) A map d : X ×X → [0,∞] is an extended pseudometric on X if it is symmetric and satisfies
the triangle inequality, and a pseudometric on X if, in addition, d(x, y) <∞ for x, y ∈ X.

(2) An (extended) pseudometric d onX such that d(x, y) = 0 if and only if x = y is an (extended)
metric. When d is an (extended) pseudometric on X, points at distance zero from each other
give a partition of X, and d induces an (extended) metric in the corresponding quotient set.

(3) An (extended) pseudometric space (X, dX ) is a set X together with an (extended) pseu-
dometric dX . An (extended) metric space (X, dX ) is a set X together with an (extended)
metric dX .

Definition 2.2. A metric pair (X,A) consists of a metric space (X, dX ) and a non-empty closed
subset A ⊆ X. When A is a point, we will say that (X, {a0}) is a pointed metric space with basepoint
a0.
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We now define the space D∞(X,A) of ∞-persistence diagrams on a metric pair (X,A). We will
denote multisets by using two curly brackets {{·}}. Persistence diagrams will be denoted by Greek
letters.

Let (X, d) be a metric space. We denote by D̃(X) the set of countable multisets {{x1, x2, . . .}} of

elements of X, and equip it with the bottleneck distance d̃∞ given by

(2.1) d̃∞(σ̃, τ̃ ) = inf
φ : σ̃→τ̃

sup
x∈σ̃

d(x, φ(x)),

where φ ranges over all bijections between σ̃ and τ̃ in D̃(X). Here, by convention, we set inf ∅ = ∞,

that is, d̃∞(σ̃, τ̃) = ∞ whenever σ̃ and τ̃ do not have the same cardinality. Observe that d̃∞ is an

extended pseudometric on D̃(X), making (D̃∞(X), d̃∞) into an extended pseudometric space. We
denote the empty multiset by σ̃∅.

We may similarly define the p-Wasserstein distance d̃p by

d̃p(σ̃, τ̃ ) = inf
φ : σ̃→τ̃

(
∑

x∈σ̃

d(x, φ(x))p

)1/p

for any p ∈ [1,∞), which are extended pseudometrics on D̃(X) as well.

Given σ̃, τ̃ ∈ D̃(X), we define an equivalence relation on D̃(X) by setting σ̃ ∼A τ̃ whenever there

exist α̃, β̃ ∈ D̃(A) such that σ̃ ⊔ α̃ = τ̃ ⊔ β̃. Let D(X,A) be the quotient set D̃(X)/∼A. Given

σ̃ ∈ D̃(X), we let σ be the equivalence class of σ̃ in D(X,A). Observe that σ∅, the equivalence

class of σ̃∅, is also the equivalence class of any α̃ ∈ D̃(A).

The maps d̃p induce functions dp : D(X,A)×D(X,A) → [0,∞] given by

(2.2) dp(σ, τ) = inf
α̃,β̃∈D̃(A)

d̃p(σ̃ ⊔ α̃, τ̃ ⊔ β̃).

Definition 2.3. For any p ∈ [1,∞], the space of p-persistence diagrams Dp(X,A) on the pair (X,A)
is the set of all σ ∈ D(X,A) such that dp(σ, σ∅) <∞.

In particular, we have dp(σ, σ∅) =
(∑

x∈σ̃ d(x,A)
p
)1/p

for any p ∈ [1,∞) and d∞(σ, σ∅) =
supx∈σ̃ d(x,A). The inequality dp(σ, σ∅) < ∞ may be interpreted as the p-norm of the distances
of points in σ to the set A (the total p-persistence, in the original setting of persistence homology)
being finite.

Proposition 2.4. For any p ∈ [1,∞), the function dp is an extended metric on D(X,A) and a
metric on Dp(X,A). On the other hand, the function d∞ is an extended pseudometric on D(X,A)
and a pseudometric on D∞(X,A).

For simplicity, we will treat elements in D(X,A) as multisets by themselves, with the under-
standing that, whenever we do so, we are actually dealing with representatives of such elements

in D̃(X,A). Thus, for instance, when we write x ∈ σ, for σ ∈ D(X,A), or consider bijections
φ : σ → τ , for σ, τ ∈ D(X,A), we mean x ∈ σ̃ and φ : σ̃ → τ̃ is a bijection for suitable representa-

tives σ̃, τ̃ ∈ D̃(X). Observe that the spaces Dp(X,A) and Dp(X/A, {A}) are naturally isometric for
any p ∈ [1,∞].

3. Metrizability: Proof of Theorem A

Theorem A follows from the following two lemmas. Throughout, we let (X,A) be a metric pair.

Lemma 3.1. If X \ A is discrete, then d∞(σ, τ) 6= 0 for any σ, τ ∈ D∞(X,A) with σ 6= τ .
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Proof. Since σ 6= τ , there exists a point x ∈ X \ A such that if mσ,mτ ∈ N ∪ {ℵ0} are the
multiplicities of x in σ, τ (respectively), then mσ 6= mτ ; without loss of generality, mσ > mτ . As
X \ A is discrete, {x} is open in X \ A, implying that Bε(x) ⊆ {x} ∪ A for some ε > 0. As x /∈ A
and A is closed, we have d(x,A) > 0 and therefore we may assume (without loss of generality) that
ε ≤ d(x,A); it then follows that Bε(x) = {x}.

We claim that d∞(σ, τ) ≥ ε. Indeed, as mσ > mτ , any bijection γ : σ → τ must send a copy of x
in σ to a point y in τ such that x 6= y in X, and therefore d(x, y) ≥ ε. Thus supz∈σ d(z, γ(z)) ≥ ε;
taking the infimum over all bijections γ then gives d∞(σ, τ) ≥ ε > 0, as claimed. �

Lemma 3.2. If X \ A is not discrete, then there exist σ, τ ∈ D∞(X,A) such that σ 6= τ and
d∞(σ, τ) = 0.

Proof. Since X \ A is not discrete, there exists a point x ∈ X \ A such that {x} is not open in
X \A. It follows that there exists a sequence (xn)

∞
n=0 in X such that xn 6= x for any n but xn → x

as n → ∞. Now let σ = {{xn : n ∈ N}} and τ = σ ⊔ {{x}}. Then clearly σ, τ ∈ D∞(X,A) (as the
sequence (d(xn, A))

∞
n=0 in R converges to d(x,A) and so is bounded), and σ 6= τ since x /∈ σ but

x ∈ τ .
Now let ε > 0, and let N = Nε ∈ N be such that d(xn, x) ≤ ε/2 for any n ≥ N . Define a

bijection γε : σ → τ by γε(xn) = xn for n < N , γε(xN ) = x, and γε(xn) = xn−1 for n > N . We
then have d(xn, γε(xn)) = 0 for n < N , d(xN , γε(xN )) = d(xN , x) ≤ ε/2, and d(xn, γε(xn)) =
d(xn, xn−1) ≤ d(xn, x) + d(xn−1, x) ≤ ε for n > N . This implies that supy∈σ d(y, γε(y)) ≤ ε, and
therefore d∞(σ, τ) ≤ ε. As ε was arbitrary, it follows that d∞(σ, τ) = 0, as required. �

4. Completeness: Proofs of Theorem B and Corollary C

Theorem B follows from the following two lemmas.

Lemma 4.1. For any p ∈ [1,∞], if Dp(X, {a0}) is complete, then so is X.

Proof. Let (xn)
∞
n=0 be a Cauchy sequence in X. Then (d(xn, a0))

∞
n=0 is a Cauchy sequence in R,

and so converges. If d(xn, a0) → 0 as n → ∞ then xn → a0 and so the sequence (xn) converges.
Thus, we may assume that d(xn, a0) → δ as n→ ∞ for some δ > 0.

Now for each n ∈ N let σn = {{xn}} ∈ Dp(X, {a0}). For each n,m ∈ N there is a bijection
σn → σm sending xn 7→ xm, implying that dp(σn, σm) ≤ d(xn, xm). Thus, (σn)

∞
n=0 is a Cauchy

sequence in Dp(X, {a0}) and so converges to some σ ∈ Dp(X, {a0}). Now let ε ∈ (0, δ/2]. Then
there exists Nε ∈ N such that dp(σn, σ) < ε, and so there exists a bijection γn : σn → σ such
that d(x′, γn(x

′)) < ε ≤ δ/2 for every x′ ∈ σn. This implies that σ contains a unique point
x ∈ X \ Bδ/2(a0) and that γn(xn) = x, and hence d(xn, x) < ε, for every n ≥ Nε. Therefore, the
sequence (xn) converges to x ∈ X, as required. �

Lemma 4.2. Let ℓ∞(X, a0) be the space of all sequences (xn)
∞
n=0 in X such that supn∈N d(xn, a0) <

∞, equipped with the (pseudo-)metric d̂∞((xn), (yn)) = supn∈N d(xn, yn). Let Φ: ℓ∞(X, a0) →
D∞(X, {a0}) be the map sending each sequence to the (equivalence class of) the corresponding
multiset. Then the following statements hold:

(1) Φ is a continuous map.
(2) If X is complete then ℓ∞(X, a0) is complete.
(3) Let (σn)

∞
n=0 be a Cauchy sequence in D∞(X, {a0}). Then there exists a Cauchy sequence

(σ̂n)
∞
n=0 in ℓ∞(X, a0) such that Φ(σ̂n) = σn for all n.

Proof. Clearly d∞(Φ(σ̂),Φ(τ̂ )) ≤ d̂∞(σ̂, τ̂) for any σ̂, τ̂ ∈ ℓ∞(X, a0); in particular, Φ is continuous.
Moreover, it is easy to see that the arguments in the “usual” proof of the fact that ℓ∞ = ℓ∞(R, 0)
is complete may be adapted to proof that if X is complete, then so is ℓ∞(X, a0).

Now let (σn)
∞
n=0 be a Cauchy sequence in D∞(X, {a0}). Then for each k ∈ N there exists Nk ∈ N

such that d∞(σn, σm) ≤ 2−k for all n,m ≥ Nk. In particular, for each k ∈ N and n ≥ Nk there
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exists a bijection γk,n : σNk
→ σn such that d(x, γk,n(x)) ≤ 21−k for all x ∈ σNk

. Without loss of
generality, assume that Nk ≤ Nℓ whenever k ≤ ℓ and that Nk → ∞ as k → ∞.

For each n, let σ̃n be a countable multiset of points in X representing σn such that σ̃n contains a0
with infinite multiplicity. Then, for each k ∈ N and n ≥ Nk, there exists a bijection γ̃k,n : σ̃Nk

→ σ̃n
inducing γk,n; in particular, we have d(x, γ̃k,n(x)) ≤ 21−k for all x ∈ σ̃Nk

. We now construct a
sequence (σ̂n)

∞
n=0 in ℓ∞(X, a0) as follows:

• for n ≤ N0, pick an arbitrary bijection ψn : N → σ̃n and let σ̂n = (ψn(m))∞m=0;
• for n > N0, let k ∈ N be such that Nk < n ≤ Nk+1 and let

σ̂n = ((γ̃k,n ◦ γ̃k−1,Nk
◦ · · · ◦ γ̃1,N2

◦ γ̃0,N1
◦ ψN0

)(m))∞m=0 ;

see Figure 1. It follows from the construction that Φ(σ̂n) = σn for all n. We claim that (σ̂n)
∞
n=0 is

a Cauchy sequence.
Indeed, let ε > 0, and let k ∈ N be such that 23−k ≤ ε. Note that for any k′, n ∈ N such

that Nk′ < n ≤ Nk′+1 we have d̂∞(σ̂Nk′
, σ̂n) ≤ supx∈σ̃N

k′
d(x, γ̃k′,n(x)) ≤ 21−k′ . In particular, if in

addition k′ ≥ k then we have

d̂∞(σ̂Nk
, σ̂n) ≤

[
k′−1∑

ℓ=k

d̂∞(σ̂Nℓ
, σ̂Nℓ+1

)

]
+ d̂∞(σ̂Nk′

, σ̂n) ≤

k′−1∑

ℓ=k−1

2−ℓ

<

∞∑

ℓ=k−1

2−ℓ = 22−k ≤
ε

2

for any n > Nk. Therefore, for all n,m > Nk we have d̂∞(σ̂n, σ̂m) ≤ d̂∞(σ̂Nk
, σ̂n)+d̂∞(σ̂Nk

, σ̂m) ≤ ε.
Thus the sequence (σ̂n)

∞
n=0 is Cauchy, as claimed. �

γ̃0,N0+1

γ̃0,N1

γ̃1,N1+
1

γ̃1,N2

γ̃ 2
,N

2
+
1

γ̃2,N3

x0 = ψ0(m)

xN0
= ψN0

(m)

xN0+1

xN1

xN1+1

xN2

xN2+1

xN3

≤ 2 ≤ 1 ≤ 1
2

Figure 1. The proof of Lemma 4.2: construction of the sequence (xn)
∞
n=0 =(

(σ̂n)m
)∞
n=0

of points in X for a fixed m ∈ N.

Proof of Theorem B. Let p ∈ [1,∞] and let (X,A) be a metric pair. In view of the isometry
Dp(X,A) ∼= Dp(X/A, {A}), p ∈ [1,∞], Theorem B is equivalent to the statement that Dp(X, {a0})
is complete if and only if X is complete, where a0 ∈ X is any point. Thus, the “only if” implication
of Theorem B follows from Lemma 4.1. Suppose now that X is complete. If 1 ≤ p < ∞, then
Dp(X,A) is complete by [10, Theorem B (1)]. If p = ∞, then it follows from Lemma 4.2 that
D∞(X,A) is complete. Thus, Dp(X,A) is complete for all p ∈ [1,∞]. �

We now prove Corollary C.

Proof of Corollary C. By Theorem B, it is enough to show that if X is complete then so is X/A.
Thus, let (xn)

∞
n=0 be a Cauchy sequence in X/A. Then (dX/A(xn, A))

∞
n=0 is a Cauchy sequence in

R, and so converges. If dX/A(xn, A) → 0 as n → ∞ then xn → A. Otherwise, dX/A(xn, A) → δ
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as n → ∞ for some δ > 0. As (xn) is Cauchy, it follows that for each ε ∈ (0, δ/2) there exists
Nε such that for all n,m ≥ Nε we have dX/A(xn, xm) ≤ ε < δ/2, implying that xn, xm /∈ Bδ/2(A)
(in particular, xn, xm 6= A) and dX(xn, xm) = dX/A(xn, xm). In particular, (xn) is also a Cauchy
sequence in X, and so converges to some x ∈ X \ A; but then we also have xn → x in X/A as
n→ ∞. �

5. Separability: Proof of Theorem D

Theorem D follows from the following two results.

Lemma 5.1. If BD(A) \Bδ(A) is totally bounded for all D > δ > 0, then D∞(X,A) is separable.

Proof. Let n ∈ N≥1. Then Bn(A)\B1/n(A) is totally bounded, and so there exist x
(n)
1 , . . . , x

(n)
kn

∈ X

such that Bn(A) \B1/n(A) ⊆
⋃kn

m=1B1/n

(
x
(n)
m

)
. For m ∈ {1, . . . , kn}, we define U

(n)
m inductively as

U (n)
m =

[
Bn(A) ∩B1/n

(
x(n)m

)]
\

[
B1/n(A) ∩B1/n

(
x(n)m

)
∩

m−1⋃

ℓ=1

U
(n)
ℓ

]
.

We thus get a collection of pairwise disjoint subsets U
(n)
1 , . . . , U

(n)
kn

⊆ X such that Bn(A)\B1/n(A) =⋃kn
m=1 U

(n)
m and U

(n)
m ⊆ B1/n

(
x
(n)
m

)
.

Now let Fn ⊆ D∞(X,A) be the set of diagrams in which each point (outside A) is equal to x
(n)
m

for some m. For each m, the multiplicity of x
(n)
m is in N ∪ {ℵ0}, leading to |N ∪ {ℵ0}| = ℵ0 choices.

Thus the cardinality of Fn is ℵkn
0 = ℵ0. Now let F =

⋃∞
n=1Fn, so that F is a countable union of

countable sets and thus countable. We claim that F is dense in D∞(X,A).
Indeed, let σ ∈ D∞(X,A), and let ε > 0. Pick n ∈ N such that n > d∞(σ, σ∅) and 1

n ≤ ε.

Let τ ∈ Fn ⊆ F be such that the multiplicity of x
(n)
m in τ is equal to the number of points of σ

lying inside U
(n)
m . Then d∞(σ, τ) ≤ 1

n ≤ ε: indeed, there is a bijection σ → τ sending any point

in U
(n)
m to x

(n)
m and any point in B1/n(A) to a point in A (this leaves no points of σ unmatched as

d∞(σ, σ∅) < n implies that all points of σ lie in Bn(A)). Therefore, F is dense in D∞(X,A), as
claimed. �

Lemma 5.2. If there exists D > δ > 0 such that BD(A) \ Bδ(A) is not totally bounded, then
D∞(X,A) is not separable.

Proof. Since BD(A) \ Bδ(A) is not totally bounded, there exists ε > 0 such that BD(A) \ Bδ(A)
cannot be covered by finitely many ε-balls; without loss of generality, assume that ε ≤ δ. Now let
X ⊆ BD(A) \Bδ(A) be a maximal subset such that d(x, y) ≥ ε for all x, y ∈ X with x 6= y (such an
X exists by Zorn’s Lemma). Then ε-balls around the points of X cover BD(A) \ Bδ(A), implying
that X is infinite. In particular, there exists a collection {xi : i ∈ N} of points in BD(A) \ Bδ(A)
such that d(xi, xj) ≥ ε whenever i 6= j.

Let {σi : i ∈ N} be a countable subset of D∞(X,A). Define a diagram τ by

τ = {{xi : d(x, xi) ≥ ε/2 for all x ∈ σi}};

since d(xi, A) < D for all i we have τ ∈ D∞(X,A). Note that since d(xi, A) ≥ δ > ε/2 for each i,
the definition of τ is independent of the choice of representative of σi (i.e. adding/removing points
in A to/from σi does not change τ). We now claim that d∞(τ, σi) ≥ ε/2 for each i, so that τ is
not in the closure of {σi : i ∈ N} in D∞(X,A); this will imply that {σi : i ∈ N} is not dense in
D∞(X,A), as required.

To prove our claim, let i ∈ N and let γ : τ → σi be a bijection.
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Case 1: Suppose that d(x, xi) ≥ ε/2 for all x ∈ σi, and so xi ∈ τ . We then have d(xi, x) ≥ ε/2 for
all x ∈ σi with x /∈ A, and d(xi, A) ≥ δ ≥ ε > ε/2 since xi /∈ Bδ(A). Thus we must have
d(xi, γ(xi)) ≥ ε/2.

Case 2: Suppose that d(x, xi) < ε/2 for some x ∈ σi, and so xi /∈ τ . Then every point of τ is either
in A, or equal to xj for some j 6= i. But we have d(x,A) ≥ d(xi, A)−d(x, xi) > δ−ε/2 ≥ ε/2
since δ ≥ ε, and d(x, xj) ≥ d(xi, xj) − d(x, xi) > ε − ε/2 = ε/2. Therefore, we must have
d(γ−1(x), x) > ε/2.

It follows that in either case there exists y ∈ τ such that d(y, γ(y)) ≥ ε/2, and in particular
supy∈τ d(y, γ(y)) ≥ ε/2. Taking the infimum over all bijections γ : τ → σi gives d∞(τ, σi) ≥ ε/2, as
claimed. �

Example 5.3. Consider D∞(R2
≥0,∆), the usual space of persistence diagrams. Then for any

D > δ > 0, the “strip” BD(∆) \ Bδ(∆) is unbounded and, hence, not totally bounded. It follows
that D∞(R2

≥0,∆) is not separable.

Example 5.4. Consider D∞([0,∞), {0}). Then, for any D > δ > 0, the set BD({0}) \ Bδ({0}) is
just the interval [δ,D), which is clearly totally bounded. Thus, D∞([0,∞), {0}) is separable.

6. Geodesicity: Proof of Theorem E

In the proof of Theorem E we use the concepts of ultrafilters and ultralimits, defined as follows.

Definition 6.1. An ultrafilter (on N) is a non-zero function ω : P(N) → {0, 1}, where P(N) denotes
the power set of N, that is finitely additive—that is, ω(A)+ω(B) = ω(A∪B) for any disjoint subsets
A,B ⊆ N. A principal ultrafilter is an indicator function 1n (for some n ∈ N), defined by setting
1n(A) = 1 if and only if n ∈ A. Given a sequence (xn)

∞
n=1 in a metric spaceX and an ultrafilter ω, an

ultralimit limω xn of (xn) with respect to ω is a point x ∈ X such that ω({n ∈ N : d(x, xn) < ε}) = 1
for every ε > 0.

It is easy to check, using finite additivity, that an ultrafilter ω is non-principal if and only if
ω(F ) = 0 for every finite subset F ⊂ N. The existence of a non-principal ultrafilter is guaranteed
by the axiom of choice [15, §3.1]. We refer the interested reader to [14] for an introduction to the
theory of ultrafilters and their use throughout mathematics.

In any metric space X, an ultralimit of a sequence (xn) is always unique (when it exists): indeed,
if x 6= y were two different ultralimits of (xn) then ω would send both {n ∈ N : d(x, xn) < ε} and
{n ∈ N : d(y, xn) < ε} to 1, where ε = 1

2d(x, y), contradicting finite additivity of ω. Moreover, if
X is compact then such an ultralimit will always exist [15, §3.1]. If ω is a non-principal ultrafilter,
then clearly limω xn will be an accumulation point of the sequence (xn).

Our main use of ultrafilters and ultralimits is based on their ability to pick out accumulation
points of sequences consistently. For instance, roughly speaking, in the proof of Proposition 6.2
below we aim to construct a bijection γ̃ : σ̃ → τ̃ as a ‘limit’ of a sequence of bijections γ̃n : σ̃ → τ̃ .
Given a point x ∈ σ̃ it may turn out, for example, that there exists a subset Yx ⊆ τ̃ such that
{n ∈ N : γ̃n(x) = y} is infinite for all y ∈ Yx; analogously, given y ∈ τ̃ , there may exist Xy ⊆ σ̃
such that {n ∈ N : γ̃−1

n (y) = x} is infinite for all x ∈ Xy. It is then unclear which (if any) point
of Yx (respectively Xy) should be declared to be γ̃(x) (respectively γ̃−1(y)), doing this procedure
for all x ∈ σ̃ and y ∈ τ̃ in a consistent way: that is, if y ∈ Yx is declared to be γ̃(x) then x ∈ Xy

needs to be declared to be γ̃−1(y), and vice versa. Using ultralimits with respect to a non-principal
ultrafilter ω allows us to circumvent such an issue—in particular, given x ∈ X at most one of the
subsets {n ∈ N : γ̃n(x) = y} for y ∈ Yx is sent to 1 by ω, allowing us to pick out the ‘correct’ y ∈ Yx
unambiguously.

The main ingredient in the proof of Theorem E is the following result.
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Proposition 6.2. Let X be a proper metric space and let σ, τ ∈ D∞(X,A). Then there exist
diagrams σ′, τ ′ ∈ D∞(X,A) such that d∞(σ, σ′) = d∞(τ, τ ′) = 0 and a bijection γ : σ′ → τ ′ such
that d∞(σ, τ) = sup{d(x, γ(x)) : x ∈ σ′}.

Proof. By the definition of the pseudometric d∞, there is a sequence of bijections (γn : σ → τ)∞n=1

such that d(x, γn(x)) ≤ d∞(σ, τ) + 1
n for all n and all x ∈ σ. We can lift each γn to a bijection

γ̃n : σ̃n → τ̃n for some countable multisets σ̃n and τ̃n in X representing diagrams σ and τ , respec-
tively. Now let σ̃ (respectively τ̃) be the multiset in X consisting of the multiset {{x ∈ σ : x /∈ A}}
(respectively {{x ∈ τ : x /∈ A}}) together with a countably infinite number of copies of each point
a ∈ A appearing in σ̃n ∪ τ̃n for some n ≥ 1. It is easy to see that σ̃ and τ̃ are countable. Moreover,
since any point a ∈ A appears in σ̃ and in τ̃ with the same multiplicity (zero or infinite), with a hav-
ing infinite multiplicity whenever it appears in σ̃n or in τ̃n, it follows that the bijection γ̃n : σ̃n → τ̃n
can be extended to a bijection γ̃n : σ̃ → τ̃ such that γ̃n(x) = x in X whenever x /∈ σ̃n. In particular,
such an extended bijection γ̃n : σ̃ → τ̃ satisfies d(x, γ̃n(x)) ≤ d∞(σ, τ) + 1

n for all x ∈ σ̃.
Now let ω : P(N) → {0, 1} be a non-principal ultrafilter. We call a point x ∈ σ̃ convergent if

there exists yx ∈ τ̃ such that γ̃n(x) = yx ω-almost surely (that is, ω sends {n ∈ N : γ̃n(x) = yx} to
1), and we let σ̃c ⊆ σ̃ be the multiset of convergent points in σ̃. Similarly, we call a point y ∈ τ̃
convergent if γ̃−1

n (y) = xy ω-almost surely for some xy ∈ σ̃, and we let τ̃c ⊆ τ̃ be the multiset of
convergent points in τ̃ . Note that given any x ∈ σ̃ and y ∈ τ̃ , we have x = xy if and only if y = yx.

Given x ∈ σ̃ \ σ̃c, note that Bd∞(σ,τ)+1(x) is compact (as X is proper), and so the sequence
(γ̃n(x))

∞
n=1 ⊆ Bd∞(σ,τ)+1(x) has a (unique) ultralimit yωx := limω γ̃n(x) in X. Similarly, given

y ∈ τ̃ \ τ̃c we can define xωy := limω γ̃
−1
n (y); see Figure 2. Now let σ̃′ := σ̃ ⊔ {{xωy : y ∈ τ̃ \ τ̃c}} and

τ̃ ′ := τ̃ ⊔ {{yωx : x ∈ σ̃ \ σ̃c}}. We define a mapping γ̃ : σ̃′ → τ̃ ′ by setting γ̃(x) = yx for x ∈ σ̃c,
γ̃(x) = yωx for x ∈ σ̃\ σ̃c, and γ̃(x

ω
y ) = y for y ∈ τ̃ \ τ̃c. Finally, let σ

′, τ ′ ∈ D∞(X,A) be the diagrams

represented by σ̃′, τ̃ ′ (respectively), and let γ : σ′ → τ ′ be the mapping induced by γ̃.
Note that γ̃ (and so γ) is a well-defined bijection by construction. Moreover, for any x ∈ σ̃′ we

have d(x, γ̃(x)) ≤ d∞(σ, τ): indeed, we have

d(x, γ̃(x)) = lim
ω
d(x, γ̃n(x)) ≤ lim sup

n→∞
d(x, γ̃n(x)) ≤ d∞(σ, τ)

if x ∈ σ̃, and

d(x, γ̃(x)) = d(y, xωy ) = lim
ω
d(y, γ̃−1

n (y)) ≤ lim sup
n→∞

d(y, γ̃−1
n (y)) ≤ d∞(σ, τ)

if x = xωy for some y ∈ τ̃ \ τ̃c; in both cases, the first inequality follows from the fact that given
a sequence (rn)

∞
n=1 in the interval [0, d∞(σ, τ) + 1], the ultralimit limω rn is an accumulation point

of (rn). This implies that sup{d(x, γ(x)) : x ∈ σ′} = sup{d(x, γ̃(x)) : x ∈ σ̃′} ≤ d∞(σ, τ). Moreover,
by the definition of d∞ we have sup{d(x, γ(x)) : x ∈ σ′} ≥ d∞(σ′, τ ′). Since |d∞(σ, τ)−d∞(σ′, τ ′)| ≤
d∞(σ, σ′) + d∞(τ, τ ′), it remains to show that d∞(σ, σ′) = d∞(τ, τ ′) = 0.

We now claim that d∞(σ, σ′) = 0 (the proof that d∞(τ, τ ′) = 0 is analogous). Indeed, let

ε > 0, and let N ∈ N be such that 2
N ≤ ε. We will find a bijection δ̃N : σ̃ → σ̃′ such that

d(x, δ̃N (x)) ≤ 2
N ≤ ε for any x ∈ σ̃.

Let y ∈ τ̃ \ τ̃c. We claim that there exists a sequence (x
(n)
y )∞n=1 of points in σ̃ such that x

(n)
y → xωy

as n → ∞ and x
(n)
y 6= x

(m)
y (as elements of σ̃) when n 6= m. Indeed, in order to show this it is

enough to show that for each ε > 0, the submultiset Xε = {{x ∈ σ̃ : d(x, xωy ) < ε}} of σ̃ is infinite.
Suppose for contradiction that this is not the case, and so Xε = {{x1, . . . , xk}} for some ε > 0, and
for 1 ≤ i ≤ k let Ai = {n ∈ N : γ̃−1

n (y) = xi}. Then ω(Ai) = 0 for each i since y /∈ τ̃c; however,
we have ω(A1 ∪ · · · ∪ Ak) = ω({n ∈ N : d(γ̃−1

n (y), xωy ) < ε}) = 1 by the definition of xωy . This

contradicts the fact that ω is finitely additive; thus Xε must be infinite, and so a sequence (x
(n)
y )

with the claimed properties does exist.
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Moreover, we can pass each of the sequences (x
(n)
y )∞n=1 for y ∈ τ̃ \ τ̃c to a subsequence so that

x
(n)
y 6= x

(m)
y′ (as elements of σ̃) whenever (y, n) 6= (y′,m): for instance, we may pick an enumeration

τ̃ \ τ̃c = {{y1, y2, . . .}} and inductively build the collection of tuples {{(x
(1)
yi , . . . , x

(n)
yi ) : 1 ≤ i ≤ n}}

with no repeating elements. Finally, after passing each of the sequences (x
(n)
y )∞n=1 to a subsequence

once again, if necessary, we may assume that d(x
(n)
y , xωy ) ≤

1
n for all y and n.

We now define the bijection δ̃N : σ̃ → σ̃′ as follows: given x ∈ σ̃,

• if x = x
(N)
y for some y ∈ τ̃ \ τ̃c, let δ̃N (x) = xωy ;

• if x = x
(n)
y for some y ∈ τ̃ \ τ̃c and some n ≥ N + 1, let δ̃N (x) = x

(n−1)
y ;

• otherwise, let δ̃N (x) = x;

see Figure 2, solid arrows. It is easy to see that δ̃N is a bijection. Moreover, we have d(x, δ̃N (x)) ≤ 2
N

for all x ∈ σ̃: indeed, we have d(x
(N)
y , xωy ) ≤

1
N and

d(x(n)y , x(n−1)
y ) ≤ d(x(n)y , xωy ) + d(x(n−1)

y , xωy ) ≤
1

n
+

1

n− 1
≤

2

N

for n ≥ N + 1. It follows that d∞(σ, σ′) ≤ sup{d(x, δ̃N (x)) : x ∈ σ̃} ≤ ε, as required. �

B1/N (xωy )

≤ d+ 1

≤ d+ 1
2

≤ d+ 1
3

γ̃m1

γ̃m2

γ̃m3

γ̃mN

γ̃mN+1

y
γ̃1(y)

γ̃2(y)

γ̃3(y)

x
(1)
y

x
(2)
y

x
(3)
y

x
(N)
y

x
(N+1)
y

xωy

Figure 2. The proof of Proposition 6.2: construction for a point y ∈ τ̃ \ τ̃c. Here

d = d∞(σ, τ), and the solid arrows represent the bijection δ̃N : σ̃ → σ̃′.

We use the following two lemmas to prove the ‘if’ implication in Theorem E.

Lemma 6.3. If X is a proper metric space and A ⊆ X is a non-empty closed subset, then any
geodesic in X/A with A as an endpoint can be lifted to a geodesic in X.

Proof. Let η : [0, 1] → X/A be a constant speed geodesic such that η(0) = A. Let x = η(1) and
r = d(x,A); without loss of generality, suppose that x /∈ A, and therefore r > 0 and η(t) /∈ A for
any t > 0. Then for any n ∈ Z≥1 there exists an ∈ A such that dX(η( 1n), an) ≤

2r
n . In particular,

we have an ∈ A ∩ B for each n, where B is the closed ball in X with centre x and radius 2r. As
X is proper and A is closed, A ∩ B is compact, implying that a subsequence of the sequence (an)
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converges to some a ∈ A. We then define a map η′ : [0, 1] → X by η′(0) = a and η′(t) = η(t) for
t > 0. For any t > 0 we then have

d(a, η(t)) ≤ lim sup
n→∞

d(an, η(t)) ≤ lim sup
n→∞

d(an, η(1/n)) + lim sup
n→∞

d(η(1/n), η(t)) = td(x,A),

implying that η′ is a geodesic lifting η. �

Lemma 6.4. If X is a proper metric space and A ⊆ X is a non-empty closed subset such that any
two points x, y ∈ X/A with either d(x, y) < d(x,A) or y = A can be joined by a geodesic, then the
pseudo-metric space D∞(X,A) is geodesic.

Proof. Let σ, τ ∈ D∞(X,A), and let σ′, τ ′ ∈ D∞(X,A) and γ : σ′ → τ ′ be as given by Proposi-
tion 6.2. Without loss of generality, assume that d(x, γ(x)) < max{d(x,A), d(γ(x), A)} for each
x ∈ σ′ such that x 6= A and γ(x) 6= A. Then each x ∈ σ′ can be joined by a geodesic in X to
γ(x) ∈ τ ′ (when x ∈ A or γ(x) ∈ A, this follows from Lemma 6.3); in particular we can pick
a constant speed geodesic ηx : [0, 1] → X from x to γ(x). For each t ∈ [0, 1], define a diagram
ρt as the equivalence class of the multiset {{ηx(t) : x ∈ σ′}}; we have ρt ∈ D∞(X, {a0}) since
d(x, γ(x)) ≤ d(x, a0) + d(γ(x), a0) ≤ d∞(σ′, σ∅) + d∞(τ ′, σ∅) for each x ∈ σ′ and therefore

d∞(ρt, σ∅) ≤ d∞(σ′, σ∅) + t(d∞(σ′, σ∅) + d∞(τ ′, σ∅)) ≤ 2d∞(σ′, σ∅) + d∞(τ ′, σ∅) <∞.

Now since d(σ, σ′) = 0 we have d(σ, ρ) = d(σ′, ρ) (similarly, d(τ, ρ) = d(τ ′, ρ)) for any ρ ∈
D∞(X, {a0}). Moreover, whenever 0 ≤ t < u ≤ 1 we have

d∞(ρt, ρu) ≤ sup{d(ηx(t), ηx(u)) : x ∈ σ′} = (u− t)d∞(σ, τ),

and therefore the opposite inequality must also hold since

d∞(ρt, ρu) ≥ d∞(σ, τ)− d∞(σ, ρt)− d∞(ρu, τ) ≥ [1− (t− 0)− (1− u)]d∞(σ, τ) = (u− t)d∞(σ, τ).

It follows that if we define ξ : [0, 1] → D∞(X, {a0}) by ξ(0) = σ, ξ(1) = τ , and ξ(t) = ρt for
0 < t < 1, then ξ is a constant speed geodesic in D∞(X, {a0}) from σ to τ , as required. �

In the other direction, we have the following.

Lemma 6.5. If X and a0 ∈ X are such that the pseudo-metric space D∞(X, {a0}) is geodesic, then
any two points x, y ∈ X with either d(x, y) < d(x, a0) or y = a0 can be joined by a geodesic.

Proof. We say a pair (x, y) ∈ X2 is good if x 6= y and either d(x, y) < d(x, a0) or y = a0. We aim to
show that any good pair of points in X can be joined by a geodesic. For any good pair (x, y), we
pick a constant speed geodesic ξx,y : [0, 1] → D∞(X, {a0}) from {{x}} to {{y}}. Note that we have
d∞({{x}}, {{y}}) = d(x, y); in particular, if d(x, y) < d(x, a0) then d∞({{x}}, {{y}}) < d(x, a0), and if
y = a0 then d∞({{x}}, {{y}}) = d∞({{x}}, σ∅) = d(x, a0), implying that we have d∞({{x}}, {{y}}) ≤
d(x, a0) in either case.

The idea of the proof is to build a geodesic from x to y for a good pair (x, y) one-quarter of the
remaining distance at a time. Any point v ∈ ξx,y(t) for t ≤

1
4 satisfies either d(v, a0) <

1
3d(x, a0) or

d(v, a0) >
2
3d(x, a0), and such a ‘gap’ ensures that the partial geodesic can be built unambiguously

by picking the points satisfying the latter inequality. Moreover, if such a partial geodesic from x to
y ends at a point u then one can show that the pair (u, y) is again good, and so the construction
can be iterated.

Let (x, y) ∈ X2 be a good pair. Then for any t ∈ [0, 14 ] there exists a bijection γ : {{x}} → ξx,y(t)

such that d(z, γ(z)) < 1
3d(x, a0) for every z in (a chosen representative of) {{x}}, implying that there

exists a point u = u(x, y, t) ∈ ξx,y(t), namely u(x, y, t) := γ(x), such that d(u, a0) >
2
3d(x, a0) and

d(v, a0) <
1
3d(x, a0) for every v ∈ ξx,y(t)\{{u}}; see Figure 3. Thus, as for any 0 ≤ s < t ≤ 1

4 we have

d∞(ξx,y(s), ξx,y(t)) = (t − s)d(x, y) < 1
3d(x, a0), any ‘nearly optimal’ bijection γ : ξx,y(s) → ξx,y(t)

must send u(x, y, s) to u(x, y, t) and therefore d(u(x, y, s), u(x, y, t)) ≤ (t− s)d(x, y).
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Furthermore, we claim that d(u, y) ≤ 3
4d(x, y) and that (u, y) is a good pair, where u =

u(x, y, 14). If y = a0, then {{y}} = σ∅ as diagrams and the claim follows directly from the fact

that d∞(ξx,y(
1
4), σ∅) = 3

4d(x, y) (note that we cannot have u = y as d(x, u) ≤ 1
4d(x, y)). Oth-

erwise, we have d(x, y) < d(x, a0), and so for ‘nearly optimal’ bijections γx : ξx,y(
1
4) → {{x}}

and γy : ξx,y(
1
4) → {{y}} we have d(γx(z), γy(z)) ≤ d(z, γx(z)) + d(z, γy(z)) < d(x, a0) for any

z ∈ ξx,y(
1
4). But then we must have (γy ◦ γ

−1
x )(x) = y; on the other hand, as u is the only point

of ξx,y(
1
4) such that d(u, a0) >

2
3d(x, a0), for ‘nearly optimal’ bijections we have γx(u) = x and

therefore γy(u) = y. Taking infimum over the ‘nearly optimal’ bijections γy, this implies that
d(u, y) ≤ 3

4d(x, y). Furthermore, taking the infimum over γx we have d(x, u) ≤ 1
4d(x, y) <

1
4d(x, a0),

and therefore d(u, y) < 3
4d(x, a0) < d(x, a0)− d(x, u) ≤ d(u, a0), implying that (u, y) is a good pair,

as claimed.
We now define the sequence (un)

∞
n=0 inductively, by letting u0 = x and un = u(un−1, y,

1
4) for

n ≥ 1. We define a map η : [0, 1] → X as follows:

η(t) :=

{
u(un, y, 1 − (43)

n(1− t)) if 1− (34)
n ≤ t < 1− (34 )

n+1,

y if t = 1.

It is straightforward to verify (using the triangle inequality) that d(η(s), η(t)) ≤ (t − s)d(x, y) for
all 0 ≤ s < t ≤ 1, and therefore that η is a geodesic, as required. �

Bd/3(a0) B2d/3(a0)

a0

x

u(x, y, t)

Figure 3. An example of the situation in the proof of Lemma 6.5; here d = d(x, a0),
the black points represent a diagram ξx,y(t) for some t ∈ [0, 14 ], and the arrows a
‘nearly optimal’ bijection γ : {{x}} → ξx,y(t).

Proof of Theorem E. The ‘if’ direction follows from Lemma 6.4. The ‘only if’ direction follows from
Lemma 6.5 and the isometry D∞(X,A) ∼= D∞(X/A, {A}). �

Proof of Corollary F. In view of Theorem E, it is enough to show that if X is proper and geodesic,
then X/A is geodesic. Thus, let x, y ∈ X, and let [x], [y] ∈ X/A be their images in X/A. If
d(x, y) < d(x,A) + d(y,A), then it is easy to verify that for any geodesic η : [0, 1] → X from x to y,
the composite q ◦ η is a geodesic in X/A from [x] to [y], where q : X → X/A is the quotient map.
Otherwise, we have dX/A([x], [y]) = d(x,A) + d(y,A). But then as X is proper and A is closed,
there exist a, b ∈ A such that d(x,A) = d(x, a) and d(y,A) = d(y, b). Therefore, for any geodesics
ηx and ηy in X from x to a and from b to y, respectively, the concatenation of q ◦ ηx and q ◦ ηy is a
geodesic in X/A from [x] to [y], as required. �

It follows from Lemma 6.5 that the ‘only if’ direction of Theorem E is true even without the
assumption that X is proper. However, the same cannot be said about the ‘if’ direction, as the
following example shows.
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Example 6.6. Let X = c0 (that is, the space of all real sequences (an)
∞
n=1 converging to zero,

equipped with the supremum metric). Let A = {(0, 0, . . .)} ⊂ X. Then the space X = X/A is
geodesic: indeed, given any (an), (bn) ∈ X the path η : [0, 1] → X defined by η(t) = ((1 − t)an +
tbn)

∞
n=1 is a geodesic. We claim that D∞(X,A) is not geodesic.

For any finite subset F ⊂ Z≥1, let αF = (aFn )
∞
n=1 ∈ X be such that aFn = 1 + 1

n if n ∈ F

and aFn = 0 otherwise. Let F+ (respectively F−) be the collection of finite subsets of Z≥1 of even
(respectively odd) cardinality, and consider the diagrams σ± = {{αF : F ∈ F±}} ∈ D∞(X,A). We
claim that there are no geodesics in D∞(X,A) from σ+ to σ−.

Note first that d∞(σ+, σ−) = 1. Indeed, we have d(αF , αF ′) > 1 and d(αF ′ , A) > 1 for any
F ∈ F+ and F ′ ∈ F−, implying that d∞(σ+, σ−) ≥ 1. On the other hand, for any N ≥ 1 and any
B ⊆ [N ] the sets {F ∈ F+ : F ∩ [N ] = B} and {F ∈ F− : F ∩ [N ] = B} are both countably infinite
(where we write [N ] for {1, . . . , N}), implying that for any N there exists a bijection δN : F+ → F−

such that F ∩ [N ] = δN (F ) ∩ [N ] for any F ∈ F+. We can then define a bijection γN : σ+ → σ−
by setting γN (αF ) = αδN (F ), and it’s easy to check that d(α, γN (α)) < 1 + 1

N for any α ∈ σ+. This
implies that d∞(σ+, σ−) = 1, as claimed.

Now suppose for contradiction that ξ : [0, 1] → D∞(X,A) is a constant speed geodesic from σ+ to
σ−. Then d∞(σ−, ξ(

1
2 )) =

1
2 <

3
2 , implying that there exists a point β = (bn)

∞
n=1 ∈ ξ(12) (which we fix

from now on) such that |2−b1| ≤ d(α{1}, β) <
3
2 and therefore b1 >

1
2 . Let F0 = {n ∈ Z≥1 : bn >

1
2};

as β ∈ X = c0, we know that |F0| < ∞ and that there exists ε ∈ (0, 12) such that bn ≥ 1
2 + ε for

all n ∈ F0 and bn ≤ 1
2 − ε for all n > 1

ε . Since d(β,A) ≥ 1
2 + ε > 1

2 and since d∞(σ±, ξ(
1
2 )) =

1
2 ,

there exist subsets F± ∈ F± such that d(αF±
, β) < 1

2 + ε. Now if n ∈ F0 then |0− bn| ≥
1
2 + ε and

therefore we must have a
F±

n = 1 + 1
n ; on the other hand, if n /∈ F0 then bn ≤ 1

2 and either 1
n ≥ ε or

bn ≤ 1
2 − ε, so in either case we have |1+ 1

n − bn| ≥
1
2 + ε and therefore we must have a

F±

n = 0. This
implies that F− = F0 = F+, which is impossible since F− ∩ F+ = ∅; thus there are no geodesics in
D∞(X,A) from σ+ to σ−, as claimed.

Note that, for σ± ∈ D∞(X,A) as in Example 6.6, there are no bijections γ : σ+ → σ− such
that supx∈σ+

d(x, γ(x)) = d∞(σ+, σ−). Indeed, if there was such a bijection then the map [0, 1] →

D∞(X,A) sending t to the diagram {{(1− t)x+ tγ(x) : x ∈ σ+}} would be a geodesic from σ+ to
σ−, but we have shown that no such geodesics exist.
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1. Hideto Asashiba, Mickaël Buchet, Emerson G Escolar, Ken Nakashima, and Michio Yoshiwaki, On interval de-

composability of 2d persistence modules, Computational Geometry 105 (2022), 101879.
2. H̊avard Bakke Bjerkevik, On the stability of interval decomposable persistence modules, Discrete Comput. Geom.

66 (2021), no. 1, 92–121. MR 4270636
3. Magnus Bakke Botnan, Vadim Lebovici, and Steve Oudot, On rectangle-decomposable 2-parameter persistence

modules, Discrete & Computational Geometry 68 (2022), no. 4, 1078–1101.
4. Peter Bubenik and Alex Elchesen, Universality of persistence diagrams and the bottleneck and Wasserstein dis-

tances, Comput. Geom. 105/106 (2022), Paper No. 101882, 18. MR 4414770
5. , Virtual persistence diagrams, signed measures, Wasserstein distances, and Banach spaces, J. Appl. Com-

put. Topol. 6 (2022), no. 4, 429–474. MR 4496687
6. Peter Bubenik and Iryna Hartsock, Topological and metric properties of spaces of generalized persistence diagrams,

arXiv:2205.08506 [math.AT], 2022.
7. Peter Bubenik and Tane Vergili, Topological spaces of persistence modules and their properties, J. Appl. Comput.

Topol. 2 (2018), no. 3-4, 233–269. MR 3927353
8. Dmitri Burago, Yuri Burago, and Sergei Ivanov, A course in metric geometry, Graduate Studies in Mathematics,

vol. 33, American Mathematical Society, Providence, RI, 2001. MR 1835418
9. Gunnar Carlsson and Mikael Vejdemo-Johansson, Topological data analysis with applications, Cambridge Univer-

sity Press, Cambridge, 2022. MR 4346385
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