I INTRODUCTION

TampML: Tampering Attack Detection and
Malicious Nodes Localization in NoC-based
MPSoC

Haoyu Wang, Student Member, IEEE, and Basel Halak, Member, IEEE

Abstract—The relentless growth in demand for computing
resources has spurred the development of large-scale, high-
performance chips with diverse, innovative architectures. The
Network-on-Chip (NoC) paradigm has become a predomi-
nant system for on-chip communication within Multi-Processor
System-on-Chip (MPSoC) designs. However, the increasing com-
plexity and the reliance on outsourced Third-Party Intellectual
Properties (3PIPs) introduce non-negligible risks of Hardware
Trojan (HT) insertions by untrusted IP vendors. One of the most
critical threats posed by HTs is the tampering with communica-
tion data packets. In this paper, we introduce a comprehensive
framework for the detection of tampering attacks and localization
of HTs within NoCs. This framework is incorporated into a
novel distributed monitoring architecture that leverages the NoC
structure. Utilizing a machine learning model for malicious flit
detection and a high-precision algorithm for HT node localiza-
tion, the framework’s efficacy has been substantiated through
tests with real PARSEC benchmark workloads. Achieving an
impressive detection accuracy and precision of 99.8% and 99.5%
respectively, the framework can localize HT nodes with up to
100% precision and recall in most cases. Furthermore, the data
cost of localization is on average only 3.7% of tampered flits,
which is significantly more efficient—up to 11 times faster—than
our initial methods. As a comprehensive and cutting-edge security
solution for combating communication data tampering attacks,
it accomplishes the expected performance while maintaining
minimal power and hardware overhead.

Index Terms—Hardware Security, NoC, MPSoC, Hardware
Trojan, Data Tampering, Machine Learning.

I. INTRODUCTION

HE significant rise in the outsourcing level in the hard-

ware supply chain has led to the emergence of new
security threats at the circuit level, for instance, HT (Hardware
Trojan) [1] [2]. HTs are malicious modifications in the circuit
or architecture, especially in the VLSI (Very Large-Scale Inte-
gration) systems. The Network-on-Chip (NoC) architecture is
widely employed to facilitate efficient communication among
Intellectual Properties (IPs) in Multi-Processor Systems-on-
Chip (MPSoCs). However, this architecture is susceptible to
the injection of Hardware Trojans (HTs), posing significant
risks to communication systems and protocols. Given the
challenges in modern chip design, it is often difficult to avoid
the use of third-party IPs (3PIPs) from untrusted vendors.

This paper was produced by the IEEE Publication Technology Group. They
are in Piscataway, NJ.
Manuscript received January 10, 2024; revised May 30, 2024.

Three out of the five security issues in NoC-based MP-
SoCs summarized in [3] can be induced by HTs, namely
spoofing, Denial-of-Service (DoS), and buffer overflow or
memory extraction. Such attacks can take place at various
stages of the hardware development cycle, including IP de-
velopment, system integration, physical implementation, and
IC (Integrated Circuits) fabrication. Detecting hardware Trojan
insertion during development using verification methods is
highly challenging and often ineffective [5]. This is because
these methods are designed to verify circuit functionality under
expected operational conditions, whereas stealthy hardware
Trojans are typically activated either internally or under rare
conditions, which are unlikely to be covered by standard
verification or validation methods. This is especially true in
heterogeneous multi-core systems with highly complex func-
tionality that can easily mask malicious behavioral deviations
caused by a Trojan. Therefore, the application of artificial
intelligence technology in this context is on the rise. For
instance, the use of supervised machine learning algorithms
for Trojan detection has been proposed, as demonstrated
by the authors of [7], showing potential for achieving the
outstanding performance including high detection accuracy
and low overhead and power.

HTs in NoC architectures can sabotage functionality or
facilitate sensitive information leakage. A common tactic is
communication data tampering, allowing system cores to be
spoofed and data stolen. HTs are hypothesized to be injected
into a router, Network Interface (NI), or an outsourced IP core,
as discussed in [6], enabling traffic data manipulation. HTs
in routers can alter both source and routing-path traffic data,
while those in NIs and IPs are limited to tampering with source
data. Existing HT detection methods focus on system feature
monitoring. The study in [7] utilized an SVM (Support Vector
Machine) algorithm for detecting traffic attacks in a custom
NoC for biomedical applications. Gradient Boosting classifiers
were used in [8], and [9] proposed a novel router architecture
with an embedded DetectANN module for HT detection and
malicious data mitigation. In [12], timing violations of packets
were employed for HT detection and localization in NoC.
Yao’s study in [13] presented a framework for both detecting
and localizing traffic attacks in NoC, treating the source node
as malicious. However, this method overlooks nodes on the
malicious packet’s routing path. To our knowledge, there is
no existing work using machine learning or similar advanced
techniques for detecting and localizing tampering attacks.

0000-0000/00$00.00 © 2021 IEEE

II BACKGROUND AND RELATED WORK

This paper is the first to propose a machine learning-based
approach for detecting and localizing HT-based data tampering
attacks in NoC, surpassing existing methods. Building on
our preliminary work in [14], this paper presents significant
enhancements and extended experiments. Our results show that
the ANN (Artifical Neural Network) model and our proposed
algorithm effectively parses traffic data to detect and localize
HT-affected nodes with high overall performance in a novel
distributed monitoring system. The primary contributions of
this work are detailed subsequently.

o A complete and enhanced communication data tampering
attack detection & HT-injected nodes localization frame-
work has been proposed. The detection stage has been
optimized to enhance accuracy and reduce runtime and
overhead. This innovative framework combines ML with
flit attributes, marking the first time such an approach
has been used to detect tampered data communication
and accurately localize HT nodes.

o A novel, distributed monitoring system is proposed for
the real-time collection of traffic data, integrating and
operationalizing the security framework. This system has
been explored and assessed across three conventional in-
router monitoring schemes.

« An improved experimental flow was established to vali-
date the effectiveness of the proposed framework under
real workloads. Both static and dynamic validation meth-
ods were implemented using Gem5 simulators. The pro-
posed solution was rigorously evaluated using Synthetic
Traffic Pattern (STP) and PARSEC benchmarks, which
mimic real-world traffics and workloads. It was exten-
sively compared with existing approaches, demonstrating
its robustness and superiority.

The structure of this paper is organized as follows: Section
Il provides a review of the related work. The proposed
framework is detailed in Section IV. Section V introduces the
monitoring scheme and architecture. Section VI discusses the
experimental setups and results. Finally, conclusions are drawn
in Section VII.

II. BACKGROUND AND RELATED WORK

In [7], a supervised Support Vector Machine (SVM) algo-
rithm was trained to identify three common traffic attacks:
traffic diversion, router looping, and core address spoofing.
This training utilized packet content features for offline pre-
training. Hussain, in [10] introduced the Energy Efficient
Trojan Detection (EETD) design, emphasizing high energy
efficiency in HT detection within NoC systems. Charles, in
[12], developed an HT detection method that continuously
monitors the timing of packet arrivals and other factors in NoC.
This method introduced two boundary parameters, Packet
Arrival Curves (PACs) and Destination Packet Latency Curves
(DLCs), as thresholds to differentiate between normal and ma-
licious packets. Charles also proposed a real-time localization
technique for malicious IPs by assessing whether their DLCs
fall within a specific timing confidence interval, leading to a
protocol for identifying malicious IPs. Ke, in [9], designed a
DetectANN module within a proposed router architecture to

serve as an HT detection unit. By analyzing network activities
such as buffer and link utilization, and local operational tem-
perature, Ke’s approach achieved a notable detection accuracy
of 97%. Yao et al. in [13] applied machine learning to localize
HT, directly classifying the source node of malicious packets
as HT-injected, without considering elements along the routing
path of these packets. In a subsequent study, Charles et al.
utilized machine learning (specifically, XGBoost) in [8] to
detect flooding Denial of Service (DoS) attacks in real-time,
achieving an impressive accuracy of approximately 99.9%.
The Sniffer system, detailed by Sinha in [11], employed
a perceptron-based machine learning model to evaluate the
traffic status of routers. This system could detect and localize
Malicious 3-Party IPs (M3PIPs) initiating flooding attacks.

Machine learning algorithms commonly used for detecting
or localizing Hardware Trojans (HTs) in Network on Chip
(NoC) systems include SVM [7], ANN [9], Random Forest
[13], XGBoost [8], and perceptron-based ML [11]. The study
in [9] highlighted the effectiveness of deploying an ANN
model for HT detection in NoC, leading to its adoption in
our semi-supervised learning approach for processing packet
data and providing foundational predictive values for further
analysis and decision-making within our framework. More-
over, studies like [11], [8], and [9] have utilized machine
learning to detect attacks, leveraging runtime-engineered sys-
tem performance features such as timing, latency, utilization,
temperature, packet counts, and injection/ejection rates. These
features are easily collectible and can indirectly indicate
normal or abnormal system states. However, they are subject
to external influences, such as temperature variations due to
environmental conditions, or time and latency alterations due
to changes in system frequency, voltage, and other factors,
which can potentially lead to inaccurate HT detection. Con-
versely, Amey’s research [7] effectively used packet content
to train SVMs, demonstrating significant success in detecting
Denial-of-Service (DoS) attacks, including traffic diversion
and core spoofing. Packets’ attributes are particularly sensitive
to specific attacks, especially malicious tampering, and are less
likely to be affected by external interferences not related to HT
attacks.

In the realm of detecting and localizing traffic attacks
such as DoS and related HTs in NoC systems, ML has
been employed predominantly in scenarios like flooding attack
detection. However, one specific type of DoS attack, known
as the tampering attack, has not been extensively addressed
using ML techniques, but rather through traditional methods.
For instance, Frey [15] introduced a countermeasure against
HT tampering attacks using Physical Unclonable Function
(PUF). This method involved the deployment of a random
vector generator in routers, enabling each router to have an
independent local random-vector generator. This generator was
crucial in providing evidence for selecting the flit permutation
pattern, leading to a collaborative dynamic permutation and
anti-tampering flit protection based on the PUF technique.
Furthermore, to counteract complex bit-triggered HTs capable
of compromising packets, Kumar in [16] utilized bit shuf-
fling and Hamming coding methods. These methods were
effective in mitigating specific types of HTs that tamper with

III THREAT MODELLING

...Tampering Node... ...Non-Attacked Flits Routing Path... Source|

Malicious
Node 0

...Tampering Node...

...Attacked Routing Path...

Destination

o
@
a4
=
o
=1
)
E]

<

ancious Malicious node
LALLM (HT injected)

Victim node

M Normal node

.ﬁfsmd Attacked/Tampered Flits transferring

Attacking examplel:
Source node initiates
tampering attack

Fig. 1: Tllustration of threats modeling.

Attacking exampleO:
Routing path tampering attack

=

packet content. Additionally, Charles in [6] proposed a novel
lightweight and trust-aware routing algorithm. This algorithm
was designed to enhance system protection by circumvent-
ing malicious outsourced IPs during communication, thereby
providing a defensive mechanism against tampering attacks in
NoC environments.

None of the related state-of-the-art studies have introduced a
method for detecting and localizing packet tampering HT. Our
earlier work, as presented in [14], was the first to propose a
comprehensive technique specifically addressing the detection
and localization of packet tampering attacks. In this paper, we
aim to extend and refine this technique, focusing on enhanced
detection and more precise localization of packet tampering
attacks.

III. THREAT MODELLING

This work specifically addresses HT-based communication
data tampering attacks in NoC systems, focusing on the
manipulation of flits or packets. Consequently, malware and
external attacks fall outside the scope of this research.

Starting with modelling attacking paths. Two distinct attack-
ing patterns are considered in this work, as depicted in two
examples in Fig. 1. The victim nodes are located in the bottom
left and bottom right corners, targeted by malicious nodes
0 and 1, respectively. Example O involves malicious node O
and victim node 0, illustrating flit tampered by a routing-path
node. In this scenario, flits originated from the top right corner
pass through and are tampered by malicious node O before
reaching victim node 0. Example 1 showcases an attack from
a malicious source node 1, where flits are sent directly from
this node to victim node 1, affecting all intermediate nodes on
the malicious routing path. The localization technique in the
complete framework is specifically designed to address these

Features selected for ANN

A
id: ;) itype:| RdRq :nMs:

L1D:L2
36].: Src: 47| num _deps: 1

deps: # C |

Assumed untampered data

Fig. 2: Packet example to illustrate features selected and
assumption in [14].

‘: f Route Information: SRC Router,
' SRC NI, DST Router, DST NI

! Packet ID Flit Size

__________________ . A e e e
| 1

Virtual Channel ID '

Targeted
Tampered
Fields

Virtual Net ID Flit ID Message Pointer Flit Buffer Size

Fig. 3: Flit format to illustrate features selected and assump-
tion.

attack patterns. Its aim is to swiftly and accurately identify the
malicious node involved in the attack.

[14] primarily explored the modification of packets’ feature
data, such as memory address, packet type, and number of
dependencies, as depicted in Fig. 2. These modifications can
be considered alterations of packets’ global features. However,
each packet is composed of flits, including the head flit,
body flit, and end flit. In practical hardware implementations
and runtime communication, the process of constructing flits
is more susceptible to tampering by inserted HTs. Since
there are more data bit operations and calculations during flit
construction rather than during transfer, such as ID (packet
ID and virtual channel ID) calculations, message formatting
(message size and message pointer), and buffer size deter-
mination, HT could be triggered during these operations to
maliciously interfere with the information being injected into
the flit. Therefore, this work targets flits as the objects of attack
instead of packets, providing a more realistic scenario. We
have identified specific fields within a flit frame for tampering,
including packet ID, flit size, message size, and flit width, as
shown in Fig. 3. The rationale for selecting these features
is twofold: they do not significantly disrupt normal traffic
and communication in the NoC, yet they pose a high risk
of spoofing or fuzzing victim IPs, which is a major threat
posed by data tampering attacks. Additionally, by selecting a
diverse range of data types as targets, the research covers a
broader spectrum of real attack scenarios, thereby enhancing
the validation of the proposed framework. Consistent with our
initial work, we assume that the source ID and destination ID,
integral to routing information, are not maliciously modified.
This assumption is crucial to avoiding introducing new traffic
attacks such as traffic diversion, routing loops [7], and flooding
[8] attacks, which could lead to unwanted side-effects from
non-targeted attacks. As such, all flits are expected to be routed
normally by the selected routing algorithm, such as the XY-
routing algorithm.

In addition, the HT is specifically injected into the input

IV. PROPOSED TAMPML FRAMEWORK

New method

T a— —— Old method in [14]:;
Calibration: pre-learning) o
DCI and Calibration

(

1

' improved:

' Initialize the first |

E ! DCl range ! EnhancedANN

. | -

Malicious | Pred_val = ANN_model(new_packets data) |¢— ! Enhanced_/;NN(ths)
Flits — | Normal,| \\\\ /j\
Detection E DCI detection and update: getk'rew: Extiact Gé% ew

I| DCI(Low_bound: Pred_val : High_bound) ? pac ets: SRC and flits

| If the packet is suspicious ! bsT

N foutsideDdl) __________________ J

—

Deducing: suspicious nodes = xy_routing(src, dst)
DSCT update: update nodes and credits (-/+)

Nodes Locagation™| AND-TOPprotocal
Checking the top

suspicious node in

AND-table

SAME-TOP protocol: If
top suspicious nodes are
the same at caging time

[Report the HT injected node! }

Fig. 4: The working flow of the improved proposed Hardware
Trojan detection and localization framework.

unit of the router. This location is chosen due to its critical
role in numerous functions including flit formatting, sending,
diverting, routing calculation, and receiving. Nodes infected
by the HT can maliciously modify the information of normal
flits passing through these compromised nodes.

IV. PROPOSED TAMPML FRAMEWORK
A. Overview of proposed framework

The enhanced Hardware Trojan (HT) detection and local-
ization framework, dubbed TampML, derives its name from
a fusion of “Tampering Attack Detection” and “Malicious
Nodes Localization,” while also symbolizing the use of ma-
chine learning for tampering attack detection. It comprises
fewer phases compared to our first design: the Malicious
Flits Detection Phase and the Dynamic Security Credit
Table (DSCT) HT Localization Phase, as shown in Fig. 4.
This framework’s detection phase is tasked with identifying
malicious flits. An effective ANN model, incorporated into the
initial detection phase, processes selected real-time flit features
(see Fig. 3). Identified suspicious flits are then communicated
to the DSCT. The DSCT initially identifies suspect nodes
and concurrently updates security credits across two DSCT
tables, facilitating the dynamic localization of the HT node.
Two concurrent localization protocols aim to pinpoint HT-
compromised nodes. The first, SAME-TOP, introduced in our
prior work [14], is complemented by a new protocol in this
paper, AND-TOP. AND-TOP serves as an adjunct method, im-
proving the localization’s effectiveness and efficiency. Further
details are elucidated in subsequent sections.

B. Detection: Malicious Flits Detection using EnhancedANN

A variety of machine learning models have been utilized to
address security issues in NoCs, among which neural networks
stand out as more powerful and efficient compared to other
fundamental models. This superiority is attributed to their
robust performance with non-linear datasets and proficiency
in binary classification tasks. Consequently, in this stage, an
ANN-based ML model is utilized, focusing on flits’ contents

to identify tampering attacks. The threat model centers on
flits’ contents being tampered with in real-time by HTs in the
input units of malicious routers. Key features for detecting
abnormal flits, highlighted in red in Fig. 3, were chosen for
the framework. Due to flits containing more communication
and routing information compared to packets, feature selec-
tion requires careful consideration. The selected features for
detecting tampering include packet ID, flit size, message size,
and flit width. Other elements, such as virtual channel ID,
virtual net ID, message pointer, flit buffer size, and routing
information, primarily influence communication but can lead
to unintended consequences in detecting targeted attacks. For
example, altering the virtual channel ID can cause flit conges-
tion by directing traffic to busy channels, and tampering with
routing details such as the destination ID can misroute flits to
incorrect IPs, resulting in data loss for the intended receiver.
Unlike methods that monitor abnormal system performance
variations, our framework preemptively reacts by directly
extracting and monitoring flits’ contents, closely aligning with
the attack mechanism. Furthermore, flit tampering attacks are
not related to the chip’s physical characteristics including area
temperature or electrical noise, but are strongly associated with
the data itself.

Algorithm 1 Malicious Flit Detection using Enhanced ANN

Require: Input Attributes of Flits: Pkt ID, Flit Size, Msg Size,
Flit Width
1: while A flit inputs do
2. Classification <= Enhanced AN N (Flit_Attributes)
3. if Classification ==1 then
{//Suspicious Flit, Report SRC and DST to DSCT.}
4: else
{//Normal Flit, Getting Next}
5: end if
6: end while=0

An ANN model was trained using supervised learning, with
real workload flits labeled as normal (0) or tampered (1). This
training enables the model to quickly discern whether a flit
is normal or abnormal. The model’s architecture consists of
three layers: an input layer, a hidden layer, and an output layer,
balancing between model size and performance (including
accuracy, precision, recall, and inference speed). The model
was iteratively developed, starting from the smallest size
and expanding until satisfactory performance was achieved,
resulting in the final three-layer structure. The classification
outcomes of this ANN model can be directly used without
further processing, such as the Dynamic Confidence Inter-
val (DCI) method mentioned in [14]. The latter approach
suffers from significant disadvantages, including prolonged
processing time for a single packet, increased computational
demands, and heightened randomness. A classification result
of 1 indicates a suspicious flit, prompting the reporting of its
source and destination ID to the second stage of DSCT HT
node localization. Conversely, a result of 0 signifies a normal
flit, and the model then examines the next flit. This process,
depicted in the right corner of Fig. 4, is termed Enhanced ANN.

IV. PROPOSED TAMPML FRAMEWORK

Security Credits Heatmap: SAME-TOP protocol triggered only |DSCT (source)||DSCT (routing-path)

it flit72 i i3 —
flitx_fii flita oooo SRC-Table | _RP-Table . Node TcreditiNods. T Credit
src72 || Src4 (2) oooo Node [Credits| Node [Creditd 6 xy))
dst72 || Dst4 (29) odood B[] B .] -2% j 61 (5,7)].-23. |61 (5,7). 22
Suspicious flits - @3 SAME-TOP protocol (caging_time=1) N 63(7,7)[-20 |2 (6,7) -30
from EnhancedANN X-Y routing algorithm 25 21200 1 -3 159(37) 23
deducing 18 58(2,7)[-2 |60 (4,7) -22
HT node /° 2 (1) (33) 0(00) | -1 |51(3,6) -16
= g - yx 0 1 2 3 4 5 6 7 P} 0|43 (3,5) 16
SRC-Table RP-Table Iqgalization NZSE TCarl:;its AND-Table N::eT?ZELZits — —— 63,7 | 13
NOde Credits Node Credits = ™ Node Credits 18 =7 ngher suspiciousness < Credits > Lower suspiciousness
2 -2 3,4,5, -1 22 P 13+{-42-17 13 17 When caging time = 5: check the worst-credit B2 0
13,21 - 6| -8-4 = node in both DSCTs.
Security Credit Assignment 6 -8 6 -4 The same worst-credit node in both DSCTs has Removed nodes with 0 credit
AND-TOP protocol (caging_time=1) treated as HT injected. (temporary no suspiciousness)

(one case) —

(a) DSCT workflow: from suspicious flits to malicious node localization

(b) DSCT example: AND-TOP protocol only, and the heat map of the
HT-injected node simulated and localized

Fig. 5: Dynamic Security Credit Table illustration and the AND-TOP example

It streamlines the malicious data detection stage and enhances
detection efficiency and performance.

The entire process of malicious flit detection is more effi-
cient and streamlined compared to the Dynamic Confidence
Interval (DCI) method, as illustrated in Algorithm 1. Specifi-
cally, it has removed the calibration stage, which costs around
500 packets (equivalent to more than 500 flits), DCI checking
inside or outside of the dynamic interval, and DCI updating
the curve. Only the ANN classification stage is retained, with
an added if-else statement to check the classification result.
It is estimated that at least 80% of computation and time is
optimized by this newly proposed detection approach.

C. Localization: Dynamic Security Credit Table

The flit tampering behavior, including maliciously modified
data, is not directly related to the location of HT injection in
the NoC. Thus the machine learning model is nearly impracti-
cal on HT node localization. To address this, we developed the
Dynamic Security Credit Table (DSCT) algorithm, which is
both precise and rapid. DSCT’s primary function is to identify
suspicious nodes, assign and update their security credits, rank
nodes based on these credits, and ultimately localize the HT.
The DSCT algorithm hinges on two crucial elements: the
node and its associated credit. Additionally, to enhance the
original scheme mentioned in [14], we incorporated an extra
localization protocol, functioning as a compensatory trigger.
The localization triggering protocols are named SAME-TOP
and AND-TOP. The "TOP’ in their names denotes the highest
level of suspicion, represented by the worst credit value in the
DSCT table.

Before delving into the new two localization protocols, it is
important to outline some preliminary algorithms of the DSCT.
The DSCT approach utilizes two separate tables for tracking
suspicious activity: one for source nodes and another for
routing-path nodes involved in suspicious flits transmission,
as shown in the threat modeling in Fig. 1.

In Algorithm 2, suspicious source nodes are identified by
the originating node of suspicious flits and are added to the
DSCT _src table with an initial -2 security credit in CreSrc.
Each time a source node already listed in DSCT _src generates
a new suspicious packet, its credit score decreases by 2.
Conversely, the DSCT_rtp table catalogs suspicious routing-
path nodes, excluding the flit’s source node. The updating
of DSCT _rtp involves utilizing the X-Y routing algorithm to

Algorithm 2 Dynamic Security Credit Table Algorithm

Require: Source ID and Destination ID of suspicious flits
reported by EnhancedANN
1: while Suspicious flit inputs do
2: {//DSCT_src check and update:}
3. if src_node ¢ DSCT_src then
4: DSCT _src <+ DSCT_srcU src_node
5: end if

CreSrc[src_node] «— CreSrc[src_node] — 2
CreSrclother_nodes] + CreSrclother_nodes| + 1
{//DSCT_rtp check and update:}

8: rtp_nodes + XY _routing(src_node, dst_node)

9: if rtp_nodes ¢ DSCT_rtp then
10: DSCT _rtp + DSCT_rtp U rtp_nodes
11: end if

122 CreRtp[rtp_nodes] « CreRtp[rtp_nodes] — 1

13: CreRtplother_nodes] < CreRtplother_nodes] + 1
{//AND-TOP table: Picking same nodes in both tables}

140 DSCT_AND < DSCT_srcN DSCT_rtp

15 CreAnd < CreSrcN CreRtp

16: Caging_SAME < (DSCT _srclworst_credit] ==
DSCT _rtplworst_credit])

17 Caging_AND «+ (len(DSCT_AND) >= 3)

18 if (Caging_SAME or Caging_ AND) at
caging_time then

{//Report an HT-injected node!}
19: end if
20: end while=0

infer routing-path nodes based on source and destination IDs,
subsequently updating their credits in CreRtp with a value
of -1. Nodes in both tables receive a credit reward of +1
if they are not involved in any suspicious activity during a
detection cycle. A node is removed from either DSCT table
(green strikethroughs in Fig. 5b) when its credit reaches 0 or
a positive value. The distinct credit assignment mechanisms in
the two DSCTs ensure that malicious nodes are identified in
every inspection of suspicious packets. Flits tampered with by
source nodes have a more significant impact compared to those

IV. PROPOSED TAMPML FRAMEWORK

altered by routing-path nodes; the former affects all nodes
between the source and destination, while the latter influences
only nodes past the tampering HT-injected node.

In the example depicted in Fig. 5a, a suspicious flit, specif-
ically flit 4, is being processed by the DSCT localization
module. The source ID (2) and destination ID (29) of this
flit are first extracted and analyzed using an inverse XY-
routing algorithm to deduce the routing-path nodes. In this
scenario, nodes 3, 4, 5, 13, and 21 are identified as suspicious
routing-path nodes. Subsequently, both the source node and
these routing-path nodes are added to their respective tables:
the SRC-Table for the source node and the RP-Table for the
routing-path nodes. Each type of node is assigned different
security credits upon entry, with the source node receiving -2
credits and the routing-path nodes each receiving -1 credit.

1) SAME-TOP Trigger Protocol

The localization of HT nodes takes place at the conclusion
of the DSCT algorithm. We begin with an explanation of the
SAME-TOP protocol. A concept called ’caging time’, plays a
crucial role here. Caging time, though not an actual time mea-
surement but an integer, represents the total count of suspicious
nodes in each DSCT simultaneously. It determines the optimal
moment for localizing the HT-injected node, thus significantly
reducing the chances of erroneous HT localization. However,
this work has optimized it further, owing to the new dataset
derived from flits data, which slightly differs from packet data.
As a result, the SAME-TOP protocol can achieve excellent
localization performance.

In the SAME-TOP localization protocol, localization is
triggered under one condition: if the same suspicious node
ID appears with the worst credits (highest suspiciousness)
in both DSCT tables. When this condition is met, the top-
suspicious node is reported as an HT-injected node to a
security unit or users. Essentially, the SAME-TOP protocol
identifies an HT-injected node as the one that concurrently
tops in suspiciousness in both DSCT tables.

Fig. 5b illustrates this with an HT-injected node 61 as an
example. The two tables in this figure correspond to DSCT _src
and DSCT_rtp as defined in Algorithm 2. The heatmap in Fig.
5b shows the total credits calculated by summing the same
nodes’ credits in the two DSCTs. For instance, node 61 at
coordinates (5,7) has a total credit of -65, derived from -23
in DSCT(source) and -24 in DSCT(routing-path). The orange
square indicates it is time to activate the localization function
due to the presence of a sufficient number of suspicious
nodes, and the red square includes the same nodes with the
lowest credits in both tables, which are then identified as
HT-injected nodes. The heatmap also visually represents the
threat propagation from the corrupt node 61 to its neighbors
and packet receivers, indicated by red arrows originating from
node 61. Similarly, in Fig. 5a, if the SAME-TOP protocol is
triggered at the final stage of DSCT, node 13 is identified as
a malicious node due to its lowest credits of -42 and -22 in
the separate source-node and routing-path-node tables.

2) AND-TOP Trigger Protocol

The AND-TOP protocol, designed as a supplementary lo-
calization method, is more straightforward. It was specifically
developed to address situations where the SAME-TOP proto-

6

Security Credits Heatmap: AND-TOP protocol triggered DSCT (AND)
710 0 -4 (-9-10)0 [-26-8) 0 -27 (-20-7) Node | Credit
60 0 0 0 0 0 0
B 0 0 0 o 0 0 (4y)
40 [0 [0 0 0 o 61(5,7)] -34
i: ;,19 (-9-10)3 : : 8 : -: ts3) |63 (7,7)] -27
10 0 0 0 0 0 0 0 25(1,3)] -19
00 [0 [0 0 0 [} 31(7,3)] -8
yix 0 1 2 3 4 5 6 7 58 (2,7)] -4
HT Node 61 Localization (AND-TOP) -> 24 -2
HT Node 25 Localization (SAME-TOP)
Security Credits Heatmap: SAME-TOP protocol triggered
70 0 0 -5 -5 -18 (5430 -3
60 0 0 0 0 0 0 0
50 0 (] 0 0
40 0 0 0 0
30 -5 0 0 0
210 0 0 0 o
10 0 0 0 0
00 0 0 0 0
y/x 0 4 5 6 7
DSCT (source) DSCT (routing-path)
Node (x,y) Credit Ny Node (x,y) Credit
i 25(1,3) -64 25(1,3) -41
2(2,0) -8 26 (2,3) -29
61(5,7) -5 27 (3,3) -23
63(7,7) -3 61 (5,7) -13
34 (2,4) 3 18(2,2) -8
10 (2,1) -8
When caging time = 5: check the 60 (4,7) 5
worst-credit node in DSCTs.

The worst-credit node in DSCTs has regarded as malicious node.
[|

Higher suspiciousness <————-———> Lower suspiciousness
g P Credits P

Fig. 6: DSCT examples: two malicious nodes (nodes 61 & 25)
and both protocols triggered.

col may not be effective or responded promptly, particularly in
cases involving HT-injected nodes that are highly inconspicu-
ous. AND-TOP operates by leveraging the two DSCT tables to
identify intersectional nodes and aggregate their credits from
both tables, thereby creating a new DSCT table named the
AND-Table. This table is dynamically updated in real-time
based on the latest entries in both the source-node DSCT table
and the routing-path DSCT table.

A configurable caging time, which must not be set to zero,
dictates the timing for localizing malicious nodes within the
AND-TOP protocol. If set to zero, the top node would be
incorrectly flagged as an HT-injected node every time a new
suspicious node is added. As shown in Fig. 5a, the AND-
Table is updated by selecting the same nodes that appear in
both the SRC-Table and the RP-Table, and their corresponding
credits are summed and recorded in the AND-Table. Once
the caging time for the AND-TOP protocol is reached, the
node with the highest level of suspiciousness (in this example,
node 13 with a combined credit score of -42-17) is identified
as an HT-injected node. As a compensatory measure, the
AND-TOP protocol is integrated into the DSCT localization
algorithm alongside the SAME-TOP protocol, using an OR
operation. This means either protocol can be triggered, but
not both simultaneously. However, in practice, the SAME-TOP
protocol is given higher priority due to the potential risk of
the AND-TOP protocol incorrectly identifying innocent nodes.
The process of extracting intersectional nodes and their credits
from the two tables is detailed in lines 14 and 15 of Algorithm
2.

In the example illustrated in Fig. 6, both the AND-TOP and

V DISTRIBUTED MONITORING SYSTEM ARCHITECTURE DESIGN IN NETWORK-ON-CHIP 7

Distributed Monitoring System: DFC + CTU

m m‘ m m
Y . o P

Flit Collector (DFC)

Periodically
Sampling flits
\ from4 routers

Transferrin%
— toctu L
Flits
Features

Control
Instruction

Centra_l_'l'ampML Unit (CTU)

J‘NTnﬂﬁL !
~—Flitdata— SRCand i
DST IDs of |
Suspicious|

Flits |
i

@ assiflcatloﬁ‘

—Result —

1
1
1
1
1
1
1
1
1
1
\\ 1
C i
1
1
1
1
1
1
1
]
m

Fig. 7: Distributed Monitoring System Design. (An example
of 4x4 NoC)

SAME-TOP protocols were activated, successfully localizing
two simulated HT-injected nodes. The AND-TOP protocol
initially localized malicious node 61, concurrently marking
node 24 with a low credit value, indicative of suspicious
activity around it. Subsequently, node 25 was localized by
the SAME-TOP protocol, leading to updates across all DSCT
tables. For instance, node 25 escalated to the top position in
both the source and routing-path tables due to its worst credit
scores, while node 61’s credits improved as fewer packets
passed through and were compromised by it.

An interesting observation from the credit heatmaps in Fig.
6 is that the paths of attack or impact, characterized by
tampered flits, are more prominently visible in the heatmap
associated with the SAME-TOP protocol than with the AND-
TOP protocol. This phenomenon is evident in the attack paths
originating from nodes 25 and 61 during the localization
process of node 25. A similar pattern is noticeable in Fig.
5b, where multiple attack paths from node 61 are clearly dis-
cernible. The reason for this discrepancy lies in the AND-TOP
protocol’s focus on nodes common to both tables, potentially
overlooking other suspicious nodes. Consequently, the AND-
TOP heatmap may show inconsistent nodes without clear
attack paths, whereas the SAME-TOP heatmap consistently
highlights suspicious nodes with more defined paths of attack.
This distinction underscores the complementary nature of the
two protocols, with each offering unique insights into the
network’s security status.

The enhanced HT localization framework we have devel-
oped, building upon the previously proposed model, enables
swift and precise localization of HT-infected nodes. The ability
to rapidly and accurately identify HT nodes is crucial, as it
affords the system more valuable time to defend against HT
attacks. This enhanced response time ensures that subsequent
workloads can be executed reliably and smoothly. Therefore,
achieving high precision in HT node localization is not just
beneficial but essential for the overall security of the system.

V. DISTRIBUTED MONITORING SYSTEM ARCHITECTURE
DESIGN IN NETWORK-ON-CHIP

To facilitate real-time flit collection and traffic monitoring,
we have proposed a distributed monitoring system integrated
within the NoC architecture. This system, depicted in Fig. 7,

comprises two main functional modules: the Distributed Flit
Collector (DFC) and the Central TampML Unit (CTU). The
scalability of the DFC allows for an adjustment between 4 to
16 nodes under monitoring, depending on the size of the NoC
being monitored. In our experimental setup involving a 64-core
NoC system, we utilized 4 DFCs, with each DFC monitoring

i a cluster of 16 nodes. Typically, a single CTU suffices for the

entire system.

A. Distributed Flit Collector (DFC)

In the top-right corner of Fig. 7, the functionalities of the
DFC are showcased. The DFC’s operation is tailored to the
security sensitivity requirements of the system, collecting flits
at an adjustable frequency, referred to as the sampling rate.
Once the flit data frames are obtained, an extractor component
within the DFC selects the relevant data needed for the ML
model classification. The final responsibility of the DFC is
to transmit all pertinent flit features to the CTU module for
further processing.

B. Central TampML Unit (CTU)

TampML is our proposed tampering attack detection and
localization approach, integrated into the CTU module, which
is represented by orange blocks in Fig. 7. The CTU is
tasked with critical functions including data pre-processing,
EnhancedANN classification, and malicious node localization.
The DFCs periodically forward the extracted flit data to
the CTU, which then undertakes the sorting, selecting, and
normalizing of this data. Once the preliminary processing is
completed, the EnhancedANN model takes over, classifying
the flit data. This classification process is facilitated by a
machine learning accelerator embedded in the actual chip,
which significantly boosts detection efficiency while maintain-
ing low hardware and power costs. As outlined in chapter IV,
the DSCT localization module receives routing information of
suspicious flits identified by EnhancedANN. It then executes
the localization algorithm and protocols at a logical level,
achieving a balance in power, performance, and area (PPA)
considerations. The localization outcomes are subsequently
sent to the system’s main processing unit (CPU) for further
security-related decision-making.

C. Design Considerations

This integrated approach, combining TampML with the
CTU and DFCs, ensures a streamlined and effective response
to potential security threats within the system. However, it is
important to note that typically, security designs can impose
redundancy on the power, performance, and area (PPA) aspects
of the actual SoC. To mitigate this issue and minimize any
undesired impact of our proposed monitoring system, we have
introduced two key design considerations.

The first consideration is an adjustable flit sampling rate.
This feature allows the system to maintain a balance be-
tween obtaining sufficient flit data for security analysis and
minimizing power consumption. By carefully controlling the
sampling rate, the CTU can receive the necessary data without
significantly impacting the overall system efficiency.

VI EXPERIMENT AND RESULTS

Benchmark Gemb5: 64 cores, Alpha ISA, Mesh NoC HT injqction
\ |
Hardware Modelling: NoC, ‘Lv [P Y Running ona || | Router _ Crossbar
a2 X Input Unit

i HT, and Monitoring a

64-core MPSoC I I I

m
SySte PARSEC:Blackscholes, Bodytrack,)(26:1
STP: Uniform Random

v""""""'""'"'""'?JrfBrTn'an'ce'sCaTuEﬁBKMa?r&'"'"".\(:
: DSCT Localizer EnhancedANN Q
' oq“ 1
I F k Localization Accuracy (TP+FP) / GP | '
: ramewor Precision & Recall Precision TP/ (TP +FP) !

Evaluation: Static and X
: ° The number/ratio Recall/TPR TP/ GP 1
1 Dynamic of tampered flits - !
! y parsed FPR FP/GN Static Eva
' FNR FN/GN
1
1
[

i
Results Evaluation

Flit Formatting Routing
Allocator

1

"""""""""" A :

! 1

"

Node Credit PKT.ID - [N
Suspicious eursize LANN training & :

SLe7] 23 i MsGsiZE| jnference H
63(7,7) | -20 flits WIDTH o
: ¢ Proposed TampML, !

HT detection'& localization Framework |

Fig. 8: Experiment flow.

The second consideration involves an architectural level
strategy, where we isolate the security modules from the NoC
system itself. As depicted in the architecture overview of
Fig. 7, the DFCs and the CTU are designed to ’collect’,
“extract’, and ’select’ flit data but do not engage in NoC
communication. This means that the monitoring system does
not introduce additional traffic, delay the normal transmission
of any flit, or alter any flit data. This approach of isolating the
security functions from the main NoC operations significantly
reduces the risk of interference with the system’s primary
functions. Moreover, the monitoring system is safeguarded
against attacks from the tampering HT within NoCs. This
enhanced security is due to the system’s limited role in merely
reading and parsing flit data, without actually utilizing this data
for any operational purposes. Similarly, the HT is unable to
probe or interact with our monitoring system, thus preventing
them from executing targeted attacks against it.

These design considerations, particularly the second, posi-
tion our architecture as more advanced compared to existing
state-of-the-art secure NoC architectures, such as those refer-
enced in [1], [5], [9], [11]. This advancement is primarily due
to our system’s ability to provide robust security monitoring
without impeding the NoC’s core operational efficiency.

VI. EXPERIMENT AND RESULTS

In the experiments conducted as part of the study in
[14], a purely static simulation and validation approach was
employed. The tool Netrace [17] was used for capturing and
parsing packet data. Additionally, a script-based (Python) HT-
injection module was designed to statically tamper with the
packet dataset. A key aspect of these experiments was the
exclusive use of a single PARSEC workload as the benchmark
for evaluating the framework. In contrast, this work expands
upon the experimental methodology. We have established a
more comprehensive experiment flow to assess our framework,
which is divided into two main segments as depicted in
Fig. 8: Hardware Modelling and Framework Evaluation.
This bifurcated approach allows for a more thorough and
nuanced evaluation of the framework, encompassing both the
simulation of hardware conditions and the direct assessment
of the framework’s performance and effectiveness in various
scenarios.

1) Hardware Modelling

A 64-core NoC-based MPSoC was constructed using the
Garnet tool in the GemS5 simulator. This setup included our
distributed monitoring system within the modeled NoC. For
application deployment, we utilized three real workloads from
the PARSEC benchmark collection to generate authentic flit
datasets. Additionally, the typical Synthetic Traffic Patterns
(STP) were simulated to assess the detection capabilities of
our framework. The uniform random case within the STP was
utilized to compile the training dataset for EnhancedANN,
whereas other benchmarks served as verification datasets for
it. On the hardware side, we implemented a tampering HT into
the input units of selected routers. This HT could randomly
alter specific fields in flits that were either routed through
or originated from these routers. For this study, HTs were
injected into four strategically chosen routers within the NoC,
identified by IDs 11, 32, 44, and 59, to ensure a representative
spread across the network. It should be noted that in the STP
benchmark, the HT is triggered continuously, whereas in the
PARSEC benchmark, it is activated only during the Region-of-
Interest (ROI). This approach is designed to mirror the most
realistic scenarios and to demonstrate the most serious effects
of HT activation.

2) Framework Evaluation

We retained the static validation flow to expedite the collec-
tion of metric data. For realistic MPSoC scenarios, our pro-
posed security architecture, depicted in Fig. 7, was integrated
into the modeled NoC, enabling runtime dynamic evaluation.
We calculated key metrics such as accuracy, precision, recall,
False Positive Rate (FPR), and False Negative Rate (FNR)
to gauge detection performance. Due to the unique aspects
of our localization issue and method, precision and recall
are especially relevant in reflecting true performance. Equally
important is the ratio of flits used for localization in each
scenario, as this directly indicates the speed of localization.

A. Monitoring System Exploration and Evaluation

The final design of our monitoring system was chosen from
three proposed schemes: Distributed Flit Collector (DFC),
Scanning Monitors in Routers, and Fixed Monitors in Routers.
While the DFC is detailed in Fig. 7, the latter two schemes use
internal router monitors to collect flits that are either routed

VI EXPERIMENT AND RESULTS

Evaluation Synthetic Traffic Pattern (STP) PARSEC Average
Metrics
Uniform Neighbor Shuffle Tornado Transpose Blackschole X264 Bodytrack
Random
Accuracy 1 1 1 1 1 1 0.9984 1 0.9984
Precision 0.99 1 0.99 0.99 0.99 1 1 1 0.9950
Recall 0.99 1 1 1 1 1 0.9934 1 0.9979
FPR 0 0 0 0 0 0 0 0 0
FNR 0.01 0 0 0 0 0 0.66 0 0.0837
TABLE I: Malicious Flits detection results on STP and PARSEC.
Monitoring Scheme Comparison
400%
EEEEEE EEEEE 350% 348% m Collected M-Flits/All M-Flits (100 Sim Cycles)
HEEEEEE O 1 MR: Monitoring Router| 300y = Collected M-Flits/All M-Flits (1000 Sim Cycles)
HEEEEEN EEEN ScanningPath1 | sy, 240%
EEEEEE BPEEEE |
PEEEEN -=--I- = s
g Path 3 100% 71.30%
EEEEEE EpEEeE -
{ 0%

J

Y
Initial Scanning Monitors: Router 42,
45,18, 21

\ i J
Y
Fixed Monitors: Router 42, 45, 18, 21

Fig. 9: Fixed and Scanning monitoring schemes.

through or originate from the router, thus limiting the monitor-
ing range. In selecting routers for monitoring, our goal was to
cover as extensive a routing path as possible. Consequently,
routers 42, 45, 18, and 21 were equipped with monitors in
both the fixed and initial scanning monitoring schemes. The
Fixed Monitors scheme is relatively straightforward, involving
constant monitoring by the selected routers. The Scanning
Monitoring scheme, on the other hand, involves periodically
enabling monitors in different routers in a specific sequence, as
depicted in the ’scanning path’ of Fig. 9. This method allows
for a more diverse coverage, encompassing a wider range of
routing flits.

We conducted the uniform random traffic pattern of STP
benchmark on the NoC system with HT injection to gather
tampered flits, calculating the ratio of collected tampered flits
by all monitoring routers to all tampered flits in the system
to assess the efficiency of our monitoring scheme. Fig. 10
demonstrates the performance of all schemes, showing that
our DFC scheme performs well even with a 5-cycle sampling
period. With a 1-cycle sampling period, the DFC scheme
captures more flits, including numerous repeats, as a flit’s
routing path may pass through multiple clusters monitored
by several DFCs. Although the I-cycle sampling provides
the most comprehensive data for the TampML framework,
the 5-cycle sampling represents a more balanced approach,
optimizing the trade-off between a number of tampered flits
collected and runtime power consumption. Additionally, the
scanning monitoring scheme outperforms the fixed monitoring,
aligning with expectations. Clearly, the DFC scheme is the
preferred choice in this work, ensuring sufficient input data
for the TampML framework.

B. Malicious Flits Detection Results

The performance of malicious flit detection is indicated by
the EnhancedANN classification results, detailed in Table 1.
This assessment includes all benchmarks, such as STP and

2% 7.40%

49% 39%
ml =

DFC DFC
(SampleRate 1 cycle) (SampleRate 5 cycles)

Fixed Monitors
(In Router)

Scanning Monitors
(In Router)
Fig. 10: Monitoring scheme comparison. (M-Flits: Malicious

Flits)

PARSEQC, since the detection stage primarily concentrates on
the contents of flits rather than aspects including traffics and
routing paths. Most of the metrics align with expectations.
However, an anomaly was noted in the X264 workload,
which exhibited a False Negative Rate (FNR) of 0.66. The
X264 is a pipelined media processing workload with high
data dependency, which is different from Blackschole and
Bodytrack. It also features both high data sharing and high data
exchange. Consequently, this anomaly can be attributed to the
unique communication traffic characteristics and data usage
of the X264 workload, which led to frequent misclassification
of malicious flits as normal. Despite this, the average metrics
across all benchmarks reached a satisfactory level.

C. HT-injected Node Localization Results

Given the differences in the experimental flow and dataset
from the [14], a direct comparison of results is not feasible.
We conducted retests of the localization process using the
new flits dataset, but only with the early established SAME-
TOP protocol. This retesting is depicted in Fig. 11. While
the precision of the SAME-TOP protocol remained high,
achieving 0.93, the proportion of flits required for a single
localization was not consistently low, averaging around 18.7%,
and at times reaching as high as 24.5% (nearly one-forth
of all tampered flits). This high flit cost for localization is
not acceptable in practical scenarios. Therefore, to address
this issue and enhance the localization process without com-
promising precision, the AND-TOP protocol was introduced.
This additional protocol aims to improve the efficiency of the
localization process, reducing the number of flits needed for
accurate localization. The next two subsections are presenting
the overall results on the complete framework. it is important
to note that our assessment focused exclusively on real PAR-
SEC workloads, as most benchmarks involving STPs feature
artificially predefined traffics, rather than naturally occurring,

VI EXPERIMENT AND RESULTS

Localization Performance (SAME-TOP Protocol only)

0.
1
0
. 0.245 021 0.213 0.187
0.08
0

PARSEC:
Blackschole

o
3

o
Y

)
=

o
o

STP: Uniform
Random

PARSEC: X264 PARSEC: Bodytrack Average

W Average Precision W Average Flit Cost Ratio

Fig. 11: Localization results with SAME-TOP protocol only.

application-specific traffic. This distinction is crucial because
the artificial nature of STP traffic does not provide a realistic
or authentic environment for evaluating our DSCT localization
method. Therefore, to ensure a valid and realistic assessment
of the DSCT’s performance, we relied on real-world workload
scenarios as presented in the PARSEC benchmarks.

1) Localization Results

Fig. 12 presents the precision results of our newly im-
plemented DSCT. The ’Z’ axis represents the precision of
localization, the *X’ axis shows different predefined caging
values, and the axis displays different node IDs injected
by HTs in our experiment. The concept of ’caging number’, as
introduced in Section IV-C2, refers to the timing for initiating
the localization process. A smaller caging number implies a
faster localization of the HT-injected node due to increased
sensitivity. However, this also leads to a higher likelihood
of false positives, which, while still within acceptable limits,
reduces the overall precision. It is noteworthy that among the
HT nodes, only node 11 tends to trigger more false positives.
This exception is attributed to node 11°s proximity to node
0, which plays a significant role in controlling the CPU and
thus experiences a higher volume of instruction and data
transfers. Consequently, when an HT is injected into a node
near the main CPU (node 11 in our case), there is an increased
chance of false positives. Overall, the average precision is
approximately 84% when both the SAME-TOP and AND-
TOP protocols are enabled, and all HT nodes are successfully
localized.

Another observation is the inverse relationship between
the caging number and precision: a larger caging number
improves precision but also increases the flit cost, indicating
slower localization. This scenario highlights a trade-off be-
tween precision and flit cost. The subsequent subsection will
delve more into the implications of this trade-off, particularly
focusing on the results related to flit cost. In Fig 12, we
selected three typical caging numbers for each benchmark,
which demonstrate a great balance between precision and flit
cost.

2) Localization Efficiency

Fig. 13 illustrates the flit cost per localization event in our
proposed architecture (see Fig. 7). When compared to the flit
cost ratio under the SAME-TOP protocol alone (as shown in
Fig. 11), notable reductions in flit usage are observed across
different benchmarks. Specifically:

o For the Blackschole workload, there is a reduction in flit

usage by approximately 2.2 to 11 times.

’Y’

Localization Precision

. mHT11
g-g HT32
0.4 o Average HT44
° Hrso B HT59

c HT44
aging 3 7 ' ' ' HT32 W Average

HT11

Bodytrack

Fig. 12: HT node localization precision results.

Localization Flits Cost Ratio

0.095
0.099 045
o W HT11
T ﬁ HT32
0.1 ' Average
HT44

0'03 4 HTS59
Caging L 4 HT44 | HT59

5 7 CHE HT32 M Average

Blackschole 9 3 7 HT1L
X264 9

Bodytrack

Fig. 13: Flits cost ratio in localization.

o In the case of X264, the reduction is between 3.6 to 4.6
times.

o For Bodytrack, the reduction ranges from 1.1 to 1.65
times.

These reductions are influenced by the selected caging num-
ber, which varies based on the specific traffic characteristics
of different workloads. It was observed that a caging number
in the range of 5 to 9 tends to be optimal, balancing precision
(up to 100%) with a flit cost of no more than 10%.

When comparing localization efficiency among different
HT injection nodes, HTs in nodes 32 and 11 are typically
localized more rapidly, possibly due to their critical roles in
global communication traffic. Conversely, HTs in nodes 44
and 59 generally take longer to localize. This variation may
be influenced by our flit collection strategy as well, where
the Central TampML Unit (CTU) often receives flits primarily
from the first clusters (1 and 2), leading to earlier localization
of HTs in nodes with IDs smaller than 32. This issue could
potentially be addressed by another architectural approach,
which will be discussed in the next subsection.

D. Distributed localization scheme exploration

In addition to our initial monitoring scheme shown in Fig.
7, we explored a more distributed approach that integrates
four complete detection and localization TampML frameworks
into the four Distributed Flit Collectors (DFCs). In this archi-
tecture, each DFC is tasked with the detection of malicious
flits and localization of HT nodes within its respective node
cluster. While this setup incurs greater hardware and power
overhead, it significantly enhances the efficiency of detection
and localization, as evidenced by the results in Fig. 14. Com-
pared to Fig. 13, the localization performance improvement is
apparent. Focusing specifically on localization efficiency, the
performance for HT nodes 11 and 32 remains consistent with

VII CONCLUSION

Comparative works [12] [11] [22] [Our work]
HT & Attacks Flooding Flooding Path Collision Data Tampering
ML model N/A Perceptron-based ML N/A ANN
Detection Method PAC, DLC ML using BWT, IFI, VCL | CPRD Architecture EnhancedANN
Accuracy N/A 97 % N/A 99.84%
Precision N/A 97.6 % N/A 99.5%
Localization Method | Event Handler for Router MIP Algorithm CPDD Architecture DSCT Algorithm
Precision N/A 96.7% N/A 88% (S+A) ~ 93% (S)
Recall N/A N/A N/A 100%
Timing or Data Cost 8~24us@1.4GHz 30~140 Cycles 97~1118 Cycles 3.7% of tampered data

PAC: Packet Arrival Curves. DLC: Destination Packet Latency Curves. ML: Machine Learning. BWT: Buffer Waiting Time. IFI: Inter-Flit-Interval. VCL: Virtual Channel
Occupancy MIP: Malicious Intellectual Property. CPRD: Collision Point Router Detection. CPDD: Collision Point Direction Detection. ANN: Artificial Neural Network.
DSCT: Dynamic Security Credit Table. S+A: SAME-TOP and AND-TOP protocols. S: SAME-TOP protocol only

TABLE II: Comparison between related works with our work

Localization Flit Cost Ratio: Distributed TampML Detection
Scheme (4 ANN models + 4 DSCTs)

Average
0.1 (Plus HT11 and

008 HT32)
HT44

0.06

0.04 00204 0.Gpo4 jo B 0.025880.02591

0.02 0.00326% 000456+ HTS9

: I ' 000579 @) Cooi2s~ l

Caging \3 6 7J L 3 5 9} \3 7 9J

T) T
Blackschole X264 Bodytrack

Fig. 14: Flits cost ratio in localization based on the more
distributed TampML scheme (4 ANN models plus 4 DSCTs
for 4 node clusters).

the outcomes discussed in the early section, so they are not
included. However, there is a remarkable improvement in the
localization of HT node 44. In the Blackscholes workload,
HT node 44 is localized up to 213 times faster; in X264, the
improvement reaches up to 6114 times; and in Bodytrack,
it is up to 3508 times faster. For HT node 59, there’s
an increase in localization speed by up to 3.2 times in
the Blackscholes benchmark, while the performance in other
benchmarks remains unchanged.

Averagely, this scheme can be faster as 20.6 times as the
centralised scheme with single ANN and DSCT. This more
distributed scheme demonstrates that by dedicating complete
detection and localization frameworks to individual clusters
within the NoC, we can achieve significantly faster response
times, particularly in localizing certain HT nodes, albeit at the
cost of increased hardware and power requirements.

E. Overall comparison

Compared to the state-of-the-art, our work is pioneering in
proposing and implementing a secure monitoring framework
capable of detecting malicious internal communication data
and localizing HT-injected nodes within NoC-based MPSoC
context. Nonetheless, direct comparison of metrics with other
works that focus on different types of attacks presents certain
challenges.

Our work demonstrates superior performance metrics in
table II. Employing an ANN model, the EnhancedANN de-
tection method achieves an exceptional accuracy of 99.84%
and a precision of up to 99.5%, significantly surpassing the
benchmarks set by other methods. The DSCT Algorithm used
for localization ensures a recall rate of 100%, indicating

full detection of relevant instances. Notably, our framework’s
efficiency is underscored by its minimal data cost, utilizing
averagely only 3.7% of tampered data for localization. This
efficiency represents a marked improvement over other studies
and our previous work in [14], which report lower data or
timing costs. Collectively, these results position our work
as a leading solution in the field of secure network-on-chip
architectures, offering a highly efficient and precise approach
to tackling data tampering threats.

VII. CONCLUSION

In conclusion, this paper introduces a secure framework
with a highly efficient monitoring scheme for Network-on-
Chips (NoCs) based Multi-Processor System-on-Chip (MP-
SoC), capable of detecting tampered flits and localizing Hard-
ware Trojan (HT)-injected nodes. The framework demon-
strates a detection performance with 99% accuracy and pre-
cision on the PARSEC benchmark’s real workloads. Local-
ization performance varies between 88% to 93%, contingent
on whether the new AND-TOP trigger protocol is enabled.
With the AND-TOP protocol activated, localization efficiency
improves by up to 11 times compared to our earlier design.
Moreover, we have examined a more distributed monitor-
ing and detection scheme, which, despite higher power and
hardware resource demands, achieves up to 20.6 times the
localization efficiency of the singular framework approach.
This framework not only enhances security in NoC-based
MPSoCs against communication data tampering attacks but
also has the potential to be adapted for other communication
bus architectures, such as AMBA systems, where the data
packet structure is amenable to ML model training and the
malicious IPs can be pinpointed using the DSCT algorithm.

REFERENCES

[1] C. Liu, J. Rajendran, C. Yang and R. Karri, ”Shielding Heterogeneous
MPSoCs From Untrustworthy 3PIPs Through Security- Driven Task
Scheduling,” in IEEE Transactions on Emerging Topics in Computing,
vol. 2, no. 4, pp. 461-472, Dec. 2014.

[2] B. Halak, "CIST: A Threat Modelling Approach for Hardware Supply
Chain Security,” in Hardware Supply Chain Security: Threat Modelling,
Emerging Attacks and Countermeasures, 1st ed., pp. 3-65, 2021.

[3] S. Charles and P. Mishra, ”A survey of network-on-chip security attacks
and countermeasures,” in ACM Computing Surveys (CSUR), vol. 54, no.
5, pp. 1-36, 2021.

[4] K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M. Tehranipoor,
”Hardware Trojans: Lessons Learned after One Decade of Research,”
in ACM Transactions on Design Automation of Electronic Systems, vol.
22, no. 1, Article 6, May 2016, pp. 1-23.

VII CONCLUSION

[5] N. Prasad, R. Karmakar, S. Chattopadhyay, and I. Chakrabarti, ”"Runtime
mitigation of illegal packet request attacks in Networks-on-Chip,” in 2017
IEEE International Symposium on Circuits and Systems, 2017, pp. 1-4.

[6] S. Charles and P. Mishra, “Lightweight and Trust-Aware Routing in NoC-
Based SoCs,” in 2020 IEEE Computer Society Annual Symposium on
VLSI, 2020, pp. 160-167.

[7]1 A. Kulkarni, Y. Pino, M. French, and T. Mohsenin, “Real-Time Anomaly
Detection Framework for Many-Core Router through Machine-Learning
Techniques,” in ACM Journal on Emerging Technologies in Computing
Systems, vol. 13, no. 1, Dec. 2016, pp. 1-22.

[8] C. Sudusinghe, S. Charles, and P. Mishra, “Denial-of service attack
detection using machine learning in network-on-chip architectures,” in
Proceedings of the 15th International Symposium on Networks-on-Chip,
ACM, Virtual Event, 2021, pp. 35-40.

[9] K. Wang, H. Zheng, and A. Louri, "TSA-NoC: Learning-Based Threat
Detection and Mitigation for Secure Network-on-Chip Architecture,” in
IEEE/ACM International Symposium on Microarchitecture, vol. 40, no.
5, Sept. 2020, pp. 56-63.

[10] M. Hussain, A. Malekpour, H. Guo, and S. Parameswaran, "EETD: An
energy efficient design for runtime hardware trojan detection in untrusted
network-on-chip,” in 2018 IEEE Computer Society Annual Symposium on
VLSI (ISVLSI), Jul. 2018, pp. 345-350.

[11] M. Sinha, S. Gupta, S. S. Rout, and S. Deb, "Sniffer: A machine
learning approach for DoS attack localization in NoC-based SoCs,” in
IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
vol. 11, no. 2, 2021, pp. 278-291.

[12] S. Charles, Y. Lyu, and P. Mishra, “Real-time detection and localization
of distributed DoS attacks in NoC-based SoCs,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 39, no.
12, pp. 4510-4523, 2020.

[13] J. Yao, Y. Zhang, Z. Mao, S. Li, M. Ge, and X. Chen, "On-line
Detection and Localization of DoS Attacks in NoC,” in 2020 IEEE
9th Joint International Information Technology and Artificial Intelligence
Conference (ITAIC), Chongqing, China, 2020, pp. 173-178.

[14] H. Wang and B. Halak, "Hardware Trojan Detection and High-Precision
Localization in NoC-based MPSoC using Machine Learning,” in 28th
Asia and South Pacific Design Automation Conference (ASPDAC °23),
Tokyo, Japan, Jan. 16-19, 2023, pp. 1-6.

[15] J. Frey and Q. Yu, ”A hardened network-on-chip design using runtime
hardware Trojan mitigation methods,” Integration, vol. 56, pp. 15-31,
2017.

[16] M. K. JYV, A. K. Swain, S. Kumar, S. R. Sahoo, and K. Mahapatra,
“Run time mitigation of performance degradation hardware trojan attacks
in network on chip,” in 2018 IEEE Computer Society Annual Symposium
on VLSI (ISVLSI), Jul. 2018, pp. 738-743.

[17] J. Hestness and S. W. Keckler, "Netrace: Dependency-tracking traces
for efficient network-on-chip experimentation,” The University of Texas
at Austin, Dept. of Computer Science, Tech. Rep., 2011.

[18] L.L. Woo, M. Zwolinski, and B. Halak, “Early detection of system-level
anomalous behaviour using hardware performance counters,” in 2018
Design, Automation Test in Europe Conference Exhibition (DATE), Mar.
2018, pp. 485-490.

[19] H. Zheng and A. Louri, “Agile: A learning-enabled power and
performance-efficient network-on-chip design,” IEEE Transactions on
Emerging Topics in Computing, 2020.

[20] K. Wang, A. Louri, A. Karanth, and R. Bunescu, "IntelliNoC: A holistic
design framework for energy-efficient and reliable on-chip communi-
cation for manycores,” in 2019 ACM/IEEE 46th Annual International
Symposium on Computer Architecture (ISCA), Jun. 2019, pp. 1-12.

[21] J. Y. Won, X. Chen, P. Gratz, J. Hu, and V. Soteriou, "Up by their
bootstraps: Online learning in artificial neural networks for CMP uncore
power management,” in 2014 IEEE 20th International Symposium on
High Performance Computer Architecture (HPCA), February 2014, pp.
308-319.

[22] C. G. Chaves, S. P. Azad, T. Hollstein, and J. Sepilveda, “DoS
attack detection and path collision localization in NoC-based MpsoC
architectures,” Journal of Low Power Electronics and Applications, vol.
9, no. 1, p. 7, 2019.

Haoyu Wang is currently pursuing a Ph.D. degree
at the University of Southampton in the United
Kingdom. He earned an MSc degree in Analogue
and Digital Integrated Circuit Design from Imperial
College London, UK, and a BEng degree with first-
L3 class honors in Electronic Engineering from a joint
bachelor’s program offered by the University of
Central Lancashire (UK) and the Beijing Institute of
Technology (China). Before commencing his doc-
toral studies, Haoyu held the position of Senior
Silicon Design Engineer in the GFX IP design group
at AMD. His research interests encompass secure NoC-based SoC design,
computer architecture, deep learning accelerators, and FPGA technology.

Basel Halak is currently an Associate Professor
in secure electronics and the Director of the Cy-
ber Security Academy, University of Southampton.
He is also a Visiting Scholar with the Technical
University of Kaiserslautern, an Industrial Fellow
of the Royal Academy of Engineering, a Senior
Fellow of the Higher Education Academy, and a
National Teaching Fellow of Advance HE U.K. He
has published more than 100 refereed conference
and journal papers and authored five books on the
security and reliability of electronic devices and
systems. His research interests include hardware security, digital design, and
embedded systems. He is with several technical program committees, such as
HOST, IEEE DATE, DAC, IVSW, ICCCA, ICCCS, MTYV, and EWME. He
is a member of the Hardware Security Working Group of the World Wide
Web Consortium (W3C). He is an Associate Editor of IEEE ACCESS and
the Editor of the IET Circuits, Devices and Systems Journal.

