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 B S T R A C T 

e carefully develop the framework required to model the dynamical tidal response of a spinning neutron star in an inspiralling
inary system, in the context of Newtonian gravity, making sure to include all rele v ant details and connections to the existing
iterature. The tidal perturbation is decomposed in terms of the normal oscillation modes, used to derive an expression for the
f fecti v e Lo v e number which is valid for an y rotation rate. In contrast to previous work on the problem, our analysis highlights
ubtle issues relating to the orthogonality condition required for the mode-sum representation of the dynamical tide and shows
ow the prograde and retrograde modes combine to provide the overall tidal response. Utilizing a slow-rotation expansion, we
how that the dynamical tide (the effective Love number) is corrected at first order in rotation, whereas in the case of the static
ide (the static Lo v e number) the rotational corrections do not enter until second order. 

ey words: asteroseismology – dense matter – equation of state – gravitation – gravitational waves – hydrodynamics. 

 I N T RO D U C T I O N  

he emergence of gra vitational-wa v e astronomy, be ginning with the historic observation of the coalescing black hole binary GW150914
Abbott et al. 2016b ), has brought with it a renewed interest in compact-object binaries. Since the inaugural gra vitational-wa ve detection,
round based instruments have captured a variety of compact-binary mergers, the overwhelming majority comprising binary black holes
Abbott et al. 2019 , 2021a , b ), but also including two binary neutron stars (Abbott et al. 2017 , 2020 ) and two neutron star-black hole binaries
Abbott et al. 2021c ). 

The gra vitational-wa ve signal from an inspiralling binary hosting at least one neutron star differs slightly from that of two black holes.
y virtue of being extended material bodies, neutron stars are tidally deformed when immersed in an external gravitational field. As the
inary coalesces, the deformability of the stellar fluid imprints finite-sized corrections on the signal, which manifest as a dephasing in the
aveform compared to an equi v alent-mass black hole binary (Bildsten & Cutler 1992 ; Kochanek 1992 ). These finite-size effects are sensitive

o the internal structure of the material body and are usually parametrized through the so-called tidal Love numbers (Hinderer 2008 ). Thus, a
articularly tantalizing prospect for gra vitational-wa ve observations of neutron stars is the opportunity to obtain constraints on the elusive dense
uclear-matter equation of state (Flanagan & Hinderer 2008 ; Hinderer et al. 2010 ; Del Pozzo et al. 2013 ; Maselli, Gualtieri & Ferrari 2013 ;
anakis-Pegios, Koliogiannis & Moustakidis 2020 , 2021 ; Koliogiannis, Kanakis-Pegios & Moustakidis 2021 ). Indeed, such a measurement
as attempted for the celebrated multimessenger event GW170817, which – through a lack of evidence for tidal deformations in the signal –
elivered an astrophysically interesting upper bound, fa v ouring softer equations of state, that is, models that produce smaller, less deformable
tars (Abbott et al. 2017 ; Bauswein et al. 2017 ; Abbott et al. 2018 ; Annala et al. 2018 ; De et al. 2018 ; Malik et al. 2018 ; Most et al. 2018 ;
adice et al. 2018 ; Raithel, Özel & Psaltis 2018 ; Tews, Margueron & Reddy 2018 ; Fasano et al. 2019 ; Radice & Dai 2019 ; see also re vie ws
y Guerra Chaves & Hinderer 2019 and Chatziioannou 2020 ). Such constraints are expected to impro v e significantly with next generation
errestrial detectors, like the Einstein Telescope and the Cosmic Explorer (Pacilio et al. 2022 ), that are currently under development. 

According to current (electromagnetic) binary pulsar observations, the neutron star mass distribution peaks at about 1 . 4 M � (with M �
eing the solar mass; Kiziltan et al. 2013 ), whereas the most massive neutron star observed to date (known as PSR J0740 + 6620) has a mass
f 2 . 08 ± 0 . 07 M � (Cromartie et al. 2020 ; Fonseca et al. 2021 ), already excluding a number of theoretically proposed (soft) equations of
tate. Constraints on the neutron star radius (and thus on the equation of state) from electromagnetic observations have significantly improved
ith the NASA NICER mission (‘Neutron Star Interior Composition Explorer’), which recently provided radius estimates for two pulsars
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including PSR J0740 + 6620), hinting at a preference for stiffer equations of state, compared to the measurements obtained from GW170817
Miller et al. 2019 ; Riley et al. 2019 ; Raaijmakers et al. 2020 ; Miller et al. 2021 ; Riley et al. 2021 ). In addition, terrestrial experiments, such
s PREX-II that measured the neutron skin thickness of lead ( 208 Pb), may also be used to constrain the neutron star radius (Reed et al. 2021 ),
hus complementing astronomical observations. 

The static tidal deformations of spherically symmetric (non-rotating) fluid bodies are well understood in both Newtonian (Ogilvie 2014 ;
oisson & Will 2014 ) and relativistic gravity (Hinderer 2008 ; Binnington & Poisson 2009 ; Damour & Nagar 2009 ; Landry & Poisson 2015b ;
ani et al. 2018 ), and it has become routine to compute high-precision, perfect-fluid stellar models using realistic equations of state (Hinderer
t al. 2010 ; Postnikov, Prakash & Lattimer 2010 ). Furthermore, there has been work on introducing more complexity into the neutron star
odels, such as elastic crusts (Gittins, Andersson & Pereira 2020 ) and superfluidity (Char & Datta 2018 ; Datta & Char 2020 ; Yeung et al.

021 ). In addition, the components of binary systems are expected to be rotating (albeit perhaps slowly, since the stars involved are likely to be
ld). 1 For this reason, there has been a substantial effort in studying the relativistic deformations of spinning compact objects in the presence
f static tidal fields, initially focusing on Kerr black holes (Yunes & Gonz ́alez 2006 ; O’Sulli v an & Hughes 2014 ; Poisson 2015 ; Chia 2021 ;
howing that their multipolar structure is unaffected by the presence of a static tidal field, extending the corresponding result for Schwarzschild
lack holes; Binnington & Poisson 2009 ; Damour & Nagar 2009 ; G ̈urlebeck 2015 ; Poisson 2021b ) and more recently considering the material
ase (Landry & Poisson 2015a ; Pani et al. 2015a ; Pani, Gualtieri & Ferrari 2015b ; Landry & Poisson 2015c ; Landry 2017 ; Castro, Gualtieri &
ani 2021 ; Castro et al. 2022 ). Currently, all such calculations are at the level of slowly rotating fluid bodies. 

Treating the exterior field as static is an appropriate approximation for binaries in the adiabatic regime , where the two components are
idely separated and the evolution is slow. However, as the bodies get closer to one another, the dynamics become important (Flanagan &
inderer 2008 ; Maselli et al. 2012 ). Our understanding of dynamical tides is comparatively less well developed. The phenomenology of the
roblem is well established – the standard strategy in Newtonian gravity is to represent the tidal response as a sum o v er the star’s oscillation
odes – but progress towards including more realistic physics has been somewhat limited. When it comes to rotational effects, the notable

ecent progress on modelling tides in gas planets (Idini & Stevenson 2021 ; Lai 2021 ; Dewberry & Lai 2022 ; Idini & Stevenson 2022a , b )
s due to the Juno and Cassini missions observing Jupiter and Saturn, respecti vely. Hosting se veral moons and rotating relatively rapidly,
he large gas planets are suitable environments for the study of dynamical tidal effects. In fact, the Juno spacecraft has reported a tidal Lo v e
umber for Jupiter 4 per cent smaller than the hydrostatic value (Durante et al. 2020 ), a discrepancy which can in principle be resolved by
onsidering dynamical effects in the tidal response (Idini & Stevenson 2021 ; Lai 2021 ; Idini & Stevenson 2022b ). Meanwhile, the impact
f relativity, essential for binary neutron star inspirals and relevant for gra vitational-wa v e astronomy, is trick y to establish. Basically, the
elativistic mode-sum approach has not yet been developed to the level required. 2 Nevertheless, there has been recent work on incorporating
ynamical tides into the ef fecti ve-one-body frame work (Hinderer et al. 2016 ; Steinhof f et al. 2016 ), as well as in gra vitational wa veform
odels for both non-rotating (Schmidt & Hinderer 2019 ) and (slowly) rotating neutron stars (Steinhoff et al. 2021 ). In addition, the prospect

f performing neutron star seismology studies using dynamical tides has been explored (Pratten, Schmidt & Hinderer 2020b ) – highlighting
he importance of the problem for next generation gra vitational-wa ve instruments, as neglecting dynamical tides might lead to significant
rrors in neutron star parameter estimation (Kuan & Kokkotas 2022 ; Pratten, Schmidt & Williams 2022 ; Williams, Pratten & Schmidt 2022 ).
o we ver, useful progress can still be made in Newtonian gravity (Lai 1994 ; Reisenegger & Goldreich 1994 ; Kokkotas & Schafer 1995 ; Kumar,
o & Quataert 1995 ; Yu & Weinberg 2017a , b ; Andersson & Pnigouras 2020 , 2021 ; Passamonti, Andersson & Pnigouras 2021 ; Passamonti,
ndersson & Pnigouras 2022 ), where the effects of rotation have been studied in the context of resonant mode excitation by the orbital motion

Lai 1997 ; Ho & Lai 1999 ; Lai & Wu 2006 ; Xu & Lai 2017 ), and post-Newtonian theory (Flanagan & Racine 2007 ; Poisson & Dou c ¸ot 2017 ;
ick & Lai 2019 ; Banihashemi & Vines 2020 ; Poisson 2020a , b , 2021a ). 

In previous work (Andersson & Pnigouras 2020 ), we developed a formalism which describes the tidal perturbation in terms of the
tellar oscillation modes and provides the contribution of each mode to the effective Love number, which includes dynamical effects. Such a
escription is helpful in order to gain insight into the physics of the stellar interior, given that the properties of the various classes of modes
trongly depend on the internal structure of the star (the basic principle of asteroseismology ). Neutron stars possess a rich spectrum of normal
scillation modes (e.g. see McDermott, van Horn & Hansen 1988 ; Strohmayer 1991 ; Andersson & Kokkotas 1996 ; Schenk et al. 2001 ;
iniutti et al. 2003 ; Benhar, Ferrari & Gualtieri 2004 ; Gualtieri, Pons & Miniutti 2004 ; Gaertig & Kokkotas 2008 ; Passamonti & Andersson

012 ; Done v a et al. 2013 ; Gualtieri et al. 2014 ; Kr ̈uger, Ho & Andersson 2015 ; Pnigouras 2018 ; Suvorov 2018 ; Andersson 2019 ; Kr ̈uger &
okkotas 2020 ). During inspiral, the tidal force will sweep through a range of frequencies until coalescence, which will result in the resonant

xcitation of different modes when the tidal frequency matches a mode’s eigenfrequency. This is interesting, since the rapid growth of a mode
uring resonance may extract energy from the orbit, thus affecting the phasing of the gra vitational wa veform. Should these dynamical tidal
ffects be distinguishable, one could then perform neutron star seismology studies using gravitational waves from neutron star binaries. The
mplications of this have been explored previously, but the interest has been inevitably renewed in the last few years, mostly focusing on the
NRAS 527, 8409–8428 (2024) 

 Extracting the angular momentum of binary components from a gravitational waveform is a challenging task (Poisson & Will 1995 ; Baird et al. 2013 ; Vitale 
t al. 2014 ; Chatziioannou et al. 2015 ; Farr et al. 2016 ; Abbott et al. 2016a ; Vitale et al. 2017 ; Pratten et al. 2020a ) due to the fact that, during inspiral, the 
eading-order post-Newtonian influence on the evolution of the system arises as a mass-weighted combination of the two spins (Damour 2001 ; Blanchet 2014 ; 
 ̈urrer, Hannam & Ohme 2016 ; Ng et al. 2018 ; Zevin et al. 2020 ). 
 There are compelling reasons to expect the set of quasi-normal modes to be incomplete (due to the presence of gravitational waves) and this complicates the 
idal problem, at least in principle. 
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ffects that the fundamental mode ( f mode) has on the signal (see references on dynamical tides abo v e). This is because the f mode, being a
arge-scale perturbation, is expected to contribute the most to the dynamical tidal response of the star. Furthermore, its high-frequency (likely
bo v e 1 kHz) implies that its resonant excitation will be rele v ant only late in the inspiral (with the actual resonance likely not happening before
he stars merge). The merger dynamics, and the impact of the dynamical tide, are expected to remain largely unresolved until next generation
etectors become available. 

In the current work, we extend the formalism developed in Andersson & Pnigouras ( 2020 ) to include rotation. Generally, neutron stars
lose to merger are expected to be old, implying that they will have had enough time to spin down, probably rendering rotation less important
ynamically. Ho we ver, as we will see, the neutron star spin introduces significant changes both to the oscillation modes, on which our
escription of the tide is based, and to the required formalism, thus moti v ating this study. Using perturbation theory, within the context of
ewtonian gravity, we carefully develop the framework required to model the dynamical tide of a spinning neutron star. In particular, our

nalysis highlights subtle issues like the orthogonality condition required for the mode-sum representation and how the prograde and retrograde
odes combine to provide the overall tidal response of a rotating star. The way we deal with these aspects is not new, but the tidal argument

as (arguably) not previously been analysed at this level of coherence and detail. In fact, we have gone out of our way to make sure all rele v ant
etails and connections to the existing literature are included. 

The layout of the paper is as follows: We derive the equation of motion for the tidal perturbation in Section 2 and discuss the properties
f normal modes in Section 3 , particularly focusing on the completeness and the orthogonality of the modes of a rotating star. The analysis
raws heavily on the Lagrangian perturbation formalism developed by Friedman & Schutz ( 1978a , b ), with important e xtensions pro vided by
chenk et al. ( 2001 ). For completeness, we include the key arguments from these classic papers. In fact, we have made an effort to make the
nalysis as logical and self-contained as possible, as it should soon become clear that we need to pay attention to the fine-print detail in order
o explain the tidal response of a rotating star. In Section 4 , we derive an expression for the ef fecti ve Love number using a decomposition
f the tidal perturbation in terms of the oscillation modes, valid for arbitrary rotation rates [equation ( 55 )]. 3 We show that, contrary to the
on-rotating case, one has to use a phase-space decomposition (Schenk et al. 2001 ), simultaneously expanding both the tidal displacement and
ts deri v ati ve, in order to obtain uncoupled equations of motion for the modes. We also re visit the ef fecti v e Lo v e number deri v ation for the case
f non-rotating stars, following slightly different arguments and arriving at an expression [equation ( 38 )] equivalent to that from Andersson &
nigouras ( 2020 ). Finally, in Section 5 we provide a thorough description of the oscillation modes in the slow-rotation approximation, using

wo equi v alent approaches and highlighting subtleties associated with the symmetry of the modes and their normalization, leading up to an
xpression for the ef fecti ve Love number, which is valid at first order in the rotation [equation ( 99 ), ( 100 )], and to the demonstration that the
tatic Lo v e number is only corrected at second order in the rotation [equation ( 101 )]. 

We work in a coordinate basis, using Latin scripts i , j , k , . . . to denote the spatial components of a vector and adopt the Einstein
ummation convention, where repeated indices represent a summation. We reserve the indices l and m for the multipole degree and azimuthal
rder, respectively, of a spherical harmonic Y 

m 

l . Greek indices α, β, γ , . . . will be used to label the different oscillation modes. 

 TIDAL  D E F O R M AT I O N S  

e consider a binary system comprising a star of mass M and radius R , uniformly rotating with angular velocity �i , and a companion of mass
 

′ , treated as a point mass. In a spherical coordinate system ( r , θ , φ) centred on the primary M , with its z axis aligned with the orbital angular
omentum, the companion has coordinates [ D ( t ), π /2, ψ( t )], where D is the orbital separation between the two stars and ψ is the orbital phase.
he presence of the massive companion perturbs the equilibrium shape of the primary star. This is due to the gravitational potential sourced
y M 

′ (Press & Teukolsky 1977 ; Ho & Lai 1999 ), 

( t, x i ) = − GM 

′ 

| x i − D 

i ( t) | = −GM 

′ 
∞ ∑ 

l= 2 

l ∑ 

m =−l 

W lm 

r l 

D( t) l+ 1 
Y 

m 

l ( θ, φ) e −imψ ( t ) , (1) 

here G is the gravitational constant, x i is the position relative to the centre of the primary and D 

i is the position of the companion. It is
mportant to note that, as the tidal potential is a real-valued function, it follows from equation ( 1 ) that we must have W l , −m = ( − 1) m W lm .

oreo v er, due to the symmetry of the tidal potential, we have W lm = 0 for odd l + m and otherwise 

 lm 

= 

4 π

2 l + 1 
Y 

m ∗
l ( π/ 2 , 0) = ( −1) ( l+ m ) / 2 

√ 

4 π

2 l + 1 
( l − m )!( l + m )! 

[
2 l 
(

l + m 

2 

)
! 

(
l − m 

2 

)
! 

]−1 

, (2) 

ith the asterisk denoting comple x conjugation. F or a reasonable combination of binary separation and mass ratio, there exists a region of
pace around the primary where its gravitational potential � is much stronger than that of the secondary, χ � � . In this region, it is appropriate
o formulate the problem in the context of perturbation theory. 
MNRAS 527, 8409–8428 (2024) 

 The arguments leading to the expression for the Lo v e number proceed along similar lines to Lai ( 2021 ) and Dewberry & Lai ( 2022 ), where the influence of 
otation is studied in the dynamical tides of planets. Ho we v er, as e xplained later on, the rigorous analysis presented here is required in order to understand 
recisely how individual oscillation modes contribute to the tidal response, as well as to highlight important steps and issues which previously were either 
issed or not adequately explained. 
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We treat the tidally deformed star as a perfect fluid body and linearize the fluid equations with respect to the tidal perturbation. Then, the
erturbed Euler equation, expressed in a reference frame corotating with the primary, is (Friedman & Schutz 1978a ; Schenk et al. 2001 ) 

 i ≡ ∂ 2 t ξi + B 

j 

i ∂ t ξj + C 

j 

i ξj = −∇ i χ, (3) 

ith the operators 

 

j 

i ξj = 2 εijk �
j ξk , (4) 

nd 

 

j 

i ξj = 

∇ i δp 

ρ
− ∇ i p 

ρ2 
δρ + ∇ i δ�, (5) 

here ξ i is the Lagrangian displacement vector, ρ and p are the mass density and isotropic pressure of the equilibrium fluid, respectively, δ
enotes the Eulerian change of a physical quantity and εijk is the antisymmetric Le vi-Ci vita tensor associated with the Euclidean three-metric
 ij . Note that, in the non-rotating limit, � = | �i | = 0, the operator B 

j 

i vanishes and equation ( 3 ) describes the tidal perturbations of a spherical
uid configuration in an inertial frame. 

The Lagrangian displacement ξ i describes how fluid elements mo v e due to the perturbation. All perturbed quantities can be related to ξ i

hrough the rest of the fluid equations, namely, the perturbed continuity equation 

ρ = −∇ i ( ρξ i ) , (6) 

he perturbed Poisson’s equation 

 

2 δ� = 4 πGδρ = −4 πG ∇ i ( ρξ i ) , (7) 

s well as the equation of state for the perturbations 

�p 

p 

= � 1 
�ρ

ρ
, (8) 

hich is expressed in terms of Lagrangian variations, related to Eulerian ones (for scalar quantities) by � p = δp + ξ i ∇ i p . For a cold neutron
tar core (ignoring exotic components like hyperons and/or deconfined quarks), the adiabatic exponent � 1 is defined as 

 1 = 

(
∂ ln p 

∂ ln ρ

)
x p 

, (9) 

ith x p being the proton fraction (i.e. the proton number density o v er the baryon number density). In equation ( 8 ) it has been assumed that
 x p = 0, namely that the composition of a perturbed fluid element remains ‘frozen’ during an orbital period, due to the long time-scales

n which the rele v ant β reactions (the Urca processes) can establish chemical equilibrium (Reisenegger & Goldreich 1992 ; Andersson &
nigouras 2019 ). equation ( 8 ) can also be written as 

δρ

ρ
= 

1 

� 1 

δp 

p 

− A i ξ
i , (10) 

here the Schwarzschild discriminant A i , defined as 

 i = 

∇ i ρ

ρ
− 1 

� 1 

∇ i p 

p 

, (11) 

etermines the conv ectiv e stability of the fluid. In a setup where the displaced fluid either matches or rapidly adjusts to the chemical composition
f its surroundings, the Schw arzschild discriminant vanishes. Otherwise, buo yancy acts as a restoring force for a perturbed fluid element,
iving rise to a family of oscillation modes called g modes (Reisenegger & Goldreich 1992 ). 

In the following, the binary orbit is taken to be quasi-circular, in the sense that the inspiral evolves much more slowly than the orbital
otion, namely | Ḋ | /D � �orb (with �orb denoting the orbital frequency and the dot indicating differentiation with respect to time, as usual).
o leading order, the orbital separation evolves due to the emission of gravitational waves as 

˙
 = −64 G 

3 

5 c 5 
M M 

′ ( M + M 

′ ) 
D 

3 
(12) 

 c being the speed of light), whereas for the orbital phase ψ we have 

˙
 = �orb = 

√ 

G ( M + M 

′ ) 
D 

3 
, (13) 

hich, due to the approximation abo v e, simply leads to ψ ≈ �orb t . 
For simplicity, we will assume that the orbital angular momentum is aligned with the rotation axis of the primary. In general, this need

ot be the case and an appropriate conversion between the two reference frames is required (e.g. see Ho & Lai 1999 ; Pnigouras 2019 ). We
lso choose to work in the frame corotating with the primary. In order to re-express the tidal potential ( 1 ) in this frame, it simply suffices to
ake the replacement ψ → ψ − �t , keeping in mind that now the spherical harmonic Y 

m 

l is expressed in the rotating frame. Hence, the time
NRAS 527, 8409–8428 (2024) 
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ependence of the tidal potential in this frame becomes e −im [ ψ ( t ) −�t ] ≈ e −im ̄�t , where �̄ = �orb − �. Naturally, if the star is not rotating, the
wo frames coincide and �̄ = �orb . 

Ultimately, we are looking for a solution to equation ( 3 ) that describes the full response of the star to the influence of the tidal field of its
ompanion. One way to do this is to make use of the complete set of oscillation modes of the star. 

 N O R M A L  M O D E S  O F  OSCILLATION  

 mode solution 

i ( t, x i ) = ξ i 
α( x i ) e iω α t , (14) 

ith frequency ω α , is a distinct physical solution to the homogeneous equation of motion ( 3 ), E i = 0, accompanied by the appropriate boundary
onditions. As we assume a stable equilibrium with no dissipative processes, all mode frequencies are real. It follows that a mode solution
atisfies the quadratic eigenvalue equation 

 −ω 

2 
αg ij + iω αB ij + C ij ) ξ

j 
α = 0 (15) 

or the mode frequencies { ω α} and eigenfunctions { ξ i 
α} . It is worth noting that both the set ( ω α, ξ

i 
α) and the corresponding conjugate set

 −ω α, ξ
i∗
α ) are solutions to equation ( 15 ). We need to pay attention to this later, when the tidal displacement is decomposed in terms of the

scillation modes. 
A ke y issue involv es distinguishing the distinct mode solutions. This is resolv ed by making use of the formalism developed in Friedman &

chutz ( 1978a ). First, we need to introduce the inner product 

 ηi , ξi 〉 = 

∫ 
ηi∗ξi ρd V (16) 

f two complex solutions ηi and ξ i to E i = 0. (Component indices are henceforth suppressed, for brevity.) With respect to this inner product,
he operator C is Hermitian, while B is anti Hermitian. Further, we define the symplectic product of two solutions by 

 ( η, ξ ) ≡
〈

η, ∂ t ξ + 

1 

2 
Bξ

〉
−

〈
∂ t η + 

1 

2 
Bη, ξ

〉
, (17) 

hich can be shown to be conserved, so we have d W /d t = 0. This is particularly useful, because it implies that all physical mode solutions
ust be orthogonal to each other with respect to W . Provided two mode solutions of the form ( 14 ), we find 

 ( η, ξ ) = 

(〈
ξβ, iω αξα + 

1 

2 
Bξα

〉
−

〈
iω βξβ + 

1 

2 
Bξβ, ξα

〉)
e i( ω α−ω β ) t ≡ W ( ξβ, ξα) e i( ω α−ω β ) t , (18) 

here we have defined the symplectic product of two eigenfunctions, W ( ξβ , ξα). Assuming no de generac y, namely that ω α = ω β for α = β,
e therefore must have 4 

 ( ξβ, ξα) = i( ω α + ω β ) 〈 ξβ, ξα〉 + 〈 ξβ, Bξα〉 = 0 . (19) 

ence, we obtain the orthogonality condition 

 ω α + ω β ) 〈 ξβ, ξα〉 − 〈 ξβ, iBξα〉 = B αδαβ, (20) 

hich, in the non-rotating limit, simply becomes 

 ξβ, ξα〉 = A 

2 
αδαβ as � → 0 , (21) 

here A 

2 
α and B α are (real) constants, determined by the chosen mode normalization. 

At this point, it is worth noting that the oscillation modes of a rotating star are not expected to satisfy equation ( 21 ). This is exactly the
eason that the symplectic product was required in the first place; the modes obey the alternative orthogonality condition ( 20 ), but are not
rthogonal, in the conventional sense, with respect to the inner product ( 16 ). This subtlety, which is often o v erlooked in the literature (e.g. Ho &
ai 1999 ), is very important as it modifies the mode expansion, here applied to the Lo v e number calculation but generally used for a range of
roblems (see the discussion in Schenk et al. 2001 ). As demonstrated later, one needs to pay attention to the specific notion of orthogonality
n the rotating case in order to arrive at a mode-sum representation where the equations for the individual mode amplitudes decouple. 

From equation ( 15 ), after setting B = 0, it becomes apparent that, since the operator C is Hermitian, the modes of a non-rotating star form
 complete basis, obeying the orthogonality condition ( 21 ). The same cannot be said, ho we ver, for the general case of rotating stars, where the
ode solutions { ξα} are eigenvectors of a non-Hermitian operator and, hence, need not form a complete basis. This is not immediately evident
MNRAS 527, 8409–8428 (2024) 

 If degeneracies are present, W ( ξβ , ξα) needs to be diagonalized within each degenerate subspace, namely within submatrices populated by modes belonging 
o the same eigenfrequency. The basis that diagonalizes each degenerate subspace can be obtained as an appropriate linear combination of the vectors belonging 
o that degenerate subspace. Then, equation ( 19 ) would also be satisfied for mode pairs from within the same degenerate subspace (Schenk et al. 2001 ). 
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rom equation ( 15 ), which needs to be expressed as a standard eigenvalue equation with ω α as the eigenvalue. 5 In this case, a way to obtain a
omplete basis is to supplement each eigenvector with a suitable number of e xtra v ectors, called Jordan c hain vectors . Ho we ver, a consistent
reatment involving Jordan chains would complicate the formalism considerably and the benefits have not been rigorously explored. As this is
eyond the scope of the current study, following Schenk et al. ( 2001 ), Jordan chain vectors will be neglected altogether and the mode solutions
 ξα} to equation ( 15 ) will be treated as complete. 

 MODE-SUM  REPRESENTATION  

s advertised, we will express the tidal response of the primary star due to the presence of the secondary in terms of the complete basis given
y the star’s modes of oscillation. The strategy is common but, as we need to explore a number of subtle points, it still makes sense to tread
arefully. 

First, let us consider the nature of the required mode solutions. Given an axisymmetric background – which is clearly the case for
oth non-rotating and rotating stars – each mode ξα has a harmonic dependence in the azimuthal direction and is thus identified with a
ingle-azimuthal order m , that is, ξ i 

α ∝ e i( ω α t+ mφ) . For non-rotating stars, due to the spherical symmetry of the background, each mode can be
escribed by a single-spherical harmonic Y 

m 

l and, hence, corresponds to a single l . This implies that the eigenfrequencies ω α are degenerate
ith respect to m ; for a fixed value of l , there are (2 l + 1) modes with the same frequency ω α . When rotation is introduced, this de generac y

s lifted by splitting the modes belonging to different values of m . Furthermore, modes can no longer be assigned a single degree l , due to
nduced couplings among different multipoles. We will return to this issue in subsection 4.2 . The modes can be physically distinguished by
oting that, for solutions with m = 0, the oscillation pattern propagates in the azimuthal direction with a phase v elocity −ω α/ m . Giv en the
nsatz ( 14 ) and for ω α > 0, modes with m < 0 travel along the direction of rotation ( prograde modes), whereas modes with m > 0 travel in

he opposite direction ( retrograde modes). 
In order to establish the logic, and provide useful comparison, it is natural to first consider the non-rotating case. 

.1 Non-rotating stars 

he non-rotating problem was recently explored in Andersson & Pnigouras ( 2020 ). In that case, the mode eigenvectors { ξα} are complex
olutions to equation ( 15 ) with B 

j 

i = 0, namely 

 −ω 

2 
αg ij + C ij ) ξ

j 
α = 0 , (22) 

ith (real) eigenvalues { ω 

2 
α} . The completeness of the modes implies that a generic Lagrangian perturbation can be decomposed (e.g. see

chenk et al. 2001 ) as 

i ( t, x i ) = 

∑ 

α

a α( t) ξ i 
α( x i ) , (23) 

here the mode amplitude a α is formally defined by 

 α = 

1 

A 

2 
α

〈 ξα, ξ〉 . (24) 

This is important. Since the eigenvalue is ω 

2 
α , the mode solutions of a non-rotating star are independent of the sign of the mode frequency.

lso, given the e im φ azimuthal dependence, it is easy to show that a (real-frequency) mode solution and its complex conjugate are orthogonal
as required in order for the mode sum to be able to represent a real-valued function). Hence, in order to obtain a complete basis we can restrict
urselves to solutions with ω α ≥ 0. This is the convention we adopt in the following. 6 To be specific, one can show that, despite working with
omplex eigenfunctions as the basis vectors in the mode expansion ( 23 ), the physical perturbation ξ i is manifestly real. This is most easily
een by considering mode pairs ( m , −m ) with the same eigenfrequency ω α . These pairs combine in the mode summation to exactly cancel the
maginary parts. That this is the case should not be surprising since the field in equation ( 1 ) that sources the perturbation is real. Furthermore,
hen we proceed to the rotating case we need to keep in mind that each of the non-rotating modes split in two. We need to pay attention to the

ssociated change in the symmetry of the mode frequencies later. 
The perturbation ξ i is sourced by the tidal field of the companion. Inserting the formal expansion ( 23 ) into the perturbed Euler equation

 3 ), and making use of the eigenvalue equation ( 22 ), leads to 

¨ α + ω 

2 
αa α = − 1 

A 

2 
α

〈 ξα, ∇χ〉 . (25) 
NRAS 527, 8409–8428 (2024) 

 This procedure, first presented in Dyson & Schutz ( 1979 ) and revisited in Schenk et al. ( 2001 ), involves rewriting the homogeneous equation of motion ( 3 ), 
 i = 0, as a system of first-order equations and then deriving an eigenvalue equation for eigenvector pairs ( ξ, ∂ t ξ ) with ω as the eigenvalue. 
 Alternatively, one may instead fix the sign of the mode azimuthal order, m > 0, and allow for both positive and negative frequencies (Ho & Lai 1999 ; Lai & 

u 2006 ; Xu & Lai 2017 ; Lai 2021 ; Dewberry & Lai 2022 ). However, this convention is slightly confusing, because one has to pay careful attention to the 
omplex conjugates in order to ensure that all distinct mode solutions are accounted for in the mode sum. 
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hat is, we obtain the equation of motion for the mode amplitudes (simply a set of forced oscillators). It is natural to define the overlap integral 7 

 α ≡ −〈 ξα, ∇χ〉 = −
∫ 

ξ i∗
α ∇ i χρd V = 

∫ 
∇ i ( ρξ i∗

α ) χd V = −
∫ 

δρ∗
αχd V , (26) 

rrived at through integration by parts, where we have identified the density perturbation δρα associated with the mode by making use of the
erturbed continuity equation ( 6 ). Note that this definition of Q α inherits the time dependence from χ – we are not working in the frequency
omain (in contrast to most previous work on this problem). 

In the following, recall that we use a condensed notation where the index α carries information on the specific mode and therefore
mplicitly provides the ( l , m ) harmonic dependence. Thus, the perturbed density eigenfunction is expanded as 

ρα( x i ) = δρα( r) Y 

m 

l ( θ, φ) . (27) 

hen, the o v erlap inte gral is simply written as 

 α = K lm 

I αe −im�orb t , (28) 

here K lm ≡ GM 

′ W lm / D 

l + 1 and the mass-multipole moment for each mode is defined by 

 α ≡
∫ R 

0 
δρα( r ) r l+ 2 d r , (29) 

oting that δρα( r ) and, thus, I α are real-valued (see subsection 5.2 for the relevant arguments). 
Returning to the equation of motion for the amplitudes in equation ( 25 ), each mode is driven by the tidal field at a frequency m �orb . As

ong as the orbital motion does not resonantly excite the mode, the amplitude equation of motion therefore gives 8 

 α( t) = 

K lm 

I α

A 

2 
α[ ω 

2 
α − ( m�orb ) 2 ] 

e −im�orb t . (30) 

n essence, each mode α carries an ( l , m ) dependence and will be excited by the corresponding ( l , m ) component of the tidal field χ . Ho we ver,
ote that the tidal forcing is only non-zero for even l + m , so modes with odd l + m will not be excited [see equation ( 2 )]. 

We can now proceed with the calculation of the tidal Lo v e number k lm . The Lo v e number quantifies the multipolar response of a star to a
iven tidal field and is defined as 

� lm 

= 2 k lm 

χlm 

, (31) 

 v aluated at the surface the star. 9 Here, the tidally induced perturbation of the gravitational potential has been decomposed in spherical
armonics as 

� ( t, x i ) = 

∑ 

l,m 

δ� lm 

( t, r) Y 

m 

l ( θ, φ) , (32) 

hile the ( l , m ) component of the tidal potential is simply 

lm 

( t, r) = −GM 

′ W lm 

r l 

D 

l+ 1 
e −im�orb t = −K lm 

r l e −im�orb t . (33) 

In the vacuum exterior, the perturbed gravitational potential of the star is related to the multipole moments that characterize the departure
rom the equilibrium shape. Thus, a given mode sources 

� α( R ) = − 4 πG 

(2 l + 1) R 

l+ 1 
I α (34) 

t the stellar surface. (Note that we have adopted a different sign convention for the multipole moments to that of Andersson & Pnigouras
020 .) Using the fact that δ� will inherit the decomposition in equation ( 23 ) from ξ i , through the linearized Poisson’s equation ( 7 ), and
eplacing the solution ( 30 ) for the mode amplitudes, we have 

� ( t, R , θ, φ) = −4 πG 

∑ 

α

1 

(2 l + 1) R 

l+ 1 

I 2 α

A 

2 
α[ ω 

2 
α − ( m�orb ) 2 ] 

K lm 

e −im�orb t Y 

m 

l ( θ, φ) . (35) 
MNRAS 527, 8409–8428 (2024) 

 Note that the definition of the o v erlap inte gral used here is more general than that used in some studies (e.g. Press & Teukolsky 1977 , Ho & Lai 1999 ), where 
t is instead defined as 

 α = 

〈
ξα, ∇ 

(
r l Y m l 

)〉 = 

∫ 
δρ∗

αr l Y m l d V . 

These are the mass multipole moments, which, after replacing δρα , take the form of equation ( 29 ). 
 Equation ( 30 ) fails to describe the mode amplitude near the mode resonance, as it diverges. An analytical expression can be nevertheless obtained near the 
esonance, using the stationary phase approximation (e.g. see Steinhoff et al. 2016 ). 
 Generally, the name Love number is used for the tidal deformations due to a static external field. Here, we will say static Love number to mean this, and just 
o v e number or effective Lo v e number for the general case of a time-varying tidal field, representing the dynamical tide . 
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o identify the contribution of a certain harmonic ( l , m ) of the gravitational potential, we introduce some further notation at this point. We use
he label α′ to denote the set of modes { α′ } belonging to a given ( l , m ). Each subset of modes with fixed ( l , m ) would then include modes from
ifferent classes and o v ertones (see Section 5 ). We thus have 

� ( t, R , θ, φ) = −4 πG 

∑ 

l 

1 

(2 l + 1) R 

l+ 1 

∑ 

m 

K lm 

e −im�orb t 
∑ 

α′ 

I 2 α′ 

A 

2 
α′ [ ω 

2 
α′ − ( m�orb ) 2 ] 

Y 

m 

l , (36) 

nd identify 

� lm 

( t, R ) = − 4 πG 

(2 l + 1) R 

l+ 1 
K lm 

e −im�orb t 
∑ 

α′ 

I 2 α′ 

A 

2 
α′ [ ω 

2 
α′ − ( m�orb ) 2 ] 

. (37) 

Finally, we deduce that the ef fecti v e Lo v e number of a non-rotating star is 

 lm 

= 

2 πG 

(2 l + 1) R 

2 l+ 1 

∑ 

α′ 

I 2 α′ 

A 

2 
α′ [ ω 

2 
α′ − ( m�orb ) 2 ] 

. (38) 

he static Lo v e number (obtained in the limit �orb → 0) is simply given by 

 l = 

2 πG 

(2 l + 1) R 

2 l+ 1 

∑ 

α′ 

I 2 α′ 

A 

2 
α′ ω 

2 
α′ 

. (39) 

s is evident from equation ( 39 ), there is no dependence on the azimuthal order m in the static limit. This is as e xpected, giv en that the mode
attern should only matter when the mode is resonantly excited by the tide, namely when ω α′ ∼ | m | �orb . 

Note that equations ( 38 ) and ( 39 ) differ slightly from the corresponding expressions in Andersson & Pnigouras ( 2020 , equations (102) and
100), respectively). There, the gravitational potential δ� was expressed in terms of the radial and horizontal components of the Lagrangian
isplacement ξ i . Ho we ver, one can demonstrate that the results are equi v alent and converge to the same value for the Lo v e number when the
ode-sum is e x ecuted. 

.2 Rotating stars 

e now turn our attention to the general case of rotating stars. This problem has been revisited in recent years, particularly in the context of
escribing Jupiter’s tidal Lo v e numbers (Lai 2021 ; Dewberry & Lai 2022 ). However, as we will note, there are important details that still need
o be satisfactorily explained. Specifically, the issue of the l -multipole coupling that exists with rotation, along with which modes sit in the
um, has not previously enjoyed the attention it deserves. Additionally, in the past, there has been confusion surrounding the orthogonality of
he modes when rotation is accounted for (Kumar, Ao & Quataert 1995 ; Lai 1997 ; Ho & Lai 1999 ). In this section, we attempt to rectify these
ssues and make all rele v ant details clear. Indeed, this will be important if we want to connect observations of tides with the oscillation modes
f the body. 

Based on the discussion in Section 3 , the mode solutions to the eigenvalue equation ( 15 ) are treated as a complete set and, thus, it is
ossible to decompose a generic displacement in the spirit of equation ( 23 ). For rotating stars, mode solutions for frequencies with the opposite
ign remain de generate, pro viding a similar eigenvector basis { ξ i 

α} with linearly independent entries that satisfy the orthogonality relation
 20 ). Ho we ver, the decomposition ( 23 ) is no longer practical as the equations of motion for the amplitudes { a α} do not, in general, decouple
Schenk et al. 2001 ). This can be illustrated by replacing the decomposition ( 23 ) in the perturbed Euler equation ( 3 ), which, making use of the
igenvalue equation ( 15 ) and the orthogonality condition ( 20 ), gives 

 

2 
αä α + i 

(
B α − 2 ω αA 

2 
α

)
ȧ α + ω α

(
B α − ω αA 

2 
α

)
a α = Q α −

∑ 

β = α

[
ä β − iω β ȧ β − iω α

(
ȧ β − iω βa β

)] 〈 ξα, ξβ〉 . (40) 

iven that the inner product 〈 ξα , ξβ〉 does not vanish for the modes of a rotating star, this inevitably leads to a coupling of all the equations of
otion of different modes. 

This issue is resolved if one instead introduces a phase-space expansion of the form 

 

ξ i ( t, x i ) 
∂ t ξ

i ( t, x i ) 

] 

= 

∑ 

A 

c A ( t) 

[ 

ξ i 
A ( x 

i ) 
iω A ξ

i 
A ( x 

i ) 

] 

, (41) 

here the Lagrangian displacement and its time deri v ati ve are expanded simultaneously in terms of the basis vectors ( ξ i 
A , iω A ξ

i 
A ). This

trategy was originally developed by Dyson & Schutz ( 1979 ) and extensively explored by Schenk et al. ( 2001 ) (see also the rele v ant discussion
n Friedman et al. 2017 ), where the interested reader may find useful details. Here we need to be careful, because, in the phase-space
ecomposition, the number of components { A } in equation ( 41 ) is twice the number of { α} in equation ( 23 ). Basically, the solutions ( ω α, ξ

i 
α)

nd ( −ω α, ξ
i∗
α ) are not degenerate in the phase-space expansion ( 41 ). Ho we ver, as we are aiming to represent the real-valued tidal response,

e can pair up each mode with its conjugate, assigning the same label α to the pair of solutions, ensuring that ( ξ i , ∂ t ξ
i ) is manifestly real.

hen, equation ( 41 ) becomes (Schenk et al. 2001 ) 
 

ξ i ( t, x i ) 
∂ t ξ

i ( t, x i ) 

] 

= 

∑ 

α

{ 

c α( t) 

[ 

ξ i 
α( x i ) 

iω αξ
i 
α( x i ) 

] 

+ c ∗α( t) 

[ 

ξ i∗
α ( x i ) 

−iω αξ
i∗
α ( x i ) 

] } 

, (42) 
NRAS 527, 8409–8428 (2024) 
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oting that the mode frequencies ω α are taken to be positive (still applying the same convention as in the non-rotating case, following a similar
ine of reasoning; see subsection 4.1 ), with the amplitudes c α formally defined by 

 α = 

1 

B α

〈 ξα, ω αξ − i ∂ t ξ − iBξ ) 〉 . (43) 

ased on this, we can also derive the relation between the amplitudes c α , used in the phase-space expansion ( 42 ), and a α , from the expansion
 23 ). Replacing equation ( 23 ) in equation ( 43 ), we get 

 α = − i 

B α

[
A 

2 
αȧ α + i 

(
B α − ω αA 

2 
α

)
a α + 

∑ 

β = α

(
ȧ β − iω βa β

) 〈 ξα, ξβ〉 ], (44) 

here the coupling of the amplitudes corresponding to different modes is (again) evident. 
Replacing the mode solutions { A } with { α} in the phase-space expansion ( 41 ) is not simply a choice. The identification of { α} , as

epresenting all the distinct mode solutions, is necessary in order to distinguish the contribution of each mode to the tidal response. The
dentification makes it clear precisely which modes are used in the sum and remo v es redundanc y from the problem. In contrast, a strate gy
ased on using { A } (as in Lai 2021 and Dewberry & Lai 2022 ) involves potential double counting, so the final results have to be employed
ith some level of care. 

As in the non-rotating case, the time dependence of the perturbation ξ i is dictated by the tidal field. Inserting the decomposition ( 42 ) in the
erturbed Euler equation ( 3 ), and making use of the eigenvalue equation ( 15 ) and the orthogonality condition ( 20 ), we arrive at the equation of
otion for the amplitudes 

˙ α − iω αc α = 

i 

B α

〈 ξα, ∇χ〉 = − i 

B α

Q α. (45) 

t also follows that 

˙ ∗α + iω αc 
∗
α = 

i 

B α

Q 

∗
α. (46) 

In general, the modes of a rotating star no longer correspond to a single l ; they become coupled. The perturbed density associated with a
ode can then be expressed as 

ρα = 

∑ 

l 

δραl Y 

m 

l , (47) 

hich leads to 

 α = 

∑ 

l 

K lm 

I αl e 
−im ̄�t . (48) 

he time dependence of Q α is again inherited from the tidal potential. We note that this coupling among different multipoles was missing from
he analysis of Lai ( 2021 ), although it was later rectified in Dewberry & Lai ( 2022 ). 

Since we are working in the rotating frame, each mode is driven by the tidal field at a frequency m ̄�. Solving equation ( 45 ) away from
esonance, we find 

 α( t) = 

1 

B α( ω α + m ̄�) 

∑ 

l 

K lm 

I αl e 
−im ̄�t . (49) 

The perturbed gravitational potential can be expanded as 

� ( t, x i ) = 

∑ 

α

∑ 

l 

[ c α( t) δ� αl ( r) Y 

m 

l ( θ, φ) + c ∗α( t) δ� 

∗
αl ( r) Y 

m ∗
l ( θ, φ)] . (50) 

n this expression, we sum over all the mode pairs { α} . Each α will be associated with a single m , but will couple different values of l . The
um o v er l will pick up these coupled values of l for each α. At the surface of the star, replacing the solution for the amplitudes ( 49 ) and δ� αl

ith equation ( 34 ), we have 

� ( t, R , θ, φ) = −4 πG 

∑ 

α

1 

B α( ω α + m ̄�) 

∑ 

l 

1 

(2 l + 1) R 

l+ 1 

∑ 

l ′ 
K l ′ m 

I αl ′ I αl ( e 
−im ̄�t Y 

m 

l + e im ̄�t Y 

m ∗
l ) . (51) 

n the same vein as in the non-rotating case, we now introduce the label α′ to represent all modes that have a given azimuthal order m . Hence,
e obtain 

� ( t, R , θ, φ) = −4 πG 

∑ 

l 

1 

(2 l + 1) R 

l+ 1 

∑ 

m 

∑ 

α′ 

1 

B α′ ( ω α′ + m ̄�) 

∑ 

l ′ 
K l ′ m 

I α′ l ′ I α′ l ( e 
−im ̄�t Y 

m 

l + e im ̄�t Y 

m ∗
l ) . (52) 

t this point, we have to be careful. We want to identify the contribution from each multipole to the perturbed potential. In order to do this, it
s useful to note the identity Y 

m ∗
l = ( −1) m Y 

−m 

l . Further, we recall that we sum o v er all permissible values of m . Keeping this in mind, we can
ewrite the second term by simply changing the sign of m . Ho we ver, in doing so, we need to take care because it means that we tinker with
he labelling of the modes. In order to remain mindful of this, we replace α′ with β ′ for the second set of modes. This has two advantages.
MNRAS 527, 8409–8428 (2024) 
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irst, it allows us to identify the o v erall contribution from a given spherical harmonic. Secondly, as we will see later, it provides an intuitive
nderstanding of how the tidal response for a given multipole involves both the prograde and retrograde modes. Previous calculations do not
how these two sets explicitly. We arrive at 

� ( t, R , θ, φ) = −4 πG 

∑ 

l 

1 

(2 l + 1) R 

l+ 1 

∑ 

m 

e −im ̄�t 
∑ 

l ′ 
K l ′ m 

⎡ 

⎣ 

∑ 

α′ 

I α′ l ′ I α′ l 

B α′ ( ω α′ + m ̄�) 
+ 

∑ 

β ′ 

I β ′ l ′ I β ′ l 

B β ′ ( ω β ′ − m ̄�) 

⎤ 

⎦ Y 

m 

l , (53) 

here we have used the fact that K l ′ , −m 

= ( −1) m K l ′ m 

. In this expression, we see how the modes are paired. The first term corresponds to
he mode ( ω α′ , m ) and the second is its partner ( ω β ′ , −m ) moving in the opposite direction. One of the modes is prograde and the other is
etrograde (depending on the sign of m ). Therefore, as before, 

� lm 

( t, R ) = − 4 πG 

(2 l + 1) R 

l+ 1 
e −im ̄�t 

∑ 

l ′ 
K l ′ m 

⎡ 

⎣ 

∑ 

α′ 

I α′ l ′ I α′ l 

B α′ ( ω α′ + m ̄�) 
+ 

∑ 

β ′ 

I β ′ l ′ I β ′ l 

B β ′ ( ω β ′ − m ̄�) 

⎤ 

⎦ , (54) 

nd the ef fecti v e Lo v e number is 

 lm 

= 

2 πG 

(2 l + 1) R 

2 l+ 1 

1 

K lm 

∑ 

l ′ 
K l ′ m 

⎡ 

⎣ 

∑ 

α′ 

I α′ l ′ I α′ l 

B α′ ( ω α′ + m ̄�) 
+ 

∑ 

β ′ 

I β ′ l ′ I β ′ l 

B β ′ ( ω β ′ − m ̄�) 

⎤ 

⎦ . (55) 

As a sanity check of the result, note that, in the non-rotating limit ( � = 0), each mode is characterized by a single-degree l ′ , so the only
erm retained in the sum o v er l ′ is the one for which l ′ = l . Furthermore, the mode pairs ( m, −m ) have the same eigenfrequency ( ω α′ = ω β ′ )
nd multipole moment ( I α′ = I β ′ ), whereas B α′ → 2 ω α′ A 

2 
α′ . Thus, equation ( 55 ) straightforwardly reduces to equation ( 38 ). 

The expression that we have derived for the ef fecti ve Love number ( 55 ) has some subtle but important differences compared to the
orresponding results from Lai ( 2021 ) and Dewberry & Lai ( 2022 ). First of all, we explicitly sum over the distinct mode solutions { α} ,
hereas Lai ( 2021 ) and Dewberry & Lai ( 2022 ) implicitly sum o v er the larger set of solutions { A } . This is not a critical issue – as long as
ou know what you are doing – but it obfuscates the fact that mode solutions from both sets ( ω α, ξ

i 
α) and ( −ω α, ξ

i∗
α ) are included in the Lo v e

umber expansion. This distinction is necessary in order to unambiguously identify which modes contribute to the ef fecti v e Lo v e number
or a specific multipole ( l , m ) of the tidal potential, and explicitly demonstrate the presence of pro- and retrograde modes. Secondly, Lai
 2021 ) neglects higher order rotational effects and, therefore, does not include the l -coupling for the mode eigenfunctions that arises due to the
oriolis force. Our expression ( 55 ) involves no such approximation and is thus true for arbitrary rates of rotation. The final difference lies in

he convention for the modes; in particular, making the Ansatz ξ i 
α ∝ e −iω α t [which is the opposite sign convention from the one we use here;

ee equation ( 14 )] and, more importantly, fixing the sign of m (instead of that of ω α) for describing the mode solutions (see Footnote 6). Then,
he results rely on the judicious use of complex conjugates to arrive at the actual tidal response, whereas, in our case, the reality of the result
s guaranteed by the chosen convention, making the strategy more transparent. 

 T H E  SLOW-ROTATION  APPROX IMATION  

he deri v ation of the dynamical tide, leading to equation ( 55 ) for the Lo v e number, is valid for arbitrary rotation rates. Ho we ver, solving the
orresponding eigenvalue equation ( 15 ) for a rotating star is not easy, due to the complications induced by rotation. As already mentioned,
he different multipoles couple and the modes no longer have a simple spherical harmonic angular dependence. On top of that, the centrifugal
cceleration (which enters at order �2 ) causes the background to deviate from spherical symmetry. In addition, at order �, a new set of
scillation modes emerges due to the Coriolis force; the so-called inertial modes (Papaloizou & Pringle 1978 ; Lockitch & Friedman 1999 ). 

The general problem is complicated, but it is important to clarify how the mode-sum result can be used. We can make general progress
n this direction by considering two commonly adopted strategies. First, if we want to proceed analytically as far as possible (which is
seful to gain insight), then it is natural to treat the rotation perturbatively, that is, employing the slow-rotation approximation , where the
igenfrequencies and the eigenfunctions are expanded with respect to � (see, e.g. Unno et al. 1989 and Aerts, Christensen-Dalsgaard & Kurtz
010 ). At first order in rotation, due to the Coriolis acceleration, the de generac y with respect to the azimuthal order m is lifted (see Section 3 )
nd different multipoles couple, whereas inertial modes are also added to the mode spectrum. At second order, the centrifugal force deforms
he star into an oblate spheroid, thus also affecting the equilibrium configuration, and additional couplings and corrections are introduced to
he perturbations (Saio 1981 ), which are further corrected at third order (Soufi, Goupil & Dziembowski 1998 ) and so on. An alternative to
he perturbative strategy is to approach the problem via time evolutions of the perturbation equations (Jones, Andersson & Stergioulas 2002 ;
aertig & Kokkotas 2009 ; Passamonti et al. 2009 ; Gaertig & Kokkotas 2011 ; Gaertig et al. 2011 ; Kr ̈uger et al. 2021 ). This neatly a v oids the

omplications associated with the multipole coupling, but has the drawback that it is not so easy to reliably extract the mode eigenfunctions
Stergioulas, Apostolatos & Font 2004 ). This, in turn, means that the e v aluation of various perturbative quantities, for example the overlap
ntegrals, becomes less reliable. Hence, we will focus on the perturbative approach here. 

Within the slow-rotation framework, we may also adopt different strategies. The first involves working out the rotational corrections to the
igenfunctions as a formal expansion in the modes of the non-rotating star. In this case, one has to include all solutions that formally belong to
he zero-frequency subspace (Friedman & Schutz 1978a ; Lockitch & Friedman 1999 ; Schenk et al. 2001 ), which, once rotation is introduced,
NRAS 527, 8409–8428 (2024) 
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ecome the inertial modes, thus complicating the issue. The second approach uses a multipole expansion of the perturbed quantities and then
olves directly for the rotational corrections. Each approach has its merits and we will find it useful to comment on both. 

.1 The mode expansion approach 

o start with, we expand the eigenfrequencies and the eigenfunctions (in the rotating frame) as 

 α = ω 

(0) 
α + ω 

(1) 
α ( �) + O 

(
�2 

)
, (56) 

α = ξ (0) 
α + ξ (1) 

α ( �) + O 

(
�2 

)
, (57) 

here the superscript (0) corresponds to the solution in the non-rotating limit, obtained from equation ( 22 ), and the rest of the terms are
otational corrections. (Again, for brevity, we suppress component indices in this section.) As our main interest is in illustrating the principles
nvolved, we only consider first-order corrections here. This is convenient, because we know that the equilibrium quantities, that is, density,
ressure, and gravitational potential, are only affected by � at second order. Hence, for the operator C we have C = C 

(0) + O 

(
�2 

)
, whereas

he operator B is, by definition, B = B 

(1) ( �). Then, the eigenvalue equation ( 15 ) at first order in � is 

− ω 

(0)2 
α ξ (1) 

α + C 

(0) ξ (1) 
α − 2 ω 

(0) 
α ω 

(1) 
α ξ (0) 

α + iω 

(0) 
α B 

(1) ξ (0) 
α = 0 . (58) 

Further, we expand the rotational corrections in terms of the modes of the non-rotating star (in the spirit of the mode-sum representation
or the tidal response). We thus have 

(1) 
α = 

∑ 

β

c 
(1) 
αβξ

(0) 
β , (59) 

here c (1) 
αβ are the first-order correction coefficients. Replacing equation ( 59 ) into the first-order eigenvalue equation ( 58 ) and using equation ( 22 ),

e obtain ∑ 

β

c 
(1) 
αβ

(
ω 

(0)2 
β − ω 

(0)2 
α

)
ξ

(0) 
β − 2 ω 

(0) 
α ω 

(1) 
α ξ (0) 

α + iω 

(0) 
α B 

(1) ξ (0) 
α = 0 . (60) 

aking the inner product with ξ (0) 
β and using the mode orthogonality condition ( 21 ), we have 

 

(1) 
αβ

(
ω 

(0)2 
β − ω 

(0)2 
α

)
A 

(0)2 
β − 2 ω 

(0) 
α ω 

(1) 
α A 

(0)2 
β δαβ + iω 

(0) 
α

〈 

ξ
(0) 
β , B 

(1) ξ (0) 
α

〉 

= 0 , (61) 

hich, for β = α (and ω 

(0) 
α = 0) gives the first-order correction to the eigenfrequency as 

 

(1) 
α = 

i 
〈
ξ (0) 
α , B 

(1) ξ (0) 
α

〉
2 A 

(0)2 
α

, (62) 

hereas, for β = α, we get 

 

(1) 
αβ = 

iω 

(0) 
α

〈 

ξ
(0) 
β , B 

(1) ξ (0) 
α

〉 

A 

(0)2 
β

(
ω 

(0)2 
α − ω 

(0)2 
β

) . (63) 

Before we proceed, we note that the arguments leading to equations ( 62 ) and ( 63 ) are valid only if the mode eigenfrequencies in the
on-rotating case are non-degenerate, namely as long as ω 

(0) 
β = ω 

(0) 
α for all β = α. Ho we ver, we already kno w that this is not the case, because,

or a mode with a fixed value of l , there is a de generac y with respect to the azimuthal order m , with (2 l + 1) modes corresponding to the same
igenfrequenc y. F or mode pairs within the same de generate subspace, equation ( 61 ) would imply that 

 

(1) 
βα ≡

〈 

ξ
(0) 
β , B 

(1) ξ (0) 
α

〉 

= 0 , 

hich is not necessarily true; the matrix B 

(1) 
βα need not be diagonal within each degenerate subspace of modes. Hence, in general, one needs

o switch to a basis in which this matrix is diagonal within each degenerate subspace. Then, one may repeat the arguments abo v e using the
ew basis. In this case, equations ( 62 ) and ( 63 ) would have the same form, with the eigenfunction set { ξ (0) 

α } replaced with the new basis. The
rocess for obtaining this basis can be found in many textbooks (e.g. Mathews & Walker 1970 ), so will not be reproduced here. 

Having w ork ed out the rotational corrections to the eigenfunctions, one may calculate the corresponding corrections to any perturbed
uantity, using the equations of Section 2 ; for example for δρ(1) one needs the perturbed continuity equation ( 6 ) at first order in �, namely
ρ(1) = −∇ 

i ( ρξ
(1) 
i ). The obvious caveat of this approach is that it requires prior knowledge of as many modes of the non-rotating star as

ossible (in principle, all of them!), to be included in the e xpansion ( 59 ). Ev en though, practically, a few modes may be enough for the mode
um to sufficiently converge, the modes that contribute the most to the correction would have to be identified, so further theoretical reasoning
ould be necessary if one wants to be sure of the result. 

This problem can in principle be a v oided by solving directly for the first-order corrections to the various quantities, using the approach
escribed further. 
MNRAS 527, 8409–8428 (2024) 
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.2 The multipole expansion approach 

s an alternative to expanding the eigenfunction corrections in terms of the modes of the non-rotating star, we may use a multipole expansion
e.g. see Saio 1981 ), in the spirit of equation ( 47 ). Thus, scalar perturbations (here using the density perturbation as an example) are expanded
s 

ρα = 

∑ 

l 

δραl Y 

m 

l , (64) 

hile the displacement vector is expanded in vector spherical harmonics as 

i 
α = 

∑ 

l 

[
W αl 

r 
Y 

m 

l ∇ 

i r + V αl ∇ 

i Y 

m 

l − iU αl ε
ijk ∇ j Y 

m 

l ∇ k r 

]
, (65) 

r in terms of components, 

r 
α = 

1 

r 

∑ 

l 

W αl Y 

m 

l , ξ θ
α = 

1 

r 2 

∑ 

l 

(
V αl ∂ θY 

m 

l − iU αl 

∂ φY 

m 

l 

sin θ

)
, ξφ

α = 

1 

r 2 sin 2 θ

∑ 

l 

(
V αl ∂ φY 

m 

l + iU αl sin θ∂ θY 

m 

l 

)
. (66) 

Based on this decomposition, oscillation modes are often distinguished as polar ( U αl = 0 as � → 0) or axial ( W αl = V αl = 0 as � → 0).
n the simple case of a fluid star, there are three families of polar modes: f (fundamental) modes, p (pressure) modes, and g (gravity) modes,
ith the latter being associated with the presence of buoyancy in the star (due to, e.g. composition gradients; see discussion in Section 2 ). The
 and g modes are often also ordered as increasingly high- and low-frequency overtones, respectively. Axial modes become oscillatory when
otation is switched on and are called r (Rossby) modes (Papaloizou & Pringle 1978 ). In the special case of a star where there is no buoyancy
described by a barotropic equation of state and with the oscillations adjusting rapidly to the density of their surroundings), the f and p modes
re supplemented by the inertial modes (Lindblom & Ipser 1999 ; Lockitch & Friedman 1999 ), which have both polar and axial components
nd are generally not characterized by a single l . Like r modes, the inertial modes acquire non-zero frequencies only in the presence of rotation.

As we are interested in the first-order in � contributions to the Lo v e number, it suffices to consider only polar modes in equation ( 55 ),
ecause their mass multipole moments are non-vanishing already at zeroth order in �. The mass multipole moments of r modes and inertial
odes come in at order �2 (Lockitch & Friedman 1999 ), which implies that they should produce fourth order corrections to the Lo v e number.

As already mentioned, scalar perturbations associated with polar modes are simply decomposed as δρ(0) 
α ( x i ) = δρ(0) 

α ( r) Y 

m 

l ( θ, φ). The
orresponding polar mode eigenfunctions can be expressed as 

(0) i 
α = 

W 

(0) 
α

r 
Y 

m 

l ∇ 

i r + V 

(0) 
α ∇ 

i Y 

m 

l . (67) 

sing the definitions ( 4 ) and ( 5 ) of the operators B and C , we also obtain 

 

(1) 
rj ξ

(0) j 
α = −2 �

V 

(0) 
α

r 
∂ φY 

m 

l , B 

(1) 
θj ξ

(0) j 
α = −2 �V 

(0) 
α cot θ∂ φY 

m 

l , B 

(1) 
φj ξ

(0) j 
α = 2 � sin θ

(
V 

(0) 
α cos θ∂ θY 

m 

l + W 

(0) 
α sin θY 

m 

l 

)
, (68) 

nd 

 

(0) 
ij ξ

(1) j 
α = 

∇ i δp 

(1) 
α

ρ
− ∇ i p 

ρ2 
δρ(1) 

α + ∇ i δ� 

(1) 
α = ∇ i 

(
δp 

(1) 
α

ρ
+ δ� 

(1) 
α

)
− p� 1 

ρ
A i ∇ j ξ

(1) j 
α . (69) 

Now, we can use the multipole expansions above to express first-order quantities. Replacing in the first-order eigenvalue equation ( 58 )
nd taking the radial component, we get 

∑ 

l ′ 

( 

−ω 

(0)2 
α

W 

(1) 
αl ′ 

r 
+ 

∂ r δp 

(1) 
αl ′ 

ρ
− ∂ r p 

ρ2 
δρ

(1) 
αl ′ + ∂ r δ� 

(1) 
αl ′ 

) 

Y 

m 

l ′ = 

2 ω 

(0) 
α

r 

(
ω 

(1) 
α W 

(0) 
α − m�V 

(0) 
α

)
Y 

m 

l . (70) 

aking the inner product with Y 

m 

l and using the orthogonality of spherical harmonics, this becomes 

− ω 

(0)2 
α

W 

(1) 
αl 

r 
+ 

∂ r δp 

(1) 
αl 

ρ
− ∂ r p 

ρ2 
δρ

(1) 
αl + ∂ r δ� 

(1) 
αl = 

2 ω 

(0) 
α

r 

(
ω 

(1) 
α W 

(0) 
α − m�V 

(0) 
α

)
, (71) 

r, equi v alently [see equation ( 69 )], 

− ω 

(0)2 
α

W 

(1) 
αl 

r 
+ ∂ r 

( 

δp 

(1) 
αl 

ρ
+ δ� 

(1) 
αl 

) 

− p� 1 

ρ

A 

r 2 

[ 
∂ r 

(
rW 

(1) 
αl 

)
− l( l + 1) V 

(1) 
αl 

] 
= 

2 ω 

(0) 
α

r 

(
ω 

(1) 
α W 

(0) 
α − m�V 

(0) 
α

)
, (72) 

here A is the (magnitude of the) Schwarzschild discriminant ( 11 ) (which only has an r component at first order). 
In a similar manner, we can take the inner product of equation ( 58 ) with ∇ 

i Y 

m 

l , in order to obtain its horizontal polar component. This
ives 

− ω 

(0)2 
α V 

(1) 
αl + 

δp 

(1) 
αl 

ρ
+ δ� 

(1) 
αl = 2 ω 

(0) 
α

[
ω 

(1) 
α V 

(0) 
α − m�

l( l + 1) 

(
W 

(0) 
α + V 

(0) 
α

)]
. (73) 

Equations ( 71 ), ( 72 ), and ( 73 ) allude to the fact that the first-order polar corrections, W 

(1) 
α and V 

(1) 
α , as well as the corrections to scalar

erturbations, are sourced by a single multipole and, thus, pick up the same spherical harmonic dependence as their zeroth-order counterparts.
NRAS 527, 8409–8428 (2024) 
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amely, corrections to scalar perturbations are simply decomposed as δρ(1) 
α ( x i ) = δρ

(1) 
αl ( r) Y 

m 

l ( θ, φ), whereas the correction to the eigenfunction
s 

(1) i 
α = 

W 

(1) 
αl 

r 
Y 

m 

l ∇ 

i r + V 

(1) 
αl ∇ 

i Y 

m 

l − i 
∑ 

l ′ 
U 

(1) 
αl ′ ε

ijk ∇ j Y 

m 

l ′ ∇ k r (74) 

the axial components of the eigenfunction correction are yet to be determined). 
The fact that first-order scalar perturbations are described by a single multipole can also be seen from equation ( 63 ). From the perturbed

ontinuity equation ( 6 ), the perturbed Poisson’s equation ( 7 ), and the equation of state for the perturbations ( 10 ) one can show that only polar
ieces contribute to the first-order corrections of scalar quantities. Therefore, to obtain these corrections, only polar mode components are
ele v ant in the expansion ( 59 ). Hence, replacing the polar mode eigenfunction in equation ( 67 ) for the mode ξ (0) 

β in equation ( 63 ), we obtain
he corresponding first-order correction coefficients as 

 

(1) 
αβ = δl α l β δm αm β

2 m α�ω 

(0) 
α

A 

(0)2 
β

(
ω 

(0)2 
α − ω 

(0)2 
β

) ∫ R 

0 

(
W 

(0) 
α V 

(0) 
β + V 

(0) 
α W 

(0) 
β + V 

(0) 
α V 

(0) 
β

)
ρd r. (75) 

his shows that the polar first-order rotational corrections to the (polar) mode ξ (0) 
α are given by multipoles with the same l and m . 10 

For later reference, we may also e v aluate the eigenfrequency correction from equation ( 62 ) as 

 

(1) 
α = m α� C α ≡ m α�

A 

(0)2 
α

∫ R 

0 

(
2 W 

(0) 
α V 

(0) 
α + V 

(0)2 
α

)
ρd r, (76) 

here C α is the Ledoux constant . 
In order to determine the axial components of the eigenfunction correction, we now take the inner product of the first-order eigenvalue

quation ( 58 ) with εijk ∇ j Y 

m 

l ′ ∇ k r . To e v aluate certain spherical harmonic integrals, we make use of the recurrence relations 

sin θ ∂ θY 

m 

l = lQ 

m 

l+ 1 Y 

m 

l+ 1 − ( l + 1) Q 

m 

l Y 

m 

l−1 (77) 
nd 

cos θ Y 

m 

l = Q 

m 

l+ 1 Y 

m 

l+ 1 + Q 

m 

l Y 

m 

l−1 , (78) 
here 

 

m 

l = 

[
( l − m )( l + m ) 

(2 l − 1)(2 l + 1) 

]1 / 2 

(79) 

note that Q 

m 

l vanishes for l = ±m ). Then, we get 

 

(0)2 
α l ′ ( l ′ + 1) U 

(1) 
αl ′ = 2 �ω 

(0) 
α

{
δl ′ ,l−1 l 

′ Q 

m 

l ′ + 1 

[
W 

(0) 
α + ( l ′ + 2) V 

(0) 
α

]− δl ′ ,l+ 1 ( l 
′ + 1) Q 

m 

l ′ 
[
W 

(0) 
α − ( l ′ − 1) V 

(0) 
α

]}
, (80) 

rom which we obtain the axial contributions to the eigenfunction correction as 

 

(1) 
α, l−1 = 

2 �

ω 

(0) 
α

Q 

m 

l 

l 

[
W 

(0) 
α + ( l + 1) V 

(0) 
α

]
(81) 

nd 

 

(1) 
α, l+ 1 = − 2 �

ω 
(0) 
α

Q 

m 
l+ 1 

l+ 1 

(
W 

(0) 
α − lV 

(0) 
α

)
. (82) 

Finally, the first-order correction to the polar mode eigenfunction is 

(1) i 
α = 

W 

(1) 
αl 

r 
Y 

m 

l ∇ 

i r + V 

(1) 
αl ∇ 

i Y 

m 

l − i U 

(1) 
α, l−1 ε

ijk ∇ j Y 

m 

l−1 ∇ k r − i U 

(1) 
α, l+ 1 ε

ijk ∇ j Y 

m 

l+ 1 ∇ k r. (83) 

quation ( 83 ) shows that, at first order in rotation, multipole couplings are introduced via axial pieces belonging to the neighbouring multipole
rders (Unno et al. 1989 ; Aerts, Christensen-Dalsgaard & Kurtz 2010 ). At the next order in rotation, these pieces couple back to their
eighbouring polar multipole components, and so on (see Fig. 1 ). The axial pieces U 

(1) 
α, l−1 and U 

(1) 
α, l+ 1 are given by equations ( 81 ) and ( 82 ),

espectively. The horizontal polar piece V 

(1) 
αl can be obtained from equation ( 73 ), but one first needs to e v aluate ( δp 

(1) 
αl /ρ + δ� 

(1) 
αl ). This, together

ith the radial piece W 

(1) 
αl , can be calculated by formulating the first-order eigenvalue equation ( 58 ) as a boundary value problem (Saio 1981 ).

rom equations ( 72 ) and ( 73 ), and by also using the perturbed continuity equation ( 6 ), the perturbed Poisson’s equation ( 7 ), and the equation of
tate for the perturbations ( 10 ), we obtain the system of equations 

 r 

( 

W 

(1) 
αl 

r 

) 

= −
(
∂ r p 

� 1 p 

+ 

2 

r 

)
W 

(1) 
αl 

r 
+ 

[
l( l + 1) 

r 2 ω 

(0)2 
α

− ρ

� 1 p 

]( 

δp 

(1) 
αl 

ρ
+ δ� 

(1) 
αl 

) 

+ 

ρ

� 1 p 

δ� 

(1) 
αl 

+ 

2 

r 2 ω 

(0) 
α

[
m�

(
W 

(0) 
α + V 

(0) 
α

) − l( l + 1) ω 

(1) 
α V 

(0) 
α

]
, (84) 
MNRAS 527, 8409–8428 (2024) 

0 Note that this applies only to the polar first-order rotational corrections. To obtain the axial first-order rotational corrections to ξ (0) 
α , one has to consider axial 

ode components in the mode sum in equation ( 59 ). In this case, as we will see below, the corrections are sourced by different multipoles. 
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Figure 1. The hierarchy of multipole couplings in the slow-rotation calculation, assuming a polar mode in a non-rotating star. 
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 r 

( 

δp 

(1) 
αl 

ρ
+ δ� 

(1) 
αl 

) 

= 

(
ω 

(0)2 
α − A 

ρ
∂ r p 

)
W 

(1) 
αl 

r 
− A 

( 

δp 

(1) 
αl 

ρ
+ δ� 

(1) 
αl 

) 

+ Aδ� 

(1) 
αl + 

2 ω 

(0) 
α

r 

(
ω 

(1) 
α W 

(0) 
α − m�V 

(0) 
α

)
, (85) 

 

2 
r δ� 

(1) 
αl + 

2 

r 
∂ r δ� 

(1) 
αl = −4 πGρA 

W 

(1) 
αl 

r 
+ 4 πG 

ρ2 

� 1 p 

( 

δp 

(1) 
αl 

ρ
+ δ� 

(1) 
αl 

) 

+ 

[
l( l + 1) 

r 2 
− 4 πG 

ρ2 

� 1 p 

]
δ� 

(1) 
αl , (86) 

hich, accompanied by the appropriate boundary conditions, can be solved for the variables W 

(1) 
αl /r, δp 

(1) 
αl /ρ + δ� 

(1) 
αl , and δ� 

(1) 
αl . 

As can be seen from equations ( 75 ) and ( 76 ), as well as from equations ( 84 ), ( 85 ), and ( 86 ), the eigenfrequency and eigenfunction
orrections ω 

(1) 
α and ξ (1) 

α are directly proportional to m �. Hence, the corrections can be simply obtained for some arbitrary values of m and �
nd then rescaled for any other case. 

.3 Mode normalization 

ased on the arguments from the previous two sections, we are finally in a position where we can make a more precise statement about the
ynamical tide in a rotating star. In essence, we can make equation ( 55 ) more tangible. As shown in Section 3 , the modes of rotating stars obey
 modified orthogonality relation, given by equation ( 20 ). Expanding all quantities to first order in � and separating the different orders, we
btain (
ω 

(0) 
α + ω 

(0) 
β

)〈 

ξ (0) 
α , ξ

(0) 
β

〉 

= B 

(0) 
α δαβ (87) 

nd (
ω 

(0) 
α + ω 

(0) 
β

)[ 〈 

ξ (0) 
α , ξ

(1) 
β

〉 

+ 

〈 

ξ (1) 
α , ξ

(0) 
β

〉 ] 
+ 

(
ω 

(1) 
α + ω 

(1) 
β

)〈 

ξ (0) 
α , ξ

(0) 
β

〉 

−
〈 

ξ (0) 
α , iB 

(1) ξ
(0) 
β

〉 

= B 

(1) 
α δαβ, (88) 

here the constants B 

(0) 
α and B 

(1) 
α will be fixed by the chosen mode normalization. Using equation ( 21 ), the zeroth-order piece in equation ( 87 )

ives 

 

(0) 
α = 2 ω 

(0) 
α A 

(0)2 
α , (89) 

amely, the zeroth-order constant B 

(0) 
α is simply determined by the normalization of the modes in the non-rotating case. A common choice is,

or instance, A 

(0)2 
α = MR 

2 . From the first-order piece in equation ( 88 ), using equation ( 62 ), we get 

 

(1) 
α = 2 ω 

(0) 
α

[〈
ξ (0) 
α , ξ (1) 

α

〉 + 

〈
ξ (1) 
α , ξ (0) 

α

〉] ≡ 2 ω 

(0) 
α A 

(1) 
α , (90) 

ith the constant A 

(1) 
α depending on the normalization of the first-order eigenfunction correction. 

In order to understand how the normalization of the rotationally corrected eigenfunctions works, we should first note that the general
olution to the first-order eigenvalue equation ( 58 ) has the form ξ (1) 

α = q (1) 
α ξ (0) 

α + 

˜ ξ (1) 
α , where q (1) 

α is an arbitrary constant. This is because,
omparing to the zeroth-order eigenvalue equation ( 22 ), we see that the solution comprises a homogeneous and an inhomogeneous piece.
he same can also be seen from the expansion of the eigenfunction correction in terms of the modes of the non-rotating star in equation
 59 ): the component along ξ (0) 

α is given by the coefficient c (1) 
αα , which cannot be obtained from equation ( 63 ) and is thus left undetermined.

herefore, making a choice for the constant A 

(1) 
α fixes the component of the first-order eigenfunction correction along ξ (0) 

α , because q (1) 
α =

 

(1) 
αα = 〈 ξ (0) 

α , ξ (1) 
α 〉 / A 

(0)2 
α . Using equations ( 67 ) and ( 83 ), we get 

 

(1) 
α = 2 

∫ R 

0 

[ 
W 

(0) 
α W 

(1) 
αl + l( l + 1) V 

(0) 
α V 

(1) 
αl 

] 
ρd r. (91) 
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In this case, a common choice in perturbation theory (e.g. see Mathews & Walker 1970 ) is to set A 

(1) 
α = 0, i.e. to eliminate the component

f ξ (1) 
α along ξ (0) 

α altogether. Ho we ver, in order to demonstrate how the chosen normalization enters the calculation and, ultimately, does not
ffect the final result, we will leave A 

(1) 
α unspecified in the following. 

.4 The Lo v e number 

ased on the abo v e, we can obtain the rotational corrections to the Lo v e number by expanding equation ( 55 ) in terms of � and hence working
ut – for the first time – an expression for the complete mode sum of a (slowly) rotating star. We have 

 α′ l = I 
(0) 
α′ + I 

(1) 
α′ l + O 

(
�2 

)
(92) 

nd 

 α′ = B 

(0) 
α′ + B 

(1) 
α′ + O 

(
�2 

)
, (93) 

ith the constants B 

(0) 
α′ and B 

(1) 
α′ given by equations ( 89 ) and ( 90 ), respectively. Finally, the eigenfrequencies are given by 

 α′ = ω 

(0) 
α′ + m C α′ � + O 

(
�2 

)
, (94) 

ith C α′ defined in equation ( 76 ). As previously discussed, the modes of a non-rotating, spherically symmetric star are degenerate in the order
 . Rotation splits this de generac y at O( �). The mode that mo v es in the opposite direction to α′ with the same | m | has the rotating-frame

requency 

 β ′ = ω 

(0) 
α′ − m C α′ � + O 

(
�2 

)
(95) 

remember that we flip the sign of m when we relabel these modes as β ′ ; see subsection 4.2 ). 
Based on the arguments abo v e, at first order in rotation, only the term with l ′ = l is needed in the sum o v er l ′ in equation ( 55 ). Thus, we

ave 

 lm 

= 

2 πG 

(2 l + 1) R 

2 l+ 1 

[∑ 

α′ 

I 
(0)2 
α′ + 2 I (0) 

α′ I 
(1) 
α′ l 

2 ω 

(0) 
α′ A 

(0)2 
α′ 

( 

1 − A 

(1) 
α′ 

A 

(0)2 
α′ 

) 

1 

ω 

(0) 
α′ + m C α′ � + m ̄�

+ 

∑ 

β ′ 

I 
(0)2 
β ′ + 2 I (0) 

β ′ I 
(1) 
β ′ l 

2 ω 

(0) 
β ′ A 

(0)2 
β ′ 

( 

1 − A 

(1) 
β ′ 

A 

(0)2 
β ′ 

) 

1 

ω 

(0) 
β ′ − m C β ′ � − m ̄�

]
+ O 

(
�2 

)

= 

2 πG 

(2 l + 1) R 

2 l+ 1 

⎧ ⎪ ⎨ 

⎪ ⎩ 

∑ 

α′ 

⎡ 

⎣ 

I 
(0)2 
α′ 

A 

(0)2 
α′ 

[ 
ω 

(0)2 
α′ − (

m C α′ � + m ̄�
)2 
] + 

I 
(0)2 
α′ 

A 

(0)2 
α′ ω 

(0) 
α′ 

[ 
ω 

(0) 
α′ + m C α′ � + m ̄�

] 
( 

I 
(1) 
α′ l 

I 
(0) 
α′ 

− A 

(1) 
α′ 

2 A 

(0)2 
α′ 

) 

⎤ 

⎦ 

+ 

∑ 

β ′ 

I 
(0)2 
β ′ 

A 

(0)2 
β ′ ω 

(0) 
β ′ 

[ 
ω 

(0) 
β ′ − m C β ′ � − m ̄�

] 
( 

I 
(1) 
β ′ l 

I 
(0) 
β ′ 

− A 

(1) 
β ′ 

2 A 

(0)2 
β ′ 

) 

⎫ ⎪ ⎬ 

⎪ ⎭ 

+ O 

(
�2 

)
. (96) 

n order to group the zeroth-order terms together, we used the same normalization for the modes in the non-rotating limit, namely A 

(0)2 
β ′ = A 

(0)2 
α′ 

nd then took into account the fact that I (0) 
β ′ = I 

(0) 
α′ . Note that we have not (yet) expanded the denominators containing the mode frequencies,

n order to keep the orbital resonances explicit. 
Equation ( 96 ) is valid for any normalization choice of the first-order corrections. Based on the discussion in subsection 5.3 though, we

an expand the correction to the multipole moment into its homogeneous and inhomogeneous pieces as 

 

(1) 
α′ l = 

A 

(1) 
α′ 

2 A 

(0)2 
α′ 

I 
(0) 
α′ + 

˜ I 
(1) 
α′ l . (97) 

his gives 

 lm 

= 

2 πG 

(2 l + 1) R 

2 l+ 1 

⎧ ⎪ ⎨ 

⎪ ⎩ 

∑ 

α′ 

⎡ 

⎣ 

I 
(0)2 
α′ 

A 

(0)2 
α′ 

[ 
ω 

(0)2 
α′ − (

m C α′ � + m ̄�
)2 
] + 

I 
(0) 
α′ ˜ I 

(1) 
α′ l 

A 

(0)2 
α′ ω 

(0) 
α′ 

[ 
ω 

(0) 
α′ + m C α′ � + m ̄�

] 
⎤ 

⎦ 

+ 

∑ 

β ′ 

I 
(0) 
β ′ ˜ I 

(1) 
β ′ l 

A 

(0)2 
β ′ ω 

(0) 
β ′ 

[ 
ω 

(0) 
β ′ − m C β ′ � − m ̄�

] 
⎫ ⎪ ⎬ 

⎪ ⎭ 

+ O 

(
�2 

)
. (98) 

his shows that, in fact, only the inhomogeneous piece of the multipole moment contributes to the first-order correction. This result is equivalent
o the one we would get had we eliminated the homogeneous piece from the start, by normalizing the first-order solution such that A 

(1) 
′ = 0. 
MNRAS 527, 8409–8428 (2024) 
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The last step is to note that ˜ I 
(1) 
β ′ l = − ˜ I 

(1) 
α′ l , because, as discussed in subsection 5.2 , first-order corrections scale with m �. Hence, we finally

btain 

 lm 

= 

2 πG 

(2 l + 1) R 

2 l+ 1 

∑ 

α′ 

I 
(0)2 
α′ 

A 

(0)2 
α′ 

[ 
ω 

(0)2 
α′ − (

m C α′ � + m ̄�
)2 
] 
( 

1 − 2 m�orb 

˜ I 
(1) 
α′ l 

ω 

(0) 
α′ I 

(0) 
α′ 

) 

+ O 

(
�2 

)
. (99) 

lternatively, to get the formally correct slow-rotation expansion, we should also expand the denominator in terms of �, which gives 

 lm 

= 

2 πG 

(2 l + 1) R 

2 l+ 1 

∑ 

α′ 

I 
(0)2 
α′ 

A 

(0)2 
α′ 

[ 
ω 

(0)2 
α′ − ( m�orb ) 

2 
] 
[ 

1 + 2 m�orb 

( 

( C α′ − 1) m�

ω 

(0)2 
α′ − ( m�orb ) 

2 
−

˜ I 
(1) 
α′ l 

ω 

(0) 
α′ I 

(0) 
α′ 

) ] 

+ O 

(
�2 

)
. (100) 

rom equation ( 100 ) it is easy to see that, in the static limit ( �orb → 0), we have 

 l = 

2 πG 

(2 l + 1) R 

2 l+ 1 

∑ 

α′ 

I 
(0)2 
α′ 

ω 

(0)2 
α′ A 

(0)2 
α′ 

+ O 

(
�2 

)
. (101) 

The final expressions for the ef fecti v e Lo v e number, equations ( 99 ) and ( 100 ), show that the dynamical tidal response should be affected
y the star’s rotation already at first order, due to the corrections to the mode frequencies and the associated mass multipole moments. Given
hat, away from other orbital resonances, the f mode is expected to make the largest contribution to the tidal response (Andersson & Pnigouras
020 ), one may choose to retain only the term corresponding to the appropriate ( l , m ) f -mode multipole in the mode-sum representation of the
o v e number (Andersson & Pnigouras 2021 ). This case was considered in the study of the dynamical tides of Jupiter in Lai ( 2021 ), and the

esult can be reproduced from equation ( 99 ), if only the f mode is considered and one assumes that ˜ I 
(1) 
f � I 

(0) 
f (which can be shown to be a

ood approximation for f modes). 11 For neutron star binaries, the modelling of resonantly excited f modes is also moti v ated by the fact that
urrent gra vitational-wa v e interferometers may be able to observ e the late inspiral, where the f mode orbital e xcitation dominates the dynamical
ide (Hinderer et al. 2016 ; Steinhoff et al. 2016 ; Schmidt & Hinderer 2019 ; Vick & Lai 2019 ; Pratten, Schmidt & Hinderer 2020b ; Steinhoff
t al. 2021 ; Kuan & Kokkotas 2022 ; Pratten, Schmidt & W illiams 2022 ; W illiams, Pratten & Schmidt 2022 ). Our result for the ef fecti ve
o v e number ( 99 ) has the same functional form as the corresponding result in Steinhoff et al. ( 2021 ), which also includes a treatment of the
ear -resonance beha viour of the tidal response using the stationary-phase approximation, in order to be incorporated in waveform models.
lternatively, as seen from equation ( 101 ), rotational corrections to the static Love number formally enter at second order in rotation. 

 DISCUSSION  

he exciting era of gra vitational-wa ve astronomy we find ourselves in promises to provide a vast number of future observations of binaries
nvolving neutron stars. This presents an opportunity to constrain the equation of state of dense nuclear matter, currently an open question in
uclear physics and astrophysics. Tidal deformations in neutron star binaries induce phase shifts in the gra vitational-wa ve signal, compared
o that of two-point particles, thus of fering v aluable information about their internal structure. This technique was already demonstrated with
W170817, the first direct detection of a neutron star binary with gravitational waves and the inaugural event for multimessenger astronomy.

So far, the majority of work on the subject has concentrated on the adiabatic treatment of the tidal deformations of compact binaries,
hich is rele v ant mainly at the early stages of the inspiral, where the binary evolution is slow. However, in the later stages, dynamical effects
eed to be accounted for. As the orbital evolution becomes faster, the tidal perturbation can no longer be treated as an instantaneous hydrostatic
esponse. In addition, the star’s normal oscillation modes are expected to be resonantly excited throughout the inspiral, as the orbital motion
weeps through the rele v ant frequencies. The high-precision required by neutron star parameter estimation in order to adequately constrain
he dense matter equation of state, in conjunction with the upcoming third-generation detectors where the sensitivity will be increased by an
rder of magnitude, moti v ate a comprehensive study of dynamical tidal effects in neutron star binaries. 

In this paper, we have considered the dynamical tidal response of a spinning fluid star within the context of Newtonian gravity. The
erturbation of a star due to an external gravitational field can be represented in terms of its normal modes. With the various classes of
scillation modes depending in different ways on the inner structure of the star, this description provides useful intuition about the impact that
he different aspects of neutron star physics have on the problem. Rotation is one such aspect. Even though neutron star binaries which are
lose to merger are expected to have spun down and thus rotate slowly, rotation modifies the problem in several important ways, which are
eflected on both the oscillation modes and the formalism itself: (i) it introduces a coupling among different multipoles and, as a result, a given
ode can no longer be described by a single spherical harmonic Y 

m 

l ; (ii) it lifts the de generac y among modes with the same multipole degree
 , but different azimuthal orders m , hence distinguishing prograde and retrograde modes; (iii) it gives rise to a new class of modes, the inertial
odes, which need to be taken into account in the mode expansion of the tidal deformability; (iv) it deforms the background star into an oblate
NRAS 527, 8409–8428 (2024) 

1 Note that in Lai ( 2021 ) and in Dewberry & Lai ( 2022 ) the chosen mode normalization implies that B 

(1) 
α′ = 0. Ho we ver, this choice (or any other choice for that 

atter) does not imply, as mentioned in Dewberry & Lai ( 2022 ), that the first-order correction to the multipole moment I (1) 
α′ l vanishes identically, because the 

nhomogeneous piece ˜ I 
(1) 
α′ l is non-zero. What does vanish by making this normalization choice is the combined first-order correction to the multipole moment 

f both the prograde and the retrograde mode, owing to the fact that ˜ I 
(1) 
β ′ l = − ˜ I 

(1) 
α′ l . 
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pheroid (at second order); and (v) it modifies the mode orthogonality condition, necessitating the use of a different type of mode expansion
phase-space decomposition) in order to obtain uncoupled equations of motion for the modes. 

We derived an expression for the ef fecti ve tidal Love number using the mode-sum representation, both for the non-rotating and the
otating case, clarifying how the tidal response depends on the prograde and retrograde oscillation modes. We paid particular attention to the
odifications to the formalism due to the presence of rotation, an issue which is often o v erlooked. In order to quantify the effect of rotation, we

onsidered a slowly rotating body and carried out all the calculations at first order in the rotation, discussing the properties of mode corrections
nd addressing some subtle points related to mode normalization. This led to an expression for the ef fecti v e Lo v e number which includes
rst-order corrections, due to changes in the mode frequencies and mass multipole moments. Finally, we demonstrated that the static tidal
eformability is affected by rotation only at second order. 

The influence of rotation on dynamical tides has been studied in the past, focusing on orbital mode resonances (Lai 1997 ; Ho & Lai
999 ; Lai & Wu 2006 ; Flanagan & Racine 2007 ; Poisson & Dou c ¸ot 2017 ; Xu & Lai 2017 ; Banihashemi & Vines 2020 ; Poisson 2020a , b ),
ut also more recently in the context of gravitational waveform modelling, where the dynamical corrections induced by a resonantly excited
 mode are considered (Steinhoff et al. 2021 ). The importance of rotation in the description of dynamical tides was demonstrated lately, after
he suggestion that the difference between the theoretically predicted and the observed value of Jupiter’s tidal Lo v e number may be explained
y dynamical effects (Idini & Stevenson 2021 ; Lai 2021 ; Dewberry & Lai 2022 ; Idini & Stevenson 2022a , b ). 

Moving forward, we need to bring these calculations into general relativity. Neutron stars are highly relativistic bodies and such calculations
re required to incorporate realistic descriptions of the matter. There are, ho we ver, a number of issues that complicate this step. The problem
ecomes more complicated already in the post-Newtonian regime, as the gravito-magnetic tidal field couples to currents in the star (e.g. see
oisson 2020b , 2021a for recent expositions of this aspect). Moreover, in general relativity, the modes are quasi-normal as the radiation of
ra vitational wa v es carries energy a way from the star. F or this reason, the modes hav e comple x frequencies and no longer form a complete
asis. Secondly, the backscattering of waves by the curved background space–time leads to the presence of late-time power-law tails. From
he problem of perturbed black holes we know that the tail behaviour can be represented by a branch cut in the Green’s function for the
erturbation (Leaver 1986 ; Gundlach, Price & Pullin 1994 ; Andersson 1997 ). The implications of this for the tidal problem have, as far as we
re aware, not yet been considered. In addition, we need to make progress on the issue of how to represent a dynamical tidal field in general
elativity. In short, there is a fair bit of work to be done. 
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aithel C. A. , Özel F., Psaltis D., 2018, ApJ , 857, L23 
eed B. T. , Fattoyev F. J., Horowitz C. J., Piekarewicz J., 2021, Phys. Rev. Lett. , 126, 172503 
eisenegger A. , Goldreich P., 1992, ApJ , 395, L240 
eisenegger A. , Goldreich P., 1994, ApJ , 426, L688 
iley T. E. et al., 2019, ApJ , 887, L21 
iley T. E. et al., 2021, ApJ , 918, L27 
aio H. , 1981, ApJ , 244, L299 
chenk A. K. , Arras P., Flanagan É. É., Teukolsky S. A., Wasserman I., 2001, Phys. Rev. D , 65, 024001 
chmidt P. , Hinderer T., 2019, Phys. Rev. D , 100, 021501 
oufi F. , Goupil M. J., Dziembowski W. A., 1998, A&A, 334, 911 
teinhoff J. , Hinderer T., Buonanno A., Taracchini A., 2016, Phys. Rev. D , 94, 104028 
teinhoff J. , Hinderer T., Dietrich T., Foucart F., 2021, Phys. Rev. Research , 3, 033129 
tergioulas N. , Apostolatos T. A., Font J. A., 2004, MNRAS , 352, 1089 
trohmayer T. E. , 1991, ApJ , 372, L573 
uvorov A. G. , 2018, MNRAS , 478, 167 
ews I. , Margueron J., Reddy S., 2018, Phys. Rev. C , 98, 045804 
nno W. , Osaki Y., Ando H., Saio H., Shibahashi H., 1989, Nonradial oscillations of stars, 2nd edn. University of Tokyo Press, Tokyo 
ick M. , Lai D., 2019, Phys. Rev. D , 100, 063001 
itale S. , Lynch R., Veitch J., Raymond V., Sturani R., 2014, Phys. Rev. Lett. , 112, 251101 
itale S. , Lynch R., Raymond V., Sturani R., Veitch J., Graff P., 2017, Phys. Rev. D , 95, 064053 
illiams N. , Pratten G., Schmidt P., 2022, Phys. Rev. D , 105, 123032 
u W. , Lai D., 2017, Phys. Rev. D , 96, 083005 
eung C.-H. , Lin L.-M., Andersson N., Comer G., 2021, Universe , 7, 111 
MNRAS 527, 8409–8428 (2024) 

http://dx.doi.org/10.1103/PhysRevD.91.104026
http://dx.doi.org/10.1103/PhysRevD.92.124041
http://dx.doi.org/10.1103/PhysRevD.34.384
http://dx.doi.org/10.1103/PhysRevD.59.044009
http://dx.doi.org/10.1086/307580
http://dx.doi.org/10.1103/PhysRevC.98.035804
http://dx.doi.org/10.1103/PhysRevD.86.044032
http://dx.doi.org/10.1103/PhysRevD.88.104040
http://dx.doi.org/10.1086/166044
http://dx.doi.org/10.3847/2041-8213/ab50c5
http://dx.doi.org/10.3847/2041-8213/ac089b
http://dx.doi.org/10.1046/j.1365-8711.2003.06057.x
http://dx.doi.org/10.1103/PhysRevLett.120.261103
http://dx.doi.org/10.1103/PhysRevD.98.083007
http://dx.doi.org/10.1103/PhysRevD.90.124039
http://dx.doi.org/10.1146/annurev-astro-081913-035941
http://dx.doi.org/10.1103/PhysRevLett.128.101101
http://dx.doi.org/10.1103/PhysRevD.92.024010
http://dx.doi.org/10.1103/PhysRevD.92.124003
http://dx.doi.org/10.1103/PhysRevD.98.124023
http://dx.doi.org/10.1093/mnras/182.3.423
http://dx.doi.org/10.1111/j.1365-2966.2011.19725.x
http://dx.doi.org/10.1111/j.1365-2966.2009.14408.x
http://dx.doi.org/10.1093/mnras/stab870
http://dx.doi.org/10.1093/mnras/stac1380
https://www.springer.com/gb/book/9783319982571
http://dx.doi.org/10.1103/PhysRevD.100.063016
http://dx.doi.org/10.1103/PhysRevD.91.044004
http://dx.doi.org/10.1103/PhysRevD.101.104028
http://dx.doi.org/10.1103/PhysRevD.102.064059
http://dx.doi.org/10.1103/PhysRevD.103.064023
http://dx.doi.org/10.1103/PhysRevD.104.104062
http://dx.doi.org/10.1103/PhysRevD.95.044023
http://dx.doi.org/10.1103/PhysRevD.52.848
http://dx.doi.org/10.1103/PhysRevD.82.024016
http://dx.doi.org/10.1103/PhysRevResearch.2.043096
http://dx.doi.org/10.1038/s41467-020-15984-5
http://dx.doi.org/10.1103/PhysRevLett.129.081102
http://dx.doi.org/10.1086/155143
http://dx.doi.org/10.1103/PhysRevD.93.084042
http://dx.doi.org/10.3847/2041-8213/ab822f
http://dx.doi.org/10.1140/epja/i2019-12716-4
http://dx.doi.org/10.3847/2041-8213/aaa402
http://dx.doi.org/10.3847/2041-8213/aabcbf
http://dx.doi.org/10.1103/PhysRevLett.126.172503
http://dx.doi.org/10.1086/171645
http://dx.doi.org/10.1086/174105
http://dx.doi.org/10.3847/2041-8213/ab481c
http://dx.doi.org/10.3847/2041-8213/ac0a81
http://dx.doi.org/10.1086/158708
http://dx.doi.org/10.1103/PhysRevD.65.024001
http://dx.doi.org/10.1103/PhysRevD.100.021501
http://dx.doi.org/10.1103/PhysRevD.94.104028
http://dx.doi.org/10.1103/PhysRevResearch.3.033129
http://dx.doi.org/10.1111/j.1365-2966.2004.07973.x
http://dx.doi.org/10.1086/170002
http://dx.doi.org/10.1093/mnras/sty1080
http://dx.doi.org/10.1103/PhysRevC.98.045804
http://dx.doi.org/10.1103/PhysRevD.100.063001
http://dx.doi.org/10.1103/PhysRevLett.112.251101
http://dx.doi.org/10.1103/PhysRevD.95.064053
http://dx.doi.org/10.1103/PhysRevD.105.123032
http://dx.doi.org/10.1103/PhysRevD.96.083005
http://dx.doi.org/10.3390/universe7040111


8428 P. Pnigouras et al. 

M

Y
Y
Y
Z

T

u H. , Weinberg N. N., 2017a, MNRAS , 464, 2622 
u H. , Weinberg N. N., 2017b, MNRAS , 470, 350 
unes N. , Gonz ́alez J. A., 2006, Phys. Rev. D , 73, 024010 
NRAS 527, 8409–8428 (2024) 

evin M. , Berry C. P. L., Coughlin S., Chatziioannou K., Vitale S., 2020, ApJ , 899, L17 

his paper has been typeset from a T E 

X/L 

A T E 

X file prepared by the author. 

© The Author(s) 2023. 
Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License 

( https://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/527/3/8409/7440005 by guest on 02 Septem
ber 2024

http://dx.doi.org/10.1093/mnras/stw2552
http://dx.doi.org/10.1093/mnras/stx1188
http://dx.doi.org/10.1103/PhysRevD.73.024010
http://dx.doi.org/10.3847/2041-8213/aba8ef
https://creativecommons.org/licenses/by/4.0/

	1 INTRODUCTION
	2 TIDAL DEFORMATIONS
	3 NORMAL MODES OF OSCILLATION
	4 MODE-SUM REPRESENTATION
	5 THE SLOW-ROTATION APPROXIMATION
	6 DISCUSSION
	ACKNOWLEDGEMENTS
	8 DATA AVAILABILITY

	REFERENCES

